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Annihilation effects in B! �� from QCD light-cone sum rules
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Using the method of QCD light-cone sum rules, we calculate the B! �� hadronic matrix elements
with annihilation topology. We obtain a finite result, including the related strong phase. Numerically, the
annihilation effects in B! �� turn out to be small with respect to the factorizable emission mechanism.
Our predictions, together with the earlier sum rule estimates of emission and penguin contributions, are
used for the phenomenological analysis of B! �� channels. We predict a �I � 1=2 transition amplitude
which significantly differs from this amplitude extracted from the current data.

DOI: 10.1103/PhysRevD.72.094012 PACS numbers: 12.38.Lg, 11.55.Hx, 13.25.Hw
I. INTRODUCTION

Charmless B decays play an increasing role as a possible
window to physics beyond standard model (for a review
see. e.g., [1]). In particular, the decays of the type B! ��
and B! K�;K �K are actively investigated using various
approaches [2–12].

One promising method to evaluate charmless nonlep-
tionic B decays is QCD factorization (QCDF) [2,3], which
to leading order in 1=mb and �s�mb� yields the well-known
formulae of naive factorization. However, even when QCD
corrections and estimates for the penguin contributions are
included, QCDF is only marginally consistent with the data
for B! ��. As a more general analysis of data shows, one
indeed needs additional contributions to the decay ampli-
tudes which correspond to the �I � 1=2 piece of the
Hamiltonian. Comparing with different topologies of the
decay diagrams, this means an enhancement of either the
penguin or annihilation contributions. Especially interest-
ing is the weak annihilation (or weak exchange) of the b
quark and the light antiquark in the B meson. In QCDF,
formally suppressed as 1=mb, the annihilation contribution
is divergent. Fits of QCDF to data [4], with the annihilation
part replaced by finite parameters, yield large effects.
Importantly, the fits themselves cannot clearly distinguish
between the annihilation and penguin mechanisms. In
order to assess the relative importance of the annihilation
contribution, one needs a different approach in QCD which
allows to calculate B! �� hadronic matrix elements with
various topologies.

In the present paper we will employ the technique
suggested in [13]. It is based on light-cone sum rules
(LCSR) [14], the method which adapts the general idea
of QCD sum rules [15] for the amplitudes of exclusive
hadronic processes. One well-known application of LCSR
is the calculation of the B! � form factor [16]. In the sum
rule approach, as opposed to QCDF or to the perturbative
hard-scattering QCD approach (PQCD) [6], one does not
directly represent the hadronic matrix element in terms of
quark-gluon diagrams. The QCD calculation takes place
for the correlation function, a more general object, where
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the separation of short and long-distance parts into hard-
scattering amplitudes and pion distribution amplitudes
(DA’s), respectively, is possible ‘‘by construction,’’ that
is, due to an appropriate choice of kinematical variables.
Both hard and soft-gluon effects are systematically in-
cluded in this calculation, contributing to different terms
of the light-cone operator-product expansion (OPE). The
hard-gluon exchanges enter the hard-scattering ampli-
tudes, whereas the soft-gluon effects are represented by
quark-antiquark-gluon DA’s of the pion. The hadronic
matrix element appears as a part of the hadronic dispersion
relation for the correlation function. Matching this relation
to the result of the QCD calculation, one employs quark-
hadron duality to separate the ground-state B! �� am-
plitude from the background of excited hadrons. The ad-
vantage of this technique, as will be explained in more
details further, is a possibility to associate different decay
topologies in the hadronic matrix element with the corre-
sponding diagrams in the OPE, hence the relative contri-
butions of various operators and topologies to the decay
amplitude can be estimated. Importantly, the calculation of
B! �� amplitudes takes place in full QCD at finite mb
and one uses the same input as in the sum rule for the B!
� form factor. The latter provides also the factorizable part
of the B! �� amplitude.

Penguin-topology contributions to B! �� have been
estimated using LCSR already in previous papers [17,18],
while annihilation topologies are notoriously difficult to
calculate. This is due to the fact that the factorizable
contribution of the current-current operators O1;2 with
annihilation topology vanishes. Hence, in a sum rule cal-
culation, the leading nonfactorizable annihilation with one
hard-gluon exchange already corresponds to a set of two-
loop diagrams with several scales (b quark mass and
external momenta).

In the present paper we employ a simplified method for
the annihilation via hard gluons, that is, both final state
pions are replaced by DA’s and only the initial state B
meson is interpolated by an appropriate current.
Importantly, the propagators appearing in the resulting
-1 © 2005 The American Physical Society
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Feynman diagrams carry sufficient virtuality to be treated
perturbatively. Although this is a modification of the origi-
nal idea presented in [13], it is a useful approach, since it
yields a result free of infrared divergences. This result may
be compared to what is obtained from QCDF, where an
infrared regulator needs to be introduced, reducing basi-
cally the whole annihilation contribution to a nonperturba-
tive parameter of order 1=mb. On the other hand, the
annihilation with soft-gluon exchange which is not acces-
sible in QCDF, is calculated here within the standard
procedure [13] leading also to a finite answer. After adding
the hard and soft-gluon contributions from LCSR, we
obtain the main result: the finite matrix element of the
operator O1 with annihilation topology, including its
phase. We predict this effect to be numerically small.

Furthermore, we investigate the annihilation contribu-
tions via quark-penguin operators. While O3;4 have the
same V � A structure as O1;2, so that the factorizable
annihilation vanishes, the operatorsO5;6 contribute through
two different types of contractions. One of them has a V �
A content and also vanishes in the factorizable annihilation,
whereas the other one, with a S� P structure allows for a
factorizable B! �� transition with annihilation topology.
This contribution reduces to a separate nonperturbative
object, the pion scalar form factor at timelike momentum
transfer m2

B. In QCDF and PQCD, the factorizable annihi-
lation was taken into account only with a perturbative
gluon exchange between the final state quarks, correspond-
ing to the pion form factor in O��s�. The method of LCSR
allows to obtain the zeroth order in �s, that is the ‘‘soft’’
(end-point) part of the scalar pion form factor. We calculate
this part, with the same approach as for the e.m. (vector)
pion form factor in [19,20]. The resulting hadronic matrix
element is large, due to the chirally enhanced factor. Still
this effect alone cannot produce a large �I � 1=2 ampli-
tude in B! ��, because of the small Wilson coefficients.

Finally, we evaluate the B! �� decay amplitudes us-
ing LCSR predictions and including all calculated non-
factorizable effects with the emission, penguin, and
annihilation topology. Since these effects are generally
small, the discrepancy between the B0 ! ����; �0�0

observables calculated in the factorization limit and the
current experimental data remains. One may encounter a
situation similar to K ! ��, with its long-standing prob-
lem of �I � 1=2 rule.

The paper is organized as follows: In Section II we
summarize the current status of phenomenology of B!
�� amplitudes, starting from the isospin decomposition
and naive factorization and comparing them with the data.
In Section III we discuss nonfactorizable effects, represent-
ing the B! �� decay amplitudes in terms of hadronic
matrix elements of effective operators with different top-
ologies. In Section IV, we derive the LCSR for the hadronic
matrix element of an effective operator with a given topol-
ogy. In Sections V and VI we present our new results for
094012
B! �� annihilation with perturbative (hard) and non-
perturbative (soft) gluons, respectively. In Section VII
we obtain the sum rule for the pion scalar form factor
which determines the specific factorizable annihilation
contribution of the operators O5;6. In Section VIII, we
perform the numerical analysis and present the LCSR
prediction for the annihilation contributions to �B0 !
����. Furthermore, we add all calculated contributions
and present our numerical predictions for the branching
ratios and direct CP asymmetries in all three B! ��
channels. In Section IX we analyze our result in the limit
mb ! 1 and comment on the annihilation mechanism in
QCDF and PQCD. We conclude in Section X. The appen-
dices contain some expressions used in the paper.
II. PHENOMENOLOGY OF B! �� AMPLITUDES

Throughout this paper we adopt isospin symmetry. We
also neglect the effects of the electroweak penguin opera-
tors, so that the effective weak Hamiltonian for B! ��
has the following expression:

Heff �
GF���

2
p f�u�c1O

u
1 � c2O

u
2� � �c�c1O

c
1 � c2O

c
2�

� ��u � �c��
X6

i�3

ciOi � c8gO8g�g � H:c: (1)

The CKM factors are defined as �p � VpbV
	
pd (p �

u; c; t), and we use the CKM unitarity replacing ��t by
�u � �c. Hereafter we suppress for brevity the scale de-
pendence in the Wilson coefficients ci, which is supposed
to be compensated by the scale dependence of the hadronic
matrix elements of the effective operators Oi. The current-
current operators entering Eq. (1) are

Op
1 � �

�d��p�� �p��b� �
1

3
Op

2 � 2 eOp
2 ;

Op
2 � � �p��p�� �d��b� �

1

3
Op

1 � 2 eOp
1 ;

(2)

where p � u; c, �� � ���1� �5�, and

eOp
1 �

�
�d��

�a

2
p
��

�p��
�a

2
b
�
;

eOp
2 �

�
�p��

�a

2
p
��

�d��
�a

2
b
� (3)

with Tr��a�b� � 2�ab. The color Fierz transformation
allows to use, instead of the combination c1O

p
1 � c2O

p
2 ,

either �c1 � c2=3�Op
1 � 2c2

eOp
1 or the opposite one with

1$ 2. In leading order the operators with color-neutral
currents factorize and nonfactorizable contributions start
from two-gluon exchanges, which we will neglect. The
color-octet currents yield nonfactorizable effects starting
at a one-gluon level. These effects will be systematically
taken into account.
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To complete the definition ofHeff , we specify the quark-
penguin operators:

O3 �
X
f

� �f��f�� �d��b� �
1

3
O4 � 2 eO4;

O4 �
X
f

� �d��f�� �f��b� �
1

3
O3 � 2 eO3;

O5 �
X
f

� �f���1� �5�f�� �d��b� �
1

3
O6 � 2 eO6;

O6 � �2
X
f

� �d�1� �5�f�� �f�1� �5�b� �
1

3
O5 � 2 eO5;

(4)

where f � u; d; s; c; b and we again use the color Fierz
decompositions introducing the operators with color-octet

currents eO3;4;5;6 obtained from O3;4;5;6, respectively.
Finally, the chromomagnetic quark-gluon penguin opera-
tor is:

O8g � �
gs

8�2 mb
�d����1� �5�G��b: (5)

Turning to the phenomenology of B! �� we begin
with quoting the results of the current measurements [21]:

BR�B� ! ���0� � �5:5� 0:6� 
 10�6;

BR�B0 ! ����� � �5:0� 0:4� 
 10�6;

BR�B0 ! �0�0� � �1:45� 0:29� 
 10�6;

(6)

where only the first branching ratio is compatible with the
expectations of factorization.

The problem may be analyzed in terms of the usual
isospin decomposition. The effective Hamiltonian of the
standard model consists of two parts with �I � 1=2 and
�I � 3=2, resulting in two reduced isospin amplitudes A0

and A2 in B! ��, which correspond to the pions in the
I � 0 and I � 2 final states, respectively. One obtains the
following decomposition for the amplitudes1

A�B� ! ���0� � h���0jHeff jB�i �
3���
2
p A2;

A� �B0 ! ����� � h����jHeff j �B
0i � A2 � A0;

A� �B0 ! �0�0� � h�0�0jHeffj �B0i � 2A2 � A0;

(7)

from which the well-known isospin relation [22] is ob-
tained:

A� �B0 ! �0�0� �
���
2
p
A�B� ! ���0� � A� �B0 ! �����:

(8)
1Throughout this paper we consider, for definiteness, B� and
�B0 decay amplitudes, whereas all quoted branching ratios for B�

and B0 are, as usual, CP averaged.
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In the above we use the same convention for the ampli-
tudes, as in Refs. [2,3], including the statistical factor 1=2
in the branching ratio for �B0 ! �0�0.

From Eq. (7) one obtains the ratio of the moduli of
A0=A2 in terms of the decay rates

jA0j

jA2j
�

��������������������������������������������������������������������������������������������������
3
�
BR� �B0!�0�0��BR� �B0!�����

BR�B�!���0�

�
	B�

	B0

�2

s
:

(9)

Using Eq. (6) (neglecting CP asymmetries) and 	B�=	B0 �
1:075� 0:009 [21], one gets

jA0j

jA2j
� 1:33� 0:31: (10)

Employing the tree-level emission graphs and retaining
only the current-current operators (the naive factorization
limit) we may obtain a first insight into the anatomy of
these decays. In fact, this simplified way leads practically
to the same conclusions as the full calculation in the
framework of QCDF. First of all, the decay B� ! ���0

is well described in the factorization limit, where

���
2
p
A�B� ! ���0� � �u

4

3
�c1��� � c2����A�� (11)

with the usual notations for the Wilson coefficients c1;2 and
the factorizable B! �� amplitude

A �� � i
GF���

2
p f�f

0
B��m

2
���m2

B �m
2
��: (12)

In the above, f� � 131 MeV is the pion decay constant
and f0

B��q
2� is the scalar B! � form factor. Hereafter, we

neglect m� in the amplitudes, retaining it only in the ratio
�� � m2

�=�mu �md�.
In the factorization approximation, it is sufficient to use

the leading-order (LO) values of the Wilson coefficients.
We vary their renormalization scale within mb=2<�<
mb; for illustrative purpose we also put � � MW . Using
the LCSR prediction [16] for the B! � form factor:

f0
B��m

2
�� ’ f

0
B��0� � f�B��0� � 0:26� 0:05; (13)

which is explained below in Section VIII, and taking
jVubj � �4:22� 0:11� 0:24� 
 10�3 from Ref. [23] (add-
ing the errors in quadrature) we obtain from Eq. (11)
-3
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BR�B� ! ���0�fact �

8><>:
�5:7�2:4

�2:0 � 0:7� 
 10�6; � � mb=2 �c1 � 1:169; c2 � �0:361�
�6:4�2:7

�2:3 � 0:8� 
 10�6; � � mb �c1 � 1:108; c2 � �0:249�
�8:7�3:7

�3:0 � 1:1� 
 10�6; � � MW �c1 � 1; c2 � 0�;
(14)
(a) emission (b) penguin (c) charming penguin

(d) annihilat ion (e) penguin annihilat ion

FIG. 1. Different quark topologies in �B0 ! ����; double
lines denote the b quark, wavy lines the W boson.
where the errors reflect the uncertainties of the form factor
and of jVubj, respectively. The scale dependence is mild, as
expected.

Another way to check the validity of the factorization
approximation for this channel (independent of jVubj and
the value of f�B��0�) is provided by the ratio of the B� !
���0 and B0 ! ��l��l widths. In factorization approxi-
mation:

BR�B� ! ���0�

BR�B0 ! ��l��l�

�
2�2jVudj

2�c1��� � c2����
2f2

�m
3
B

3
R�mB�m��

2

0 dq2�E2
� �m

2
��

3=2jNB��q
2�j2

�
	B�

	B0

�
;

(15)

where E� � �m2
B �m

2
� � q2�=�2mB� and NB��q2� �

f�B��q
2�=f�B��0� is the shape of the form factor. The recent

measurement [24] of the B! �l� decay distribution,
fitted to the parametrization [25], NB��q

2� � ��1�
q2=m2

B	 ��1� �B�q
2=m2

B	 ��
�1, yields �B� � 0:61� 0:09.

Using this value, and the average experimental number
BR�B0 ! ��l��l� � �1:36� 0:11� 
 10�4 [21], we ob-
tain at � � mb=2�mb;MW�:

BR�B� !���0�fact � �3:6� 0:3� 0:4�
 10�6

��4:1� 0:3� 0:5�
 10�6;

�5:6� 0:5� 0:6�
 10�6�; (16)

where the first error originates from the semileptonic
branching ratio, and the second one from the slope parame-
ter �B�. The result is again in the ballpark of the experi-
mental interval (6). Hence we conclude that the amplitude
A2 may be estimated correctly by naive factorization.

Furthermore, using naive factorization, we may express
the ratio A0=A2 in terms of the Wilson coefficients, since
all hadronic matrix elements will drop out. Using Eq. (11)
and the analogous relation

A� �B0 ! ����� � �u

�
c1��� �

c2���
3

�
A��; (17)

and comparing with the decomposition (7) we obtain

A0

A2
�

5

4

�
c1��� � c2���=5

c1��� � c2���

�
�

8><>:
1:92; � � mb=2
1:68; � � mb

1:25; � � MW:

(18)

In fact, this expression depends quite strongly on the scale,
showing that naive factorization for B0 modes is compat-
ible with the data only for a large scale of O�mW�, which
seems unrealistic.
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A more distinct disagreement is revealed between the
ratios of B0 and B� partial widths calculated in the naive
factorization at � � mb=2�mb;MW�:

BR�B0 ! �����

BR�B� ! ���0�
� 1:77�1:49; 1:05�;

BR�B0 ! �0�0�

BR�B� ! ���0�
’ 10�3�0:010; 0:058�;

(19)

and the same ratios obtained from the experimental results
(6). In fact, the calculated B! �0�0 width is too small
even at � � mW . We conclude that the naive factorization
picture misses an important part of the amplitude A0 which
interferes destructively (constructively) with A2 in A� �B0 !
����� (A� �B0 ! �0�0�). If there were large nonfactoriz-
able gluon corrections to the emission topology, they
would have influenced both A0 and A2, violating the above-
mentioned agreement for the B� ! ���0 channel. Hence,
the missing isospin zero amplitude should be searched for
within the contributions of nonemission topologies for the
current-current operators and/or in the contributions of the
penguin operators, an opinion shared by many recent
analyses of these decays.
III. BEYOND FACTORIZATION

In Fig. 1 we schematically represent different quark
topologies contributing to the amplitude of �B0 ! ����,
the channel of our interest. Under topology we understand
the way to contract the valence quarks (antiquarks) of the
initial B and final mesons with the antiquarks (quarks)
-4
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from the effective weak Hamiltonian. This concept is
meaningful for all those methods where the valence quark
structure of mesons is well defined, either via the meson
distribution amplitudes (DA’s) as, e.g. in QCDF, or via both
DA’s and interpolating currents, as in the correlation func-
tion for LCSR. Denoting the valence spectator antiquark in
�B by �qs and the quarks emitted in the b-quark decay by q1,
q2, �q3 we define emission as the part of the decay ampli-
tude where all four quarks and antiquarks end up as the
valence quarks of the final mesons [Fig. 1(a)].
Correspondingly penguin is the part where �qs and only
one of q1, q2 belong to the final mesons [Figs. 1(b) and
1(c)]. The remaining two possibilities are annihilation
[Fig. 1(d)] or penguin annihilation [Fig. 1(e)], where either
�q3 and the one of q1, q2 or none of the quarks are among

the valence quarks of the final mesons, respectively.2

In the isospin symmetry limit it is sufficient to inves-
tigate in detail the �B0 ! ���� amplitude. It has a single
I � 2, O��u� part with emission topology, common with
the B� ! ���0 amplitude, and in addition contains many
different I � 0 contributions proportional to both �u and
�c. The �B0 ! �0�0 amplitude is then obtained by simply
using the isospin relation (8).

The complete isospin decomposition of the �B0 !
���� amplitude following from Eq. (1) can be cast in
the following form:

A� �B0 ! ����� � �u�A
�u;1;2�
2 � A�u;1;2�0 �

� �cA
�c;1;2�
0 � ��u � �c�A

��3�
0 ; (20)

where the upper indices in A�i�I indicate the contributing
operators and the lower index the isospin.
Correspondingly,���

2
p
A�B� ! ���0� � �u�3A

�u;1;2�
2 �: (21)

Each separate amplitude A�i�I in Eqs. (20) and (21) contains
a sum over hadronic matrix elements with different top-
ologies (T): emission (E), penguin (Pq,Pc,Pb), annihila-
tion (A), and penguin annihilation (PqA,PcA,PbA), where
q � u; d; s. According to Ref. [26], this subdivision can be
systematically done in a scheme- and scale-independent
way. It is clear, that the number of independent matrix
elements of the type h����jOij �B

0iT is less than the
number of operators because certain penguin operators
have the same quark structure as the current-current op-
erators. For the penguin topologies we will also neglect the
differences between quark loops with q � u; d; s.

Let us first discuss the I � 2 part in Eqs. (20) and (21),
which is relatively simple. Taking into account the non-
2Note that drawing generic quarkline diagrams, one can al-
ways start from the emission topology and then, merging the
quark-antiquark (spectator) lines in the final state, end up with an
annihilation mechanism; according to our classification, this
mechanism still belongs to annihilation.
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factorizable emission correction, where only ~Ou
1 contrib-

utes in the one-gluon approximation, we introduce the
ratio:

r����E �
h����j ~Ou

1j �B
0iE

h����jOu
1j

�B0iE
: (22)

Note that in the adopted approximation the matrix element
standing in the denominator is factorizable:
GF=

���
2
p
h����jOu

1j
�B0iE �A��. We obtain:

A�u;1;2�2 �

�
4

9
�c1 � c2� �

2

3
�c1 � c2�r

����
E

�
A��: (23)

Accordingly, the I � 0 part generated by the operatorsOu
1;2

has the following decomposition:

A�u;1;2�0 �

�
1

9
�5c1 � c2� �

2

3
�c1 � 2c2�r

����
E

� 2c1�r
����
Pu
� r����A �

�
A��; (24)

where the relative contributions for penguin and annihila-
tion topologies3 similar to Eq. (22) are defined as follows:

r����Pu
�
h����j ~Ou

2j �B
0iPu

h����jOu
1j

�B0iE
; r����A �

h����j ~Ou
2j �B

0iA
h����jOu

1j
�B0iE

:

(25)

Hereafter, we will use a more generic notation r����Pq
, q �

u; d; s, so that r����Pu
� r����Pq

in accordance with our ap-

proximation for the light-quark-penguin loops.
Furthermore, the Oc

1;2 operators with c-quark contribute
to Eq. (20) only in the penguin topology (‘‘charming
penguins’’):

A�c;1;2�0 � 2c1r
����
Pc

; where r����Pc
�
h����j ~Oc

2j �B
0iPc

h����jOu
1j

�B0iE
:

(26)

The remaining piece of the decomposition (20) contain-
ing the hadronic matrix elements of quark-penguin opera-
tors with various topologies, normalized to the factorizable
part, is more complicated:
3In this paper, we neglect the penguin-annihilation (PA) top-
ologies. They can be simply added to the general decomposition
by introducing the corresponding r����PA ratios, but from LCSR we
expect them to be small; this mechanism is also neglected in
QCDF.
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A��3�
0 �

�
c4 �

c3

3
� 2c3�r

����
E � r����Pq

� r����Pb
� r����A �

� 2c4�3�r����Pq
� �r����Pc

� �r����Pb
� 2r����A � �

2��

mb




�
c6 �

c5

3

�
� 2c5r

���;6�
E � 2c6�3�r����Pq

� �r����Pc

� �r����Pb
� 2r���;5�A � �

�
c6 �

c5

3

�
R���;6�A

� 2c5r
���;6�
A � ceff

8g
r����8g

�
A��: (27)

Some of the r����T -parameters entering the above equation
have already been defined: we use the fact that certain
quark-penguin and current-current operators coincide.
The parameter r����Pb

determines the relative contribution
of the b-quark penguin topology. It is defined as in Eq. (26)
with c! b. Furthermore, the notation �r����Pq;c;b

is introduced

to distinguish the penguin contractions of the operators
O4;6 ( ~O3;5) from those of O1;3 ( ~O2;4). In the NDR scheme
used here, as in [2,3], the quark loop factors for the two
contractions differ by a constant. The loop factor entering
LCSR for r����Pq;c;b

is given in Eq. (4) of [18]. To obtain the

corresponding factor for �r����Pq;c;b
one simply has to subtract

1=6 from this expression. A few terms in Eq. (27) are
generated by the effective operator O6 with �S� P� �
�S� P� structure. First, the factorizable emission contri-
bution of the u-quark part of this operator, Ou

6 �
�2� �d�1� �5�u�� �u�1� �5�b�, acquires a ‘‘chirally en-
hanced’’ factor ��=mb, whereas its nonfactorizable part
is described by an additional parameter:

r���;6�E �
h����j ~Ou

6j �B
0iE

h����jOu
1j

�B0iE
: (28)

Second, there is a specific factorizable annihilation contri-
bution due to the d-quark part of the same operator Od

6 
�2� �d�1� �5�d�� �d�1� �5�b� which is expressed in terms
of the Bmeson decay constant h0j �d�5bjBi � �im

2
BfB=mb

multiplied by the pion scalar form factor:

h���p1��
��p2� j �dd j 0i � FS���p1 � p2�

2�; (29)

corresponding to the transition of the scalar and isoscalar
quark-antiquark current into a two-pion state with the
invariant mass squared �p1 � p2�

2 � m2
B. The parameter

in Eq. (27) determining the annihilation via Od
6 is factor-

ized as:

R���;6�A �
h����jOd

6j
�B0iA

h����jOu
1j

�B0iE
� �

2fBFS��m2
B�

mbf�f�B��0�
: (30)

The nonfactorizable annihilation correction of the color-
octet counterpart of this operator in Eq. (27) is parame-
trized as
094012
r���;6�A �
h����j ~Od

6j �B
0iA

h����jOu
1j

�B0iE
: (31)

In addition to this S� P contractions, the nonfactorizable
annihilation contribution from the V � A contraction is
defined in analogy to Eq. (31) with (6! 5). Finally, the
parameter in Eq. (27) describing the contribution of the
gluonic penguin operator (with the penguin topology) is:

r����8g �
h����jO8gj �B

0iPg
h����jOu

1j
�B0iE

: (32)

In the NDR scheme it should be multiplied by ceff
8g � c8g �

c5 (see [3]).
For convenience, in Appendix A we present the relations

of the parameters r����T introduced above to the effective
coefficients ai and bi used in QCDF [2,3] to encode the
nonfactorizable effects in B! ��. Equation (20) can also
be converted into a typical decomposition in terms of
‘‘tree,’’ ‘‘color-suppressed,’’ and ‘‘penguin’’ amplitudes
used in the CP analysis of charmless decays, where the
separation to �u � j�uje�i� and �c parts is made explicit:

A� �B0 ! ����� � e�i�T�� � P��;���
2
p
A�B� ! ���0� � e�i��T�� � C���:

(33)

Comparing the above with Eq. (20) one reads off:

T�� � j�uj�A
�u;1;2�
2 � A�u;1;2�0 � A��3�

0 �;

P�� � �c�A
�c;1;2�
0 � A��3�

0 �;

T�� � C�� � j�uj�3A
�u;1;2�
2 �:

(34)

To analyze the B! �� amplitudes in terms of separate
isospin contributions, one needs the numerical values of
the hadronic parameters entering Eqs. (23), (24), and (26),
and (27). Some of them have already been estimated using
LCSR. For the nonfactorizable emission entering through
r����E we will partly use the QCDF result. The calculation
of the unknown annihilation parameters r����A and R���;6�A
from LCSR is the main issue of this paper.
IV. DERIVATION OF LCSR

The method we apply is basically the one developed in
[13], (see also [17,18]) with some important modifications
which will be explained in this section. To demonstrate the
derivation of LCSR for a generic hadronic matrix element
h����jOj �B0iT , let us choose for definiteness the combi-
nation of current-current operators O � c1O

u
1 � c2O

u
2 at a

fixed scale, considering it as a superposition of two local
operators.
-6



(a) (b)

FIG. 3. Examples of diagrams corresponding to the penguin
topology: with (a) hard gluon and (b) soft gluons.
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One starts from the correlation function

F�O�� �p; q; k� � �
Z
d4x e�i�p�q�x

Z
d4y ei�p�k�y


 h0jTfj����5 �y�O
u�0�j�B�5 �x�gj�

��q�i; (35)

where j����5 � �u���5d and j�B�5 � mb
�bi�5d are the quark

currents interpolating the pion and the B meson, respec-
tively. The momentum k is artificial and will vanish in the
final sum rule. It is introduced in order to have two inde-
pendent kinematical variables in the B and �� channels.

The correlator (35) can be decomposed into four differ-
ent Lorentz structures,

F�O�� � �p� k��F
�O� � q� ~F�O�1 � k� ~F�O�2

� 
����q
�p�k� ~F�O�3 ;

of which we use only the first. Concerning the kinematical
variables, we put q2 � m2

� � 0 and choose p2 � k2 � 0
for simplicity. The remaining invariants are �p� k�2, �p�
q�2, and P2  �p� k� q�2. In the domain where all three
variables are spacelike and large, all distances are close to
the light-cone, x2 � y2 � �x� y�2 � 0, and the correlation
function can be calculated by perturbatively expanding the
T product of operators. In this way, the correlation function
is expressed in a usual form of hard-scattering amplitudes
convoluted with pion DA’s of growing twist.

For a given operator O in the correlation function (35),
various contractions of the quark fields are possible, lead-
ing to diagrams with different topologies. Collecting the
lowest-order contributions to OPE, we easily recognize
diagrams with the emission (Fig. 2), penguin (Fig. 3),
annihilation (Fig. 4), and penguin-annihilation (Fig. 5)
(a) (b)

(c)

FIG. 2. Diagrams corresponding to the emission topology in
the OPE of the correlation function (35): (a) factorizable;
(b) with nonfactorizable hard gluon (six diagrams);
(c) nonfactorizable soft gluon (two diagrams). The solid, double,
dashed, wavy lines and the square denote the light quarks, b
quark, gluon, external currents, and the weak vertex, respec-
tively. The shaded ovals denote the pion DA’s. The crosses
indicate how gluon lines are attached in the other possible
diagrams.

094012
topologies. The sum of all diagrams calculated at a definite
order in OPE, will be matched to the dispersion relation
where the ground-state contribution contains the hadronic
matrix element h����jOj �B0i. If one retains only diagrams
with a topology T in the OPE, the sum rule result (within
adopted accuracy) can be interpreted as h����jOj �B0iT .4

This was actually done for the emission topology in [13]
where the diagrams in Fig. 2 have been investigated. It was
shown that retaining only the diagram of Fig. 2(a), without
gluons connecting the light-quark loop and the heavy-light
part, one reproduces the result of naive factorization.
Importantly, the gluons which do not violate factorization
in this diagram can be added arbitrarily. Altogether, one
obtains the product of the LCSR for the B! � form factor
and the two-point sum rule for the pion decay constant. The
diagrams in Fig. 2(b) and 2(c) describe nonfactorizable
corrections in the emission topology. The diagrams with
soft gluons in Fig. 2(c) were calculated in [13].
Furthermore, penguin contractions for Op

1;2 (some of dia-
grams are shown in Fig. 3) have also been studied in the
framework of LCSR [18] allowing to calculate the parame-
ters r����Pc

, r����Pb
, and r����Pq

. In addition, the LCSR for the

gluonic penguin operator was derived in [17] yielding
r����8g . In the next two sections, we will present the calcu-
lation of the remaining diagrams with the annihilation
topology (Fig. 4).

Having at hand the QCD calculation of a set of diagrams
with topology T in terms of pion DA’s and hard-scattering
amplitudes, one can then express the correlation function
in the form of a dispersion relation in the variable s 
�p� k�2:

F�O;T�QCD ��p� k�
2; �p� q�2; P2�

�
1

�

Z 1
0
ds

ImsF
�O;T�
QCD �s; �p� q�

2; P2�

s� �p� k�2 � i

: (36)
4Since we are studying only the leading-order effects here and
use a fixed scale, the scale and scheme dependence as well as the
mixing effects between separate operators in Heff , remain be-
yond our scope. To account for these effects one has to consider
scale- and scheme-invariant combinations of matrix elements
with different topologies as explained in [26].
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(a) (b)

FIG. 6. The first step in the derivation of the sum rule for B!
�� amplitude in the emission topology: (a) the initial correlation
function (only diagrams with emission topology are included) is
matched to (b) the hadronic dispersion relation in the pion
channel where only the ground-state pion contribution is shown.

(a)

(b) (c)

(d) (e)

FIG. 4. Diagrams corresponding to the annihilation topology
in the OPE of the correlation function (35): (a) factorizable; (b),
(c) with hard gluon; (d), (e) with soft gluon.
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On the other hand, one can insert a complete set of had-
ronic states in the � meson channel, and obtain

F�O;T���p� k�2; �p� q�2; P2�

�
if���O;T�

�� ��p� q�2; P2�

��p� k�2

�
Z 1
s�h

ds
��h �s; �p� q�

2; P2�

s� �p� k�2
; (37)

where the one-pion ground-state contribution contains the
pion decay constant and the matrix element

��O;T�
�� ��p�q�2;P2�� i

Z
d4xe�i�p�q�x


h���p�k�jTfO�0�j�B�5 �x�gj�
��q�iT; (38)

and ��h is the spectral density of heavier hadronic states in
this channel. Replacing the integral over ��h with the
standard duality approximation and equating (36) to (37),
we obtain, after the usual Borel transformation:
FIG. 5. Some of the lowest-order diagrams corresponding to
the penguin-annihilation topology.

094012
��O;T�
�� ��p� q�2; P2� �

�i
�f�

Z s�0

0
ds e�s=M

2


 ImsF
�O;T�
QCD �s� i
; �p� q�

2; P2�;

(39)

where s�0 is the duality threshold in the pion channel. This
first step in the derivation of LCSR is schematically shown
in Fig. 6 where the diagrams with emission topology are
chosen for definiteness.

Note that the hadronic matrix element (38) diagram-
matically shown in Fig. 6(b) itself represents a correlator.
At large negative �p� q�2 and P2 it can be factorized into
a short-distance part (the b-quark propagator) and a long-
distance part (the combination of two pion DA’s). Adding
hard-gluon exchanges does not seemingly spoil this facto-
rization. In any case, the absence of infrared singularities
has to be checked by a direct calculation. Hence, instead of
using (39), we are free to use ��O;T�

�� as a starting QCD
object. That will be done below in the case of the annihi-
lation topology with hard gluons, while employing the
standard derivation of (39) for the soft-gluon part.

To continue, following [13] we consider ��O;T�
�� ��p�

q�2; P2�, as an analytical function of the variable P2, the
invariant mass of the�� pair. Starting from our calculation
for negative P2, we have to reach the physical timelike
point P2 � m2

B by analytical continuation (see Fig. 7). As
(a) (b)

FIG. 7. The second step in the derivation of the sum rule:
(a) the two-pion matrix element calculated in the spacelike
region is analytically continued to (b) the same matrix element
in the timelike region.

-8



(a) (b)

FIG. 9. Diagrams used to calculate the pion-pion correlator in
the annihilation topology.

(a) (b)

FIG. 8. The third step in the derivation of the sum rule: (a) the
two-pion matrix element

Q�O;E�
�� after analytic continuation to

�p� q� k�2 � m2
B is matched to (b) the hadronic dispersion

relation in the B-meson channel; the ground-state B-meson
contribution is proportional to the B! �� matrix element in
emission topology.
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already explained in [13], we use the fact that m2
B �

m2
�; s�0 , i.e., the two-pion system in the B decay is in the

timelike asymptotic region, far from the light-quark reso-
nances. Note that at fixed �p� q�2, the matrix element
��O;T�
�� can always be represented in a form of a hadronic

dispersion relation in the variable P2:

��O;T�
�� ��p� q�2; P2� �

1

�

Z 1
0
dt

Imt�
�O;T�
�� ��p� q�2; t�

t� P2 � i

:

(40)

This dispersion relation is only needed for illustrative
purpose because it allows to unambiguously determine
the point of analytical continuation we need as P2 � m2

B �
i
. Finally, it is convenient to represent the QCD calcula-
tion result ��O;T�

�� ��p� q�2; m2
B� in the form of the disper-

sion relation in the variable �p� q�2,

��O;T�
�� ��p�q�2;m2

B� i
��
1

�

Z 1
m2
b

ds0
Ims0�

�O;T�
�� �s0;m2

B�

s0 ��p�q�2� i

;

(41)

and equate this to the hadronic representation in the
B-meson channel (see Fig. 8),

��O;T�
�� ��p� q�2; m2

B � i
�

�
fBm

2
Bh�

��p�����q�jOjB�p� q�iT
m2
B � �p� q�

2

�
Z 1
sBh

ds0
��B�h �s

0�

s0 � �p� q�2
; (42)

where fB is the B-meson decay constant. In the ground-
state contribution, we have P2 � �p� k� q�2 � m2

B � i

and �p� q�2 � m2

B simultaneously, so that the artificial
momentum k disappears and we encounter the hadronic
on-shell matrix element of our interest. After applying the
094012
duality approximation to the integral over excited states in
Eq. (42) and performing Borel transformation, we obtain
the LCSR for the B! �� hadronic matrix element of a
given operator and topology:

h���p�����q�jOjB�p� q�iT

�
1

fBm
2
B�

Z sB0

m2
b

ds0 e�m
2
B�s

0�=M02


 Ims0�
�O;T�
�� �s0 � i
;m2

B � i
�: (43)

Note that the analytical continuations of ��O;T�
�� in the

variables s0 and P2 interchange and may be performed in
inverse order as well.
V. ANNIHILATION WITH HARD GLUONS

For the correlation function (35) with the operatorsOu
1;2,

the simplest possible diagram with the annihilation topol-
ogy is the factorizable diagram in Fig. 4(a). Its contribution
is expected to vanish due to the conservation of the V � A
current for massless u, d quarks. In fact, a calculation of the
diagram in LCSR yields a parametrically small correction
of O�s�0 =m

2
B� which is neglected within the adopted accu-

racy of the method [13], so that the result is consistent with
the expectation.

We start to calculate the annihilation effect by consid-
ering the first two O��s� diagrams shown in Fig. 4(b); they

contain only the operator eOu
2 . These two-loop diagrams

depend on four different mass/momentum scales,mb, �p�
k�2, �p� q�2, and P2, which makes their direct calculation
technically not feasible. As mentioned in the previous
section, instead of calculating these diagrams directly, we

start from the pion-pion correlator ��eOu

2 ;A�
�� defined in

Eq. (38), with the annihilation topology. The correspond-
ing one-loop diagrams are shown in Fig. 9 and we proceed
with their calculation.

After contracting the quark and gluon fields, the long-

distance part of ��eOu

2 ;A�
�� , at leading twist 2, reduces to a

product of two-pion twist-2 DA’s:

h���p� k�j �d�a �z�u
�
b �0� �u�c �0� d�d�z�j�

��q�i

� h���p� k�j �d�a �z�u
�
b �0�j0i � h0j �u

�
c �0�d�d�z�j�

��q�i
-9
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�

�
i�ab
12

f���6p� 6k��5�
��
Z 1

0
dv eiv�p�k��z’��v�

�
�

�
�i�cd

12
f��6q�5�

��
Z 1

0
du e�iuq�z’��u�

�
;

where �, �, �, � and a, b, c, d are the spinor and color
indices, respectively. Convoluting the above with the short-
distance part, one obtains the following expression for the
pion-pion correlator :

��eOu

2 ;A�
�� ��p�q�2;P2���i

�
�sCF
�

�
f2
�m

2
b

48



Z 1

0
du
Z 1

0
dv

’��u�’��v�

��p�q�2u�P2v�2


fHd
���u;v;�p�q�2;P2�

�Hb
���u;v;�p�q�2;P2�g; (44)

where Hd
�� and Hb

�� represent the hard-scattering kernels
for the diagrams in Figs. 9(a) and 9(b), with the gluon
attached to the d and b quark, respectively. The expressions

A. KHODJAMIRIAN, TH. MANNEL, M. MELCHER, AND B.
094012
for Hd;b
�� are given in Appendix B in terms of the standard

loop integrals. Evaluated at �p� q�2, P2 < 0, the result for
Eq. (44) is real and finite, in particular, the numerators in
Eq. (44) cancel at the pole �p� q�2u � P2v. Furthermore,

��eOu

2 ;A�
�� contains no end-point divergences in the variables

u and v. The reason why the integrals remain finite is
simple: the gluon in the diagrams in Fig. 9 has a virtuality
uvP2, and remains perturbative unless u or v is close to 0,
but this region is suppressed by the end-point behavior of
the pion DA’s. This convergence is important for justifying
the replacement of the initial diagrams in Fig. 4(b). Note
that the latter are convergent and perturbative ’by construc-
tion,’ because they contain one off-shell current instead of
the pion DA.

For the sum rule derivation we need the dispersion

relation (42) for ��eOu

2 ;A�
�� in the variable s0 � �p� q�2.

The expression (44) continued in this variable, (while
keeping P2 negative), has branch cuts at s0 > 0. The cal-
culation of the imaginary part is straightforward, but in-
volved. The result reads:
Im s0�
�eOu

2 ;A�
�� �s0 � i
; P2� � if2

�m
2
b

�
�sCF

24

�Z 1

0
du

Z 1

0
dv

’��u�’��v�

uv�u s0 � vP2�3

�
H1�u; v; s0; P2� ���s0 �m2

b�

�H2�u; v; s0; P2� ��
�
s0 �

m2
b

�u
� vP2

��
; (45)

where �u � 1� u and

H1�u; v; s0; P2� � uvP2�m2
b � s

0 � vP2�2 log
�

vP2jm2
b � �us0j

u s0�m2
b � s

0 � vP2�

�
�

�
1�

m2
b

s0

�
�u s0 � vP2��m2

b � u s
0 � vP2�


 �u s0 � vP2� � �u�m2
b � u s

0� � vP2��vm2
b P

2 � u s0�s0 � vP2�� log

�������� s0�um2
b � �uvP2�

u s02 � vP2�m2
b � u s

0�

��������;
H2�u; v; s0; P2� � �uvP2�m2

b � s
0 � vP2�2 log

�
�uvP2�m2

b � s
0 � vP2�

u�s0 � vP2�jm2
b � �u s0j

�
� �u s0 � vP2�

�
1�

m2
b

�u�s0 � vP2�

�

 �m2

b�u s
0 � �1� 2u�vP2� � 2u�s0 � vP2��u s0 � vP2�� � �u�m2

b � u s
0� � vP2�


 �vP2m2
b � u s

0�s0 � vP2�� log

���������s0 � vP2��um2
b � �uvP2�

�u�u s02 � vP2�m2
b � u s

0��

��������:

The expression (45) at negative P2 contains no singu-

larities within the integration region, and is therefore finite.
The two pieces proportional to ��s0 �m2

b� and ��s0 �
m2
b= �u� P2v� reflect the two cuts of the diagrams in

Fig. 9: the first one corresponds to the on-shell b and �d
quarks emitted at the B-current vertex; the second cut is
less trivial and emerges when b and d quark at the weak
vertex are on shell.
Finally, according to the procedure explained in the

previous section, we analytically continue Ims0�
�eOu

2 ;A�
�� to

the physical timelike point P2 � m2
B � i
, so that this

function acquires an imaginary part ImP2 Ims0�
�eOu

2 ;A�
�� . The

imaginary part in (45) naturally originates from the loga-
rithms of �P2, however the complexity of this expression
makes their extraction nontrivial. We obtain
ImP2 Ims0�
� ~Ou

2 ;A�
�� �s0; m2

B� � i
��sCF

24
f2
� m2

b m
2
B�m

2
b � s

0 � vm2
B�

2
Z 1

0
du

Z 1

0
dv

’��u�’��v�

�u s0 � vm2
B�

3




�
�
�
s0 �

m2
b

�u

�
���s0 �m2

b � vm
2
B�

�
: (46)
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5A similar but simpler version of this method was recently
applied to B! � form factor in Ref. [27] (see also Ref. [28]).
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The existence of nonvanishing imaginary part in P2 is an
important effect we are actually looking for, because in the
quark-hadron duality approximation it determines the
strong phase of the hadronic matrix element. Importantly,
Eq. (46) receives contributions only from the diagram in
Fig. 9(a). Physically, the effect corresponds to the d quark
from the weak decay of b quark going on shell and anni-
hilating with the spectator �d quark into a virtual timelike
gluon. In the diagram in Fig. 9(b) the gluon is attached to
the b quark and such mechanism is forbidden kinemati-
cally, hence this diagram has no double imaginary part. We
have verified by explicit calculation that an identical result
is obtained if one does analytical continuation in P2 first
and only then obtains the dispersion relation in s0.

Our final result for the annihilation contribution with
hard gluons in twist-2 approximation is given by the sum
rule of the type (43):

h����j eOu
2j �B

0ihard
A �

1

fBm2
B�

Z sB0

m2
b

ds0 e�m
2
B�s

0�=M02


 Ims0�
�eOu

2 ;A�
�� �s0; m2

B � i
�; (47)

where the real and imaginary part are given by the real part
of Eq. (45) (with the principal value of the integrals con-
taining complex poles) and by Eq. (46), respectively.

As already mentioned, the LCSR result (47) is finite, due
to the fact that the end-point divergence introduced by the
gluon propagator 1=uvP2 is cancelled by the pion DA’s. In
the light-cone expansion of the two-pion diagrams in Fig. 9
one formally encounters a contribution proportional to the
two twist-3 pion DA’s which is divergent. However, one
has to keep in mind, that we have used these diagrams only
as an effective replacement for the part of the diagrams in
the correlation function (35). In this function one of the
pions is interpolated by the axial-vector current, which
simply does not have a twist-3 component. We conclude

that the �twist 3� � �twist 3� contribution to ��eOu

2 ;A�
�� has no

counterpart in the correlation function (35) and hence does
not play any role in LCSR.

To complete the calculation of hard-gluon effects, we
still need to consider the four diagrams in Fig. 4(c) which
belong to the O��s� part of the correlation function (35).
Note that similar diagrams where B! �� annihilation is
accompanied by gluons exchanged within the weak vertex,
also emerge in QCDF approach. However, they were not
included in [3], where only the diagrams analogous to
Fig. 4(b) were taken into account. The reason, apart from
expected 1=mb suppression, is that in order to describe the
two-pion state originating from a quark-antiquark pair, in
QCDF one needs an additional long-distance object, a sort
of two-pion distribution amplitude, which in the local limit
reduces to the pion form factor at timelike momentum
transfer m2

B. In LCSR approach the ‘form factorlike’ anni-
hilation diagrams in Fig. 4(c) emerge as a part of OPE,
hence, no new input is needed. However, the calculation of
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these diagrams is not possible with current methods, be-
cause they contain two loops and many scales. In fact, in
this case one cannot use as a remedy the pion-pion corre-
lator considered above, since the corresponding diagrams
still have two loops, even if both pions are described by
their DA’s. In order to assess this effect, remaining at the
one-loop level, we employ a completely different method
which is briefly described in the rest of this section.

A new type of correlation function is introduced with an
on-shell B meson and a pion, while interpolating the
second pion with a current5:

�B�
� �p; k; q� � i

Z
d4yei�p�k�y


 h0jTfj����5 �y�; ~Ou
2�0�gjB�p� q��

��q�i:

(48)

We consider the part of this correlation function with quark
contractions having annihilation topology and pick up only
diagrams with gluon exchange in the weak vertex. They
can be obtained from the diagrams in Fig. 4(c) if the
interpolating current j�B�5 is replaced by an on-shell B
meson. The correlation function (48) factorizes into a
product of vacuum-to-pion matrix element (that is, a usual
pion DA) and vacuum-to-B matrix element. The latter is
expressed via Bmeson DA’s [29,30]. As usual, the external
momenta are chosen to provide that the virtual quarks and
gluon remain far off shell. For the pion DA we retain only
twist 2 (twist 3 vanishes in the chiral limit) whereas the two
components� of the Bmeson DA are taken into account.
By writing a dispersion relation in the variable �p� k�2 (in
the pion channel), one obtains a sum rule for the B! ��
matrix element. As a result, we find that all four diagrams
vanish, which means that contributions from the ‘‘form
factor’’ part of the annihilation mechanism starts either at
higher twists � 4 and/or at higher orders in �s and can be
neglected.

VI. ANNIHILATION WITH SOFT GLUONS

The gluons exchanged between the initial B-meson and
the final quark-antiquark state in the B! �� annihilation
can also have small virtualities. Diagrams with soft-gluon
contributions cannot be directly calculated in QCDF or
PQCD, because in this case it is difficult to identify and
separate a hard kernel. The soft-gluon nonfactorizable
effects should either be neglected (arguing that they are
1=mb suppressed) or modeled by separate nonperturbative
parameters. In the LCSR approach the decay amplitude is
calculated quite differently, by matching the hadronic dis-
persion relation to the correlation function. In the latter, the
soft (low virtuality) gluons emerge in OPE diagrams, being
emitted at short distances and absorbed in the quark-anti-
-11
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quark-gluon DA’s of the pion. For the emission topology
the corresponding diagrams are shown in Fig. 2(c). Their
effect, although formally 1=mb suppressed turned out [13]
to be of the same order as the O��s� effect of nonfactor-
izable hard gluons calculated from QCDF. On the other
hand, the soft-gluon effects for the penguin topology (one
of diagrams is shown in Fig. 3(b)] were found suppressed
in LCSR [18] with respect to the penguin diagrams with
hard gluons, indicating that the role of soft-gluon effects
strongly depends on the topology. Here we will calculate
the soft-gluon diagrams in the part of the correlation
function (35) with annihilation topology.

The two lowest-order diagrams are shown in Figs. 4(d)
and 4(e) containing an on-shell gluon emitted from the
heavy-light loop and absorbed in the three-particle pion
DA. Technically these diagrams are much easier to calcu-
late than the annihilation diagrams with hard gluons in
Fig. 4(b) and 4(c). One returns to the original method of
[13] and employs the light-cone expansion of the quark
propagators in the external gluon field [31]. For the dia-
gram with a gluon emission from the massless d quark we
use

Sd�x; 0� � �ih0jTfd�x� �d�0�gj0i

�
6x

2�2�x2�2
�

1

16�2x2

Z 1

0
dvG	��vx�


 �6x�	� � 4ivx	��� � . . . ; (49)

whereas the propagator for the massive b quark is

Sb�0;x���ih0jTfb�0� �b�x�gj0i

�
Z d4k

�2��4
eikx
6k�mb

k2�m2
b

�
Z 1

0
dvG	��vx�



Z d4k

�2��4
eikx

�
1

2

6k�mb

�k2�m2
b�

2�
�vx	��
k2�m2

b

�
� . . .

(50)

In the above �v � 1� v, G	� �
�a
2 G

a
	� and the fixed-point

gauge for the gluon field has been adopted, having in mind
that the hard and soft contributions to OPE are individually
gauge-invariant. The dots in Eqs. (49) and (50) represent
terms with derivatives and higher orders of the gluon field-
strength tensor which we neglect. These terms generate
pion DA’s with twist >4 and multiplicity >3, and their
contributions to the sum rule are suppressed by additional
powers of the Borel parameter.

In the chiral limit for the light quarks, the contribution of
the twist-3 quark-antiquark-gluon pion DA vanishes and
the nonvanishing part comes from the twist 4. The four
relevant DA’s e’k;? and ’k;? are defined via vacuum-pion
matrix elements:
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h0j �u�0�i�� eG���x3�d�x1�j��q�i

� f�
Z
D�i e

�iq�x1�1�x3�3�

�
�g��q� � g��q��e’?��i�

� q�
z�q� � z�q�

qz
�e’?��i� � e’k��i���; (51)

and the one obtained from the above with i�� ! ���5,eG�� ! G��, and e’k;? ! ’k;?. In Eq. (51), eG�� �
1
2 
����G

��, D�i � d�1d�2d�3��1� �1 � �2 � �3�.
The points x1;2 are located on the light cone, xi � uiz,
where ui are arbitrary numbers and z2 � 0 is the light-
cone separation.

In our case, due to the choice of external spacelike
momenta, the regions of integration over x, y are close to
the light cone, but x2, y2, �x� y�2 are not exactly lightlike.
Therefore, strictly speaking, there is an ambiguity of defin-
ing z via x and y in right-hand side (r.h.s.) of Eq. (51). From
the point of view of the light-cone OPE, this ambiguity is a
higher-twist effect. Indeed, calculating the diagrams for
different choices z � x; y; x� y in Eq. (51) one finds that
the parts proportional to z�=�qz� in Eq. (51) and its analog
for ���5 yield negligibly small contributions. Hence, only
two DA’s ’? and e’? multiplying the coordinate-
independent part of the matrix elements appear in the final
answer.

After specifying the propagators and pion DA’s, the
calculation of the diagrams in Figs. 4(d) and 4(e) is
straightforward. The following expression is obtained for
the invariant amplitude multiplying �p� k�� in the corre-
lation function:

F�
eOu

2 ;A�
soft �

m2
bf�

16�2

Z 1

0

d�1

�P2�1��p�k�2�1��1�



Z �1��1�

0
d�3

Z 1

0
dv

Z 1

0

dx

m2
b��p�q�

2�1��3v�x


f�P2�1�2x �v��3�p�q�2�1�2 �vx��’?��i�

��P2�1�4x �v��3�p�q�2�e’?��i�g: (52)

Following the procedure explained in Section IV, we match
the above expression to the dispersion relation in the
variable �p� k�2. After applying duality and Borel trans-
formation, we obtain for the corresponding pion-pion cor-
relator:

��eOu

2 ;A�;soft
�� � i

m2
b

16�2P2

Z s�0

0
ds e�s=M

2
Z 1

0
d�3



Z 1

0
dv

Z 1

0

dx

m2
b � �p� q�

2�1� �3v�x


 ��P2�1� 2x �v� � 3�p� q�2�1� 2 �vx��


 ’?�0; ��3; �3� � �P
2�1� 4x �v�

� 3�p� q�2�e’?�0; ��3; �3��


 f1�O�s�0 =P
2�g; (53)
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where ��3 � 1� �3 and we neglected terms of O�s=P2�<
O�s�0 =P

2�.
The analytical continuation to P2 � m2

B is then trivial
and we can immediately apply the dispersion relation in
094012
the variable �p� q�2, and subsequently, duality and the
Borel transformation in the B channel. Our final result for
the soft-gluon annihilation contribution to the hadronic
matrix element in the leading twist-4 approximation reads
h����j eOu
2j �B

0isoft
A � i

m2
b

16�2fBm
4
B

Z s�0

0
dse�s=M

2
Z sB0

m2
b

ds0

s0
em

2
B=M

02�s0=M02
Z 1

m2
b=s

0

du
u

Z 1

1�u

d�3

�3

��
m2
B � 3s0 � 2�m2

B � 3s0�



m2
b�u� ��3�

s0u�3

�
’?�0; ��3; �3� �

�
m2
B � 3s0 � 4m2

B
m2
b�u� ��3�

s0u�3

�
~’?�0; ��3; �3�

��
f1�O�s�0 =P

2�g:

(54)
(a) (b)

(c) (d)

FIG. 10. Diagrams of the correlation function used to derive
LCSR for the pion scalar form factor; j0 � �dd is the scalar quark
current.
In the adopted approximation, this part of the decay am-
plitude does not contribute to the strong phase.

Finally, adding the hard-gluon and soft-gluon contribu-
tions given by Eqs. (47) and Eq. (54), respectively, we
complete our calculation of the parameter r����A defined in
Eq. (25).

VII. FACTORIZABLE ANNIHILATION VIA O6
OPERATOR

In this section we describe the calculation of the pion
scalar form factor defined in Eq. (29). According to
Eq. (30), this form factor is needed to estimate the factor-
izable part of the B! �� matrix element of the operator
Od

6 with annihilation topology.
In QCDF only part of this contribution was taken into

account, namely, the annihilation diagrams with the gluon
exchange in the final state [see Figs. 4a,b in Ref. [3]).
Clearly, this is not a complete answer, because the annihi-
lation into two pions via the scalar current starts at zeroth
order in �s. In addition, there are O��s� diagrams where a
hard gluon is exchanged in the final state at the vertex of
the scalar current. All these contributions lie beyond the
usual QCDF approximation: being formally 1=mb sup-
pressed, they also do not allow a factorization with a
hard kernel. One has to parametrize them with a separate
nonperturbative parameter.

We use a different approach, considering the scalar pion
form factor h���p� j �qq j ���q�i (q � u; d) as a separate
object and obtaining it from LCSR, following the same
method as in [19]. The calculation is done at spacelike
momentum transfer P2 < 0, analytically continuing the
result to large timelike P2 � m2

B.
One introduces the correlation function

T��p; q� � i
Z
d4xeipxh0jTfj����5 �x� �dd�0�gj�

��q�i; (55)

where j����5 is the same axial-vector current as in Eq. (35).
Inserting the complete set of states with the pion and axial
meson quantum numbers between the currents in Eq. (55),
one obtains for the ground-state pion contribution:
T���� �p; q� �
if�FS��P2�

m2
� � p2 p�: (56)
At large spacelike p2 and P2 � �p� q�2 the correlation
function can be expanded near the light cone and expressed
via pion DA’s. The OPE starts from the diagram in
Fig. 10(a) which corresponds to the soft or end-point
mechanism of the pion-to-pion transition. In addition, there
is a diagram with quark-antiquark gluon DA’s [Fig. 10(b)]
and O��s� diagrams, some of them shown in Figs. 10(c)
and 10(d).

To calculate the leading-order diagram in Fig. 10(a), the
free d-quark propagator is inserted and pion quark-
antiquark DA’s are factorized out. Only the structure pro-
portional to p� is relevant. In the chiral limit (at q2 �
m2
� � 0) the twist-2 contribution vanishes, hence the ex-

pansion starts from the twist 3. The answer reads:
-13
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T��p; q� � i��f�
Z 1

0

du

�p2u� P2 �u
�’P�u�

�
1

6

d
du
’��u��p�; (57)

where ’P;� are the standard twist-3 DA’s of the pion,
normalized to �� � m2

�=�mu �md�. In addition, we find
that the diagram in Fig. 10(b), with a low-virtuality (soft)
gluon absorbed in the quark-antiquark-gluon DA , does not
contribute to the relevant Lorentz structure �p� in the
chiral limit.

Furthermore, the experience with the LCSR for the pion
vector (e.m.) form factor [19] tells that even at rather large
momentum transfers of a few GeV2 the O��s� diagrams in
Fig. 10(c) and 10(d) are subdominant. Therefore, in what
follows we simplify our calculation neglecting their
contributions.

Equating the result (57) for the correlation function to
the hadronic dispersion relation in the variable p2, we
retain only the pion contribution (56) and replace the
sum over heavier states by a quark-hadron duality estimate.
For that one has to write the expression (57) as a dispersion
relation in the variable s � p2 > 0 by substituting the
integration variable: u � �P2=�s� P2�. After Borel trans-
formation we obtain the LCSR for the pion scalar form
factor valid at large spacelike P2 < 0. Continuing it to
large timelike P2 � m2

B, we get

FS��m2
B� � �

��

m2
B

M2�1� e�s
�
0 =M

2
�




�
’P�u� �

1

6

d
du
’��u�

���������u�1


 �1�O�s�0 =m
2
B�� (58)

with an evident end-point dominance. Note that FS��m2
B�

has no imaginary part in the adopted approximation. It will
appear at O��s�, hence, we expect the strong phase in the
form factor to be subdominant.

Substituting Eq. (58) in Eq. (30), we obtain the estimate
for the parameter R���;6�A . Containing a chiral enhanced
factor, and having no�s suppression, this effect is expected
to be important. On the other hand, the annihilation effects
via O5;6 operators multiply small Wilson coefficients c5

and c6 in the amplitude (27), therefore in what follows we
only retain R���;6�A and neglect nonfactorizable corrections
parametrized by r���;6�A and r���;5�A .
VIII. NUMERICAL ESTIMATES

For the numerical evaluation we adopt the same input in
all sum rules derived and used in this paper, including
LCSR (47) and (54), and (58) for the matrix elements in
the annihilation topology, and the LCSR for the B! �
form factor f�B� [16] determining the factorizable ampli-
tude A��. Finally, fB is substituted by the corresponding
094012
two-point sum rule, so that the uncertainties of the input
parameters partly cancel in the ratios.

In the LCSR for B! � form factor [16] the one-loop
pole mass mb of the b quark is used. For consistency, we
adopt the same mass for the other sum rules. The current
interval �mb� �mb� � 4:25� 0:15 GeV [32] converted into
the one-loop pole mass yields mb � 4:7� 0:1 GeV.
Furthermore, we take �s�mZ� � 0:1187 [32], evolved to
lower scales at two-loop order, so that e.g., �s�mb=2� �
0:284. For the factorization and renormalization scale of

the scale-dependent input parameters, we use �b ���������������������
m2
B �m

2
b

q
’ 2:4 GeV, numerically close to mb=2. Being

of order of the Borel parameterM0 in the B-meson channel,
this scale reflects the average virtuality in the correlation
function. For consistency, we normalize also the Wilson
coefficients in Heff at the same scale �b. For the latter, we
use the NLO results obtained in the NDR scheme adopted
in our calculation:
�
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c1
 c2
 c3
 c4
 c5
 c6
 c8g
2.4 GeV
 1.124
 �0:272
 0.020
 �0:037
 0.010
 �0:060
 �0:166

4.8 GeV
 1.073
 �0:174
 0.013
 �0:034
 0.009
 �0:038
 �0:149
In our uncertainty estimates, we include the variation of
the unified scale up to 2�b.

Furthermore, for the condensate densities used in the
sum rules, we take h �qqi�1 GeV� � ��0:240�
0:010 GeV�3, so that ���1 GeV� � 1:61� 0:20 GeV;
h�s� G

2i � 0:012� 0:006 GeV4 and h �qGqi � �0:8�
0:2 GeV� 
 h �qqi�1 GeV�, the scale dependence of the
quark-gluon condensate density being negligible. The re-
maining parameters in the B channel are: the interval of the
Borel parameter M02 � 10� 2 GeV2 and the duality
threshold sB0 � 35� 2 GeV2 chosen as in [13].
Concerning the parameters related to the pion, we use the
experimental value f� � 131 MeV [32], and take the
Borel interval M2 � 1:0�0:5

�0:2 GeV2 as well as the duality
threshold s�0 � 0:7 GeV2 determined from the two-point
sum rule for f� [15].

Finally, the pion light-cone DA’s deserve a separate
discussion. Their definitions, asymptotic forms, and non-
asymptotic parts used in our calculation can be found, e.g.,
in Appendix B of Ref. [20].

In the twist-2 pion DA ’��u�, we include nonasymptotic
effects encoded by the Gegenbauer moments a�2 and a�4 .
These parameters have recently been estimated in Ref. [33]
by fitting the LCSR result for B! � form factor to the
data on B! �l� decay distribution:

a�2 �1 GeV��0:1�0:1; a�4 �1 GeV���0:07: (59)

We combine this range with the constraint [34] obtained
from the analysis of the ��	� form factor

a�2 �1 GeV� � a�4 �1 GeV� � 0:1� 0:1: (60)
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The resulting intervals

a�2 �1 GeV� � 0� 0:27;

a�4 �1 GeV� � �0:07� 0:20;
(61)

are consistent with other estimates in the literature. Note
that Eq. (61) does not exclude a purely asymptotic DA.
Both Gegenbauer moments are independently varied
around middle values of the intervals (61) to estimate the
corresponding uncertainty. Finally, for the twist-3 and 4
pion DA’s, the normalization constants and nonasymptotic
parameters are taken as: f3��1 GeV� � 0:0035�
0:0018 GeV2, !3��1 GeV� � �2:88 and ���1 GeV� �
0:17� 0:05 GeV2, 
��1 GeV� � 0:5, respectively.

Using the input specified above, we reevaluate the result
of [35] for the B! � form factor:

f�B��0� � 0:26� 0:02�a�2;4� � 0:03�param�; (62)

where the uncertainties induced by Gegenbauer moments
and by other sum rule parameters (the latter are added up in
quadrature) are shown separately. This estimate agrees
well with the most recent calculation of this form factor
in Ref. [36] where also a small twist-3 NLO correction is
taken into account. In Section II we added both uncertain-
ties linearly to be on the conservative side. In what follows,
all errors are added quadratically.

Using the sum rules for hard- and soft-gluon contribu-
tions presented in Sections V and VI, we first estimate the
ratio r����A . We find that both hard-gluon and soft-gluon
annihilation contributions, being comparable in magni-
tude, are numerically very small and partly cancel each
other, so that

r����A � ��0:67�0:47
�0:87 � i�3:6

�0:5
�1:1�� 
 10�3: (63)

On the other hand, the factorizable annihilation via
quark-penguin operator O6 produces a considerably larger
hadronic matrix element:

R���;6�A � 0:23�0:05
�0:08: (64)

However, the small Wilson coefficient reduces the effect in
the decay amplitudes to the same level as for the annihila-
tion via the current-current operator: �c6 � c5=3�R���;6�A �

c1r
����
A . As mentioned at the end of Section VII, we there-

fore neglect both factorizable and nonfactorizable O��s�
corrections to the annihilation via the operatorsO5 andO6.
In general, the contributions of annihilation amplitudes are
found at the same level as the other nonfactorizable effects
estimated from LCSR in Refs. [13,17,18].

Having at hand the new estimates of r����A and R���;6�A ,
we now update the phenomenological analysis of B! ��
channels, with all nonfactorizable parts of the amplitudes
calculated from LCSR, except the emission with hard
gluons which is estimated using QCDF. To this end, we
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recalculated the previous LCSR predictions using the cur-
rent input, which has only slightly changed. For the non-
factorizable emission, we obtain

r����E � ��1:8�0:5
�0:7� 
 10�2�soft � ��1:3

�5:6
�5:2� 
 10�2

� i��4:7�1:1
�0:3� 
 10�2�hard; (65)

where the soft-gluon part is obtained from [13] and the
hard-gluon contribution is estimated using QCDF [2,3]
with the default value and error for the parameter describ-
ing the twist-3 hard-spectator diagrams. For the quark-
penguin operators with scalar-pseudoscalar Dirac struc-
ture, we have found that the soft-gluon emission contribu-
tion vanishes in twist � 4, and for the hard-gluon part we
again use QCDF:

r���;6�E � ���2:7� 0:4� 
 10�2�hard: (66)

The penguin-topology effects are calculated from LCSR
obtained in Refs. [17,18]. The resulting ratios to the fac-
torizable amplitude are:

r����Pq
� �0:11�0:02

�0:36 � i�1:1
�0:2
�0:1�� 
 10�2;

r����Pc
� ��0:18�0:06

�0:68 � i��0:80�0:17
�0:08�� 
 10�2;

r����Pb
� �0:93�0:09

�0:65� 
 10�2;

r����8g � ��3:8�1:3
�0:4� 
 10�2;

(67)

and the modified penguin parameters are �r����Pq;c;b
’ r����Pq;c;b

�

��sCF�=�36��; for brevity we do not show the correspond-
ing numbers.

Having specified all parameters entering the decompo-
sition of B! �� amplitudes in Eqs. (20) and (21), we
calculate the branching ratios and direct CP asymmetries,
using the values of B meson lifetimes from [21], and the
relevant CKM parameters from [23]. In particular, we
adopt jVubj � �4:22� 0:26� � 10�3 (the errors added in
quadrature) and use a representative interval � � �58:6�
10��. The results are:

BR�B� ! ���0� � �6:7�1:8�0:9
�1:5�0:8� 
 10�6;

BR�B0 ! ����� � �9:7�2:3�1:2
�1:9�1:2� 
 10�6;

BR�B0 ! �0�0� � �0:29�0:24�0:07
�0:12�0:07� 
 10�6;

(68)

where the errors represent the variation of the LCSR
parameters and of the CKM factors, respectively. The
direct CP asymmetries are presented in Table I. For com-
pleteness, we also calculate the amplitudes T, P, and C
defined in (34) parametrizing them as in [5]:

xei� �
C��
T��

; dei� � �
P��
T��

: (69)

We obtain:
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TABLE I. Direct CP asymmetries from experiment (all numbers taken from [21]; the errors
added in quadrature) compared with the LCSR predictions.

adir
CP�B

� ! ���0� adir
CP�B

0 ! ����� adir
CP�B

0 ! �0�0�

BABAR �0:01� 0:10 0:09� 0:16 0:12� 0:56
Belle 0:02� 0:08 0:56� 0:14 0:44� 0:56
Average 0:01� 0:06 0:37� 0:10 0:28� 0:40
This work 0 �0:04� 0:01� 0:01 �0:70�0:19�0:08

�0:29�0:08
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x � 0:29�0:15
�0:09; � � ��21�9

�7�
�;

d � 0:22�0:02�0:01
�0:03�0:01; � � ��173� 1��;

(70)

where the second error in d stems from the uncertainty of
jVubj.

We find that the general picture does not qualitatively
deviate from the naive factorization considered in
Section II. Although the nonfactorizable contributions sub-
stantially enhance the small B0 ! �0�0 amplitude pre-
dicted in naive factorization, the disagreement between
theory and experiment for the branching ratio of this decay
remains. Our prediction (70) for the amplitudes is incon-
sistent with the fit [5] to data. As already discussed in
Section II, one possible interpretation of this disagreement
is a missing contribution to the I � 0 parts of the ampli-
tudes T��, C��, and P��.

IX. COMPARISON WITH QCD FACTORIZATION

Let us first investigate the behavior of the annihilation
amplitudes obtained from LCSR in the heavy quark limit,
by making standard substitutions in the sum rules:

mB � mb �
��; sB0 � m2

b � 2mb!0;

M02 � 2mb	; fB � f̂B=
�������
mb
p

;
(71)

where ��, !0, 	, and f̂B are mb-independent parameters.6.
At mb ! 1, the factorizable amplitude A�� defined in
Eq. (12) scales as m1=2

b . Expanding in 1=mb the annihila-
tion contribution with hard gluons given by Eq. (47) and
dividing it by A��, we reduce the real part of the diagram
in Fig. 9(a) (gluon emitted by the light quark) to

r����A;hard �
�

mb

Z 1

0
du
’��u�

u2

Z 1

0
dv
’��v�
v
� � � � ; (72)

where � is a generic energy scale not related to mb and
higher powers in 1=mb are denoted by ellipses. Although
formally suppressed by 1=mb, this expression recovers the
logarithmic divergence at u! 0, of the annihilation con-
tribution in QCDF. Importantly, in LCSR this divergence
occurs only at mb ! 1. Moreover, as the numerical analy-
6Note that the scale 	 has to be large in comparison with
�QCD, allowing one to use the power expansion in �QCD=	, so
that QCD sum rules remain valid in the heavy quark limit (the
well-known example is the sum rule for fB in HQET [37]).
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sis in Section VIII shows, at finite mb � 5 GeV the loga-
rithms originating from the end-point region (at mb ! 1
they reduce to Log�mb=	� and Log�mb=!�) do not produce
an enhancement of the annihilation contribution.
Furthermore, analyzing LCSR in the heavy quark limit,
we observe that the phase generated by the diagram in
Fig. 9(a), as well as the contribution of the gluon emission
from the heavy quark [Fig. 9(b)], remain finite at mb ! 1,
being of the same O�1=mb�. Other contributions that we
have calculated from LCSR, the soft-gluon part of r����A ,
and the factorizable annihilation with O6 given by R���;6�A ,
are also finite, being suppressed by an additional power of
1=mb with respect to Eq. (72).

The origin of the end-point divergence in QCDF and the
reason why it is absent in the LCSR approach can be
readily understood. The power counting in QCDF implies
that the momentum of the light quark in the Bmeson has to
vanish, i.e. the propagator of the light quark shrinks to a
point [2,3]. This is different in LCSR, since the B meson is
effectively replaced by the spectral density of the heavy-
light-quark loop integrated over the duality interval m2

b <
s0 < sB0 , and thus the momentum of the light quark is
nonvanishing. In other words, the end-point singularity is
regularized by the typical momentum of the light quark.

To demonstrate this, let us slightly modify QCDF by
convoluting the annihilation hard kernels with the standard
B-meson DA. We consider the annihilation diagrams in
Fig. 9, where instead of the current j�B�5 , an on-shell B
meson is inserted, represented by its DA. The result for
the annihilation amplitude Ai1 (see the definition in [3]) in
the twist-2 approximation reads:

Ai1 � ��s
Z 1

0
d!�B �!�

Z 1

0
du’��u�

Z 1

0
dv’��v�




�
1

�uv� �u�!=mB�

�
�u�!=mB

�uv�1� �u�!=mB�� �v�!=mB��

�
; (73)

where the B-meson DA �B �!� is normalized as:R
1
0 d!

�
B �!� � 1. Neglecting the spectator quark mo-

mentum!, that is, replacing �B �!� ! ��!�, one recovers
the expression for Ai1 given in [2,3] (see also [38]), with an
end-point divergence in the first term in brackets (corre-
sponding to the diagram with gluon emission from the light
-16
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quark). However, it is generally expected (see e.g., [30])
that �B �!� ! 0 at !! 0. The integral in Eq. (73) then
converges (taken as a principal value) yielding
Log�mB=�B�, �B being the size of the region in ! where
the function �B �!� dominates. Simultaneously, this ex-
pression acquires an imaginary part,7 due to the pole in the
integration region at �u � !=mB.

Employing a realistic model of �B �!�, e.g., the one
suggested in [30]:

�B �!� �
!

�2
B

e�!=�B; (74)

it is easy to calculate Eq. (73) numerically and to estimate
the corresponding parameter r����A (see Appendix A for the
relation between this parameter and Ai1). The result turns
out small, with both real and imaginary parts at the level of
�1%, that is, roughly of the same size as the LCSR
estimate obtained in the previous section. The model of
annihilation represented by Eq. (73) is rather crude, be-
cause the transverse momenta of the quarks in Bmeson are
neglected, but their account could not qualitatively change
the result. Thus, from the point of view of the LCSR
approach, the end-point divergence in the annihilation
diagrams in QCDF originates in the hard-scattering ap-
proximation and the mb ! 1 limit.

In the phenomenological analysis of B! �� done in
Ref. [3], a model for the annihilation diagrams was used,
replacing all divergent integrals by a generic logarithm:Z 1

0

dy
y
! XA � �1� �Ae

i’A� ln
mb

�h
; (75)

where �h � 0:5 GeV, �A < 1 and the phase ’A is arbi-
trary. With this model the effective annihilation coeffi-
cients �B��=A���bi, (where B�� � i�GF=

���
2
p
�fBf2

�)
entering the decay amplitudes have been estimated [3].
Using our results and the relations given in Appendix A,
we can also obtain these coefficients:

B��

A��
b1 � ��0:15�0:11

�0:19 � i�0:82�0:11
�0:27�� 
 10�2;

b2 �
c2

c1
b1;

B��

A��
b3 � ��1:3�0:7

�0:3 � i�0:015�0:002
�0:008�� 
 10�2;

b4 ’
c4

c1
b1:

(76)

The above estimates, especially for b1, differ from the ones
presented in [3] for the default value �A � 0 in Eq. (75). In
fact, a numerical agreement is not anticipated, because the
two sets of bi’s originate from two different methods.
7The appearance of an imaginary part due to the momentum of
spectator quark was noticed already in [6] while discussing the
differences between QCDF and PQCD.
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Moreover, one cannot expect that LCSR predictions for
bi allow a parametrization with a single complex parameter
XA. Important is that both the default values of the annihi-
lation coefficients in [3] and our predictions in Eq. (76) are
very small in comparison with the factorizable amplitude.
Hence, LCSR is in a qualitative agreement with QCDF, if
the annihilation effects in the latter are represented by
moderate logarithms.

To complete the comparison with other methods, let us
briefly discuss PQCD [6]. In this approach, all B! ��
amplitudes as well as the B! � form factor are repre-
sented by the diagrams with O��s� hard-scattering kernels
and meson wave functions. Another distinctive feature of
PQCD concerns nonvanishing transverse momenta of par-
tons in mesons, which can only be introduced in a model-
dependent way. Hence, the annihilation amplitudes in this
approach are protected from the end-point divergences and
acquire imaginary parts. There is however a basic differ-
ence between LCSR and PQCD approaches to B! ��. In
LCSR the diagrams at O��s� are subleading and numeri-
cally suppressed, justifying the perturbative expansion
within OPE. Moreover, the higher-twist soft-gluon dia-
grams of O�1=mb� are as important as the O��s� effects.
Importantly, the dominant part of the B! � form factor in
LCSR is soft and has no relation to �s. In PQCD, the whole
form factor (hence, the factorizable part of the B! ��
amplitude) is assumed to be of O��s�. Furthermore, the
main contribution to the strong phase in PQCD stems from
the annihilation mechanism with the scalar-pseudoscalar
operator O6, and the diagrams again start at O��s� level.
We have also found O6 to be an important source of
factorizable annihilation, but in LCSR the O��s� contribu-
tion to this mechanism is expected to be subleading in
comparison with the zeroth order in �s, soft contribution
which has been calculated in Section VII. Starting atO��s�
level and neglecting soft contributions, PQCD nevertheless
predicts annihilation effects that are larger then in LCSR.
This surprising fact means that it is difficult if not impos-
sible to reconcile these two approaches with each other.
X. CONCLUSION

In this paper, the weak annihilation contributions to B!
�� decay amplitudes have been calculated applying the
method of LCSR. This work complements previous studies
[13,17,18,39] of nonfactorizable effects in B! �� with
the QCD sum rule approach. In LCSR, due to sufficient
virtuality of the underlying correlation function, the OPE
diagrams with annihilation topology are free from end-
point divergences. Both contributions of hard and soft
gluons are taken into account. A finite result for the had-
ronic matrix element of the current-current Ou

1 operator
with annihilation topology is obtained including an imagi-
nary part which contributes to the strong phase. In addition,
an important factorizable contribution from the quark-
penguin operator O6 has been found. For the annihilation
-17
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with hard gluons considered in this paper, we have modi-
fied the method suggested in [13], to avoid the problem of
calculating two-loop multiscale diagrams. Instead of per-
forming the QCD calculation based on the vacuum-to-pion
correlation function, we start from the pion-pion correlator,
thereby reducing the calculation to one-loop diagrams.

We emphasize that QCD sum rules have a limited accu-
racy, at the same time one is able to estimate the uncer-
tainties of the method. Moreover, many uncertainties
cancel in the ratios of nonfactorizable and factorizable
hadronic matrix elements obtained from LCSR.
Obtaining B! �� hadronic matrix elements one uses
an additional assumption of the local quark-hadron duality,
allowing the transition (analytical continuation) from a
large spacelike scale to the large timelike scale m2

B. This
approach has much in common with evaluating the time-
like asymptotics of the pion e.m. form factor from the QCD
calculation in the spacelike region.

Our main phenomenological result is a smallness of the
annihilation contributions in B! ��. This is generally
consistent with QCDF, if the divergent annihilation dia-
grams there are modeled by moderate logarithmic factors.
Hence, we find no compelling reason to consider the
annihilation amplitude as a free parameter in QCDF. The
relatively large values of this parameter generated by the
fits to the data are probably not originating from the
annihilation mechanism.

Small annihilation effects predicted in this paper are in
the same ballpark as other nonfactorizable contributions
obtained from LCSR, including charming and gluonic
penguin topologies and nonfactorizable corrections to the
emission topology. Altogether, the smallness of the correc-
tions to the leading-order factorizable amplitude reveals a
good convergence of the OPE series for the correlation
function and justifies the use of the adopted approximation
in LCSR, that is, including only O��s� and twists � 4, as
well as omitting the small O�s�0 =m

2
B� corrections in each

term of OPE.
Furthermore, we have performed the phenomenological

analysis of the three B! �� channels using the results of
LCSR for all nonfactorizable effects, except the hard-gluon
nonfactorizable corrections to the emission topology. For
the latter the default prediction of QCDF [2,3] is used. Our
results disagree with the current data for BR�B0 ! �����
and BR�B0 ! �0�0� and probably also for the direct CP
asymmetry in B0 ! ����, that is, for the channels where
the �I � 1=2 weak transition (or, equivalently, the I � 0
two-pion final state) contributes. If the experimental data
do not change, we have to admit that LCSR misses an
important part of the isoscalar amplitude. Then a new
‘‘inverse �I � 1=2’’ rule has to be established for these
decays, meaning that the amplitude A0 introduced in
Section II has to decrease after including the missing piece.

A natural question arises: are there additional mecha-
nisms in B! �� which may fill this gap. The penguin-
094012
annihilation topology comes first to one’s mind, a possi-
bility which was not yet explored by both QCDF and
LCSR. This effect contains multiloop diagrams and cannot
be easily evaluated. Still, the experience with LCSR for
charming penguins [18] tells us that the OPE diagrams of
the type shown in Fig. 5 could not be large. In any case, the
penguin-annihilation mechanism deserves a closer look in
future. One can for example speculate about nonperturba-
tive gluonic effects in this mechanism, which have an
anomalously large scale (� �QCD) and lie beyond
OPE. Such effects will most probably influence other
neutral final states, e.g., enhance B! �0�0. That however
seems not to be the case because the current experimental
upper bound for BR�B! �0�0� is less than the measured
value of BR�B! �0�0�.

Another resource of enhancement is the hard-spectator
part in the nonfactorizable emission. The corresponding
diagrams in QCDF diverge at twist 3 and are replaced by
another generic logarithm. In our numerical estimates we
have taken the default value of this parameter from [3], but
the fits to the current data [4] with a free parameter for this
contribution produce large effects. Indications that the
hard-spectator mechanism is important, were found re-
cently in the SCET framework [40]. We plan to study the
nonfactorizable hard-gluon emission, including the hard-
spectator mechanism in LCSR (work in progress).

Finally, an important avenue of future studies is the sum
rule analysis of the B! �K and B! K �K channels in-
cluding calculable SU�3� violation effects which are ex-
pected [39] to be important. The variety of kaon channels
with a lot of accumulated data will allow to isolate various
topologies, and to put the LCSR approach under a tighter
scrutiny.
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APPENDIX A: EFFECTIVE COEFFICIENTS IN
QCDF

For convenience, we present here the relations between
the nonfactorizable matrix elements parametrized in
Section III by the ratios r����T and the effective coefficients
ai introduced in [2,3] for B! ��. The decay amplitudes
written in terms of these coefficients are:

A� �B0!��������ua1�
X
p�u;c

�p�a
p
4�r

�
�a

p
6 ��A��

���ub1���u��c��b3�2b4��B��;���
2
p
A�B�!���0���u�a1�a2�A��; (A1)
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where r�� � 2��=mb and electroweak penguins are ne-
glected. Comparing with Eqs. (20), (21), (23), (24), and
(26), and (27) we obtain:

a1 � c1�
c2

3
� 2c2r

����
E ;

a2 � c2�
c1

3
� 2c1r

����
E ;

ap4 � r�a
p
6 � c4�

c3

3
� 2c3r

����
E � 2c1r

����
Pp
� 2c3�r

����
Pu

� r����Pb
� � 2�c4� c6��3�r����Pq

� �r����Pc
� �r����Pb

�

� r��

�
c6�

c5

3

�
� 2c5r

���;6�
E � ceff

8g r
����
8g ;

(A2)

b1 � 2c1r
����
A

A��

B��
;

b3 �

�
2c3r

����
A �

�
c6 �

c5

3

�
R���;6�A � 2c5r

���;6�
A

�
A��

B��
;

b4 � 2�c4r
����
A � c6r

���;5�
A �

A��

B��
: (A3)
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The correspondence between the annihilation diagrams
introduced in [3] and parameters r����A is schematically
given by

r����A A���̂
CF
18
Ai1B��; r���;5�A A���̂

CF
18
Ai2B��;

R���;6�A A���̂
CF
3
Af3B��; r���;6�A A���̂

CF
18
Ai3B��;

(A4)

where the sign �̂ indicates that in LCSR and QCDF differ-
ent approximations are used to calculate left-hand side
(l.h.s.) and r.h.s., respectively. In particular, R���;5�A is of
the zeroth order in �s, whereas Af3 is of O��s�.
APPENDIX B: KERNELS FOR HARD
ANNIHILATION

The kernels for the hard annihilation contribution to the
correlation function in Eq. (44) are given by
Hd
���u; v; s0 � �p� q�2; P2� � �P2�2m2

b � s
0�2� u� � 3P2v��B0�P

2uv; 0; 0� �
�

1

uv
��s0u� P2v�m2

b � 2P4v2 � s02u

� P2s0v�
�
B0�s0; 0; m2

b� �

�
1

uv
��s0u� P2v�1� 2u��m2

b � P
4v2�1� 3u� � s02u�1� u�

� vP2s0�u2 � 4u� 1��
�
B0��1� u��s0 � P2v�; 0; m2

b� � �2P
2�m2

b � s
0 � P2v�2�


 C0�s0; P2uv; �1� u��s0 � P2v�; m2
b; 0; 0�;

Hb
���u; v; s0 � �p� q�2; P2� � ��P2�2m2

b� s
0�2� 3u� � P2v��B0�P

2uv;m2
b;m

2
b� �

�
1

uv
��s0u� P2v�m2

b� s
02u�1� 2u�

� s0P2v�
�
B0�s0;0;m2

b� �

�
1

uv
��s0u� P2v�1� 2u��m2

b� P
4v2�1� u� � s02u�1� 3u�

� P2vs0�1� 3u2��

�
B0��1� u��s

0 �P2v�; 0;m2
b� �

2

uv
��um2

b� vP
2 � u2s0�


 �vP2�m2
b� us

0� � us02��C0�s
0; P2uv; �1� u��s0 �P2v�;0;m2

b;m
2
b�:
B0 and C0 are the standard two-point and three-point
functions, respectively:

B0�p2; m0; m1� �
�2���4�D

i�2

Z
dDqf�q2 �m2

0 � i
�


 ��q� p1�
2 �m2

1 � i
�g
�1;
C0�p
2
1; �p1 � p2�

2; p2
2; m0; m1; m2�

�
�2���4�D

i�2

Z
dDqf�q2 �m2

0 � i
���q� p1�
2 �m2

1

� i
���q� p2�
2 �m2

2 � i
�g
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