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Abstract  13 

The presence of a novel adenovirus (AdV) was detected by PCR and sequencing, in the internal organs of a 14 

captive polar bear that had died in the Budapest zoo. The virus content of the samples proved to be high 15 

enough to allow for conventional Sanger sequencing on PCR-amplified genomic fragments. With this 16 

approach, the sequence of the entire genome of the putative polar bear adenovirus 1 (PBAdV-1) was 17 

obtained. Although the genome was found to be short, consisting of 27,952 base pairs merely, with a 18 

relatively balanced G+C content of 46.3%, its organisation corresponded largely to that of a typical 19 

mastadenovirus. Every genus-common gene could be identified except that of protein IX. The short E3 region 20 

of the PBAdV-1 consisted of two novel, supposedly type-specific ORFs only, whereas no homologue of any of 21 

the E3 genes, usually conserved in mastadenoviruses, such as for example that of the 12.5K protein, were 22 

present. In the E4 region, only the highly conserved gene of the 34K protein was found besides two novel 23 
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ORFs showing no homology to any known E4 ORFs. In silico sequence analysis revealed putative splicing 24 

donor and acceptor sites in the genes of the E1A, IVa2, DNA-dependent DNA polymerase, pTP, 33K proteins, 25 

and also of U exon protein, all being characteristic for mastadenoviruses. Phylogenetic calculations, based on 26 

various proteins, further supported that the newly-detected PBAdV is the representative of a new species 27 

within the genus Mastadenovirus, and may represent the evolutionary lineage of adenoviruses that 28 

coevolved with carnivorans.  29 
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1. Introduction 33 

Adenoviruses (AdVs) are medium-sized icosahedral, non-enveloped viruses with double stranded, linear DNA 34 

genome. Presently, the family Adenoviridae is divided into five approved and one pending genera (Harrach 35 

et al., 2011) (https://talk.ictvonline.org; https://sites.google.com/site/adenoseq). Mastadenovirus and 36 

Aviadenovirus contain viruses infecting exclusively mammals or birds, respectively. The most recently 37 

accepted genus Ichtadenovirus was established for the only AdV found in fish to date, sturgeon adenovirus 1 38 

(Benkő et al., 2002). The remaining two genera (Atadenovirus and Siadenovirus) have more diverse host 39 

spectra. Atadenoviruses have been found in various snakes, lizards, birds, as well as in a tortoise, several 40 

ruminants and even in a marsupial (Wellehan et al., 2004; Papp et al., 2009; Pénzes et al., 2014; Garcia-41 

Morante et al., 2016; Szirovicza et al., 2016). Siadenoviruses are known to occur commonly in birds, but have 42 

also been detected in tortoises and in a frog (Rivera et al., 2009; Kovács and Benkő, 2011; Ballmann and 43 

Vidovszky, 2013; Ballmann and Harrach, 2016; Lee et al., 2016). Recently, a sixth genus, Testadenovirus has 44 

been proposed for the AdVs discovered in testudinoid turtles (Doszpoly et al., 2013). Adenoviruses usually 45 

have a narrow host range restricted to a single, or several closely related, vertebrate species. Several 46 

evidences imply that AdVs have been co-evolving with their hosts (Harrach et al., 2011; Podgorski et al., 47 

2018). However, multiple assumed host switches of AdVs have been described, e.g. from Squamate reptiles 48 

to birds and ruminants, from monkeys and apes to humans, from bats to dogs (Benkő and Harrach, 2003; 49 

Wellehan et al., 2004; Kohl et al., 2012). 50 

Thanks to the increased sensitivity of broad-range PCRs, numerous novel AdVs have been discovered and 51 

described in the past couple of decades (Benkő et al., 2002; Wellehan et al., 2004; Papp et al., 2009; Rivera 52 

et al., 2009; Ballmann and Vidovszky, 2013; Doszpoly et al., 2013; Ballmann and Harrach, 2016; Garcia-53 

Morante et al., 2016; Lee et al., 2016; Szirovicza et al., 2016; Podgorski et al., 2018) 54 

(https://sites.google.com/site/adenoseq). In the majority of these cases however, actual isolation of the 55 

detected viruses has been hampered by the lack of appropriate cell lines.  56 

Mastadenoviruses occur in a wide range of wild and domestic mammals including humans, as well as 57 

numerous ape and monkey species (Kohl et al., 2012; Vidovszky et al., 2015; Podgorski et al., 2016; Podgorski 58 
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et al., 2018). Primary infection with AdVs usually results in mild, transient and self-limiting respiratory or 59 

enteric disease. In healthy individuals, most AdVs are harmless, yet some of them have been incriminated as 60 

the causative agent of specific severe, sometimes  though very rarely  fatal diseases. Such an exception is 61 

canine adenovirus 1 (CAdV-1) that causes the infectious canine hepatitis (ICH, or Rubarth’s disease). While 62 

ICH might be life-threatening, the infection by CAdV-2, a genetic variant of CAdV-1 causes only mild 63 

respiratory disease, the so-called kennel cough. The involvement of CAdV-1 in fox encephalitis cases has also 64 

been described (Benkő, 2008). Serological positivity to both CAdV types has been detected in additional 65 

members of the order Carnivora such as various bears, coyote, jackal, raccoon, wolf, etc. PCR detection and 66 

isolation were accomplished from samples of red foxes (Vulpes vulpes) in the UK (Thompson et al., 2010) and 67 

in Italy (Balboni et al., 2013). More recently, new AdVs, genetically most closely related to CAdVs, have been 68 

discovered and, based on their clustering on the phylogenetic trees, a close common ancestry of CAdV-1, -2 69 

and the AdV of certain vespertilionid bats have been hypothesized (Kohl et al., 2012; Vidovszky et al., 2015). 70 

A novel AdV was isolated from a wild living skunk (Mephitis mephitis) in Canada. The full genomic sequence 71 

analysis of this skunk adenovirus (SkAdV-1) revealed common characteristics with the CAdV genomes (Kozak 72 

et al., 2015). The phylogeny inference also suggested that SkAdV-1 and CAdVs and certain bat AdVs share 73 

close common ancestry. 74 

Isolation of an AdV from California sea lions (Zalophus californianus) diseased with clinical signs similar to 75 

those caused by CAdV-1 has also been reported, however serology and PCR indicated the presence of a virus 76 

distinct from CAdV and was named California sea lion AdV-1 (CSLAdV-1) (Goldstein et al., 2011). Seemingly 77 

the same virus was recovered from South American sea lion (Otaria flavescens) and named as otarine AdV-1 78 

(Inoshima et al., 2013) and from Hawaiian monk seal (Neomonachus schauinslandi) (Cortes-Hinojosa et al., 79 

2016b). Finally, the complete genome of CSLAdV-1 was sequenced and this proved its difference from CAdVs 80 

(Cortes-Hinojosa et al., 2015). A rapidly increasing number of novel AdVs are being detected in different 81 

carnivoran samples by the nested PCR targeting the most conserved part of the gene of the adenoviral DNA-82 

dependent DNA polymerase (pol) (Wellehan et al., 2004), thus from northern elephant seals (Mirounga 83 

angustirostris, phocine AdV-1), Pacific harbor seals (Phoca vitulina richardii, phocine AdV-2), and again from 84 



 5 

another California sea lion with ocular lesions (this virus named otarine AdV-2) (Wright et al., 2015). More 85 

recently, pol sequences became available from a cat-associated AdV (Lakatos et al., 2017), as well as from 86 

pine martens (Martes martes) and Eurasian otters (Lutra lutra) (Walker et al., 2017). 87 

In this report, we describe the detection, full genome sequencing and phylogenetic analysis of an AdV 88 

found in a captive polar bear (Ursus maritimus) which had died in the Budapest Zoo. Routine PCR screening 89 

of the internal organs, namely the liver and the lungs revealed the likely presence of a hitherto unknown 90 

AdV. The amount of viral genomic DNA in the samples was found high enough to allow for conventional 91 

Sanger sequencing by direct primer walking on PCR-amplified genome fragments. Based on our results we 92 

propose this novel polar bear AdV to be a founding member of a new species within the genus 93 

Mastadenovirus.  94 

Materials and methods 95 

Samples 96 

A 23-year-old female polar bear, born in captivity in Italy, died suddenly at the Budapest Zoo in 2011. 97 

Gross pathology revealed a tumour of about 10 cm in diameter in the liver. Upon histopathology, multifocal 98 

glomerulonephritis, chronic fibrosis and amyloidosis were found in the kidney. The tumour was classified as 99 

a biliary cystadenoma. Bacteriological examination indicated beta-2 toxin-producing Clostridium perfringens 100 

enterotoxaemia as the immediate cause of the death. For routine PCR screening, DNA extraction from liver 101 

and lung samples was performed as described earlier (Ballmann and Harrach, 2016). 102 

PCR  103 

For the initial diagnostic PCR or whenever the expected size of the PCR product did not exceed 1000 bp, 104 

Dream Taq Green (ThermoScientific) Master Mix (2×) and for the amplification of larger DNA fragments the 105 

PrimeSTAR Max or GXL DNA Polymerase (Takara Bio USA, Inc.) kits were applied. The initial detection of AdV 106 

DNA was performed by general nested PCRs with degenerate, consensus primers targeting conserved regions 107 
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of the pol (Wellehan et al., 2004), IVa2 (Pantó et al., 2015) and hexon genes (the latter performed by single 108 

round PCR) (Kiss et al., 1996). 109 

The whole genome was sequenced using a primer walking approach. Specific primers were designed 110 

based on the sequences gained first with the degenerate primers and later based on the sequences gained 111 

by the custom-made primers (specific PCR primers as listed in supplementary Table S1). PCR reaction volume 112 

was 25 μl, consisting of 12.5 μl DreamTaq Master Mix (2×) or PrimeSTAR Max or GXL DNA Polymerase 113 

(Takara), 0.5 μl (50 pmol/μl) of each primer (outer and inner for the first and second round, respectively) and 114 

1 μl of target DNA. Milli-Q water was added up to 25 μl final volume. In the second cycle of nested PCR, 2 μl 115 

of the reaction mixture of the first cycle was used as a template. For single round PCR, the same amounts 116 

were used, as in the first round of nested PCR. 117 

The nested PCR profile comprised an initial denaturation step at 94°C for 5 min, followed by 45 cycles of 118 

denaturation at 94°C for 0.5 min, annealing at 46°C for 1 min and elongation at 72°C for 1 min. The final 119 

elongation step lasted 3 min at 72°C. For the amplification of the hexon gene, the following thermocycling 120 

conditions were used: initial denaturation at 95°C for 5 min; 35 cycles of denaturation, annealing and 121 

elongation, 1 cycle consisting of 95°C for 0.5 min, 55°C for 0.5 min and 72°C for 0.5 min, respectively, and a 122 

final elongation step at 72°C for 5 min. Using specific primers, the PCR conditions were set according to 123 

manufacturer's instruction (Takara Bio USA, Inc.). The PCR products were analysed by electrophoresis in 1% 124 

agarose gels containing GelRed™ (Biotium USA, Inc.). 125 

DNA sequencing 126 

DNA fragments of expected size were cut from the agarose gel and cleaned using NucleoSpin® Gel and PCR 127 

Clean-up kit (Macherey-Nagel, Germany). Sequencing was performed on both strands with the BigDyeTM 128 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems/Life Technologies Corporation®, Carlsbad, CA, 129 

USA) using the consensus primers. The capillary electrophoresis was performed on the ABI Prism® 3100 130 

Genetic Analyzer (Applied Biosystems, USA) by a commercial supplier. 131 
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Bioinformatics and phylogenetic analysis 132 

The identity of the newly-gained sequences was checked by using different BLAST algorithms on the NCBI 133 

website. Sequence assembly and editing were performed with the Staden package (Staden et al., 1998). 134 

Genome annotation was carried out with Artemis Genome Browser (Berriman and Rutherford, 2003) and 135 

CLC Main Workbench. The determination of the splicing donor and acceptor sites, as well as the cleavage 136 

signals, was accomplished manually by comparison of conserved patterns (Farkas et al., 2002; Ruzindana-137 

Umunyana et al., 2002; Mangel and San Martin, 2014; Podgorski et al., 2016). Multiple alignments of the 138 

amino acid sequences were prepared with the Muscle program of the MEGA6 package. The selection of the 139 

best substitution model selection for the phylogenetic tree was performed using ProtTest (Darriba et al., 140 

2011) and model LG+I+G was chosen for the aa sequences of pol and hexon genes. The final tree was 141 

calculated with PhyML on the ATGC bioinformatics platform of the French National Institute of Bioinformatics 142 

(Guindon et al., 2010). Approximate Likelihood-Ratio Test (aLRT SH-like) was applied for statistical tests for 143 

the branches (Anisimova and Gascuel, 2006). The phylogenetic trees were displayed in FigTree 1.4.4 program. 144 

Results 145 

Genome characteristics 146 

The genome of the PBAdV-1 strain BK35 (GenBank accession no. MF773580) was found to be 27,952 bp, with 147 

inverted terminal repeats of 80 bp on both ends. The viral DNA has an average G+C content of 46.33%, which 148 

can be considered as non-biased. The genome was predicted to contain 27 genes as presented in Table 1 in 149 

comparison to other carnivoran AdVs (CAdV-1, CSLAdV-1 and SkAdV-1), bat-WIV12 AdV and human 150 

adenovirus 5 (HAdV-5). The number and arrangement of the predicted genes were similar to those of other 151 

mastadenoviruses; every genus-specific gene except that of protein IX could be identified. One fiber gene 152 

could be determined. The E3 region contains two novel ORFs (E3 ORFA, E3 ORFB) but lacks the 12.5K gene. 153 

In the E4 region, two novel ORFs (E4 ORFA, E4 ORFB) were found besides the conserved 34K gene (called 154 

ORF6 in HAdVs) but gene ORF6/7 was missing. The three exons of the U exon protein gene could be predicted 155 

(Podgorski et al., 2016). The splicing donor and acceptor sites, characteristic for the genus, were predicted in 156 
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pol, and in the E1A, pTP, IVa2 and 33K genes, too. No evidence of gene duplication was found. A schematic 157 

genetic map of the PBAdV-1 is presented in Fig. 1. The protease cleavage sites of the precursor proteins could 158 

be determined by the alignment of consensus sites (M/L/I)XGG'X (type I), (M/L/I)XGX'G (type II) and NTGW'G 159 

(type IIb) of selected adenoviruses (Farkas et al., 2002) (Table 2 and Fig. 2). 160 

Phylogenetic analyses 161 

Phylogenetic trees, obtained by maximum likelihood analysis based on the full aa sequence of the DNA-162 

dependent DNA polymerase (a) and the hexon (b) proteins are presented in Fig. 3. The topology of both trees 163 

as well as the genome analysis confirmed that PBAdV-1 belongs to the genus Mastadenovirus but forms a 164 

independent branch corresponding to a species-level separation.  165 

Discussion 166 

Adenoviruses have been found in many vertebrates, but their appearance in exotic mammals has not 167 

been studied in much detail. Human AdVs are definitely the best described AdVs, but non-human AdVs are 168 

getting more attention too, because of their widespread occurrence in nature and the possibilities to use 169 

them as vaccines or as vectors in gene therapy (Alonso-Padilla et al., 2016). We have extensive knowledge 170 

about non-human primate, ruminant and bird AdVs, but those from other vertebrate species, especially the 171 

exotic ones, are left behind. The main reason might be the problematic sampling of these animals, as well as 172 

the lack of specific tissue and cell cultures to isolate and propagate these viruses. However, molecular biology 173 

provides methods to identify and even fully sequence non-isolated viruses, and the International Committee 174 

on Taxonomy of Viruses decided that complete genomic sequences can be accepted as representatives of 175 

official virus species (Simmonds et al., 2017). 176 

Here we present the complete coding sequence of a polar bear adenovirus, PBAdV-1. The death of the 177 

specimen was caused by beta-2 toxin producing Clostridium perfringens enterotoxaemia. Consequently, the 178 

pathogenicity of the novel virus is unclear. 179 
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Our investigation showed that the PBAdV-1 has a similar genome arrangement to other 180 

mastadenoviruses, but it has a non-typical short genome of 27,952 bp. Since seroprevalence of canine AdVs 181 

has been described in wild carnivorans, inter alia bears and polar bears (Zarnke and Evans, 1989; Knowles et 182 

al., 2018), we expected to find a canine AdV in the sample. However, phylogenetic analysis of the virus 183 

indicates that the PBAdV-1 is a member of a new species within the genus Mastadenovirus. Although the 184 

PBAdV-1 is very different from all other AdVs found so far, the primers we use in routine PCR detection of 185 

AdVs (targeting genes IVa2, pol, hexon) amplified this AdV successfully. We could not perform next 186 

generation sequencing in this situation since we do not have the appropriate cell line to isolate the virus and 187 

produce larger amounts of DNA. However, primer walking and traditional (Sanger) sequencing was fully 188 

adequate, most probably mainly because of the high amount of virus in the tissue samples. 189 

Genome analysis showed the presence of all genus specific genes except the one coding protein IX. The 190 

lack is surprising since this gene has been detected in all other wild type mastadenoviruses so far. Protein IX 191 

functions as a cement protein for the AdV capsid and stabilizes the structure, furthermore functions as 192 

transcriptional activator and seems to be involved in virus-induced nuclear reorganization, too (Rosa-193 

Calatrava et al., 2001). Studies show, that in the absence of protein IX, HAdV virions are heat-labile, yet more 194 

easily growing on certain, especially on Coxsackie and Adenovirus Receptor (CAR)-negative cell lines (Colby 195 

and Shenk, 1981; Sargent et al., 2004; de Vrij et al., 2011). Further studies are needed to clarify whether 196 

protein IX-deleted AdVs have an increased pathogenicity.  197 

The predicted putative splicing sites in the E1A, pTP, pol, IVa2, 33K and U exon protein genes are typical 198 

for the genus. Compared to other mastadenoviruses some genes seem to be shorter (52K, pIIIa, V and pVIII) 199 

and the similarity is very low; max. 71.2 % in hexon gene (Table 1). The protease cleavage signals in the 200 

precursor proteins pTP, pIIIa, pVII, pX, pVI and pVIII could also be determined (Table 2) and are well 201 

comparable to those in other mastadenoviruses. The novel ORFs in the regions E3 and E4 are not similar to 202 

any know AdV ORF and neither to any protein deposited in the GenBank.  203 

It is surprising how well the 34K homologue is preserved during the evolution. It is present in all mast- and 204 

aviadenoviruses, as well as in atadenoviruses, where even in duplicated (multiplicated). Only members of the 205 
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genus Siadenovirus are devoid of this gene (Gilson et al., 2016). The 34K protein of mastadenoviruses forms 206 

Cullin-based ubiquitin ligase complexes that, in association with E1B 55K (present also in PBAdV-1), target 207 

cellular proteins for degradation. Thus it may be understandable why this gene is the only gene preserved in 208 

the E4 region of the PBAdV-1.  209 

An interesting question is, whether the AdVs found in the members of order Carnivora co-evolved with 210 

their hosts. Canine and skunk AdVs had been hypothesized to originate from bat AdVs by host switch (Kohl 211 

et al., 2012; Kozak et al., 2015; Vidovszky et al., 2015). Surprisingly the skunk AdV found originally in Canada 212 

has been found also in a New World monkey from a European (Hungarian) zoo (Gál et al., 2013) and in African 213 

pigmy hedgehogs kept as pets in Japan and the USA (Madarame et al., 2016; Needle et al., 2019). This almost 214 

unprecedented ability among AdVs to switch species barrier among evolutionarily so different host suggests 215 

that skunk is not the real host the virus co-evolved with. Similarly, CAdVs have been described from a large 216 

range of carnivorans (fox, coyote, jackal, raccoon, wolf, even from sea lion and various bears). This fact is 217 

indicative of a relatively recent host switch to dog, and is rather against a long co-evolutionary history with 218 

dogs. Thus, the remarkable pathogenicity of CAdVs might be explained by the lack of successful adaptation 219 

to a newly invaded host. On the other hand, PBAdV-1 shows large phylogenetic distance and a genome 220 

organization that differs from these bat originated viruses. 221 

Until a year ago, only one AdV has been identified from bears which could be characterized by sequencing; 222 

it was a CAdV-1 from a grizzly bear (Ursus arctos horribilis) cub found dead (Knowles et al., 2018). Besides 223 

this finding, only seropositivity has been reported (detected in brown bears, grizzly bears, and even polar 224 

bears), which was attributed to canine AdV infection (Chomel et al., 1998; Dunbar et al., 1998; Bronson et 225 

al., 2014; Di Francesco et al., 2015). Recently, the sequence of an almost identical AdV (sharing 99% nt 226 

identity with our PBAdV-1) has been described from a captive-born polar bear cub that had died in the Berlin 227 

Zoo (Dayaram et al., 2018). Compared to that analysis, we determined the genome ends (ITRs), and predicted 228 

the splicing sites (for genes E1A, pTP, pol, IVa2, 33K and U exon protein). This is especially important for the 229 

pol gene as it results a considerably longer protein, which is more suitable for phylogenetic analysis. Also 230 
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important that both genome analyses show the lack of protein IX, , which was such unique finding that first 231 

we attributed it to some possible technical problem. For this reason, we discussed this topic more in detail. 232 

Our work provides a strong evidence for this virus being a genuine polar bear virus as opposed to the 233 

assumption of Darayam et al. (2018) who have speculated a cross-species transmission of a novel pathogen. 234 

The geographical and temporal distances between the two cases practically exclude the existence of a 235 

common source. The two polar bears could obviously have no direct or indirect contact. 236 

This novel virus shows adequate divergences from the other mastadenoviruses to merit the establishment 237 

of a novel species. Based on the above-mentioned facts, we propose confidently the establishment of a new 238 

virus species with the name of Polar bear mastadenovirus A (Harrach et al., 2011). The species demarcation 239 

criteria, such as like phylogenetic distance (pol amino acid sequence difference larger than 15%), genome 240 

organization (missing protein IX, four novel E3 or E4 genes), G+C content and the novel host, all justify this 241 

proposal.  242 
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 405 

Table 1  406 
Predicted gene products of PBAdV-1 compared in size and aa sequence identity to Carnivora AdVs and HAdV-5. Virus abbreviations are in the text  407 

protein 
name 

Size (aa) 
PBAdV 

Size (aa) 
CAdV-1 

aa sequence 
identity 

Size (aa) 
CSLAdV 

aa sequence 
identity 

Size (aa) 
SkAdV 

aa sequence 
identity 

Size (aa) bat-
WIV12 AdV 

aa sequence 
identity 

Size (aa) 
HAdV-5 

aa sequence 
identity 

E1A 246 239 18.1% 245 20.1% 267 18.9% 198 24.5% 289 23.4% 

19K 166 169 20.0% 147 25.9% 182 20.7% 138 21.3% 176 27.5% 

55K 446 444 21.7% 418 25.4% 453 22.4% 432 54%% 496 21.5% 

IX - 103 - 156 - 99 - 84 - 140 - 

IVa2 447 446 57.0% 447 56.8% 436 56.2% 330 49.9% 449 57.2% 

pol 1137 1149 56.2% 1148 58.0% 1143 56.1% 1146 56.2% 1198 51.5% 

pTP 603 608 59.5% 605 52.9% 610 57.8% 600 56.4% 671 51.2% 

52K 334 389 47.8% 390 45.5% 396 44.9% 350 54%% 415 45.3% 

pIIIa 481 548 42.9% 570 41.0% 581 39.0% 577 40.7% 585 41.2% 

III  480 477 60.2% 537 53.0% 478 61.1% 483 60.3% 571 51.9% 

pVII 181 132 28.2% 188 25.2% 144 27.1% 101 35.6% 198 26.1% 

V 227 421 17.0% 431 17.4% 434 16.9% 381 20.6% 368 20.9% 

pX 74 68 44.3% 65 50.7% 70 40.0% 65 52.6% 80 31.9% 

pVI 218 238 43.5% 238 43.9% 273 38.1% 199 46.6% 250 37.6% 

hexon 913 905 70.8% 991 65.3% 907 71.2% 916 69.0% 952 65.4% 

protease 207 206 57.8% 204 56.9% 206 58.7% 201 59.6% 204 57.4% 

DBP 452 454 40.9% 495 40.8% 437 41.5% 440 52.5% 529 31.5% 

100K 696 689 47.5% 686 49.6% 697 47.2% 710 50.4% 807 43.2% 

22K 118 128 31.9% 188 21.0% 168 25.7% 129 35.4% 196 21.3% 

33K 154 149 39.1% 170 29.0% 153 38.1% 156 38.5% 229 29.2% 

pVIII 194 224 32.9% 217 33.2% 222 32.3% 205 33.3% 227 30.4% 

E3 ORFA 206 117 not homologue 320 not homologue 115 not homologue 129 not homologue 107 not homologue 

E3 ORFB 105 194 not homologue 88 not homologue 401 not homologue - - 63 not homologue 

U exon 
(whole/first 
exon) 

98/55 54 19.0% 55 24.5% 55 20.0% 55 39.3% 217 16.4% 

fiber 552 543 18.5% 610 11.5% 606 21.4% 656 23.4% 581 24.6% 

E4 ORF6/7 - 86 - 78 - 89 - - - 150 - 

E4 34K 245 259 21.7% 247 24.9% 257 20.5% 247 28.2% 294 23.8% 

E4 ORFB 161 124 not homologue 132 not homologue 129 not homologue 108 not homologue 114 not homologue 

E4 ORFA 67 122 not homologue 142 not homologue 124 not homologue 130 not homologue 116 not homologue 

408 
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Table 2  409 

The protease cleavage sites of the precursor proteins of PBAdV-1. The numbers show the first aa of the cleavage signal. 410 

Cleavage site type type I type II type IIb 

Precursor protein 

pTP 302 172  

pIIIa  461  

pVII 27  17 

pX 41   

pVI  30 204  

pVIII 128   

  411 



 17 

Figure legend 412 

Fig. 1 Genome map of the polar bear adenovirus. The genome is represented by two black lines (each for 413 

one strand) marked at 2 kbp intervals. The ORFs supposed to encode proteins are shown as arrows. The 414 

exons of spliced genes are connected by lines. Conserved ORFs for mastadenoviruses are shown with black 415 

arrows, new ORFs with white arrows. The ITRs are marked with grey squares. Note the missing protein IX 416 

gene. 417 

 418 

Fig. 2 Multiple alignments of precursor protein pVI sequences of selected mammalian adenoviruses. The 419 

conserved protease cleavage signals are marked with grey frames. The sequence alignment was performed 420 

using the MultAlin 5.4.1 program (http://multalin.toulouse.inra.fr/multalin). Precursor protein pVI was 421 

selected as representative of all cleaved precursor proteins, as it is one of the shortest ones and cleavage 422 

signals are best visible.  423 

 424 

Fig. 3 Phylogenetic tree of full (a) DNA-dependent DNA polymerase and (b) hexon protein amino acid 425 

sequences of AdVs of selected species. Maximum likelihood calculation with LG+I+G model. From the names 426 

of the AdV types the word “AdV” was deleted for clarity. The AdVs isolated from carnivorans are shown with 427 

larger font, the AdV detected in polar bear with larger and bold font. The Approximate Likelihood-Ratio Test 428 

(aLRT) values are shown as percentages. On Fig. 3a virus species are shown, too. 429 

 430 
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