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Abbreviations 

AChE  Acetylcholin esterase 

CAT Catalase 

DTNB  5,5-dithio-bis-(2-nitrobenzoic acid)  

EDTA  Ethylenediaminetetraacetic acid 

ETS  Electron transfer system 

FCI Fulton condition index 

GSH Glutathione (reduced glutathione) 

GSI Gonadosomatic index 

GSR Glutathione reductase 

GSSG Glutathione disulfide (oxidized glutathione) 

GST Glutathione S-transferase 

HSI Hepatosomatic index 

HR ICP-MS  High resolution inductively coupled plasma mass spectrometry  

KPE Potassium phosphate EDTA 

MDA  Malondialdehyde 

Mr Molecular mass 

NADPH  Nicotinamide adenine dinucleotide phosphate 

PSSG Glutathionylated proteins 

SEC-HPLC  Size exclusion-high-performance liquid chromatography  

SSA 5-sulfosalicylic acid 

TNB  5-thio(2-nitrobenzoic acid)  

TP Total proteins 

 

Glossary 

Bioaccumulation: the accumulation of chemicals in an organism due to faster intake than 

output of the chemical. 

Biotransformation: a chemical modification made by an organism on a chemical 

compound. 

Chelation: a type of bonding, or rather the forming of a complex, the formation of a 

complex between ions or molecules and metal ions through coordinate bonds between a 

polydenate, ligand and single central atom. 

Gill rakers: the bone or bonelike parts of the gill arch that are involved in filtering tiny food 

particles out of the water. 

Macro elements: chemical elements which are found and needed in high concentrations. 

Metalloids: elements that are neither metals, nor nonmetals, or elements that have 

properties between those of metals and nonmetals. 

Peritoneum: epithelial tissue that covers the inside of the abdominal cavity and the outside 

of intra-abdominal organs. 

Trace elements: chemical elements which are found and needed in low concentrations. 

 



 

 

Abstract 

 

 The study aim was to determine whether the wastewater input from a petrochemical 

factory into the Ilova River has caused contamination of the river water that could affect the 

aquatic organisms and the environment. The concentrations of multiple trace and macro 

elements in the river water and in the liver of Prussian carp (Carassius gibelio) were 

measured and compared between two sites: the reference site Ilova village, upstream of the 

wastewater input, and the potentially contaminated site Trebež village, downstream of the 

input. Stress caused by potential trace and macro element bioaccumulation in fish liver was 

tested by measuring biomarkers (total cytosolic proteins, metallothionein, glutathione and 

catalase).  

 The concentrations of dissolved Na, Cs, Cd and Rb in the river-water downstream of 

the wastewater inflow were generally slightly higher compared to the upstream samples, 

whereas Mn had higher concentration upstream of wastewater inflow.  

 The majority of total hepatic concentrations of elements showed comparable 

bioaccumulation levels in the liver at both sites. Only Na, Rb, and Cs had higher 

concentrations at Trebež village, which was probably a direct consequence of higher 

exposure in the river-water. Cytosolic proportions of many elements in Prussian carp liver 

were very high, and for highly toxic metals Ag, Cd and Cs they were approximately 100%, 

indicating their high metabolic availability and toxic potential. 

Biomarker levels did not differ between two sampling sites, indicating that the 

effects of slightly increased exposure to several elements in the river-water and their 

bioaccumulation in the liver downstream of petrochemical factory were still not observable 

in the fish. 

 It can be concluded that, despite observed bioaccumulation of several metals in fish 

liver, there was no observable effects on the fish. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Abstract 

 

Het doel van de studie was bepalen of de instroom van afvalwater van een 

petrochemische fabriek in de Ilova rivier vervuiling van het rivierwater veroorzaakt, en of 

dat een invloed heeft op waterorganismen en de omgeving. De concentratie van 

verschillende spoor- en macro-elementen werd gemeten in het rivierwater en in de lever van 

de giebel (Carassius gibelio) en dan vergeleken tussen twee plaatsen: de referentieplaats 

Ilova dorp, stroomopwaarts van de instroom van afvalwater, en de mogelijks vervuilde 

plaats Trebež dorp, stroomafwaarts van de instroom. Stress veroorzaakt door eventuele 

bioaccumulatie van spoor- en macro-elementen in de lever van de vis werd gemeten aan de 

hand van biomarkers (totale cytosolische proteïnen, metallothioneïne, gluthathion en 

katalase). 

De concentratie van opgeloste elementen was in het algemeen iets hoger in het 

rivierwater stroomafwaarts van de instroom van afvalwater, en meer specifiek Na, Cs, Cd en 

Rb, in tegenstelling hiertoe, had Mn een hogere concentratie stroomopwaarts. 

De meeste elementen hadden een gelijkaardig niveau van bioaccumulatie in de lever van de 

giebel in beide plaatsen. Alleen Na, Rb en Cs hadden een hogere concentratie in Trebež 

dorp, wat mogelijks een direct gevolg is van een hogere blootstelling in het rivierwater. 

Cytosolische verhoudingen van verscheidene elementen in de lever van de giebel waren 

zeer hoog. Voor de sterk toxische metalen Ag, Cd en Cs waren deze ~100%, wat hun hoge 

metabolische activiteit aanwijst en de mogelijkheid voor toxische effecten. 

Er was geen verschil in de concentraties van biomarkers in beide plaatsen, wat 

aantoont dat een iets verhoogde blootstelling aan verschillende elementen in het rivierwater 

en hun bioaccumulatie in de lever stroomafwaarts van de petrochemische fabriek, geen 

effect hadden op het stresslevel van de vissen. 
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1 Introduction 

1.1 River water contamination with metals 

1.1.1 Speciation of metals in the water  

 Knowledge of total concentrations of metals in the river water is generally not 

sufficient to know if harmful effects will occur. Metals can have different chemical forms 

and oxidizing conditions in the water. As a consequence, their toxicity changes depending 

on the chemical form (Odobasic, 2012). 

 Toxicity, biodegradability, bioaccumulation, mobility, solubility and other important 

characteristics depend on the physical/chemical form of a metal (Odobasic, 2012). Most 

studies on toxicity of metals show that a free hydrated metal ion is the most toxic possible 

form of a metal (Sterrit & Lester, 1980). 

 Other forms of metals in water are inorganic and organic complexes, metals 

adsorbed to colloid particles, polymers and pseudocolloids, and metals adsorbed to 

suspended particles or absorbed by microorganisms. The mobility of metals in water 

depends on multiple parameters such as the pH of water, the presence of carbonates and 

phosphates in the water, oxidation conditions, content of organic matter and the presence of 

sulphide ions. 

 There are several methods that can be used for measuring the different the speciation 

of metals, from electrochemical methods, such as voltammetry and potentiometry, to other 

analytical methods, like extraction, dialysis and ultrafiltration (Odobasic, 2012). 

1.1.2 Metal bioavailability 

 Metals and metalloids are one of the biggest threats for the aquatic environmental 

health due to their toxicity, persistence and possibility to accumulate in sediment and all 

living organisms (Dragun et al., 2015; Fidan et al., 2008; Harte et al., 1991). This can 

eventually become a threat for human society, because fish are consumed by humans as a 

part of their diet (Barlas, 1999; Holcombe et al., 1976). 

 Bioavailable metals are the portion of total metals in the environment that can be 

incorporated into organisms. Only a part of the total metal concentration in the water is 

considered as bioavailable. High exposure level of bioavailable metals can eventually lead 

to bioaccumulation (John and Leventhal, 1995). 

 There are two types of metals, according to their biological functions. Some metals, 

like Zn, Cu, Fe, and Mn, are essential for physiological functions of aquatic organisms. For 

example, iron (Fe) is a part of the haem group in haemoglobin and thus essential for oxygen 

transport. Zinc (Zn) has an important role in catalytic reactions, as a cofactor in enzymes, 

and has structural and regulatory functions (Roohani et al., 2013). Aside from its 

involvement in iron metabolism, copper (Cu) has a key role in  other biological processes, 

such as the immune system and antioxidant defense (Bost et al., 2016). Manganese (Mn) is 

a crucial metal for normal cell functioning and metabolism (Tuschl et al., 2013). The 
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aquatic organisms take all these metals up by a combination of water and food. These 

metals can also be toxic for the organisms, but only when the concentration reaches a 

critical point, and this critical point differs from metal to metal. 

 There are also metals with no clear biological function, like Cd, Ag, and Hg. These 

metals can already be toxic at low concentrations. Cadmium (Cd) is known to induce tissue 

damage through oxidative stress, it also has an influence on the transport pathways, 

inhibiting or upregulating them (Bernhoft, 2013). The toxicity of mercury (Hg) depends on 

the form, the rate of exposure and on the dose. The organic form of mercury affects 

different parts of the body such as the brain, the kidneys or the lungs. Chronic exposure to 

low doses of elemental mercury cause only mild symptoms (Bernhoft, 2012). Exposure to 

silver (Ag) through inhalations can cause irritation to the respiratory system, both upper and 

lower tract. Silver can also accumulate in the other organs, where it can bind to the thiol 

groups on glutathione and thereby disturb its functionality (Drake and Hazelwood, 2005). 

1.1.3 Sources of metal contamination 

 Metals are naturally found in the earth’s crust and therefore they can also be found in 

the river water. The natural contamination of water can occur due to the effects of metal 

corrosion, volcanic eruptions, soil erosion, atmospheric deposition, etc. (Tchounwou et al., 

2012)(Figure 1). There are many natural sources of water pollution and the most prevalent 

metals from those sources are Zn, As, Cd, Pb and Hg (Taillefert and Tercier-Waeber, 2008). 

 
Figure 1: Routes of water pollution (Förstner and Wittmann, 1981) 

 These are all natural ways of water contamination, but mostly the contamination 

does not occur naturally but rather due to the activities of humans. These activities, such as 

mining for ore, smelting the ore, use of metals in industrial processes for production, use of 

metals for domestic and agricultural purposes, burning coal for power, etc., are the main 

cause of metal contamination of waters and rivers. It should be noted that metal pollution 

produced by humans can contaminate the soil and these metals can then percolate into the 

ground water, thereby polluting the water (Figure 1). By burning waste and using fossil 
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fuels for driving cars, the air is polluted, which can cause a fallout and thereby polluting the 

water as well (Figure 1).  

 So when a water sample is analysed for metal contamination, it has to be considered 

that it can result from human as well as natural processes.  

1.1.4 Metal contamination of the Ilova River 

 The Ilova river (Figure 2) is situated in central Croatia and is a left tributary of the 

Sava River. It has a length of 93.4 km from spring to the mouth. The river originates from 

three springs. The main spring is situated at an altitude of 205 m on the northern slopes of 

Papuk Mountain and two smaller ones preserve additional water 800 m downstream. There 

are three locations that can be considered as the river mouth. The first is the point where 

Ilova River flows into Stari Trebež River and the second one is Pakra River emerging with 

Ilova River. The third location is considered the actual river mouth of the Ilova River today. 

It is the point where the Ilova River flows into the Sava River (Plantak et al., 2016). 

 The Ilova River is mainly contaminated through municipal sewage wastewater and 

industrial and agricultural sources (Radić et al., 2013). Radić et al. (2013) investigated the 

level of water contamination at one sampling site of the Ilova River located immediately 

downstream of Kutina town, which has a fertilizer factory. When they compared the results 

to the reference site, they found higher values of Fe, Cd, Pb, Cr, Hg, Zn, Cu, and Ni, but 

only Pb and Hg had values above WHO limits (Radić et al., 2013; WHO, 1998). 

 
Figure 2: The Ilova River catchment in Croatia (Plantak et al., 2016) 

 

1.2 Metal bioaccumulation in the fish liver 

 Fish are sensitive to pollutants such as metals, and therefore they are useful for 

obtaining the data involving the induction of oxidative stress, carcinogenicity, mutagenicity 
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and other effects. The liver of fish is used to evaluate all these effects, because it is the main 

detoxification and storage organ (Dragun et al., 2012).  

1.2.1 Bioindicators 

 Bioindicators are living organisms that make it possible to evaluate the 

environmental health, the level and duration of contamination in a certain region, and 

indirectly the effects on human society (Khatri and Tyagi, 2015). 

 By use of bioindicators it is possible to determine, both qualitatively and 

quantitatively, the response to environmental stress. There are three main functions 

associated to the use of bioindicators. They are used for monitoring the environment, 

ecological processes and the biodiversity (Holt and Miller, 2010). The use of bioindicators 

has several advantages compared to the classic methods for measuring environmental 

quality (Holt and Miller, 2010): 

(1) unlike chemicals, they can give us information about the cumulative effects of 

different pollutants; 

(2) more biologically relevant: it is possible to see the effects directly on the 

environment; 

(3) provide a picture of meaningful levels of pollutants, no matter how low; 

(4) give us data about the past, present or future environmental status, while chemicals 

only tell us something about the time of sampling. 

 The use of bioindicators also has some disadvantages, such as the natural variability 

that cannot be controlled (e.g., size, sex, reproduction status, and diseases). 

 Various organisms can be used as bioindicators, such as plankton, copepods, small 

water crustaceans or fish (Parmar et al., 2016). The characteristics of a good bioindicator are 

presented above, in Table I. 
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Table I. Characteristics of good bioindicators (Holt and Miller, 2010)  

Good indicator ability 

Provides measurable response 

Response reflects the whole ecosystem 

Responds in proportion to the degree of 

contamination or degradation 

Abundant and common 

Adequate local population density 

Common, including distribution within area of 

question 

Relatively stable despite moderate climatic and 

environmental variability 

Well-studied 

Ecology and life history well understood 

Taxonomically well documented and stable 

Easy and cheap to survey 

Economically/commercially 

interesting 

Species already being harvested for other purposes 

Public interest in or awareness of the species 

 

1.2.2 Fish as a bioindicator 

 Fish are used as bioindicators because they meet all criteria for conducting biological 

monitoring programmes. They are sensitive to stressors, the methods to measure certain 

stressors are standardised and the results are representative of many other aquatic 

organisms. They are easy to collect and identify, and they meet the requirements for three 

major types of bioindicators: 

1. compliance indicators, for the evaluation of the attainment and maintenance of the 

environment; 

2. diagnostic indicators, for providing the insight in causes of any changes in the 

environment; 

3. early warning indicators, for indication when actions should be taken to preserve the 

environment (Chovanec et al., 2003).  

 When the water is contaminated, it can cause harm to the fish in multiple ways. In 

addition to obvious toxicity that can be caused by the contaminants, it can also cause a 

change in the amount and content of the food and energy source. It can change their habitat 
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structure, and lower the availability of oxygen and nutrients. Also flow regime and biotic 

interactions can be influenced through contamination (Chovanec et al., 2003).  

1.2.3 Prussian carp (Carassius gibelio Bloch, 1782) 

 Prussian carp (Carassius gibelio Bloch, 1782) is an abundantly present fish species 

in the Ilova River, and thus a bioindicator of choice for monitoring the ecological status of 

that river. 

1.2.3.1 Taxonomy 

 The Prussian carp, Carassius gibelio (Bloch, 1782), can be classified in the phylum 

Chordata, subphylum Vertebrata and class of the Actinopterygii. It belongs to the order 

Cypriniformes and the family Cyprinidae. The genus is Carassius and the species is 

Carassius gibelio (U.S. Fish and Wildlife Service, 2012). Other names for the Prussian carp 

are the gibel carp or the silver crucian carp (NatureGate, 2013).  

 Overview of the classification of Prussian carp (U.S. Fish and Wildlife Service, 

2012):  

Domain: Eukaryota 

Kingdom: Metazoa 

Phylum: Chordata 

               Subphylum: Vertebrata 

                   Class: Actinopterygii 

                 Order: Cypriniformes 

                            Family: Cyprinidae 

                                 Genus: Carassius 

                                      Species: Carassius gibelio 

1.2.3.2 Morphology 

 

Figure 3: Carassius gibelio (Picture by Jawad, L.A.) (Froese, 2015) 

 The Prussian carp (Figure 3) is a medium-sized cyprinid with a deep-bodied and 

plump shape. It has yellow or light silvery sides and belly.  It can be distinguished from the 

other carps due to its distinctive forked tail fin and light reddish underfins and its black 
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peritoneum. The dorsal fin and the anal fin of the Prussian carp are heavily serrated. When 

looking at the gills, you can normally count 37 to 52 gill rakers, which are a way of 

protecting the gill arch and may also serve as a food-trapping mechanism (Naylor, 2007). 

 The Prussian carp can grow up to 45 cm, but the most common length is around 20 

to 25 cm. It can weigh up to 3 kg (Froese, 2015). 

1.2.3.3 Distribution 

 Originally the Prussian carp has its origin in Asia (Siberia), but it is considered as 

native to the region from central Europe to Asia. Now it can be found all over Europe, from 

Spain to Great Britain, in southern as well as in the eastern Europe (Britton, 2011). 

1.2.3.4 Habitat and feeding 

 The Prussian carp inhabits a lot of different water bodies such as shallow lagoons, 

shallow lakes and pools and slow flowing rivers. As the Prussian carp is a warm water 

species, it is known that its preferred habitat is shallow and eutrophic, and has a lot of 

vegetation. It is a freshwater fish, but it can cope with a certain salinity (ranging from 3 to 6 

psu) and thus can live in brackish waters. It can also tolerate low oxygen levels and 

pollution. 

 The Prussian carp eats plankton, plant material, detritus (dead organic material) and 

benthic invertebrates (Froese, 2015). 

1.2.3.5 Reproduction 

 The females spawn together with the other fish of the same species. The eggs are 

sticky and are layed on water plants or on submerged objects. The eggs do not need to be 

fertilised by a male Prussian carp. Due to the process of gynogenesis or reproduction from 

unfertilised eggs, most of the populations consist of triploid female fishes only, but in some 

populations, there are up to 25% of diploid male fishes (Froese, 2015). They spawn in 

summer in warm water in shallow bays (http1). The older fishes spawn before the younger 

ones and the ripe females are followed around by the males (Froese, 2015). 

1.2.4 Fish liver as a target organ for metal analyses 

 The liver of fish is used as a target organ because it is the main detoxifying organ of 

the organism. This means it will transform toxic compounds into other less toxic or non-

toxic forms which are more easily excreted from the organism. Toxins and metals tend to 

accumulate in the liver, where high concentrations of metallothioneins are present, which 

have a high affinity for binding multiple metals and aid to their excretion (Chovanec et al., 

2003).  

 The liver is also chosen as a target organ because its response to short-term 

fluctuations in metal concentrations in the environment is less evident than in organs which 

are in direct contact with the surroundings, such as gills or the intestine. This way the liver 
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is representative for long term exposure even to low concentrations of metals (Dragun et al., 

2012). 

1.3 Biomarkers 

 Biomarkers are defined as ‘any biological response to an environmental chemical at 

the individual level or below demonstrating a departure from the normal status’ (Walker et 

al., 2001). It can be concluded that biochemical, physiological, histological, morphological 

and behavioural measurements could be considered as biomarkers. Bioindicators cannot be 

considered as specific biomarkers because they represent biological changes on a higher 

organizational level such as the population, community and ecosystem (Walker et al., 

2001). The relationship between biomarkers and bioindicators regarding their specificity 

and ecological relevance is shown in Figure 4. 

 

Figure 4: Relationship between biomarkers (left, top) and bioindicators (right, down) 

regarding their specificity and ecological relevance shown diagrammatically (Walker et al., 

2001) 

 The most widely used classification of biomarkers is dividing them in two groups: 

biomarkers of exposure and biomarkers of effect. Biomarkers of exposure show us if the 

organism has been exposed to certain chemicals and biomarkers of effect show us if this 

exposure has caused any toxic effect on the organism (Kroon et al., 2017). 

 Biomarkers are considered ‘early warning’ indicators that have the potential to 

detect an effect in target biota prior to one being observed at the population, community or 

ecosystem level (Kroon et al., 2017). 

1.3.1 Total cytosolic proteins 

 Total cytosolic proteins are soluble proteins present in the cytosol of the cell. These 

proteins all fluctuate under the influence of stress. By measuring total cytosolic proteins in 

hepatic cytosol of fish, the level of general stress this organism was exposed to, is estimated. 
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Some of those proteins are continuously present in the cytosol and change in concentration 

under the influence of stress. Others are only present in the cytosol when the organism is 

under stress (Whitley et al., 1999).  

1.3.2 Metallothioneins 

 Metallothioneins or MTs are a family of proteins and oligopeptides which have a 

low-molecular weight, are cysteine-rich and can bind multiple metals. The binding of metals 

on MTs occur through the sulfhydryl groups on cysteins (Chovanec et al., 2003; Dragun et 

al., 2009a; Huggett et al., 1989). The structure of MTs is presented in Figure 5. 

 

Figure 5: The structure of metallothionein. Two binding sites of metallothionein. Big red 

beads are metal atoms (e.g. Zn), small yellow beads are sulfur atoms. (Ruttkay-Nedecky et 

al., 2013). 

 An increase of bioavailable metals in the environment and their consequent 

bioaccumulation can result in an increase in the production of MTs. Therefore, MTs could 

be used as a potential biomarker of metal exposure.  However, tissue levels of MTs are also 

affected by reproduction and stress factors like handling, starvation, anoxia, cold, heat, 

exercise, and the presence of antibiotics, vitamins or herbicides. Fortunately, the level of 

induction by those factors is lower than that caused by metals (Chovanec et al., 2003; 

Dragun et al., 2009a; Huggett et al., 1989). 

 Fish MTs are found in all tissues, but mostly in the liver and kidney. There they play 

an important role in the intracellular regulation of the essential metals Zn and Cu. These two 

metals can be found in mixed-metal clusters on the MTs. After exposure to Cd, the protein 

may contain Cd, Cu and Zn. Alongside the regulation of Zn and Cu, MTs are thought to be 

involved in metal detoxification and donation of metals to metalloproteins (Chovanec et al., 

2003; Huggett et al., 1989). 
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 In general, MTs are involved in the homeostasis of essential trace elements, like Zn 

and Cu, the sequestration of toxic metals, such as Cd and Hg, and the protection against 

oxidative damage.  

 Hypothetically, MTs would supply Zn, and possibly Cu, in growing, injured or 

regenerating tissues for nucleic acid metabolism, protein synthesis and other metabolic 

processes. It has also been shown that MTs are effective in scavenging free-radicals, which 

is very important to maintain normal cellular metabolism (Huggett et al., 1989). 

1.3.3 Catalase 

 Catalase is a hematin containing enzyme found in nearly all living organisms that are 

exposed to oxygen. It is present in almost every organ, with particularly high concentrations 

in the liver. The function of this enzyme is to catalyse the decomposition of hydrogen 

peroxide by the following reaction (Gaetani et al., 1996): 

2 H2O2 (aq) → 2 H2O (aq) + O2 (g) 

 Catalase is usually located in the peroxisomes. Peroxisomes are involved in the 

catabolism of several biomolecules (Fahimi and Sies, 1987). During this catabolism, 

hydrogen peroxide is produced by the following reaction: 

 
FAD = Flavin Adenosine Dinucleotide 

 Hydrogen peroxide is a reactive oxygen species, which can cause damage to all parts 

of the cell including lipids, proteins and DNA. To prevent damage, hydrogen peroxide must 

be quickly converted into less dangerous substances. This process can occur thanks to 

catalase. 

 Catalase has one of the highest turnover numbers of all enzymes: millions of 

molecules of hydrogen peroxide can be converted to water and oxygen with only one 

molecule of catalase (Goodsell, 2004).  

 The concentration of catalase is correlated with the level of oxidative stress that the 

organism has undergone, and therefore we can use it as a biomarker. 

1.3.4 Total glutathione 

 Glutathione is a peptide that consists of three amino acids: cysteine, glutamic acid 

and glycine (Figure 6). This tripeptide is present in the tissue of most of the animals, but 

also in plants, fungi and even in some bacteria and archaea. The most important function of 

glutathione is its ability to work as an antioxidant or detoxifying agent (National Cancer 

Institute, 2018). Furthermore, it can act as a cofactor for glutathione peroxidase and in the 

synthesis of leukotrienes, it plays a central role as a chelating agent for metals, it has a role 

in the cell cycle (Lu, 2013), it has a vital function in the metabolism of iron (Kumar et al., 

2011) and it regulates the nitric oxide cycle (Ha et al., 1999). 
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Figure 6: 2-D structure of glutathione (http2) 

 There are three forms in which glutathione can exist: the reduced state (GSH), the 

oxidized state (GSSG) and glutathionylated proteins (PSSG). When in the reduced state, the 

thiol group of the cysteine amino acid can donate a reducing equivalent, an electron and a 

H+ to the other molecules, for example to the oxygen radicals, and thus neutralise them. By 

donating a reducing equivalent, GSH becomes reactive. It then quickly reacts with another 

reactive glutathione molecule to form GSSG (Kaplowitz, 1981).  

 Glutathione can only function when it is in its reduced form, therefore GSH has to be 

regenerated form GSSG by glutathione reductase (GSR) in the presence of NADPH. There 

are two molecules of GSH regenerated for every molecule of GSSG and NADPH (Couto et 

al., 2013). 

 Normally, when the tissue and cells are healthy, there is more than 90% of all the 

glutathione in the GSH form and less than 10% in the GSSG form. When this ratio is altered 

and there is more than 10% of GSSG, it can be an indication of oxidative stress (Halprin and 

Ohkawara, 1967). 

 Due to the presence of the thiol group on the cysteine amino acid, metals can be 

easily chelated, because they have a high affinity for thiol. One such interaction between 

GSH and Ag ion is presented in the Figure 7. It is also tasked to form and maintain disulfide 

bonds and has a role in transport of amino acid across the cell membranes (Jozefczak et al., 

2012). 

  

Figure 7: Interaction of glutathione and a silver ion (Balavandy et al., 2014) 
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1.4 Aim of the study 

 The aim of this study was to investigate if the lowland Ilova River in Croatia is 

polluted as a consequence of the inflow of municipal wastewaters and wastewaters of a 

petrochemical factory. The purpose was to know if the wastewater inflow has influenced the 

river water quality, the quality of life and health of fish. This was achieved by determining 

the concentrations of multiple trace and macro elements, essential and non-essential to fish, 

in the river water and in the liver of the selected bioindicator fish species, the Prussian carp 

(Carassius gibelio). The study was performed at two sites in the Ilova River, one near the 

Ilova village, upstream of the wastewater input, and the other near the Trebež village, 

downstream of the wastewater input. Additonally, the effect of water contamination on the 

stress level of the fish was studied by measuring four biomarkers in the liver of C. gibelio to 

determine (i) the level of oxidative stress (by measuring total glutathione (tGSH) and 

catalase (CAT)) and (ii) the level of general stress ( by measuring total cytosolic proteins 

(TP) and metallothioneins (MT)). 



Metal bioacc. and biomarker responses in the liver of Prussian carp (C. gibelio Bloch, 1782) from the Croatian river Ilova 22 

Hogeschool Gent – Campus Vesalius  Opleiding BLT - afstudeerrichting FBT 

2 Materials and methods 

2.1 Sampling 

2.1.1 Study area and period 

 The river water and fish sampling were performed at two sites at the Ilova River 

(Figure 8).  

 

Figure 8. A map showing two sampling sites: site near the Ilova village as a reference site 

and site near the Trebež village as a contaminated site. 

 The first site was situated near the Ilova village (Figure 9), in the vicinity of the 

bridge crossing the Ilova River. That site was considered as a reference site, since it is 

located upstream of known sources of pollution, such as municipal and industrial 

wastewater outlets. The second site was situated 16 km downstream from the reference site, 

and approximately 10 km downstream of the site where the Kutinica River flows into the 

Ilova River (Figure 8). The Kutinica River is potentially contaminated with the municipal 

wastewaters of the Kutina town and industrial wastewaters of the petrochemical factory. 

The second sampling site, thus considered as potentially contaminated, was located near the 

Trebež village (Figure 10) in the vicinity of the bridge crossing the Ilova River and close to 

the Ilova River mouth into the Sava River. 
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  Figure 9. Sampling site near the Ilova village.     Figure 10. Sampling site near the Trebež village. 

 The sampling was performed on October 5th 2017, to obtain the information 

characteristic for the autumn period, i.e. for the after-spawning period of Prussian carp (C. 

gibelio). 

2.1.2 Fish sampling 

 The selected bioindicator fish species for this study was Prussian carp (C. gibelio) 

(Figure 11). Forty specimens of this fish, 20 at each sampling site, have been caught by 

electrofishing as stated in the Croatian standard HRN EN 14011 (2005). After capturing, the 

fish were put in aerated water, before relocation to the lab for dissection. 

 

Figure 11. The Prussian carp (Carassius gibelio) from the Ilova River near Trebež village. 

 To euthanize the fish, a freshly made batch of the anaesthetic tricaine methane 

sulphonate (MS 222, Sigma Aldrich) was added to the water. This procedure is necessary to 

conform to the Ordinance on the protection of animals used for scientific purpose (NN 

55/2013). Before dissection, the mass and length of the fish were measured. The liver was 

dissected, weighed and then stored at -80°C awaiting further analysis. The gonad tissue 

(reproductive organs) was used for the determination of the fish sex on macroscopic level 

(Figure 12). 

 Later on, biometric indices were calculated as described by Dragun et al. (2018). 

The ratios of the mass of the liver and of the gonads to total mass of C. gibelio are 

respectively called the hepatosomatic index (HSI) and the gonadosomatic index (GSI). 
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Furthermore, using the equation: [(mass in grams x 100) / (length in centimetres)3], the 

Fulton condition index (FCI) was calculated according to Rätz and Lloret (2003). 

 

 

Figure 12. The female of Prussian carp (Carassius gibelio) with visible gonads. 

2.1.3 Water sampling 

 The river water was collected in triplicates in acid-cleaned (10% v/v nitric acid, p.a. 

Kemika, Croatia) polyethylene plastic bottles for dissolved trace element analyses. The 

water samples were filtered immediately after collection through a 0.45 µm pore diameter 

cellulose acetate filter (Sartorius, Germany) mounted on syringes. The aliquots of filtered 

samples which were used later for the analyses were transferred into acid pre-cleaned 20 mL 

polyethylene bottles and 400 µL of concentrated nitric acid (Suprapur, Merck, Germany) 

was added. The bottles were stored at +4°C (Filipović Marijić et al., 2018).  

2.2 Analyses in the river water samples 

2.2.1 Sample preparation 

 To measure trace elements, the filtrated and acidified river water samples were used 

undiluted. For the measurements of macro elements, the filtrated and acidified river water 

samples were 10 times diluted with Milli-Q water (Millipore Corporation). 

2.2.2 Measurements of trace and macro element concentrations in the river 

water 

 Measurements of trace and macro elements in the river water were performed by the 

same procedure as will be described below, in the section 2.3.3 Measurement of trace and 

macro elements in the hepatic cytosols and homogenates.  

 Limits of detection (LODs) for measurements of trace elements in the river water 

were calculated by taking three times the standard deviation of trace elements measured in 

ten blank samples (filtered and acidified Milli-Q water). Limits of detection for trace 

elements in the filtered river water (µg/L) were: Ag, 0.064; As, 0.028; Cd, 0.002; Co, 0.019; 

Cs, 0.001; Cu, 0.401; Fe, 0.624; Mn, 0.050; Mo, 0.011; Rb, 0.003; Se, 0.059; Sr, 0.182; and 

Zn, 7.34. 
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2.3 Assessment of bioaccumulation of trace and macro elements in the 

Prussian carp liver 

2.3.1 Homogenisation of hepatic tissues and isolation of soluble cytosolic 

fractions 

In Figure 13, the protocol is presented for liver homogenization and isolation of hepatic 

cytosol. The frozen samples of the hepatic tissue (Figure 14) were cut into smaller pieces. 

One piece of hepatic tissue was always set aside for GSH determination and one piece for 

ETS (electron transport system) measurements. 

 

Figure 13. Flowchart of the protocol for liver homogenization and isolation of hepatic 

cytosols. 
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 In Figure 13, the protocol is presented for liver homogenization and isolation of 

hepatic cytosol. The frozen samples of the hepatic tissue (Figure 14) were cut into smaller 

pieces. One piece of hepatic tissue was always set aside for GSH determination and one 

piece for ETS (electron transport system) measurements. 

 

Figure 14. The frozen liver of Prussian carp (C. gibelio) prior to homogenization. 

 Next, 5 volumes of a cooled homogenization buffer consisting of 100 mM Tris-

HCl/Base (Sigma, pH 8.1 at 4 °C) supplemented with a reducing agent (1 mM dithiothreitol, 

Sigma) were added to the remaining hepatic tissue (v/w: 5/1). The mixture of hepatic tissue 

and buffer was homogenized in an ice cold tube with a Potter-Elvehjem homogenizer (Glas-

Col, USA) by moving it up and down 10 times at 6000 rpm (Figure 15). 

 

Figure 15. The homogenization of Prussian carp (C. gibelio) liver. 

 After the homogenization, aliquots of homogenates were taken for measurement of 

total metal concentrations, which was followed by several cycles of centrifugation of the 

remaining homogenates (Figure 16). Homogenates (Figure 16a) were centrifuged for the 

first time in an Avanti J-E centrifuge (Beckman Coulter) at 3000g for 10 min at 4°C. 

Aliquots of supernatants (S3; Figure 16b) were removed for MDA (malondialdehyde) 

determination. The second centrifugation lasted 30 min at 10000g and 4°C. After that, 

aliquots of supernatants (S10; Figure 16c) were taken for AChE (acetylcholine esterase) and 

CAT analyses. After the third centrifugation cycle of 120 min at 50000g and 4°C, aliquots 

of supernatants (S50; Figure 16d) were removed for measurements of MTs, total proteins, 

cytosolic metal concentrations and analyses by size exclusion high performance liquid 

chromatography (SEC-HPLC) and high resolution inductively coupled plasma mass 
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spectrometry (HR ICP-MS) (Dragun et al., 2018). Supernatants S50 or cytosolic fractions of 

Prussian carp liver contained cytosolic biomolecules, lysosomes and microsomes, while the 

pellets contained cell membranes, nuclei, mitochondria and granules (Bonneris et al., 2005; 

Dragun et al., 2013a,b; 2018; Podrug et al., 2009). 

  

 
Figure 16. The centrifugation of hepatic homogenates of Prussian carp (C. gibelio): a) 

homogenate before centrifugation; b) after centrifugation at 3000g; c) after centrifugation at 

10000g; d) after centrifugation at 50000g. 

2.3.2 Digestion of hepatic homogenates and cytosols 

 While homogenizing the liver, we took an aliquot of each homogenate for a 

subsequent digestion. The procedure for the digestion was adapted from a previously 

described procedure (Dragun et al., 2013a; Filipović Marijić et al., 2013). The digestion of 

the hepatic homogenates was done in duplicate by adding oxidation mixture (v/v 1:3), 

containing concentrated HNO3 (Rotipuran® Supra 69%, Carl Roth GmbH + Co. KG, 

Germany) and 30% H2O2 (Suprapur®, Merck, Germany) (v/v 3:1). All the digestions took 

place at 85°C in the laboratory dry oven for 3.5 hours. 

 Apart from the hepatic homogenates, the cytosolic fractions were also digested. The 

digestion of these fractions was also done in duplicate by adding oxidation mixture (v/v 

1:1). This oxidation mixture also contained concentrated HNO3 (Rotipuran® Supra 69%, 

Carl Roth GmbH + Co. KG, Germany) and 30% H2O2 (Suprapur®, Merck, Germany) (v/v 

3:1). Analogous to the digestion of the hepatic homogenates, the digestion of the cytosolic 

fractions was done in the laboratory dry oven at 85°C for 3.5 hours. 

 After the digestion of both the homogenates and the cytosolic fractions, the samples 

were diluted before analyses. They were diluted five times for the analyses of calcium (Ca) 

and trace elements, and 20 times for the analyses of sodium (Na), potassium (K) and 

magnesium (Mg) (Dragun et al., 2018). 
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2.3.3 Measurement of trace and macro elements 

 There were 17 trace and macro elements that were analysed using HR ICP-MS 

(Element 2, Thermo Finnigan, Germany). This HR ICP-MS was equipped with an 

autosampler SC-2 DX FAST (Elemental Scientific, USA) and a sample introduction kit 

which consisted of a Seaspray nebulizer and a cyclonic spray chamber Twister. Indium 

(1µg/L; indium atomic spectroscopy standard solution, Fluka, Germany) was used as an 

internal standard in all samples (Fiket et al., 2007). Several elements, 82Se, 85Rb, 98Mo, 
109Ag, 111Cd and 133Cs, were measured in low resolution mode; 23Na, 24Mg, 42Ca, 55Mn, 56Fe, 
59Co, 63Cu, 66Zn, and 86Sr were measured in medium resolution mode; and 39K and 75As 

were measured in high resolution mode. Three standards were used for external calibration:  

1. a multi-element standard for macro elements containing Na, K, Mg and Ca (Fluka, 

Germany),  

2. a standard containing Ag (Fluka, Germany), and 

3. a multielement standard solution for trace elements (Analytika, Czech Republic) 

supplemented with Rb (Sigma-Aldrich, Germany) and Cs (Fluka, Germany).  

 Indium (1µg/L; Fluka, Germany) was added after preparation of all the standards in 

1.3% HNO3 (Suprapur, Merck, Germany). All measurements were performed in duplicate 

(Dragun et al., 2018). 

 Quality control samples acquired from UNEP/GEMS (QC trace metals, catalogue 

no. 8072, lot no. 146142–146143; QC minerals, catalogue no. 8052, lot no. 146138–146139; 

Burlington, Canada) were used to check the accuracy of HR ICP-MS measurements. In 

general the acquired values were close to the certified values when looking at the following 

recoveries (%): Ag (91.1±7.5), As (98.0±5.1), Ca (95.2±2.4), Cd (95.7±1.9), Co (94.1±2.9), 

Cu (98.4±5.1), Fe (94.7±3.4), K (94.8±5.1), Mg (92.6±1.7), Mn (93.5±3.2), Mo (93.9±1.9), 

Na (96.1±3.8), Se (99.5±6.3), Sr (97.1±2.2), and Zn (107.3±12.2). 

 Total trace and macro element concentrations in fish were obtained based on the 

measurements in digested homogenates, whereas soluble/cytosolic trace and macro element 

concentrations were obtained from measurements in cytosolic fractions of liver. The 

concentrations obtained are presented as ng/g or μg/g of wet hepatic tissue. 

 Limits of detection (LOD) for cytosols were calculated by taking three times the 

standard deviation of trace and macro elements measured in ten blank samples (100 mM 

Tris-HCl/Base, 1 mM dithiothreitol) which were digested using the same procedure as 

cytosolic samples. Limits of detection for macro elements in cytosols (µg/g) were: Ca, 1.07; 

K, 0.112; Mg, 0.024; and Na, 0.320. Limits of detection for trace elements in cytosols (ng/g) 

were: Ag, 0.255; As, 6.72; Cd, 0.430; Co, 0.266; Cs, 0.102; Cu, 13.5; Fe, 141; Mn, 0.810; 

Mo, 0.680; Rb, 0.339; Se, 2.93; Sr, 1.09; and Zn, 635 (Dragun et al., 2018). According to 

the applied digestion procedure, LODs for trace and macro element concentrations in the 

homogenates were two times higher than the LODs for trace and macro elements in the 

cytosols (Dragun et al., 2018). 

 The proportions of trace and macro elements in the soluble cytosolic fractions of C. 

gibelio liver were calculated as the ratios of the cytosolic to total trace and macro element 
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concentrations in C. gibelio liver, multiplied by 100, and expressed in percentages (Dragun 

et al., 2018). 

2.4 Analyses of biomarkers in Prussian carp liver 

2.4.1 Analysis of total cytosolic protein (TP) concentrations 

 Total cytosolic protein concentrations were measured according to Lowry et al. 

(1951) with the Bio-Rad DC Protein Assay, which was applied according to the instructions 

of the manufacturer. This is a colorimetric assay which uses two reagents. Reagent A is an 

alkaline copper tartrate solution, and reagent B contains a diluted Folin reagent. We needed 

to perform two steps to get colour development (Figure 17).  

 

Figure 17. Example of a Bio-Rad DC Protein Assay performed according to Lowry to measure 

total protein concentrations. 

In the first step, there was a reaction between the copper in reagent A and the protein. In the 

second step, the copper-treated protein induced reduction of the Folin reagent by one, two or 

three oxygen atoms. The characteristic blue colour of these reduced species of Folin reagent 

was measured with the photometer Microplate Reader HT3 (Anthos, Austria) at a 

wavelength of 750 nm. Five different concentrations (0.25-2.0 mg/mL) of bovine serum 

albumin (Serva, Germany) dissolved in the homogenization buffer were used to construct 

the calibration curve (Figure 18) (Dragun et al., 2013b; BIO-RAD). 
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Figure 18. Calibration line for measurement of total cytosolic protein concentrations. 

2.4.2 Analysis of metallothionein (MT) concentrations 

 To measure MTs, cytosolic fractions (S50) that were purified by heat-treatment were 

used. The heat-treatment was necessary to denature high molecular mass proteins which 

could interfere with the electrochemical MT determination (Erk et al., 2002). First the 

cytosolic fraction was diluted 10 times with 0.9% NaCl (Suprapur, Merck), then it was heat 

treated for 10 min at 85 °C in The Dri Block (Techne), and subsequently it was placed on 

ice for 30 min. Afterwards the heat treated cytosol was centrifuged at 10000g for 15 min at 

4°C in Biofuge Fresco centrifuge (Kendro, USA). The supernatant (HT S50) was separated 

from the pellet and stored at -80°C. The MT concentrations in HT S50 were measured by 

differential pulse voltammetry (DPV) followed by the modified Brdička procedure (Raspor 

et al., 2001) using 797 VA Computrace (Metrohm, Switzerland) with a three-electrode 

system (hanging mercury drop electrode, HMDE, with a surface area of 0.40 mm2 as a 

working electrode, an Ag/AgCl/saturated KCl reference electrode and a platinum counter 

electrode).  

 Measurements were performed in 10 ml of supporting electrolyte solution (5 ml 2M 

NH4Cl/NH4OH and 5 ml 1.2  10-3 M Co(NH3)6Cl3; pH = 9.5) at a temperature of 20°C, 

deaerated with extra pure nitrogen. The volume of 20-40 µl of hepatic HT S50 was added 

for measurement. DPV had the following instrumental parameters:  potential scan from −0.9 

V to −1.65 V; scan rate 0.005 V s−1; voltage pulse amplitude 0.025 V; duration of the pulse 

application 0.057 s; and a clock time 0.5 s.  

 A calibration curve for deriving MT concentrations (µg/ml) was constructed by 

using the commercially available, 95% pure, rabbit liver Zn7-MT2 (Enzo Life Sciences, 

USA) dissolved in 0.25 M NaCl. The final results were expressed as mg of MTs per g of 

hepatic tissue (wet mass), obtained by multiplying the measured MT concentrations with the 

dilution factors (Dragun et al., 2009a; Dragun et al., 2013b). 
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2.4.3 Analysis of catalase (CAT) activities 

 The activity of the CAT (rate of H2O2 decomposition) was measured 

spectrophotometrically by registering the changes in H2O2 absorbance during 90 seconds. 

The reaction was registered by absorbance decreases at a wavelength of 240 nm. Activity of 

catalase was measured in supernatants obtained after centrifugation of hepatic homogenates 

at 10000g for 30 minutes (S10) (Khessiba et al., 2005). 

 The reaction mixture for measuring the catalase activity consisted of 50 mM 

phosphate buffer (Kemika, Zagreb; pH=7.0 at room temperature) and 15 mM H2O2 

(Suprapur, Merck, Germany). 

 The protocol consisted of the following steps: 

1) preparation of 100 mL of 50 mM phosphate buffer in MilliQ water, pH=7.0 at room 

temperature; 

2) preparation of 15 mM H2O2 (Suprapur, Merck, Germany) in freshly prepared 50 

mM phosphate buffer; 

3) 50 times dilution of hepatic supernatants S10 in 50 mM phosphate buffer; 

4) measurement of CAT activity in microplates (Figure 19)      

- addition of 15 µl of diluted samples (supernatants S10) into the wells of 

microplate; 

- addition of 285 µL of 15 mM H2O2 into microplate wells containing diluted 

samples; 

- measurement of absorbance decrease (ε = 40 mM-1 cm-1) at a wavelength of 240 

nm (Figure 20) 

 repeating the last step 9 times, measuring every 10 seconds; 

 

Figure 19. Example of 96-well plate in which the catalase test has been performed 

on samples. 
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5) determination of protein concentrations in supernatants S10, according to Lowry et 

al. (1951); supernatants should be diluted 20 times in 100 mM Tris buffer (Tris-

HCl/Base, Sigma, pH 7.4 at room temperature), prior to measurement. 

 

 

Figure 20. Example of absorbance decrease during the measurement of catalase activity. 

 The activity of catalase is expressed in µmol of decomposed H2O2 per minute per mg 

of S10 proteins, i.e. in catalytic units per mg of S10 proteins (U/mg). 

2.4.4 Analysis of total glutathione (tGSH) concentrations 

 Concentrations of tGSH were determined using a modification of Tietze`s recycling 

assay (Tieze, 1969) described in Akerboom nad Sies (1981) and adapted to the microplate 

reader in the Laboratory for biological effect of metals. The assay is based on the reaction of 

GSH and DTNB (5,5’-dithiobis(2-nitrobenzoic acid)) with the formation of a chromophore 

and an oxidized glutathione-TNB (GS-TNB) complex. This chromophore, TNB, has an 

absorbance in the visible light spectrum at 412 nm. The amount of TNB measured is 

proportional to the amount of GSH in the sample. The oxidized GS-TNB complex is 

reduced in the presence of NADPH by glutathione reductase (GR), thereby forming GSH 

that can be reused in the reaction. Due to the fact that GR reduces one molecule of GSSG to 

two molecules of GSH, the total amount of glutathione is the sum of the reduced and the 

oxidized glutathione in the sample (as shown in the equation below). 

[GSH]total = [GSH] + 2×[GSSG] 

 The rate by which the absorbance changes (∆A412nm / min) is linearly proportional to 

the total amount of glutathione. When determining the concentration of an unknown sample, 

we use the linear equation we obtained using the regression curve which was generated 

from the reaction rates of known concentrations of GSH standards. 

 This way of analysing is quick, simple, sensitive, accurate and it has minimal 

interference from the other non-specific thiol groups and minimal loss of GSH as a result of 

the metabolic usage in the GSH-requiring processes. The method consists of the removal of 
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protein precipitates when working with proteinaceous samples, the mixing of the sample 

with the DTNB + GR reagent, the addition of NADPH and the measurement of the 

absorbance at 412 nm for five minutes with a one minute interval. The reagents required for 

this analysis are listed in Table II. 

 

Table II. Reagents for GSH determination 

KH2PO4 (Potassium dihydrogen 

orthophosphate) 

Mr 136.09 Kemika 

K2HPO4 (Dipotassium hydrogen 

orthophosphate) 

Mr 174.2 Kemika 

EDTA sodium salt Mr 372.24   Merck 

SSA (Sulfosalicylic acid) Mr 254.2   Kemika 

DTNB (5,5’-Dithiobis(2-Nitrobenzoic acid)) 

Store at room temperature. Protect from 

light. 

Mr 396.3    

 

Sigma 

β-NADPH  

Store at 4°C. 

Mr 833.4  

Glutathione reductase 

Store at 4°C. 

500 units/ml 

 

Sigma G-3664 

 

Glutathione (reduced form), GSH, 

Store at 4°C. 

Mr 307.3 

 

Sigma   

 

 

Solutions required for sample preparation and GSH analysis 

 0.1 M potassium phosphate buffer with 1 mM EDTA disodium salt, pH 7.5 (KPE) 

 5% 5-sulfosalicylic acid (SSA) solution 

 0.5% SSA solution 

Stock solutions 

 DTNB stock solution (3.79 mM)  

→ 1.5 mg of DTNB in 1 ml of KPE 

 NADPH stock solution (1.92 mM)  

→ 1.6 mg of β-NADPH in 1 ml of KPE  

 GSH stock solution (the primary stock, 10 mM GSH) 

→ 3.073 mg of GSH in 1 ml of 0.5% SSA 

 glutathione reductase (GR) stock solution (6 U/mL) 

→ 9 µL of GR (500 U/ml) in 741 µL of KPE  

Working solutions 

The working solutions should be freshly prepared 
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 DTNB+GR working solution 

→ 228 µL GR stock solution / 228 µL DTNB stock solution / 8 ml KPE 

 NADPH working solution (0.192 mM) 

→ dilution of NADPH stock solution (1.92 mM) 10 times with KPE 

Protocol  

Sample preparation 

1. Weighing the tissue samples (30-40 mg is sufficient for analysis) and homogenizing 

them in ice-cold 5% SSA. The ratio of tissue to SSA has to be 1:5.  

2. Transferring the homogenates into cooled 1.5 ml Eppendorf tubes and keeping them 

on ice. 

3. Centrifuging the homogenates at 10000g for 10 minutes at 4°C. 

4. Transferring the supernatants into cooled Eppendorf tubes. When not used directly, 

the samples should be stored at -80°C. 

 

Preparation of GSH standards 

1. Making a series of GSH solutions with following concentrations:  

a. Primary stock (stock 1): 10 mM GSH; 

b. Secondary stock (stock 2): 1 mM GSH; 

c. Tertiary stock (stock 3): 100 µM GSH. 

2. Making an additional series of standards by making a twofold serial dilution from 

the tertiary GSH stock. The concentration of the standard series will range from 50 – 

3.125 nM/ml. The procedure to make this series is shown in Table III. 

Table III. GSH standard series 

 Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

GSH 

standards 

(nM/mL) 

50 25 12.5 6.25 3.125 

GSH 

(µL) 

250 

(from 

tertiary 

stock) 

250 

(from 

standard 1) 

250 

(from 

standard 2) 

250 

(from 

standard 3) 

250 

(from 

standard 4) 

0.5% SSA 

(µl) 
250 250 250 250 250 

 

A volume of 250 µl should be removed from standard 5 to have equal volumes in all five 

standards. 
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GSH assay: measurement 

1) This step starts by diluting the samples ten times with Milli-Q water and if it is 

necessary, diluting them further with 0.5% SSA. 

2) Setting a plate reader to the wavelength of 412 nm and programming the reader with a 

kinetic read for five minutes with one minute intervals (six readings), shaking for ten 

seconds and letting it settle for three seconds.  

3) Making a reaction scheme with the following steps: 

a) adding 10 µl in each well; doing the test in triplicate, for blank (0.5% SSA), GSH 

standard and for the unknown sample; 

b) adding 150 µl of DTNB+GR working solution to every well; mixing it and letting it 

incubate for five minutes at room temperature; covering the plate with aluminium 

foil; 

c) adding 50 µl of NADPH working solution to each well; 

d) measuring the absorbance at 412 nm for five minutes with a one minute intervals. 

4) Calculating the GSH concentrations 

a) calculating the blank, the standards and the sample rate with linear regression (i.e. 

slopes represent reaction rates used in GSH calculations); 

b) subtracting the value of the reagent blank form the measurements of each standard 

and sample (adjusted rates); 

c) making a graph with the known nmol/ml concentrations of the GSH standards on the 

x axis and their adjusted rates (slope) on the y axis (Figure 21); 

d) using linear regression to generate the equation of the standard curve; 

e) using that equation to calculate the GSH concentration of each sample; 

f) multiplying the GSH concentrations of the samples by the supernatant dilution factor 

and by a factor of six to convert the nmol/ml to nmol of GSH/g of wet tissue mass.  

 

Figure 21. Calibration line for measurement of GSH concentrations. 
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2.5 Data processing and statistical analysis 

 Microsoft Excel 2007 was used for performing the basic calculations. SigmaPlot 

11.0 for Windows was used for statistical analysis and creating the graphs. Nonparametric 

statistical tests have been used because expectations of normality and homogeneity of 

variance were not always met. The level of significance was set at 95% (p < 0.05) (Dragun 

et al., 2018). 
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3 Results 

3.1 Concentrations of dissolved trace and macro elements in the river 

water 

 Most of the studied elements had resembling concentrations at both sites (Table IV). 

The highest spatial difference was found for Cs. Caesium was 90 times higher than the LOD 

at the Trebež site, whereas it had values below LOD at the Ilova village site. 

Table IV. Dissolved trace and macro element concentrations in the river water, 
expressed as average ± standard deviation, and limits of detection (LOD) of each 
analysed element. 

Element Ilova village Trebež village   LOD (µg/L) 

Na (mg/L) 9.91 ± 0.359 26.5 ± 0.171  5.60 

Mg (mg/L) 15.1 ± 0.556 16.9 ± 0.189  6.04 

K (mg/L) 2.82 ± 1.70 4.58 ± 0.065  1.98 

Ca (mg/L) 47.3 ± 1.78 57.0 ± 0.829  21.2 

Se (µg/L) 0.786 ± 0.019 1.01 ± 0.112  0.059 

Rb (µg/L) 0.644 ± 0.008 3.74 ± 0.251  0.003 

Mo (µg/L) 0.561 ± 0.027 0.981 ± 0.062  0.011 

Ag (µg/L) <LOD <LOD  0.001 

Cd (µg/L) 0.011 ± 0.006 0.053 ± 0.003  0.002 

Cs (µg/L) <LOD 0.090 ± 0.007  0.001 

Mn (µg/L) 93.2 ± 1.13 18.4 ± 0.918  0.050 

Fe (µg/L) 17.9 ± 2.17 21.6 ± 1.52  0.624 

Co (µg/L) 0.137 ± 0.005 0.121 ± 0.011  0.019 

Cu (µg/L) <LOD 0.716 ± 0.030  0.401 

Zn (µg/L) <LOD <LOD  7.340 

Sr (µg/L) 123.1 ± 1.03 150.4 ± 11.9  0.182 

As (µg/L) 2.10 ± 0.126 4.47 ± 0.684  0.028 
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 The other differences were found for metals Rb and Cd. They both had five to six 

times higher concentrations at the contaminated Trebež site than at the reference Ilova 

village site, whereas Na, K and As had approximately twice higher concentrations at 

Trebež. Manganese surprisingly had five times higher concentrations at the reference site. It 

also has to be noted that the values of Zn and Ag were so low at both of the studied sites, 

they could not be detected by applied methodology. 

3.2 Biometry of fish 

 Twenty specimens of Prussian carp (C. gibelio) were caught at each sampling site. 

Their basic biometric characteristics are presented in Table V. Total lengths, as well as total 

masses of fish from the Trebež village were significantly higher than of the ones from the 

Ilova village (Figures 22 and 23). Comparing the medians, there is a statistically significant 

increase of 20% in total length (Figure 22, Table V) and 70% in total mass (Figure 23, 

Table V) of Prussian carp caught at the Trebež village in comparison to the Ilova village.  

Table V. Biometric characteristics of C. gibelio expressed as 

average ± standard deviation with median within brackets. 

Biometry  Ilova village Trebež village  

Total length  

(cm) 

16.2 ± 1.62 

(16.0) 

18.8 ± 2.91 

(18.7) 

Total mass  

(g) 

69.8 ± 23.172 

(67.1) 

122.3 ± 58.1 

(112.2) 

FCI 

(%) 

1.59 ± 0.085 

(1.59) 

1.69 ± 0.119 

(1.69) 

HSI 

(%) 

5.87 ± 1.78 

(5.74) 

5.44 ± 1.52 

(5.58) 

GSI 

(%) 

3.11 ± 1.44 

(2.59) 

4.67 ± 2.68 

(4.53) 

Sex 
F: 13/20 

M: 7/20 

F: 12/20 

M: 8/20 

 Concerning the FCI (Figure 24, Table V) we can conclude that it was significantly 

higher at Trebež by 10%. The other two indices, GSI and HSI, (Figures 25 and 26, 

respectively, Table V) were comparable at both sites, but the difference between the lowest 

and highest GSI was more pronounced at the Trebež village than at the Ilova village. 

Though there was no significant difference, it still pointed to a higher variation of gonad 
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size in fish caught at the Trebež village. Sex composition was similar at both sites, with 60-

65% of females within the sampled populations (Table V). 

 

Figure 22. Boxplots of total lengths of C. gibelio at the reference site (Ilova village) and the 

potentially contaminated site (Trebež village). 

 

Figure 23. Boxplots of total masses of C. gibelio at the reference site (Ilova village) and the 

potentially contaminated site (Trebež village). 

 

Figure 24. Boxplots of Fulton condition indices of C. gibelio at the reference site (Ilova 

village) and the potentially contaminated site (Trebež village). 
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Figure 25. Boxplots of gonadosomatic indices of C. gibelio at the reference site (Ilova village) 

and the potentially contaminated site (Trebež village) 

 

Figure 26. Boxplots of hepatosomatic indices of C. gibelio at the reference site (Ilova village) 

and the potentially contaminated site (Trebež village) 

3.3 Concentrations of trace and macro elements bioaccumulated in the 

liver of Prussian carp 

 In the course of this study the total and cytosolic concentrations of 17 trace and 

macro elements in the liver of Prussian carp (C. gibelio) from the reference site near the 

Ilova village and potentially contaminated site near the Trebež village were analysed, and 

the results are presented in Tables VI and VII, respectively. The majority of analysed 

elements (Na, Mg, K, Se, Mo, Cd, Mn, Fe, Co, Cu, Zn, and As) had comparable 

concentrations, both total and cytosolic, at the two studied sites. Significantly higher values 

of either total or cytosolic concentrations, or both, near the Trebež village was observed 

only for Rb and Cs, whereas Ca, Ag and Sr had significantly higher values at the reference 

site, near the Ilova village. 
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Table VI. Total trace and macro element concentrations in hepatic tissue of C. gibelio, 

expressed as average ± standard deviation with median within brackets, and limits of 

detection (LOD) of each analysed element in digested hepatic homogenate (Dragun et 

al., 2018).  

Element Ilova village Trebež village   LOD 

Na (µg/g) 
447.4 ± 54.8 

(444.1) 

516.1 ± 91.5 

(493.7) 
 0.640 µg/g 

Mg (µg/g) 
122.7 ± 8.40 

(122.9) 

131.2 ± 17.3 

(130.2) 
 0.048 µg/g 

K (µg/g) 
2952 ± 125.1 

(2960) 

2974 ± 282.1 

(2996) 
 0.224 µg/g 

Ca (µg/g) 
16.7 ± 5.97 

(15.4) 

15.3 ± 6.59 

(12.84) 
 2.14 µg/g 

Se (ng/g) 
437.4 ± 90.1 

(440.5) 

463.2 ± 103.0 

(419.0) 
 5.86 ng/g 

Rb (µg/g) 
0.971 ± 0.331 

(0.900) 

1.17 ± 0.329 

(1.08) 
 0.678 ng/g 

Mo (ng/g) 
70.8 ± 23.5 

(65.1) 

70.9 ± 21.1 

(63.1) 
 1.36 ng/g 

Ag (ng/g) 
37.5 ± 19.7 

(29.9) 

25.7 ± 16.4 

(20.7) 
 0.510 ng/g  

Cd (ng/g) 
147.8 ± 229.7 

(84.7) 

132.8 ± 182.6  

(59.0) 
 0.860 ng/g 

Cs (ng/g) 
1.64 ± 0.556 

(1.62) 

2.54 ± 0.968 

(2.37) 
 0.204 ng/g 

Mn (ng/g) 
490.7 ± 122.6 

(458.5) 

456.4 ± 150.6 

(413.9) 
 1.62 ng/g  

Fe (µg/g) 
60.1 ± 66.0 

(36.7) 

49.0 ± 27.5 

(38.3) 
 282 ng/g 

Co (ng/g) 
7.03 ± 1.48 

(6.90) 

7.02 ± 1.96 

(6.81) 
 0.532 ng/g 

Cu (µg/g) 
6.89 ± 3.76 

(5.86) 

6.35 ± 3.45 

(6.17) 
 27.0 ng/g 

Zn (µg/g) 
9.38 ± 1.96 

(9.95) 

9.76 ± 3.12 

(9.14) 
 1270 ng/g 

Sr (ng/g) 
34.7 ± 12.6 

(31.2) 

24.0 ± 10.0 

(18.9) 
 2.18 ng/g 

As (ng/g) 
23.1 ± 7.42  

(19.5) 

25.5 ± 7.13 

(23.8) 
  13.4 ng/g   
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Table VII. Cytosolic trace and macro element concentrations in hepatic tissue of C. 
gibelio, expressed as average ± standard deviation with median within brackets, and 
limits of detection (LOD) of each analysed element in digested hepatic cytosol (Dragun 
et al., 2018). 

Element Ilova village Trebež village   LOD 

Na (µg/g) 
453.9 ± 55.6 

(452.5) 

542.8 ± 95.3 

(521.0) 
 0.320 µg/g 

Mg (µg/g) 
117.7 ± 10.45 

(117.3) 

115.5 ± 12.5 

(118.2) 
 0.024 µg/g 

K (µg/g) 
2962 ± 215.5 

(2950) 

2931 ± 262.1 

(3019) 
 0.112 µg/g 

Ca (µg/g) 
10.9 ± 3.60 

(10.5) 

8.472 ± 3.39 

(6.95) 
 1.07 µg/g 

Se (ng/g) 
517.4 ± 131.9 

(507.1) 

544.3 ± 121.7 

(495.6) 
 2.93 ng/g 

Rb (µg/g) 
0.971 ± 0.325 

(0.891) 

1.22 ± 0.379 

(1.14) 
 0.339 ng/g 

Mo (ng/g) 
52.0 ± 16.4 

(49.2) 

48.2 ± 12.6 

(45.7) 
 0.680 ng/g 

Ag (ng/g) 
33.0 ± 20.0 

(25.4) 

24.7 ± 16.3 

(21.0) 
 0.255 ng/g  

Cd (ng/g) 
169.7 ± 262.7 

(95.1) 

155.1 ± 217.2 

(67.9) 
 0.430 ng/g 

Cs (ng/g) 
1.54 ± 0.605 

(1.51) 

2.54 ± 1.00 

(2.32) 
 0.102 ng/g 

Mn (ng/g) 
437.5 ± 101.5 

(415.9) 

414.3 ± 132.4 

(376.0) 
 0.810 ng/g  

Fe (µg/g) 
43.2 ± 40.7 

(30.5) 

36.5 ± 16.4 

(31.1) 
 141 ng/g 

Co (ng/g) 
6.91 ± 1.60 

(6.82) 

6.98 ± 2.02 

(6.87) 
 0.266 ng/g 

Cu (µg/g) 
7.61 ± 4.26  

(6.70) 

7.03 ± 3.74 

(6.92) 
 13.5 ng/g 

Zn (µg/g) 
9.63 ± 2.33 

(9.89) 

10.2 ± 3.45 

(9.45) 
 635 ng/g 

Sr (ng/g) 
24.7 ± 7.71 

(22.8) 

16.4 ± 5.54 

(14.7) 
 1.09 ng/g 

As (ng/g) 
18.5 ± 6.78 

(15.9) 

19.2 ± 6.95 

(18.4) 
  6.72 ng/g   

 Furthermore, the percentage of trace and macro elements present within the hepatic 

cytosol of C. gibelio (compared to the total metal concentration) were calculated, which is a 

fraction presumably more available for metabolic requirements and possible toxic effects. 

The results of this analysis are presented in Table VIII. Percentages of almost 100% in the 

cytosol were observed for Se, Cd, Cu, Na, K, Rb, and Zn, The other elements were also 
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partly present in the other parts of the cell (cell membranes, organelles, granules), so their 

percentages within the cytosol were lower: Mg, Cs and Co (90-100%), Ag and Mn (80-

90%), Mo, Fe, Sr and As (70-80%) and Ca (50-70%).  

Table VIII. Percentages of trace and macro elements in the 
hepatic cytosols of C. gibelio, calculated as ratios between 
cytosolic and total element concentrations in hepatic tissue 
multiplied by 100, expressed as average ± standard deviation 
with median within brackets. 

Metal Ilova village Trebež village  

Na (%) 
102.2 ± 8.67 

(102.8) 

105.2 ± 3.75 

(105.1) 

Mg (%) 
95.9 ± 4.91 

(96.5) 

88.4 ± 5.17 

(87.7) 

K (%) 
100.4 ± 5.98 

(100.9) 

98.7 ± 4.70 

(98.1) 

Ca (%) 
66.6 ± 13.8 

(69.0) 

56.7 ± 10.6 

(57.1) 

Se (%) 
117.4 ± 8.79 

(117.5) 

117.5 ± 5.44 

(117.2) 

Rb (%) 
100.3 ± 5.72 

(99.6) 

104.0 ± 4.65 

(104.5) 

Mo (%) 
74.2 ± 8.39 

(77.7) 

68.8 ± 7.93 

(66.9) 

Ag (%) 
83.8 ± 14.5 

(87.4) 

92.9 ± 11.5 

(93.3) 

Cd (%) 
115.0 ± 8.50 

(114.1) 

117.6 ± 5.63 

(117.2) 

Cs (%) 
92.5 ± 8.05 

(90.0) 

99.4 ± 4.17 

(100.0) 

Mn (%) 
89.8 ± 9.40 

(89.4) 

91.2 ± 4.84 

(91.2) 

Fe (%) 
79.9 ± 15.9 

(81.4) 

78.8 ± 10.2 

(79.9) 

Co (%) 
98.3 ± 7.54 

(98.5) 

99.7 ± 6.07 

(99.5) 

Cu (%) 
109.5 ± 6.52 

(109.3) 

110.5 ± 5.06 

(111.4) 

Zn (%) 
102.2 ± 7.08 

(100.7) 

104.4 ± 5.47 

(105.3) 

Sr (%) 
72.7 ± 10.4 

(71.8) 

71.7 ± 12.8 

(70.8) 

As (%) 
79.5 ± 11.5 

(75.1) 

75.3 ± 16.6 

(78.4) 
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3.3.1 Sodium (Na) 

 For hepatic Na statistically significant differences were found between two sites, 

with higher concentrations of both total and cytosolic Na in the liver of Prussian carp from 

the Trebež village (Figure 27 a,b, Tables VI and VII).  

 Total hepatic Na was 10% higher in the fish from the Trebež village compared to 

the Ilova village (Figure 27a, Table VI), whereas cytosolic Na was 15% higher in the fish 

from that same site (Figure 27b, Table VII). Based on the comparison between total and 

cytosolic Na concentrations, we have found that approximately 100% of Na is present 

within the hepatic cytosol of C. gibelio, and the percentages obtained at two sites were not 

significantly different (Figure 28, Table VIII). 

 

Figure 27. Total (a) and cytosolic (b) Na concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 

 

Figure 28. Ratio of cytosolic Na to total Na in the liver of C. gibelio expressed in percentages 

3.3.2 Magnesium (Mg) 

 Total hepatic Mg concentrations (Figure 29a, Table VI) and cytosolic hepatic Mg 

concentrations (Figure 29b, Table VII) of the Prussian carp both showed no statistically 

significant difference between the reference site and the contaminated site. There was 

however a statistically significant difference between the proportions of cytosolic Mg in 

Prussian carp liver calculated for two sites (Figure 30, Table VIII). There was a difference 

of 10% between the Ilova village and the Trebež village, with the lower value (~87%) 
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found at the Trebež village, which suggested that there was more Mg found in the 

nonsoluble part of the cells at the contaminated site than at the reference site. 

 

Figure 29.  Total (a) and cytosolic (b) Mg concentrations in the liver of C. gibelio at the 
reference site (Ilova village) and possibly contaminated site (Trebež village) 

 

Figure 30. Ratio of cytosolic Mg to total Mg in the liver of C. gibelio expressed in percentages 

 

3.3.3 Potassium (K) 

 No statistically significant difference was found for total hepatic K concentration and 

cytosolic hepatic K concentration of Prussian carp between the Ilova village and the Trebež 

village (Figure 31 a,b, Tables VI and VII).  Also, for the portion of cytosolic K in Prussian 

carp liver no significant difference was found between sites (Figure 32, Table VIII). They 

were both 100%. 
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Figure 31.  Total (a) and cytosolic (b) K concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 

 

Figure 32. Ratio of cytosolic K to total K in the liver of Prussian carp expressed in 

percentages 

3.3.4 Calcium (Ca) 

 There was no statistically significant difference found between fish caught at two 

sites regarding total hepatic Ca levels (Figure 33a, Table VI), but did found a difference 

regarding the cytosolic Ca level (Figure 33b, Table VI). There was a raise of 50% of 

cytosolic hepatic Ca concentrations in Prussian carp from the Ilova village compared to fish 

from the Trebež village. 

 

Figure 33.  Total (a) and cytosolic (b) Ca concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 34. Ratio of cytosolic Ca to total Ca in the liver of Prussian carp expressed in 

percentages 

 Accordingly, the portion of cytosolic Ca in total Ca was only ~60% in fish from the 

Trebež village and ~70% in fish from the Ilova village (Figure 34, Table VIII). This 

difference was significant, and amounted to 10%, similar as observed for Mg (Figure 30, 

Table VIII). 

3.3.5 Selenium (Se) 

 Comparable results between two sites for both total hepatic Se and cytosolic hepatic 

Se of Prussian carp were found(Figure 35 a,b, Table VI and VII). The portions of cytosolic 

Se were almost identical at two sites and the difference was not statistically significant. A 

very high percentage of cytosolic concentration (~100%) was noticeable (Figure 36, Table 

VIII).  

 

Figure 35.  Total (a) and cytosolic (b) Se concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 36. Ratio of cytosolic Se to total Se in the liver of Prussian carp expressed in 

percentages 

3.3.6 Rubidium (Rb) 

 Rubidium has shown a statistically significant difference between two sites for both 

total hepatic concentrations and cytosolic hepatic concentrations in Prussian carp. The total 

hepatic Rb concentrations for fish at the Trebež village were 20% higher than at the Ilova 

village (Figure 37a, Table VI). For cytosolic hepatic Rb concentrations the difference was 

even higher, and amounted to 30%, with higher values again observed at the Trebež 

village (Figure 37b, Table VII).  

 

Figure 37.  Total (a) and cytosolic (b) Rb concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 

 When looking at the proportion of cytosolic hepatic Rb, a statistically significantly 

higher percentage (5%) at the Trebež village compared to the Ilova village, with the lower 

percentage being ~100% (Figure 38, Table VIII) was noticed, meaning that somewhat more 

Rb was found in the cytosol of the liver from fish caught at the contaminated site than at the 

reference site. 
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Figure 38. Ratio of cytosolic Rb to total Rb in the liver of Prussian carp expressed in 

percentages 

3.3.7 Molybdenum (Mo) 

 Total and cytosolic Mo concentrations in the liver of C. gibelio were not statistically 

significantly different between the contaminated and the reference site (Figure 39 a,b, 

Tables VI and VII). A wider range of values for cytosolic hepatic Mo at the reference site 

compared to the contaminated site can be noticed, though the difference between sites was 

not statistically significant. A significant difference was perceived when comparing the 

ratios of cytosolic Mo to total hepatic Mo between fish caught at the Ilova village (~80%) 

and fish caught at the Trebež village (~70%) (Figure 40, Table VIII), similar to findings for 

Mg and Ca (Figures 30 and 34, Table VIII). 

 

Figure 39.  Total (a) and cytosolic (b) Mo concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 40. Ratio of cytosolic Mo to total Mo in the liver of Prussian carp expressed in 

percentages 

3.3.8 Silver (Ag) 

 Total hepatic Ag concentrations in fish caught at the Ilova village and at the Trebež 

village were statistically significantly different (Figure 41a, Table VI). There was an 

increase of 45% in total hepatic Ag concentrations at the Ilova village compared to the 

Trebež village. The cytosolic hepatic Ag concentrations were comparable at two sites 

(Figure 41b, Table VII). 

 Accordingly, there was a statistically significant difference between the portions of 

cytosolic Ag at the Ilova village and the Trebež village (Figure 42, Table VIII). The portion 

of cytosolic Ag in Prussian carp liver was ~87% of total hepatic Ag at the Ilova village, and 

~93% at the Trebež village, similar as found for Rb (Figure 38, Table VIII). 

 

Figure 41.  Total (a) and cytosolic (b) Ag concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 42. Ratio of cytosolic Ag to total Ag in the liver of Prussian carp expressed in 

percentages 

3.3.9 Cadmium (Cd) 

 

Figure 43.  Total (a) and cytosolic (b) Cd concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 

 There was no statistically significant difference found for either total or cytosolic 

concentrations of Cd in the liver of Prussian carp between the reference site and the 

contaminated site (Figure 43 a,b, Tables VI and VII). It was neither found between the 

portions of Cd present in the cytosols of the liver of Prussian carp at two sites (Figure 44, 

Table VIII). 
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Figure 44. Ratio of cytosolic Cd to total Cd in the liver of Prussian carp expressed in 

percentages 

3.3.10 Caesium (Cs) 

 All differences between two sites were statistically significant (p<0.05). We could 

also see that in all three figures the higher values were found at the Trebež village. The total 

hepatic Cs concentrations of Prussian carp caught in the Ilova River at the Trebež village 

were ~45% higher than the concentrations found at the Ilova village (Figure 45a, Table VI). 

For the cytosolic hepatic concentrations of Cs the difference amounted to ~50% (Figure 

45b, Table VII).  

 

Figure 45.  Total (a) and cytosolic (b) Cs concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 46. Ratio of cytosolic Cs to total Cs in the liver of Prussian carp expressed in 

percentages 

 The portion of cytosolic hepatic Cs concentrations in total hepatic Cs concentrations 

found in fish of the Trebež village was 100% while the ratio found at the Ilova village was 

90%. The difference was significant and amounted to 10% (Figure 46, Table VIII).  

3.3.11 Manganese (Mn) 

 When looking at Figures 47 a and b and Tables VI and VII, it was clear that there 

were no statistically significant differences between Mn concentrations found in fish at the 

reference site and at the contaminated site (p>0.05), concerning both total and cytosolic Mn 

concentrations in the liver of Prussian carp. The portions of Mn in the cytosol were also 

comparable at two sites, with a value of ~90% (Figure 48, Table VIII). 

 

Figure 47.  Total (a) and cytosolic (b) Mn concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 48. Ratio of cytosolic Mn to total Mn in the liver of Prussian carp expressed in 

percentages 

3.3.12 Iron (Fe) 

 There were no statistically significant differences between two sites concerning 

either total hepatic Fe or cytosolic hepatic Fe concentrations in Prussian carp (Figure 49 a,b, 

Tables VI and VII). Also, the portions of cytosolic hepatic Fe concentrations in total hepatic 

Fe concentrations were at both sites around 80% (Figure 50, Table VIII). 

 

Figure 49.  Total (a) and cytosolic (b) Fe concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 

 

Figure 50. Ratio of cytosolic Fe to total Fe in the liver of Prussian carp expressed in 

percentages 
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3.3.13 Cobalt (Co) 

 There were no statistically significant differences between two sites in any of the 

investigated parameters concerning Co in the liver of Prussian carp (Figure 51 a,b, Tables 

VI and VII). The portions of Co in the cytosol of the liver of Prussian carp were at both sites 

close to 100% (Figure 52, Table VIII). 

 

Figure 51.  Total (a) and cytosolic (b) Co concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 

 

Figure 52. Ratio of cytosolic Co to total Co in the liver of Prussian carp expressed in 

percentages 

 

3.3.14 Copper (Cu) 

 There were no statistically significant differences between two sites regarding total 

and cytosolic Cu concentrations in the liver of Prussian carp, as well as regarding Cu 

portion within the hepatic cytosol (Figures 53 a,b and 40, Tables VI, VII and VIII). We 

observed that the portion of cytosolic Cu in total hepatic Cu was equal to ~110% at both 

sites (Figure 54, Table VIII). 
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Figure 53.  Total (a) and cytosolic (b) Cu concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 

 

Figure 54. Ratio of cytosolic Cu to total Cu in the liver of Prussian carp expressed in percentages 

3.3.15 Zinc (Zn) 

 The same results are seen here as for several of the previously presented elements, 

with no statistically significant differences found between the Zn concentrations measured 

in Prussian carp liver caught in the Ilova River at the Trebež village and at the Ilova village, 

regarding both total (Figure 55a, Table VI) and cytosolic levels (Figure 55b, Table VII).  

The percentages of cytosolic Zn in total Zn concentrations at the the Ilova village were 

~100% and at the Trebež village ~105% (Figure 56, Table VIII). 

 

Figure 55.  Total (a) and cytosolic (b) Zn concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 56. Ratio of cytosolic Zn to total Zn in the liver of Prussian carp expressed in 

percentages 

3.3.16 Strontium (Sr) 

 Total hepatic Sr concentrations and the cytosolic hepatic Sr concentrations showed 

statistically significant differences between two sites. Prussian carp caught at the reference 

site, the Ilova village, had values that were 65% higher for total Sr concentrations than the 

values of those caught at the Trebež village (Figure 57a, Table VI). The cytosolic Sr 

concentrations in fish caught at the Ilova village were 55% higher than the values at Trebež 

village (Figure 57b, Table VII). The ratio of cytosolic Sr to total Sr was comparable at both 

sites and close to 70% (Figure 58, Table VIII). 

 

Figure 57.  Total (a) and cytosolic (b) Sr concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 58. Ratio of cytosolic Sr to total Sr in the liver of Prussian carp expressed in 

percentages 

3.3.17 Arsenic (As) 

 Both total and cytosolic concentrations of As were comparable at both sites and the 

observed differences were not statistically significant (Figure 59 a,b, Tables VI and VII). 

The ratios of cytosolic As to total hepatic As were around 75% at both sites (Figure 60, 

Table VIII). 

 

Figure 59.  Total (a) and cytosolic (b) As concentrations in the liver of C. gibelio at the 

reference site (Ilova village) and possibly contaminated site (Trebež village) 
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Figure 60. Ratio of cytosolic As to total As in the liver of Prussian carp expressed in 

percentages 

3.4 Assessment of biomarkers in the Prussian carp liver 

 Four biomarkers were measured within this study, one biomarker of general stress 

(total cytosolic proteins), one biomarker of metal exposure (metallothioneins) and two 

biomarkers of oxidative stress (catalase and glutathione).Their values are presented in Table 

IX. There were no statistically significant differences between the reference and the 

contaminated site for any of the measured biomarkers. The values were generally 

comparable and had differences less than 10% between two sites for total proteins (Figure 

61, Table IX), metallothionein (Figure 62, Table IX), catalase (Figure 63, Table IX), and 

glutathione (Figure 64, Table IX). Although the differences were small and not significant, 

it was interesting to notice that for all four biomarkers higher values were found at the 

reference site, the Ilova village. We have also noticed that there was a higher variation for 

glutathione values at the Ilova village than at the Trebež village, though the difference was 

not statistically significant. 

Table IX. Results of biomarker concentrations in hepatic cytosol of 
C. gibelio expressed as average ± standard deviation with median 
within brackets 

Biomarker Ilova village Trebež village  

Total proteins (mg/g) 
51.6 ± 10.2 

(51.3) 

49.4 ± 14.5 

(47.1) 

Metallothioneins 

(mg/g) 

0.577 ± 0.146 

(0.620) 

0.536 ± 0.168 

(0.503) 

Catalase  

(U/mg of proteins) 

562.9 ± 100.5 

(579.0) 

512.3 ± 100.8 

(531.2) 

Glutathione (nmol/g) 
1779 ± 295.2 

(1818) 

1753 ± 263.1 

(1764) 
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Figure 61. Total cytosolic protein concentrations in the liver of C. gibelio 

 

Figure 62. Metallothionein concentrations in the liver of C. gibelio 

 

Figure 63. Catalase activity in the liver of C. gibelio 
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Figure 64. Glutathione concentrations in the liver of C. gibelio 
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4 Discussion 

 The aim was to investigate the effects of the instream of wastewater from the town 

of Kutina and the nearby petrochemical factory on the water quality and the fish in the Ilova 

River. Contamination of metals and organic material by the instream of municipal and 

industrial wastewaters was suspencted. To determine the quality status of the Ilova River 

and the possible effects of the instream of wastewater, the results were compared to those 

from the other researchers. 

4.1 The Ilova River water analysis 

 To determine the water quality of the Ilova River, the dissolved concentrations of 

large number of trace and macro elements in the river water were measured. Those 

elements, when present in the river water, can be roughly categorized into two groups: the 

dissolved metal fraction and the particulate metal fraction. The particulate metal fraction can 

be defined as the fraction that remains on the filter after filtering the river water through a 

0.45-µm pore diameter filter. The dissolved metal fraction is the fraction that goes through 

the filter. This fraction contains free metal ions (e.g. Na+, K+, Mg2+, etc.), unstable 

complexes of metals with organic and inorganic substances and inert organic metal 

complexes (Dragun et al., 2009b). 

 Of those two fractions, the dissolved metal fraction is the one that contains the 

metals which can be regarded as more bioavailable to fish and the other aquatic organisms. 

This is due to the fact that dissolved metals are more easily absorbed by the organisms. 

Since the European Union’s Water Framework Directive (WFD) defines the maximum 

recommendable concentration of dissolved metals in the surface waters, the total dissolved 

metal concentrations measured in our study were compared with the Environmental Quality 

Standards (EQS) defined by WFD (Dragun et al., 2009b). 

 When looking at the results measured at two sites in the Ilova River (Table IV), it is 

clear that both sites had mostly resembling metal concentrations in the river water. Overall, 

the concentrations were slightly higher near the Trebež village. When examining the results 

more closely there are several elements which had higher concentrations at the Trebež 

sampling site. Those metals were Na, Cs, Rb and Cd. The concentration of Cs was much 

higher in the Ilova village compared to Trebež village.  Cadmium and Rb both had five 

times higher concentrations at the contaminated site than at the reference site, whereas the 

concentration of Na was two and a half times higher at the Trebež village than at the 

reference site. Contrary, it has to be mentioned that Mn had a five times higher 

concentration at the Ilova sampling site compared to Trebež. The concentrations of the 

metals Zn and Ag in the water samples were so low at both sites that they could not be 

detected. Slightly higher concentrations of Na, Cs, Rb and Cd possibly could be associated 

to the known sources of pollution, whereas higher Mn concentrations in the river water of 

the reference site can be perhaps a consequence of agricultural activities in that area. 

 When comparing the results obtained for the Ilova River with values published for 

the Sava River (urban and industrially contaminated, but with much higher dilution 
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capacity), the Sutla River (medium size river, with both clean and industrially contaminated 

sites) and the Krka River (pristine site and site contaminated with municipal and industrial 

wastewaters), a general conclusion can be made that the Ilova River is a relatively clean 

river (Table X). Most of the values for analysed elements were around the values of the 

known pristine part of the Krka River in the Krka National park (Filipović Marijić et al., 

2018) and of the reference site of the Sutla River (Dragun et al., 2011). There were, 

however, big differences between some metal concentrations. For example, the values of 

Mn at the Ilova sampling site were much higher even compared to the contaminated part of 

the Sutla River and the Sava River (Table X). 

 When looking at the values of the EQS (CEC, 2006; Crane et al., 2007; EPCEU 

2008) determined by the European Union’s Water Framework Directive and suggested by 

environmental scientists, it has to be noted that the concentration for Fe exceeds this value 

at both of the sampling sites of the Ilova River, but not as much as the Sutla River at its two 

sampling sites. However, it should be emphasized that the suggested Fe concentration is by 

opinion of many scientists very strict and is not yet accepted as recommendable (Crane et 

al., 2007). The other concentrations were below the so far recommended EQS-values, 

provided only for Cd, Pb, Ni and Hg by WFD, and suggested for Cu, Fe and Zn (Crane et 

al., 2007). 

 We can conclude that the Ilova River is a relatively clean river and can be placed 

between the pristine and clean Krka River and the moderately contaminated Sutla River. 

The wastewater from the town of Kutina and the nearby factory gave, resulted in? slightly 

higher metal concentrations than the ones at the reference site with the exception of Mn. 

Metals that should be monitored in the river water of the Ilova River are Cd and Cs, as 

highly toxic metals, due to their several times higher concentrations at the Trebež site 

compared to the reference site, as well as the fact that the Cd concentration has approached 

the limit of 80 ng/L recommended by WFD.   
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Table X. The comparison of total dissolved concentrations of 17 metals measured in the Ilova River at two sites (near the Ilova village and near the Trebež 
village) with the concentrations published for the other rivers in Croatia and with the EQS. 

 Na (mg/L) Mg (mg/L) K (mg/L) Ca (mg/L) Se (µg/L) Rb (µg/L) Mo (µg/L) Ag (µg/L) Cd (µg/L) Cs (µg/L) Mn (µg/L) Fe (µg/L) Co (µg/L) Cu (µg/L) Zn (µg/L) Sr (µg/L) As (µg/L) 

Ilova River near the 

Ilova village 

9.91 ± 

0.359 

15.1 ± 

0.556 

2.82 ± 

1.70 

47.3 ± 

1.78 

0.786 ± 

0.019 

0.644 ± 

0.008 

0.561 ± 

0.027 

<LOD 0.011 ± 

0.006 

<LOD 93.2 ± 1.13 17.9 ± 

2.17 

0.137 ± 

0.005 

<LOD <LOD 123.1 ± 

1.03 

2.10 ± 

0.126 

Ilova River near the 

Trebež village 

26.5 ± 

0.171 

16.9 ± 

0.189 

4.58 ± 

0.065 

57.0 ± 

0.829 

1.01 ± 

0.112 

3.74 ± 

0.251 

0.981 ± 

0.062 

<LOD 0.053 ± 

0.003 

0.090 ± 

0.007 

18.4 ± 

0.918 

21.6 ± 

1.52 

0.121 ± 

0.011 

0.716 ± 

0.030 

<LOD 150.4 ± 

11.9 

4.47 ± 

0.684 

Sutla River – the clean 

area 

(Dragun et al., 2011) 

11.3 18.6 3.79 58.8 - 2.38 0.55 - 0.007 0.002 17.1 36.7 0.068 0.49 - 216.1 0.79 

Sutla River - urban and 

industrially 

contaminated area 

(Dragun et al., 2011) 

88.3 27.1 13.4 77.3 - 9.63 11.96 - 0.117 0.110 51.5 51.8 0.347 0.93 - 416.8 3.83 

Sava River - urban and 

industrially 

contaminated 

(Dragun et al., 2009b) 

10.6 19.5 3.20 91.1 - - 0.81 - 0.011 - 3.44 12.6 0.064 0.54 2.27 128.0 0.17 

Krka River - pristine 

site 

(Filipović Marijić et 

al., 2018) 

2.1-6.0 11.6-13.5 0.33-0.44 60.3-60.4 0.22-0.32 0.28-0.35 0.38-0.69 0.002-

0.02 

0.009-

0.01 

- 0.01-0.06 0.34-2.04 0.004-

0.01 

0.16-0.22 1.52-3.57 88.4-

144.6 

0.11-0.12 

Krka River – urban 

and industrially 

contaminated site 

 (Filipović Marijić et 

al., 2018) 

3.2-8.6 11.1-15.0 0.65-0.70 74.4-76.3 0.28-0.31 0.45-0.46 0.51-0.88 0.003 0.008-

0.009 

 - 4.82-6.73 4.66-11.6 0.04-0.11 0.28-0.36 11.5-30.0 186.2-

238.5 

0.14-0.15 

EQS  

(Dragun et al., 2009b) 

 -  -  -  -  -  -  -  - 0.080  -  - 16.0  - 8.2 7.8  -  - 
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4.2 Biometry of Prussian carp 

 When comparing the biometry of the fish from two sampling sites, we have noticed 

that the fish near Trebež village were 20% bigger and 70% heavier than fish near the Ilova 

village (Figures 8 and 9, Table V). 

 The FCI or Fulton condition index was calculated and gave a general idea of the 

condition of the fish. So, as mentioned above, next to the fact that the fish were bigger and 

heavier, the fish caught near the Trebež village had a higher FCI for (Figure 10, Table V). 

This might be explained by the instream of wastewater. It is known that municipal and 

industrial wastewater contain organic matter which is a source of nutrients for the fish 

(Dragun et al., 2018). So, more nutrients means more food which can result in the fish 

growing bigger, and especially heavier. 

 The hepatosomatic index (HSI) shows the weight of the liver relative to the total 

weight of the fish and GSI or gonadosomatic index is an index that shows the weight of the 

gonads as a percentage of the total weight of the fish. When looking at both those values, we 

can conclude that the values for both sites were comparable (Table V). There was however a 

larger difference between the lowest and the highest GSI at the Trebež sampling site (Figure 

11), meaning that there was a higher variation of gonad size at Trebež, perhaps in some 

connection to instream of industrial wastewaters that could contain some contaminant 

affecting the fish reproductive status. However, this should be further investigated. 

4.3 Differences in total and cytosolic trace and macroelement 

concentrations in the liver of Prussian carp between the Ilova 

village and the Trebež village 

 Total and cytosolic trace and macro element concentrations were measured in the 

liver of Prussian carp at two sites of the Ilova River. The Ilova village was selected as the 

reference site and the Trebež village as the contaminated site. In general, total trace and 

macro element concentrations were present in the liver of Prussian carp in the following 

decreasing order: K>Na>Mg>Fe>Ca>Zn>Cu>Rb>Mn>Se>Cd>Mo>Ag>Sr>As>Co>Cs 

(Table VI), and the cytosolic concentrations were present in almost the same decreasing 

order (Table VII). 

 When comparing the concentrations of total and cytosolic trace and macro elements 

in the liver of fish sampled at two sampling sites, we have noticed three patterns: (1) some 

elements had comparable concentrations at both sites, (2) some elements were present in 

higher concentrations at the contaminated site, and (3) some elements had higher 

concentrations at the reference site (Tables VI and VII). 

 For the following 12 trace and macro elements there were no statistically significant 

differences observed for total hepatic concentrations between two sites: Mg, K, Ca, Se, Mo, 

Cd, Mn, Fe, Co, Cu, Zn, and As. In the same trend lie the following cytosolic trace and 

macro element concentrations, with no significant differences between two sites: Mg, K, Se, 
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Mo, Ag, Cd, Mn, Fe, Co, Cu, Zn, As. The only difference between total and cytosolic 

concentrations referred to Ag and Ca, which both actually showed a trend of higher 

concentrations at the reference site. However bfor Ag the difference between sites was 

statistically significant only for total (Table VI) and for Ca for cytosolic metal 

concentrations (Table VII). These comparable results at two sites correlate well with the 

little difference in dissolved metal concentrations between sites in the river water (Table 

IV). There were only two exceptions to this rule. Manganese had five times higher 

concentration in the river water at the Ilova village, but had no significantly higher total or 

cytosolic concentrations in Prussian carp liver at that site. A possible explanation could be 

that the physiological regulation of Mn in the Prussian carp was very efficient, causing low 

Mn concentration in the fish despite to increased exposure in the water (Dragun et al., 

2018). The other exception was hepatic Cd, which was also comparable at both sites, but it 

was increased in the water at the Trebež village (Table IV). Possibly, the exposure was still 

not high enough to cause the increase in hepatic bioaccumulation, considering that Cd level 

in the water was still below the level recommended for surface waters by WFD (EPCEU 

2008). 

 To put our results in a wider context, we have compared our results for total hepatic 

concentrations of Cd, As and Cu with those found in Prussian carp from the freshwaters in 

Bosnia and Herzegovina, the Svitava Lake and the Neretva River (Table XI). The Svitava 

Lake is an area with minimum pollution as it is situated in the Nature Park Hutovo Blato 

where there is almost no traffic and industry, and it lies 30 km away from an area with 

agriculture (Has-Schön et al., 2008). Contrary, the Neretva River is situated in an area with 

a lot of human activity, traffic and agriculture (Djedjibegovic et al., 2012).  

Table XI. Comparison of total hepatic metal concentrations of Prussian carp 

from the Svitava Lake (B&H) (Has-Schön et al., 2008), the Neretva River (B&H) 

(Djedjibegovic et al., 2012) and the Ilova River (CRO) for Cd, As and Cu. Values 

are presented as average ± standard deviation. 

Element Ilova village 

(ng/g) 

Trebež village 

(ng/g) 

Svitava Lake 

(ng/g) 

Neretva River 

(ng/g) 

Cd 147.8 ± 229.7 132.8 ± 182.6 136.0 ± 6.00 15 ± 14 

As 23.1 ± 7.42 25.5 ± 7.13 35.0 ± 7.00  

Cu 6890 ± 4260 7030 ± 3740  7980 ± 10600 

 For Cd, its concentrations at both sites of the Ilova River were in the same range as 

the concentrations in the pristine Svitava Lake, however much higher than the 

concentrations in the anthropogenically impacted Neretva river. We can conclude that Cd 

bioaccumulated in the liver of Prussian carp from the Ilova River was still within the limits 
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characteristic for clean rivers, and that concentrations reported for the Neretva River 

reflected the fact that Cd still did not present an ecological problem for that river. 

 Total hepatic concentrations of As and Cu were lower at both the contaminated and 

the reference site of the Ilova River compared to the concentrations found in the Svitava 

Lake and the Neretva River. Since the hepatic As concentrations found in Prussian carp 

caught in the Ilova River were lower than the As concentrations reported for the liver of 

Prussian carp caught in the pristine Svitava Lake, we could say that at this point As does not 

pose a risk for the biota in the Ilova River. Similar conclusions can be made for hepatic Cu 

in the Prussian carp from the Ilova River, since it was still below the values reported for 

anthropogenically impacted Neretva River. 

 Both total and cytosolic concentrations of the following elements in the liver of 

Prussian carp were statistically significantly higher at the contaminated site: Na, Rb, and Cs 

(Tables VI and VII). When comparing this to the concentrations of these metals in the river 

water, we could notice a similar pattern. All three metals had higher concentrations in the 

water at the Trebež village compared to the Ilova village, although in a different magnitude. 

Sodium had a concentration two and a half times higher, Rb five times higher and Cs ~90 

times higher at the contaminated site. Thus, it could be reasonably presumed that higher 

concentrations in the water at the Trebež village caused the increase of metal concentrations 

in the liver, the main bioaccumulation organ, of Prussian carp. In tother words, the higher 

bioaccumulation level of three metals, Na, Rb and Cs, was very likely the consequence of 

the higher exposure level of these metals in the river water at the contaminated site of the 

Ilova River, the Trebež village, downstream of the petrochemical factory. 

 The following metals showed a trend of higher values at the reference site, the Ilova 

village: Ca, Sr and Ag. Only for Sr statistically significantly higher values were obtained at 

the reference site for both total and cytosolic concentrations in the liver of Prussian carp. 

For the other two metals significant differences were obtained either for total (Ag) or for 

cytosolic (Ca) concentrations. 

 The dissolved Ag concentrations in the river water were below LOD at both 

sampling sites, whereas Ca and Sr concentrations in the river water were comparable 

between sites. Since fish can also accumulate metals through dietary intake, and not only 

through the dissolved water phase, the presence of Ag, Ca and Sr in food and sediment at 

both sites should be investigated (Van Campenhout et al., 2009).  Filipović Marijić and 

Raspor (2014) have investigated the presence of metals in gut content of the European chub 

to demonstrate the relevance of dietary intake of metals, especially of fish found in 

moderately contaminated waters. Several scientists have suggested to reevaluate whether it 

is enough to measure only the dissolved metal fractions to establish water quality guidelines 

(Fisher and Hook, 2002; Hare et al., 2003; Lapointe and Couture, 2009; Dragun et al., 

2018). 



Metal bioacc. and biomarker responses in the liver of Prussian carp (C. gibelio Bloch, 1782) from the Croatian river Ilova 68 

Hogeschool Gent – Campus Vesalius  Opleiding BLT - afstudeerrichting FBT 

4.4 Proportions of trace and macroelements present in the hepatic 

cytosol of Prussian carp 

 The proportions of the trace and macro elements in the soluble tissue fraction of 

Prussian carp liver were calculated by dividing the cytosolic hepatic concentration of each 

element by the total hepatic concentration. The percentages of the evaluated elements 

present in the cytosolic hepatic fraction of C. gibelio from the reference site Ilova village 

decreased in the following order: Se, Cd, Cu, Na, K, Zn (>100%) > Rb (99.6%) > Co 

(98.5%) > Mg (96.5%) > Cs (90.0%) > Mn (89.4%) > Ag (87.4%) > Fe (81.4%) > Mo 

(77.7%) > As (75.1%) > Sr (71.8%) > Ca (69.0%) (Table VIII). The elements in the 

cytosolic hepatic fraction of C. gibelio from the contaminated site Trebež village decreased 

in a similar order: Se, Cd, Cu, Zn, Na, Rb, Cs (≥ 100%) > Co (99.5%) > K (98.1%) > Ag 

(93.3%) > Mn (91.2%) > Mg (87.7%) < Fe (79.9%) > As (78.4%) > Sr (70.8%) > Mo 

(66.9%) > Ca (57.1%) (Table VIII). For several elements a higher concentrations in the 

cytosols compared to their total levels was obtained, resulting with cytosolic percentages 

slightly above 100%, which is probably a consequence of separate digestions of 

homogenates and cytosols, and multiple steps in the process of sample preparation for 

analysis, which can lead to slight deviations of the obtained results due to analytical 

uncertainty. 

 The elements that were present in the highest percentages in the cytosol can be 

regarded as completely available for metabolic requirements, and thus also in the case of 

more toxic elements, available for possible toxic effects. This can be especially worrisome 

in the case of such elements as Cd, Cs, and Ag, which are highly toxic already in low 

concentrations and which were present in the cytosolic fraction in high percentages, from 90 

to 100%. 

 There were six elements with statistically significant differences (p<0.05) of the 

ratios when comparing the two sites. The elements whose ratios were significantly higher at 

the Ilova village, i.e. lower at the Trebež village, were Mg, Ca and Mo. This means that 

hepatic bioaccumulation of Mg, Ca and Mo at the contaminated Trebež site resulted partly 

with metal storage in the nonsoluble part of the cell, and thus with their lower presence in 

the cytosol. The elements with significantly higher proportion in the cytosol at the Trebež 

village were Cs, Rb and Ag. Since Rb and Cs were also two metals that had higher total 

hepatic concentrations at the Trebež village, it can be concluded that higher metal 

bioaccumulation at that site resulted mostly with metal storage in the soluble parts of the 

cell, thus enabling higher availability of these metals and their potential toxicity. 

 When comparing the percentages of the cytosolic hepatic fraction of elements found 

in Prussian carp caught at two sites in the Ilova River with the cytosolic hepatic percentages 

of the elements found in brown trout from the Krka River (Dragun et al., 2018; Table XII), 

we have seen overall higher proportions at both sites of the Ilova River for the Prussian 

carp. We can especially point out Cu and Zn with approximately 40% higher proportions in 

the cytosol, Ag, Mg, Mn and Se around 30% higher and Ca, Cd, Co, Fe and Sr with around 

20% higher presence within the cytosol in the liver of Prussian carp in comparison to brown 

trout. This indicated species specific differences in metal handling strategies between these 
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two fish species, and possibly higher susceptibility of Prussian carp to metal toxicity, due to 

higher metal availability in their liver. As a conclusion, the observed differences in metal 

presence in the cytosolic fractions between brown trout and Prussian carp could be because 

of different physiological characteristics of these two fish species (Skoric et al., 2012). 
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Table XII. Comparison of the results from Dragun et al. (2018) for the hepatic cytosolic portion 
of trace and macro elements in brown trout (BT) caught in the Krka River  with the results of 
our study for the hepatic cytosolic portion in Prussian carp (PC) caught in the Ilova River, 
expressed as average ± standard deviation in percentages (%). 

  Krka River spring 

(BT) 

Krka downstream 

from Knin 

(BT) 

Ilova village 

(PC) 

Trebež village 

(PC) 

Ag 58.6 ± 8.0 53.8 ± 11.4 83.8 ± 14.5 92.9 ± 11.5 

As 57.5 ± 18.9 80.3 ± 13.9 79.5 ± 11.5 75.3 ± 16.6 

Ca 40.2 ± 5.4 41.4 ± 6.2 66.6 ± 13.8 56.7 ± 10.6 

Cd 93.0 ± 6.4 87.0 ± 11.3 115.0 ± 8.50 117.6 ± 5.63 

Co 86.0 ± 5.0 79.7 ± 12.3 98.3 ± 7.54 99.7 ± 6.07 

Cs 87.3 ± 6.0 80.0 ± 10.7 92.5 ± 8.05 99.4 ± 4.17 

Cu 63.6 ± 6.2 63.9 ± 7.5 109.5 ± 6.52 110.5 ± 5.06 

Fe 59.8 ± 18.1 57.1 ± 12.5 79.9 ± 15.9 78.8 ± 10.2 

K 100.1 ± 6.8 102.8 ± 12.1 100.4 ± 5.98 98.7 ± 4.70 

Mg 55.2 ± 4.3 57.0 ± 6.8 95.9 ± 4.91 88.4 ± 5.17 

Mn 67.5 ± 4.3 62.7 ± 7.9 89.8 ± 9.40 91.2 ± 4.84 

Mo 60.0 ± 5.9 60.5 ± 8.4 74.2 ± 8.39 68.8 ± 7.93 

Na 120.5 ± 10.5 117.7 ± 11.8 102.2 ± 8.67 105.2 ± 3.75 

Rb 94.2 ± 4.5 93.6 ± 8.9 100.3 ± 5.72 104.0 ± 4.65 

Se 85.1 ± 9.1 89.1 ± 11.0 117.4 ± 8.79 117.5 ± 5.44 

Sr 51.8 ± 8.9 46.7 ± 8.3 72.7 ± 10.4 71.7 ± 12.8 

Zn 64.0 ± 4.3 66.7 ± 7.6 102.2 ± 7.08 104.4 ± 5.47 
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4.5 Assessment of biomarkers in the liver of Prussian carp 

 Four biomarkers in the liver of Prussian carp at two sites of the Ilova River were 

measured to determine if any toxic effects have occurred due to exposure to possibly 

contaminated water. Our results of the biomarker levels showed no statistically significant 

differences between the reference site Ilova village and the possibly contaminated site 

Trebež village, indicating that, despite higher values of a few elements found in the river 

water and bioaccumulated in the liver of Prussian carp at the contaminated Trebež site, the 

effects in the liver were still not observable. For all four biomarkers, the measured values 

were even slightly higher at the reference than at the possibly contaminated site, but the 

difference was negligible (Table IX). 

 If we compare the results from the Ilova River, with other data published about C. 

gibelio (Table XIII), we can conclude that there was a much higher activity of catalase and 

even extremely higher concentrations of GSH present in the fish caught in the Ilova River, 

without any regard to water contamination. A possible reason for this extreme difference 

between our results and previously published results can be perhaps found in the applied 

methodology, which often results in different levels of analysed parameters. Some smaller 

differences could be due to some physiological factors, such as sex, maturity, diet and the 

season in which the fish were sampled. 

 A larger part of the population consisted of female fish due to gynogenesis and 

reproduction from unfertilised eggs, which is characteristic for Prussian carp. Hogstrand et 

al. (1996) described that biochemical parameters can differ between sexes. The variability 

can also be caused by the maturity of the fish. According to Şaşı (2008), C. gibelio becomes 

mature at the age of three. It is known that levels of MT in the liver could sometimes 

increase 2-3 times in the reproductive cycle (Dragun et al., 2009). A modified diet could also 

be an influential factor on the level of biomarkers (McCoy et al., 1995). All these facts 

should be considered when the results from different studies are compared, to prevent 

wrong conclusions about biomarker induction or inhibition. 
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Table XIII. Comparison of three biomarkers in C. gibelio liver reported in different studies. 

  

Catalase 

(U/mg) 

Gluthathione 

(µmol/g) 

Metallothioneins 

(mg/g) 

Ilova River 

Ilova 579.0 1.818? 0.620 

Trebež 531.2 1.764 0.503 

Falfushynska et 

al. (2011) 

Zalisci 

(Reference)  
12 0.500 

Borshchiv 

(Contaminated)  
10** 0.420 

Falfushynska et 

al. (2013) 
Reference 

 
10** 0.250* 

De Boeck et al. 

(2003) 

Van Stalle 

Fishfarm 

(Reference) 
 

 

0.480 

Gavrilovic et al. 

(2014) 

Gruza Reservoir 

Before Bloom 
180 

  

Gruza Reservoir 

After Bloom 
55 

  

Tsangaris et al. 

(2011) 

Reference 10 

  

Desna 

(Contaminated) 
16 

  

*  This value is expressed as MT-SH (µg/g) 

** This is quantified by the gluthathione reductase recycling assay 
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Table XIV. Comparison of the results obtained for Prussian carp in this study with MT and TP 
levels published previously for European chub from the Sutla and the Sava rivers. 

  
Metallothioneins (mg/g) Total proteins (mg/g) 

European chub 

Sutla River 

(Dragun et al., 2013) 

Upstream 1.63 117.0 

Downstream 1.23 107.5 

Sava River 

(Dragun et al., 2015) 
Contaminated 1.55 

 

Prussian carp 

Ilova River 

Ilova 0.620 51.3 

Trebež 0.503 47.1  

 The values of MTs measured in the liver of Prussian carp were actually similar to 

those found in the other articles about Prussian carp liver (Table XIII), both for reference 

and contaminated sites, again indicating the absence of MT induction in our study as a 

consequence of increased metal exposure. It means that metal exposure encountered in the 

Ilova River was still not high enough to cause an additional MT induction.  We have further 

compared MT and TP concentrations in two species, our results for Prussian carp liver with 

previously published results for the liver of European chub from the Sutla and the Sava 

rivers (Dragun et al., 2013b; Dragun et al., 2015). The Sutla River is considered as a 

moderately contaminated river and the Sava River is considered as somewhat more 

influenced by anthropogenic activities. Both TP level in the Sutla River and MT levels in 

the Sava River reported for the liver of European chub were higher compared to values 

obtained for the liver of Prussian carp from the Ilova River. Total protein levels and MT 

levels were around two to three times higher in the European chub, but percentage of MTs 

in TPs in Prussian carp (1.1-1.2%) was comparable to that reported for European chub (1.1-

1.4%). Thus, considering that the same methodology was applied in both studies, it can be 

concluded that those were the differences due to physiological variability of two fish 

species, which should always be considered in the monitoring studies.  
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5 Conclusions 

 The Ilova River is a relatively clean river, it is not as clean as the pristine Krka 

River, but it is not as contaminated as the Sutla River, which is known to be contaminated 

by municipal and industrial wastewater at certain sections. The concentrations of the 

dissolved trace and macro elements in the Ilova River water where, except for Mn, slightly 

higher downstream of the instream of the wastewaters from the town of Kutina and the 

nearby factory. For most of the studied elements this was only a slight, almost negligible, 

increase. However, for Na, Cs, Cd and Rb the increase was noticeably larger. Cadmium, as 

well as Cs, which are highly toxic metals, should be regularly monitored, since their 

concentrations were several times higher at the Trebež sampling site, downstream from the 

petrochemical factory. When comparing the concentrations of the dissolved metals with the 

EQS, it was found that the concentration of Cd is still acceptable, but relatively close to the 

recommended limit of 80 ng/L.   

 The analyses of total hepatic concentrations and cytosolic hepatic concentrations of 

trace and macro elements in the liver of C. gibelio have shown that Na, Rb and Cs were 

present in high concentrations at the Trebež site, downstream of the sources of pollution. 

These elements were also present in higher concentrations in the water. The conclusion that 

higher fish exposure to those elements in the river water has caused an elevation in the 

bioaccumulated concentrations of those elements in the liver of C. gibelio seems plausible. 

On the other hand, higher concentrations of Mn in the river water at the reference Ilova 

village had no effect on the concentration in the liver of the fish. Silver, however, was 

present in low concentration in the water compared to the increased concentrations found 

bioaccumulated in the liver of the Prussian carp at the reference Ilova village. It is possible 

that the fish from the reference Ilova village site had obtained higher Ag concentrations in 

liver through ingestion of sediment and food or because of higher Ag concentrations in the 

water previous to our sampling moment, but this should be further investigated. 

 As for the portions of the studied elements present in the cytosolic fractions of 

Prussian carp liver, we have found very high percentages in the cytosol for the elements Ag, 

Cd and Cs, which are toxic already in very low concentrations, and their high presence in 

the cytosol can point to their high metabolic availability and potential for toxic effects. 

When comparing trace and macro element cytosolic proportions in Prussian carp liver with 

those reported for brown trout we have concluded that there was a difference in metal 

handling strategies between two species, with higher presence of metals and the other 

elements in the cytosol of Prussian carp than in brown trout, and thus possibly higher 

susceptibility of Prussian carp to metal toxicity.  

 There were no statistically significant differences found in the levels of four 

analysed biomarkers (TPs, MTs, tGSH and CAT) in the liver of Prussian carp between two 

sampling sites, indicating that despite higher exposure levels of several elements in the river 

water, and their higher bioaccumulation in the liver of C. gibelio at the Trebež village, 

downstream from known sources of pollution, the stress effects were still not observable in 

the studied fish specimens.  
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