1 2	Zrinka Dragun ¹ *, Nesrete Krasnići ¹ , Nicol Kolar ² , Vlatka Filipović Marijić ¹ , Dušica Ivanković ¹ , Marijana Erk ¹
3	Cytosolic distributions of highly toxic metals Cd and Tl and several essential
4	elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion
5	chromatography and inductively coupled plasma mass spectrometry
6	¹ Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for
7	Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
8	² University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000
9	Zagreb, Croatia
10	
11	
12	* Corresponding author
13	Phone: +385-1-4680216;
14	Fax: +385-1-4680242;
15	E-mail: zdragun@irb.hr
16	

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

17 Abstract

18	Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements
19	among compounds of different molecular masses were studied in the liver of brown
20	trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size
21	exclusion high performance liquid chromatography and high resolution inductively
22	coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic
23	elements, was their distribution within only two narrow peaks. The increase of
24	cytosolic Cd concentrations was reflected in marked increase of Cd elution within low
25	molecular mass peak (maximum at ~15 kDa), presumably containing metallothioneins
26	(MTs), which indicated successful Cd detoxification in brown trout liver under studied
27	exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected
28	in marked increase of Tl elution within high molecular mass peak (maximum at 140
29	kDa), which probably indicated incomplete Tl detoxification. Common feature of the
30	majority of studied essential elements was their distribution within more peaks, often
31	broad and not well resolved, which is consistent with their numerous physiological
32	functions. Among observed associations of essential metals/nonmetal to proteins, the
33	following could be singled out: Cu and Zn association to MTs, Fe association to storage
34	protein ferritin, and Se association to compounds of very low molecular masses (<5
35	kDa). The obtained results present the first step towards identification of metal-binding
36	compounds in hepatic cytosol of brown trout, and thus a significant contribution to
37	better understanding of metal fate in the liver of that important bioindicator species.
38	Key words: fish, hepatic biomolecules, ICP-MS, Krka River, metallothioneins, SEC-
39	HPLC

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

40 **1. Introduction**

41	The metal pollution can affect every stage of the aquatic food chain, leading to the
42	disturbance of the whole ecosystem (Van Campenhout et al., 2010). In highly
43	contaminated aquatic environment, fish can accumulate metals both from surrounding
44	water and from food (Dragun et al., 2012, 2016; Filipović Marijić and Raspor, 2012;
45	Rajeshkumar et al., 2018). It can result with high level of metal bioaccumulation in
46	their organs and possible development of toxic effects (Dragun et al., 2013; Qu et al.,
47	2014). However, although the concentrations of trace metals in organs of aquatic
48	animals are often used to assess their exposure to metals in aquatic systems (Luoma and
49	Rainbow, 2008), such information is not sufficient to estimate if bioaccumulated
50	quantity of metal would cause damage to exposed fish. Metal toxicity arises
51	predominantly from the binding of metals to essential biomolecules such as enzymes
52	and transporters and the involvement of certain metals in the formation of radicals
53	(Mason and Jenkins, 1995), but part of metal bioaccumulated within the organism can
54	also be detoxified. Therefore, next to basic studies on the concentrations of metals
55	bioaccumulated in fish organs, it is essential to further investigate the fate of those
56	metals in the cells, and to determine whether they are more likely to cause harm to the
57	fish or to be detoxified and excreted from fish organism. In the scientific field which
58	deals with the comprehensive analysis of the entirety of metal and metalloid species
59	within a cell or tissue (Szpunar, 2005), it is a common first step to use the combination
60	of different techniques of high performance liquid chromatography (HPLC) and
61	inductively coupled plasma mass spectrometry (ICP-MS) as a powerful tool for
62	recognizing the cytosolic ligands that bind specific elements (Goenaga Infante et al.,
63	2006; Santiago-Rivas et al., 2007).

64	So far, there were only few studies of such kind performed on fish. Several
65	investigations were, for example, directed to study of metal detoxification by
66	metallothioneins (MTs) in different fish organs by application of size exclusion HPLC
67	(SEC-HPLC) and ICP-MS in field populations of the European eel (Anguilla anguilla)
68	(Van Campenhout et al., 2008) and gibel carp (Carassius auratus gibelio) (Van
69	Campenhout et al., 2010). Caron et al. (2018) applied similar methodology to perform
70	somewhat more extensive study on liver of juvenile yellow perch (Perca flavescens)
71	regarding binding of several trace elements (Ag, Cd, Co, Cu, Ni, and Tl) to various
72	cytosolic biomolecules. Our previous studies in this field included comprehensive
73	investigation of cytosolic distributions of Cd, Co, Cu, Fe, Mn, Mo, Pb, Se, and Zn in
74	the liver and gills of European chub (Squalius cephalus) from the moderately
75	contaminated Sutla River in Croatia (Krasnići et al., 2013, 2014) and of Vardar chub
76	(Squalius vardarensis) from highly contaminated Macedonian rivers (Krasnići et al.,
77	2018).
78	In this study, our main aim was to identify the molecular masses of cytosolic
79	biomolecules that bind specific trace elements in the liver of brown trout (Salmo trutta
80	Linnaeus, 1758), as a representative fish species and important bioindicator of karstic
81	rivers. We have previously characterized the water quality of the Krka River, at the
82	locations where brown trout were sampled (Filipović Marijić et al., 2018), as well as
83	total metal bioaccumulation in the liver of the same brown trout specimens that were
84	used in this study (Dragun et al., 2018). The specific goals of the investigation
85	presented in this paper included application of SEC-HPLC in combination with offline
86	metal measurement on high resolution ICP-MS (HR ICP-MS) to separate hepatic
87	cytosols of brown trout into fractions that contain various metal-binding biomolecules,

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

88	and to define the distribution profiles among cytosolic biomolecules of different
89	molecular masses for nine selected elements, two highly toxic metals (Cd and Tl) and
90	seven essential elements (Co, Cu, Fe, Mn, Mo, Se, and Zn). As it is very likely that
91	various fish species have different metal handling strategies, the additional aim of this
92	study was to compare metal distribution profiles characteristic for brown trout liver
93	with previously published profiles for liver of European chub (Krasnići et al., 2013) and
94	Vardar chub (Krasnići et al., 2018), and to recognize and describe the differences
95	between them, which could indicate different susceptibility to metal exposure in these
96	distinct fish species.

97

98 2. Materials and methods

99 2.1. Study period and area

100 This study was a part of the comprehensive pollution study on the Croatian karstic river 101 Krka, performed within two sampling campaigns in October 2015 and May 2016. The 102 first results of that study, regarding water quality (Filipović Marijić et al., 2018) and 103 metal bioaccumulation in the fish liver (Dragun et al., 2018) have been already 104 published. The map of the sampling area, comprising of two sampling sites, was also 105 previously published by Dragun et al. (2018). As a reference site we have chosen the 106 Krka River source, whereas a location downstream of Knin town was chosen as a 107 potentially contaminated site, due to known pollution sources in Knin area (e.g., 108 industrial wastewater of screw factory and untreated municipal wastewater discharge; 109 Filipović Marijić et al., 2018). The analyses of dissolved metals in the river water 110 conducted in the course of this study, simultaneously with fish sampling, confirmed a

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

111 slight concentration increase of several trace elements (e.g. Al, As, Co, Fe, Mn, Mo, 112 Rb, Sr, V, and Zn) downstream of Knin town (Dragun et al., 2018; Filipović Marijić et 113 al., 2018). The other physico-chemical parameters of the river-water, such as pH and 114 total dissolved solids (TDS), were comparable at both sites in both seasons (Krka River source: pH 7.6-7.7, TDS ~180 mg L⁻¹; Krka Knin: pH 7.8-8.1, TDS 201-208 mg L⁻¹), 115 116 and were not further considered as the significant factors in this study. The values of 117 pH and TDS were determined *in situ* using a multiparameter water quality monitoring 118 instruments SevenGo pro (Mettler Toledo).

- 119 2.2. Fish sampling and organ dissection
- 120 The selected bioindicator for this study was fish species brown trout (Salmo trutta
- 121 Linnaeus, 1758). Fish samplings were carried out by electrofishing, in accordance with

122 the Croatian standard HRN EN 14011 (2005), as described by Dragun et al. (2018). The

123 captured fish were kept alive in aerated water tank during transportation, and in the

124 laboratory they were anesthetized with tricaine methane sulphonate (MS 222, Sigma

125 Aldrich) before they were sacrificed. Thereafter, we have recorded fish total masses

126 and lengths, then isolated and weighed the liver and the gonads, and stored the liver at -

127 80°C before further analyses. We have calculated gonadosomatic indices (GSI) based

128 on the ratios of gonad masses to total trout masses, and Fulton condition indices (FCI)

129 according to Rätz and Lloret (2003), as the ratios of total masses to total lengths cubed,

130 and multiplied with 100. Sex was determined by examination of fish gonads, both

131 macroscopic and microscopic, under magnification of 40× and 100×, using optical

- 132 microscope BH-2 (Olympus). Out of 65 fish sampled for the assessment of metal
- 133 bioaccumulation, 15 to 18 at each site in each sampling campaign (Dragun et al., 2018),

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

- 134 we have selected twelve specimens for the analyses of cytosolic metal distributions
- 135 performed within the current study, three per each site in each season. Biometric
- 136 characteristics of these twelve fish are presented in Table 1.
- 137 2.3. Hepatic tissue homogenization and isolation of soluble hepatic fractions
- 138 The samples of hepatic tissue were cut into small pieces within glass crystallizing
- 139 dishes set on ice. Then cooled homogenization buffer [100 mM Tris-HCl/Base (Sigma,
- 140 pH 8.1 at 4°C) supplemented with reducing agent (1 mM dithiotreitol, Sigma)] was
- 141 added into each dish to dilute hepatic tissue (w/v 1:5). Thereafter followed
- 142 homogenization by application of 10 strokes of Potter-Elvehjem homogenizer (Glas-
- 143 Col, USA) at 6,000 rpm in an ice cooled tube. The homogenates were then centrifuged
- 144 at 50,000×g for 2 h at 4°C in the Avanti J-E centrifuge (Beckman Coulter, USA).
- 145 Supernatants (S50) obtained after centrifugation represented water soluble cytosolic
- 146 tissue fractions containing lysosomes and microsomes (Bonneris et al., 2005). S50
- 147 fractions were separated from centrifuge tubes, transferred to clean tubes and stored in
- 148 the freezer at -80°C.

149 2.4. SEC-HPLC fractionation of brown trout hepatic cytosols

150 Distributions of selected trace elements among cytosolic biomolecules of various

151 molecular masses in brown trout liver were studied using SEC-HPLC (Perkin Elmer

- 152 HPLC system, series 200, USA) with prepacked Tricorn[™] Superdex 200 10/300 GL
- 153 size exclusion column (GE Healthcare Biosciences, USA) with a separation range of
- 154 10-600 kDa, for globular proteins (Krasnići et al., 2013, 2014, 2018). Prior to
- application on the column, samples of hepatic cytosols were centrifuged at $10,000 \times g$

156	for 10 min at 4°C (Heraeus Biofuge Fresco, Kendro, USA) to remove the possible clots
157	that could clog the system. For each sample, two consecutive chromatographic runs
158	were performed, each with application of 100 μL of the sample on the column, i.e. 200
159	μL of each cytosolic sample was run through the column. Mobile phase for the
160	separation was 20 mM Tris-HCl/Base (Sigma, pH 8.1 at 22°C), with a flow rate of 0.5
161	mL min ⁻¹ using isocratic mode. Chromatographic fractions were collected at one
162	minute intervals from 13 th to 52 nd minute in the plastic tubes using a fraction collector
163	(FC 203B, Gilson, USA). For column calibration, several protein standards
164	(thyroglobulin, apoferritin, β -amylase, alcohol dehydrogenase, bovine albumin, and
165	carbonic anhydrase, Sigma, USA) were run through the column under the same
166	conditions as the samples and the equation of the calibration straight line is given in
167	Table 2. In addition, elution times were also determined for MT standards, MT-1 and
168	MT-2 (Enzo Life Sciences, USA), whereas the void volume of the column was
169	determined by use of blue dextran (Table 2).

- 170 2.5. Determination of trace element concentrations in the SEC-HPLC fractions of
- 171 *hepatic cytosol*
- 172 In this study we have measured the concentrations of two highly toxic metals (Cd and
- 173 Tl) and seven essential elements (Co, Cu, Fe, Mn, Mo, Se, and Zn) in each one-minute
- 174 fraction obtained by SEC-HPLC separation. These fractions were acidified with HNO₃
- 175 (Suprapur, Merck, Germany, final acid concentration in the samples 0.16%), and prior
- 176 to measurement In (Fluka, Germany) was added as an internal standard (1 μ g L⁻¹). The
- 177 measurements were performed on HR ICP-MS (Element 2, Thermo Finnigan,
- 178 Germany), equipped with an autosampler SC-2 DX FAST (Elemental Scientific, USA)

179	and sample introduction kit consisting of a SeaSpray nebulizer and cyclonic spray
180	chamber Twister. Typical instrumental conditions and measurement parameters were
181	reported previously (Fiket et al., 2007). Measurements of ⁸² Se, ⁹⁸ Mo, ¹¹¹ Cd, and ²⁰⁵ Tl
182	were performed in low-resolution mode, whereas ⁵⁵ Mn, ⁵⁶ Fe, ⁵⁹ Co, ⁶³ Cu, and ⁶⁶ Zn were
183	measured in medium resolution mode. Standards for external calibration were prepared
184	in 1.3% HNO3 (Suprapur; Merck, Germany) using multielement standard solution for
185	trace elements (Analitika, Czech Republic), and supplemented with In (1 μ g L ⁻¹ ; Fluka,
186	Germany). Limits of detection (LOD) were determined based on three standard
187	deviations of ten consecutively determined trace element concentrations in the blank
188	sample (Tris-HCl/Base, dithiothreitol, HNO ₃). LODs for trace elements measured
189	within this study were as follows (in μ g L ⁻¹): Cd, 0.005; Co, 0.002, Cu, 0.037; Fe,
190	0.084; Mn, 0.002; Mo, 0.004; Se, 0.138; Tl, 0.001; and Zn, 2.40 (Krasnići et al., 2013,
191	2014). The accuracy of trace element measurements by HR ICP-MS was checked by
192	analysis of quality control sample (QC for trace metals, catalog no. 8072, lot no.
193	146142-146143, Burlington, Canada). A generally good agreement was observed
194	between our data and the certified values, as seen from the following recovery values:
195	Cd, 99.7±3.3; Co, 99.8±2.5, Cu, 98.7±3.2; Fe, 103.9±9.5; Mn, 99.3±2.0; Se, 103.0±5.4;
196	Tl, 101.6±4.8; and Zn, 97.7±5.9.

- 197 2.6. Data processing and statistical analyses
- 198 All basic calculations were done in Microsoft Excel 2007. Based on the column
- 199 calibration (Table 2), elution times of specific peaks were associated to corresponding
- 200 molecular masses, with the aim to define the molecular masses of biomolecules that
- 201 bind each studied element (Table 3). In this study and for the purpose of easier

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

202 discussion, we have categorized the biomolecules in four classes according to their

203 molecular masses (Table 3), as already described in our previous publications (Krasnići

204 et al., 2013, 2014, 2018): 1) HMM or biomolecules of high molecular mass (>100

kDa); 2) MMM or biomolecules of medium molecular mass (30-100 kDa); 3) LMM or

biomolecules of low molecular mass (10-30 kDa); and 4) VLMM or biomolecules of

207 very low molecular mass (<10 kDa).

208 Graphs were created using the statistical program SigmaPlot 11.0 for Windows. In Figs.

209 1-5, we have graphically presented distribution profiles with obtained peaks for each

210 one of nine analyzed elements, separately for each site in each season. Total cytosolic

211 concentrations of studied elements in the liver of twelve analyzed fish specimens that

are presented within the figures were taken from concurrent study on hepatic metal

213 bioaccumulation in brown trout (Dragun et al., 2018).

214

215 **3. Results and discussion**

216 The study presented in this paper was a constitutive part of a comprehensive study on

217 metal exposure and hepatic bioaccumulation in brown trout (S. trutta), which was

218 conducted on the Krka River in autumn 2015/spring 2016 (Dragun et al., 2018). It

219 revealed increased cytosolic concentrations of several metals in brown trout liver at the

220 location downstream of Knin town, which is influenced by untreated municipal and

- 221 industrial wastewaters (Dragun et al., 2018). However, it also revealed increased
- 222 cytosolic hepatic concentrations of few metals in brown trout at the source of the Krka
- 223 River, which is considered as a pristine area (Dragun et al., 2018). Among nine

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

224	elements analyzed in the current study, highly toxic metals Cd and Tl, as well as
225	essential metal Mo, were present in somewhat higher concentrations in brown trout
226	liver at presumably clean site, the Krka River source (Dragun et al., 2018). It was
227	possibly the consequence of increased exposure from sediments as a result of some
228	natural cause, such as rock weathering, since concentrations of dissolved Cd and Tl in
229	the river water were comparable and rather low at both sites and amounted to 0.005-
230	0.010 $\mu g \ L^{\text{-1}}$ for Cd and 0.004-0.005 $\mu g \ L^{\text{-1}}$ for Tl (Dragun et al., 2018). Contrary,
231	essential elements Co and Se were increased in brown trout liver at the expectedly
232	contaminated site downstream of Knin town; hepatic concentrations of Cu, Fe, Mn and
233	Zn in brown trout were mainly comparable at both sampling sites (Dragun et al., 2018).
234	Accordingly, 12 samples analyzed in the current study (three per each site and each
235	season) were chosen in such a way, so that they reflect the observations of
236	bioaccumulation study as closely as possible, especially concerning the most toxic
237	metals, Cd and Tl. In the other words, for the purpose of metal distribution analyses, we
238	have selected those specimens, from the whole set of sampled fish, that had
239	comparatively higher Cd and Tl concentrations at the Krka River source (Cd: 118-296
240	ng g ⁻¹ ; Tl: 87.5-456 ng g ⁻¹) than at the Krka River downstream of Knin town (Cd: 3.45-
241	20.1 ng g ⁻¹ ; Tl: 4.1-199 ng g ⁻¹).
242	Twelve fish selected for distribution analyses varied in size from 18.3 to 27.5 cm, and

they differed in GSI and sex (Table 1). GSIs were generally higher in autumn than in spring, indicating active reproductive period (Dragun et al., 2018), but comparison of metal distribution profiles obtained in two seasons, as well as comparisons between

246 males and females, have not indicated any variations in metal cytosolic distributions

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

247 that could be attributed to fish physiology. It could be assumed that all the observed 248 differences, mainly in peak heights, were the results of differences in exposure levels 249 and in the levels of consequent hepatic accumulation. Thus, the obtained results will be 250 further on discussed precisely from that point of view for each one of the studied 251 elements. 252 3.1. Highly toxic elements 253 Common feature of Cd and Tl, as nonessential and highly toxic elements, was that they 254 were distributed within small number of narrow and well resolved peaks (Fig. 1a and 255 b). This was an indication of their association to limited number of compounds in the 256 cytosols, which is in accordance with the fact that they do not possess a known 257 biological function in the fish organism. 258 3.1.1. Cadmium 259 Cadmium is a nonessential element and its toxicity could be partly associated to 260 competitive inhibition of calcium pumps (Verbost et al., 1989). Cadmium was eluted in 261 two narrow peaks (Fig. 1a, Table 3). The first Cd peak was located in HMM biomolecule region, at elution time from the 14th to 17th minute which corresponded to 262 biomolecules of molecular masses in the range from ~500 to 1000 kDa. The second Cd 263

265 minute which corresponded to biomolecules of molecular masses in the range from 7 to

peak was located in the LMM biomolecule region, at elution times from the 29th to 34th

266 24 kDa.

264

At low Cd concentrations in the cytosol of brown trout liver ($\leq 20 \text{ ng g}^{-1}$), the presence

268 of Cd in both peaks was either comparable or even more pronounced in the HMM peak,

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

269	as seen in the fish from the sampling site Krka-Knin (Fig. 1a, lower row). Cadmium
270	elution in HMM region observed in this study on brown trout liver was not observed in
271	the previous studies on the liver of European and Vardar chub (Krasnići et al., 2013,
272	2018), indicating possible higher susceptibility of brown trout to Cd toxicity. However,
273	with the increasing cytosolic Cd concentrations (>100 ng g ⁻¹), a marked increase of Cd
274	quantity in LMM peak was observed, with a maximum of molecular mass equal to ~ 15
275	kDa, as seen in the fish from the Krka River source (Fig. 1a, upper row). The maximum
276	elution time of that peak, which was equal to 31 minute (Table 3), was the same as the
277	elution time of MT standard (Table 2). This result obtained for brown trout liver was
278	comparable to previously published information on Cd binding to MT in the liver of
279	European and Vardar chub (Krasnići et al., 2013, 2018), of juvenile yellow perch
280	(Caron et al., 2018), of European eel (Van Campenhout et al., 2008), and of gibel carp
281	(Van Campenhout et al., 2010), which was interpreted as evidence of successful Cd
282	detoxification (Caron et al., 2018). It was also consistent with the known fact that Cd
283	detoxification primarily takes place through binding to glutathione (GSH) and MT
284	(McGeer et al., 2012), and indicated that Cd was mainly detoxified in brown trout liver
285	under studied exposure conditions. Recently it has been suggested that, next to GSH
286	and MT, heat shock proteins (HSP70 and HSP90) play an important role in
287	physiological changes associated to cell protection in fish exposed to Cd (Kwong et al.,
288	2011) and an indication of such association of Cd was reported for European chub liver
289	(Krasnići et al., 2013). However, in this study Cd association to biomolecules of
290	molecular masses that would correspond to heat shock proteins was not observed.
291	3.1.2. Thallium

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

292	Thallium is a nonessential metal, which is toxic already in very low concentrations due
293	to its interference with K-dependent biological processes (Jaiswal et al., 2012). It is
294	well known that Tl^+ can replace K^+ , which is physiologically required for activation of
295	several enzymes, for example aldehyde dehydrogenase and ATPase enzyme in Na^+ -K $^+$
296	exchange pump (Jaiswal et al., 2012). Same as Cd, Tl was also eluted in two narrow
297	peaks (Fig. 1b, Table 3). The first and more pronounced Tl peak was located in HMM
298	biomolecule region, at elution time from the 19 th to 24 th minute. That elution time
299	corresponded to biomolecules of molecular masses in the range from ~85 to 300 kDa
300	and encompassed, for example, molecular masses of aldehyde dehydrogenase (187
301	kDa, von Tigerstrom and Razzell, 1968) and (Na^++K^+) -ATP-ase (tetramer with
302	molecular mass in the range of 274-280 kDa; Peterson and Hokin, 1981), enzymes that
303	are known to be activated by Tl. Comparable Tl peak in the range of molecular masses
304	from ~50-450 kDa was reported for the liver of juvenile yellow perch (Caron et al.,
305	2018). The second Tl peak, which was not always clearly visible, was located in the
306	VLMM biomolecule region, at elution time from the 32 nd to 36 th minute (Fig. 1b),
307	which corresponded to biomolecules of molecular masses in the range from \sim 4 to 11
308	kDa. Caron et al. (2018) obtained the second Tl peak in the yellow perch liver in the
309	region of even lower molecular masses, below 1.3 kDa.
310	With the increasing cytosolic Tl concentrations in brown trout liver, a marked increase
311	of Tl quantity was observed in HMM peak, with a maximum of molecular mass equal
312	to 140 kDa, which was more observable in the fish from the Krka River source, and
313	which, according to Caron et al. (2018), is an indication of incomplete Tl
314	detoxification.

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

315 *3.2. Essential elements*

316	Common feature of the majority of studied essential elements was that they were
317	distributed within larger number of peaks, often broad and not well resolved. Contrary
318	to nonessential elements, this was an indication of their association to numerous
319	compounds in the hepatic cytosol, which is consistent with their important roles in the
320	fish metabolism, and their catalytic or structural functions within the cell. This was
321	especially obvious for Cu, Fe, Mn, and Zn (Figs. 2b, 3a, 3b and 5).
322	3.2.1. Cobalt

323 Cobalt was eluted in three peaks (Fig. 2a, Table 3). The first and most pronounced Co

324 peak was located in HMM biomolecule region, at elution time from 18th to 24th minute

325 which covered biomolecules in the range from ~85-400 kDa. The predominant Co peak

in HMM region was previously also found in the liver of European and Vardar chub

327 (Krasnići et al., 2013, 2018) and in the liver of juvenile yellow perch (Caron et al.,

328 2018). The second Co peak was much lower and located in the MMM biomolecule

329 region. It appeared at elution time from the 24th to 29th minute, and corresponded to

biomolecules of molecular masses in the range from ~20 to 85 kDa. The third Co peak

331 was not always clearly visible and it was located in the VLMM biomolecule region, at

elution time from the 33rd to 38th minute, and corresponded to biomolecules of

- molecular masses in the range from 2.5 to 9 kDa, which was similar to Co peak in the
- range of molecular masses from 1.3-6.8 kDa reported for liver of juvenile yellow perch

335 (Caron et al., 2018).

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

336	With the increasing cytosolic Co concentrations, a marked increase of Co quantity was
337	observed in the HMM peak, with a maximum of molecular mass equal to 180 kDa, as
338	best seen in the fish from the Krka Knin location in the spring sampling (Fig. 2a).
339	Important role of Co, as an essential element, in fish organism is associated with its
340	contribution to cobalamine (vitamin B12) structure (Blust, 2012), which molecular
341	mass equals to 1.3 kDa (Kirschbaum, 1981). In contrast to previous findings for
342	European and Vardar chub liver, where Co elution was observed in the region of
343	biomolecules of VLMM, below 2.5 kDa (Krasnići et al., 2013, 2018), in brown trout
344	Co elution in that molecular mass region, which would confirm Co association to
345	cobalamin in hepatic cytosol, was not seen.

346 *3.2.2. Copper*

347 Copper is essential metal and it has a function as cofactor in many enzymes (Mogobe et

al., 2015). Copper had similar distribution profile to Cd (Fig. 1a), but it was eluted in

349 one additional peak between two peaks observed for Cd (Fig. 2b, Table 3). The first Cu

350 peak was located in HMM biomolecule region, at elution time from the 14th to 17th

351 minute which corresponded to biomolecules of molecular masses in the range from

352 ~500 to 1000 kDa. The second, shoulder-shaped, Cu peak was located in HMM

biomolecule region, at elution time from the 18th to 24th minute, and covered

biomolecules of molecular masses in the range from ~85 to 400 kDa. Contrary to

355 brown trout liver, Cu elution was not observed in HMM region in the previous studies

on European and Vardar chub liver (Krasnići et al., 2013, 2018). The third Cu peak was

357 located in the LMM biomolecule region, at elution time from the 29th to 34th minute,

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

which corresponded to biomolecules of molecular masses in the range from 7 to 24kDa.

360 The elution of Cu was most pronounced in the LMM peak, with a maximum of

361 molecular mass equal to 15 kDa, same as reported for the liver of European and Vardar

362 chub (Krasnići et al., 2013, 2018), of juvenile yellow perch (Caron et al., 2018), of

363 European eel (Van Campenhout et al., 2008), and of gibel carp (Van Campenhout et al.,

364 2010). Elution time of Cu-LMM peak coincided with the elution time of MT standard

365 (Table 2), so it can be presumed that Cu in the hepatic cytosol was predominantly

366 bound to MTs. However, comparison of Cu distribution profiles at lower and higher

367 levels of Cu bioaccumulation revealed that, although increase of eluted Cu quantity was

368 more obvious in LMM region, as also reported for European and Vardar chub liver

369 (Krasnići et al., 2013, 2018), it was also present in HMM region in brown trout liver

370 with higher cytosolic Cu concentrations (Fig. 2b).

371 *3.2.3. Iron*

372 Iron is an essential metal and has numerous roles in physiological functions of fish and

373 other organisms, and one of its most important functions is participation in oxygen

transport (Mogobe et al., 2015). Iron was eluted in three peaks (Fig. 3a, Table 3). The

375 first broad Fe peak was located in HMM biomolecule region, at elution time from the

376 14th to 21st minute which corresponded to biomolecules of molecular masses in the

377 range from ~200 to 1000 kDa. It can be presumed that this first peak in HMM region,

378 with a maximum at ~380 kDa included iron storage protein ferritin (450 kDa), which is

379 predominantly present in hepatic tissue and which additionally serves for keeping Fe in

380 soluble, nontoxic form within the cells (Bury et al., 2012; Martin-Antonio et al., 2009;

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

381	Szpunar and Lobinski, 1999). The second Fe peak was located in MMM biomolecule
382	region, at elution time from the 24 th to 28 th minute, and covered biomolecules of
383	molecular masses in the range from ~30 to 85 kDa, which could reflect Fe binding to
384	various proteins of different functions, such as blood protein haemoglobin (65 kDa) and
385	enzyme catalase (60 kDa) (Martin-Antonio et al., 2009). The third Fe peak was located
386	in the VLMM biomolecule region, at elution time from the 32 nd to 35 th minute which
387	corresponded to biomolecules of molecular masses in the range from \sim 5 to 10 kDa. The
388	first two peaks were also previously observed in the liver of European and Vardar chub
389	(Krasnići et al., 2013, 2018). The difference between species was revealed in the fact
390	that, unlike brown trout, in the European and Vardar chub liver Fe binding to VLMM
391	biomolecules was not noticed (Krasnići et al., 2013, 2018).
392	An increase in the quantity of eluted Fe as a consequence of higher cytosolic Fe
393	concentrations in the brown trout liver was observed in all three peaks, but was
394	somewhat higher in HMM region, with a maximum of molecular mass equal to ~ 380
395	kDa, as best seen in the fish from the Krka Knin location in the autumn sampling (Fig.
396	3a). The same Fe increase in HMM peak was also reported for European and Vardar
397	chub liver (Krasnići et al., 2013, 2018), which is consistent with the function of ferritin
398	in Fe storage in hepatic tissue.

399 *3.2.4. Manganese*

- 400 Manganese is a metal that has essential function in activities of various enzymes
- 401 (Mogobe et al., 2015). Manganese was seemingly eluted in only one rather broad peak
- 402 (Fig. 3b, Table 3), covering biomolecules from high to low molecular masses.
- 403 However, by more careful insight it can be seen that this peak could be divided into

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

404	four narrower peaks. The first two Mn peaks were located in HMM biomolecule region,
405	the first one at elution time from the 14 th to 17 th minute, and the second one at elution
406	time from the 18 th to 23 rd minute. These two peaks corresponded to biomolecules of
407	molecular masses in the range from ~500 to 1000 kDa and from ~100-400 kDa,
408	respectively. The third Mn peak was located in MMM biomolecule region, at elution
409	time from the 23 rd to 26 th minute, and covered biomolecules of molecular masses in the
410	range from \sim 50 to 110 kDa. This range included molecular masses of well known
411	transport proteins: albumin (66 kDa, Table 2), which participates in Mn transport from
412	intestine to liver (Schäfer, 2004), and transferrin (80 kDa, Martin-Antonio et al., 2009),
413	which binds Mn in liver and transfers it to the other organs (Schäfer, 2004). The fourth
414	Mn peak was located in the LMM biomolecule region, at elution time from the 26 th to
415	31 st minute which corresponded to biomolecules of molecular masses in the range from
416	~15 to 50 kDa. The distribution profile of Mn previously reported for the liver of
417	European and Vardar chub was very similar to that of brown trout presented here, with
418	the exception that it did not contain the first HMM peak, covering biomolecules of 500-
419	1000 kDa (Krasnići et al., 2013, 2018).
420	The presence of Mn was mostly comparable in all four peaks, same as the increase of

- 421 eluted Mn quantity due to higher Mn bioaccumulation in brown trout liver (Fig. 3b).
- 422 *3.2.5. Molybdenum*
- 423 Molybdenum is an important micronutrient because it acts as a catalytic centre for more

424 than 50 enzymes (Ricketts et al., 2015). Molybdenum was eluted in two clear peaks

- 425 (Fig. 4a, Table 3). The first, much higher Mo peak was located in HMM biomolecule
- 426 region, at elution time from the 17th to 23rd minute, which corresponded to

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

427	biomolecules of molecular masses in the range from ~100 to 500 kDa, with a maximum
428	at ~230 kDa. It was consistent with previous reports for European and Vardar chub
429	liver (Krasnići et al., 2013, 2018), which suggested that this Mo peak included
430	molecular masses of enzymes that contain Mo as cofactor, for example aldehyde
431	oxidase (130 kDa, Uchida et al., 2003), sulphite oxidase (120 kDa, Johnson and
432	Rajagopalan, 1976) and Fe-Mo flavoprotein xanthine oxidase (275 kDa, Truglio et al.,
433	2002). The second and much lower Mo peak was located in the VLMM biomolecule
434	region, at elution time from the 34 th to 37 th minute which corresponded to biomolecules
435	of molecular masses in the range from ~3 to 7 kDa with maximum at 5 kDa, which was
436	also previously reported for European and Vardar chub liver (Krasnići et al., 2013,
437	2018).

438 The increase of eluted Mo quantity due to higher Mo bioaccumulation in brown trout

- 439 liver was observed in both peaks, but was somewhat more pronounced in HMM peak
- 440 (Fig. 4a).

441 *3.2.6.* Selenium

442 Selenium is an essential nonmetal and a constitutive part of glutathione peroxidase,

443 whereas in a conjunction with vitamin E it contributes to avoidance of nutritional

444 muscular dystrophy (Watanabe et al., 1997). Selenium was eluted in four peaks (Fig.

445 4b, Table 3). The first two poorly resolved Se peaks were located in HMM biomolecule

region, at elution times from the 14th to 17th minute and from the 20th to 24th minute,

447 respectively, and were barely visible. The elution times of these two peaks covered

- 448 biomolecules in the range from ~500 to 1000 kDa and from ~85-230 kDa, respectively.
- 449 The third and fourth Se peaks were much better resolved and higher, and located in the

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

450	VLMM biomolecule region at elution times from the 35 th to 38 th minute and from the
451	40 th to 44 th minute, respectively. These peaks covered biomolecules of molecular
452	masses in the range from 2.5 to 5 kDa and from 0.5 to 1.5 kDa, respectively.
453	The most evident feature of hepatic Se in the cytosolic fraction was association with
454	biomolecules of molecular masses lower than 5 kDa, and with increasing cytosolic Se
455	concentrations, a marked increase of Se quantity was observed precisely in these two
456	VLMM peaks, with maxima of molecular masses equal to ~1 kDa and ~3 kDa. It can
457	be presumed that these peaks contained seleno-compounds of rather low molecular
458	masses, such as those efficient in a defence against oxidative stress, like
459	selenomethionine (~0.2 kDa; Klotz et al., 2003) or recently identified organic Se
460	compound in tuna (Thunnus orientalis), selenoneine (~0.5 kDa; Yamashita and
461	Yamashita, 2010; Yamashita et al., 2012). Such Se association was much more
462	noticeable in the previous studies on gills than on the liver of European and Vardar
463	chub (Krasnići et al., 2013, 2014, and 2018). In European and Vardar chub liver, the
464	large portions of Se were eluted in the region of molecular masses from 10 to 60 kDa,
465	possibly associated to some Se-containing enzymes (Krasnići et al., 2013, 2018),
466	whereas in the brown trout liver there was no clear indication of such Se association.
467	3.2.7. Zinc

468 Zinc is an essential metal which has structural and catalytic roles in many proteins and

469 enzymes. It is very important for gene expression and cell growth (Mogobe et al.,

- 470 2015). Zinc was eluted in three peaks (Fig. 5, Table 3). The first two Zn peaks were
- 471 located mainly within HMM biomolecule region, at elution times from the 14th to 17th
- 472 minute and from the 18th to 29th minute, respectively. The elution times of these two

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

473	peaks covered biomolecules in the wide ranges of molecular masses, from ~500 to
474	1000 kDa and from ~20-400 kDa, respectively. The third Zn peak was located in the
475	LMM biomolecule region at elution times from the 30^{th} to 33^{rd} minute and covered
476	biomolecules of molecular masses in the range from 9 to 19 kDa. Comparable to Cd
477	and Cu, the elution time of LMM peak maximum coincided with the elution time of
478	MT standard (Table 2). Similar peak was also observed in the liver of European and
479	Vardar chub (Krasnići et al., 2013, 2018), of European eel (Van Campenhout et al.,
480	2008), and of gibel carp (Van Campenhout et al., 2010), which is consistent with
481	important role that MTs have in homeostasis of essential metals, such as Zn and Cu,
482	and in detoxification of toxic metals, such as Cd (Huang et al., 2004).
483	Among three peaks, Zn presence was most pronounced in the middle peak in the HMM
484	region (~20-400 kDa), with the maximum of molecular mass around ~100 kDa, similar
485	as reported for Zn in European chub liver (Krasnići et al., 2013). Some well known Zn-
486	containing proteins are encompassed by that molecular mass region, such as alcohol
487	dehydrogenase (150 kDa, Table 2, Szpunar and Lobinski, 1999). Furthermore,
488	increased Zn bioaccumulation in the liver of brown trout resulted with increased
489	quantity of Zn precisely in that molecular mass region. It was best seen in the fish from

490 the Krka River source in the autumn sampling.

491

492 **4.** Conclusions

493 Based on HR ICP-MS analyses of trace elements in the fractions of hepatic cytosol of

- 494 brown trout, which were obtained by separation using SEC-HPLC, we were able to
- 495 define the molecular masses of cytosolic compounds that bind highly toxic metals Cd

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

496 and Tl, as well as seven essential elements (Co, Cu, Fe, Mn, Mo, Se and Zn). 497 Association of Cd, Cu and Zn to MTs, which was previously well described for some 498 other fish species, was now also confirmed for brown trout liver. Comparison of the 499 results obtained at different sites and in different seasons, as well as considerations of 500 some physiological factors, such as sex, indicated that cytosolic distributions of 501 analyzed trace elements among biomolecules of different molecular masses probably 502 depended mainly on the level of trace element bioaccumulation in the liver. Variations 503 that could be associated to the other factors were not observed. Additionally, several 504 differences were observed in trace element distributions within hepatic cytosol of 505 brown trout in comparison to previously published information for European and 506 Vardar chub liver. Features that were observed only in brown trout liver included Cd 507 and Cu elution in the region of high molecular mass biomolecules (above 500 and 100 508 kDa, respectively), absence of Co association with biomolecules of molecular masses 509 below 2.5 kDa, Fe elution in the region of compounds of molecular masses below 10 510 kDa, and almost exclusive Se association with biomolecules of molecular masses below 511 5 kDa. Such differences indicated possible existence of different detoxification 512 strategies and consequently different susceptibility to metal exposure in various fish 513 species.

514

515 Acknowledgements

This study was carried out within the project "Accumulation, subcellular mapping and
effects of trace metals in aquatic organisms" (CSF Research project no.: IP-09-20144255), financed by Croatian Science Foundation (CSF). The financial support of the

- 519 Ministry of Science and Education of the Republic of Croatia for institutional funding
- 520 of the Laboratory for Biological Effects of Metals is also acknowledged. The authors
- 521 would also like to thank Dr. Damir Valić, Dr. Damir Kapetanović and Jakov Žunić,
- 522 DVM, for invaluable assistance in fish sampling.
- 523

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

524 **References**

- 525 Blust, R., 2012. Cobalt, in: Wood, C.M., Farrell, A.P., Brauner, C.J. (Eds.), Fish
- 526 physiology: Homeostasis and Toxicology of Essential Metals, vol. 31A. Academic,
- 527 London, pp. 291-326.
- 528 Bonneris, E., Giguère, A., Perceval, O., Buronfosse, T., Masson, S., Hare, L.,
- 529 Campbell, P.G.C., 2005. Sub-cellular partitioning of metals (Cd, Cu, Zn) in the gills
- 530 of a freshwater bivalve, *Pyganodon grandis*: role of calcium concretions in metal
- 531 sequestration. Aquat. Toxicol. 71, 319-334.
- 532 Bury, N.R., Boyle, D., Cooper, C.A., 2012. Iron, in: Wood, C.M., Farrell, A.P.,
- 533 Brauner, C.J. (Eds.), Fish physiology: Homeostasis and Toxicology of Essential
- 534 Metals, vol. 31A. Academic, London, pp. 201-251.
- 535 Caron, A., Rosabal, M., Drevet, O., Couture, P., Campbell, P.G.C., 2018. Binding of
- trace elements (Ag, Cd, Co, Cu, Ni and Tl) to cytosolic biomolecules in livers of
- 537 juvenile yellow perch (*Perca flavescens*) collected from lakes representing metal
- 538 contamination gradients. Environ. Toxicol. Chem. 37, 576-586.
- 539 Dragun, Z., Filipović Marijić, V., Kapetanović, D., Valić, D., Vardić Smrzlić, I.,
- 540 Krasnići, N., Strižak, Ž., Kurtović, B., Teskeredžić, E., Raspor, B., 2013.
- 541 Assessment of general condition of fish inhabiting a moderately contaminated
- 542 aquatic environment. Environ. Sci. Pollut. Res. 20, 4954-4968.
- 543 Dragun, Z., Filipović Marijić, V., Krasnići, N., Ivanković, D., Valić, D., Žunić, J.,
- 544 Kapetanović, D., Vardić Smrzlić, I., Redžović, Z., Grgić, I., Erk, M., 2018. Total

545

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout

- 546 Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka. Ecotox. 547 Environ. Safe. 147, 537-549. 548 Dragun, Z., Krasnići, N., Strižak, Ž., Raspor, B., 2012. Lead concentration increase in 549 the hepatic and gill soluble fractions of European chub (Squalius cephalus) – an 550 indicator of increased lead exposure from the river water. Eviron. Sci. Pollut. Res. 551 19, 2088-2095. 552 Dragun, Z., Tepić, N., Krasnići, N., Teskeredžić, E., 2016. Accumulation of metals 553 relevant for agricultural contamination in gills of European chub (Squalius 554 cephalus). Environ. Sci. Pollut. Res. 23, 16802-16815. 555 Fiket, Ž., Roje, V., Mikac, N., Kniewald, G., 2007. Determination of arsenic and other 556 trace elements in bottled waters by high resolution inductively coupled plasma mass 557 spectrometry. Croat. Chem. Acta 80, 91-100. Filipović Marijić, V., Kapetanović, D., Dragun, Z., Valić, D., Krasnići, N., Redžović, 558 559 Z., Grgić, I., Žunić, J., Kružlicová, D., Nemeček, P., Ivanković, D., Vardić Smrzlić, 560 I., Erk, M., 2018. Influence of technological and municipal wastewaters on 561 vulnerable karst riverine system, Krka River in Croatia. Environ. Sci. Pollut. Res. 562 25, 4715-4727.
- Filipović Marijić, V., Raspor, B., 2012. Site-specific gastrointestinal metal variability in
 the relation to the gut content and fish age of indigenous European chub from the
 Sava River. Water Air Soil Pollut. 223, 4769-4783.

566	Goenaga Infante, H., Van Campenhout, K., Blust, R., Adams, F.C., 2006. Anion-
567	exchange high performance liquid chromatography hyphenated to inductively
568	coupled plasma-isotope dilution-time-of-flight mass spectrometry for speciation
569	analysis of metal complexes with metallothionein isoforms in gibel carp (Carassius
570	auratus gibelio) exposed to environmental metal pollution. J. Chromatogr. A 1121,
571	184-190.
572	HRN EN 14011, 2005. Fish Sampling by Electric Power [Uzorkovanje riba električnom
573	strujom].
574	Huang, Z.Y., Shen, J.C., Zhuang, Z.X., Wang, X.R., Lee, F.S.C., 2004. Metallothionein

- as a biomarker for mercury in tissues of rat fed orally with cinnabar. Appl.
- 576 Organomet. Chem. 18, 255-261.
- Jaiswal, A.K., Sharma, D., Krishna, K., Vidua, R., Kumar, A., 2012. Thallium
 poisoning: Analytical aspects with brief overview. J-SIMLA 4, 68-75.
- 579 Johnson, J.L., Rajagopalan, K.V., 1976. Purification and properties of sulphite oxidase
- 580 from human liver. J. Clin. Invest. 58, 543-550.
- 581 Kirschbaum, J., 1981. Cyanocobalamin, in: Florey, K. (Ed.), Analytical profiles of drug
- 582 substances, vol. 10. Academic, New York, pp. 183-288.
- 583 Klotz, L.-O., Kröncke, K.-D., Buchczyk, D.P., Sies, H., 2003. Role of copper, zinc,
- selenium and tellurium in the cellular defense against oxidative and nitrosative
- 585 stress. J. Nutr. 133, 1448S-1451S.

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

586	Krasnići, N., Dragun, Z., Erk, M., Ramani, S., Jordanova, M., Rebok, K., Kostov, V.,
587	2018. Size-exclusion HPLC analysis of trace element distributions in hepatic and
588	gill cytosol of Vardar chub (Squalius vardarensis Karaman) from mining impacted
589	rivers in north-eastern Macedonia. Sci. Total Environ. 613-614, 1055-1068.
590	Krasnići, N., Dragun, Z., Erk, M., Raspor, B., 2013. Distribution of selected essential
591	(Co, Cu, Fe, Mn, Mo, Se and Zn) and nonessential (Cd, Pb) trace elements among
592	protein fractions from hepatic cytosol of European chub (Squalius cephalus L.).
593	Environ. Sci. Pollut. Res. 20, 2340-2351.
594	Krasnići, N., Dragun, Z., Erk, M., Raspor, B., 2014. Distribution of Co, Cu, Fe, Mn, Se,
595	Zn and Cd among cytosolic proteins of different molecular masses in gills of
596	European chub (Squalius cephalus L.). Environ. Sci. Pollut. Res. 21, 13512-13521.
597	Kwong, R.W.M., Andreś, J.A., Niyogi, S., 2011. Effects of dietary cadmium exposure
598	on tissue-specific cadmium accumulation, iron status and expression of iron-
599	handling and stress-inducible genes in rainbow trout: influence of elevated dietary
600	iron. Aquat. Toxicol. 102, 1-9.
601	Luoma, S.N., Rainbow, P.S., 2008. Metal contamination in aquatic environments:
602	science and lateral management. Cambridge University Press, Cambridge, UK.
603	Martin-Antonio, B., Jimenez-Cantizano, R.M., Salas-Leiton, E., Infante, C., Manchado,
604	M., 2009. Genomic characterization and gene expression analysis of four hepcidin
605	genes in the redbanded seabream (Pagrus auriga). Fish Shellfish Immun. 26, 483-
606	491.

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

- Mason, A.Z., Jenkins, K.D., 1995. Metal detoxification in aquatic organisms, in:
- 608 Tessier, A., Turner, D. (Eds.), Metal Speciation and Bioavailability in Aquatic
- 609 Systems. -IUPAC Series on Analytical and Physical Chemistry of Environmental
- 610 Systems. J. Wiley & Sons, Chichester, UK, pp. 479-608.
- 611 McGeer, J.C., Niyogi, S., Smith, D.S., 2012. Cadmium, in: Wood, C.M., Farrell, A.P.,
- 612 Brauner, C.J. (Eds.), Fish Physiology: Homeostasis and Toxicology of Non-
- Essential Metals, vol. 31B. Elsevier Academic, London, pp. 125-184.
- Mogobe, O., Mosepele, K., Masamba, W.R.L., 2015. Essential mineral content of

615 common fish species in Chanoga, Okavango Delta, Botswana. Afr. J. Food Sci. 9,

- 616 480**-**486.
- 617 Peterson, G.L., Hokin, L.E., 1981. Molecular weight and stoichiometry of the sodium-
- and potassium-activated adenosine triphosphatase subunits. J. Biol. Chem. 256,
- 619 3751-3761.
- 620 Qu, R., Wang, X., Wang, Z., Wei, Z., Wang, L., 2014. Metal accumulation and

621 antioxidant defenses in the freshwater fish *Carassius auratus* in response to single

and combined exposure to cadmium and hydroxylated multi-walled carbon

- 623 nanotubes. J. Hazard. Mater. 275, 89-98.
- 624 Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., Li, X., 2018. Studies on
- seasonal pollution of heavy metals in water, sediment, fish and oyster from the
- 626 Meiliang Bay of Taihu Lake in China. Chemosphere 191, 626-638.

- 627 Rätz, H.-J., Lloret, J., 2003. Variation in fish condition between Atlantic cod (Gadus
- 628 *morhua*) stocks, the effect on their productivity and management implications. Fish.
- 629 Res. 60, 369-380.
- 630 Ricketts, C.D., Bates, W.R., Reid, S.D., 2015. The effects of acute waterborne exposure
- to sublethal concentrations of molybdenum on the stress response in rainbow trout,
- 632 Oncorhynchus mykiss. PLoS ONE 10, 1-22.
- 633 Santiago-Rivas, S., Moreda-Pineiro, A., Bermejo-Barrera, A., Bermejo-Barrera, P.,
- 634 2007. Fractionation metallothionein-like proteins in mussels with on line metal
- 635 detection by high performance liquid chromatography-inductively coupled plasma-
- optical emission spectrometry. Talanta 71, 1580-1586.
- 637 Schäfer, U., 2004. Manganese, in: Merian, E., Anke, M., Ihnat, M., Stoeppler, M.
- 638 (Eds.), Elements and Their Compounds in the Environment: Occurrence, Analysis
- and Biological Relevance, vol. 2., Metals and Their Compounds. Wiley-VCH,
- 640 Weinheim, pp. 901-930.
- 641 Szpunar, J., Lobinski, R., 1999. Species-selective analysis for metal-biomacromolecular
 642 complexes using hyphenated techniques. Pure Appl. Chem. 71, 899-918.
- 643 Truglio, J.J., Theis, K., Leimkühler, S., Rappa, R., Rajagopalan, K.V., Kisker, C., 2002.
- 644 Crystal structures of the active and alloxanthine inhibited forms of xanthine 645 dehydrogenase from *Rhodobacter capsulatus*. Structure 10, 115-125.
- 646 Uchida, H., Kondo, D., Yamashita, A., Nagaosa, Y., Sakurai, T., Fujii, Y., Fujishiro,
- 647 K., Aisaka, K., Uwajima, T., 2003. Purification and characterization of an

- alydehyde oxidase from *Pseudomonas sp.* KY 4690. FEMS Microbiol. Lett. 229,
 31-36.
- 650 Van Campenhout, K., Goenaga Infante, H., Goemans, G., Belpaire C., Adams, F.,
- Blust, R., Bervoets, L., 2008. A field survey of metal binding to metallothionein
- and other cytosolic ligands in liver of eels using an on-line isotope dilution method
- 653 in combination with size exclusion (SE) high pressure liquid chromatography
- 654 (HPLC) coupled to inductively coupled plasma time-of-flight mass spectrometry
- 655 (ICP-TOFMS). Sci. Total Environ. 394, 379-389.
- 656 Van Campenhout, K., Goenaga Infante, H., Hoff, P.T., Moens, L., Goemans, G.,
- 657 Belpaire C., Adams, F., Blust, R., Bervoets, L., 2010. Cytosolic distribution of Cd,
- 658 Cu and Zn, and metallothionein levels in relation to physiological changes in gibel
- 659 carp (*Carassius auratus gibelio*) from metal-impacted habitats. Ecotox. Environ.
- 660 Safe. 73, 296-305.
- Verbost, P.M., Van Rooij, J., Flik, G., Lock, R.A.C., Wendelaar Bonga, S.E., 1989. The
 movement of cadmium through freshwater trout branchial epithelium and its
 interference with calcium transport. J. Exp. Biol. 145, 185-197.
- von Tigerstrom, R.G., Razzell, W.E., 1968. Aldehyde dexydrogenase. II. Physical and
 molecular properties of the enzyme from *Pseudomonas aeruginosa*. J. Biol. Chem.
 243, 6495-6503.
- Watanabe, T., Kiron, V., Satoh, S., 1997. Trace minerals in fish nutrition. Aquaculture151, 185-207.

- 669 Yamashita, Y., Yamashita, M., 2010. Identification of a novel selenium-containing
- 670 compound, selenoneine, as the predominant chemical form of organic selenium in
- 671 the blood of a bluefin tuna. J. Biol. Chem. 285, 18134-18138.
- 672 Yamashita, Y., Yabu, T., Touhata, K., Yamashita, M., 2012. Purification and
- 673 characterization of glutathione peroxidase 1 in the red muscle of Pacific bluefin
- tuna *Thunnus orientalis*. Fisheries Sci. 78, 407-413.

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

		Sample No.	Total length / cm	Total mass / g	GSI / %	FCI / %	Sex*
	a Se	1	27.0	201.7	5.09	1.02	М
015	krk: oure	2	20.0	87.0	5.82	1.09	Μ
n 2	T S	3	26.1	182.1	4.46	1.02	Μ
tum		4	22.5	114.6	5.25	1.01	М
Aut	ćrk Knii	5	26.4	203.6	0.02	1.11	Μ
	<u> </u>	6	27.5	225.0	4.30	1.08	Μ
	ace	7	20.5	89.7	0.16	1.04	Μ
16	Krk: ouro	8	19.2	70.3	0.83	0.99	F
g 20	T S	9	18.3	66.8	0.55	1.09	F
ring		10	23.3	159.8	0.08	1.26	М
Sp	Krk: Knii	11	18.5	86.7	0.18	1.37	F
	ы́н	12	18.4	78.7	0.08	1.26	М

Table 1. Biometric characteristics of twelve specimens of brown trout (*Salmo trutta* Linnaeus, 1758) used in this study for analyses of distributions of trace elements in hepatic cytosol.

*M – male; F – female

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

Table 2. Molecular masses (MM), applied concentrations and elution times (t_e) of blue dextran, metallothionein standards and six proteins used as calibration standards for SuperdexTM 200 10/300 GL size exclusion column. Equation of calibration straight line was: Kav=-0.281×log MM+1.647.

	MM / kDa	Concentratio n / mg mL ⁻¹	t _e / min					
Blue dextran	2000	2	15.47					
Metallothionein stand	ards							
Metallothionein 1	6.15	1	32.32					
Metallothionein 2	6.15	1	31.22					
Protein standards for column calibration								
Carbonic anhydrase	29	3	29.72					
Bovine albumin	66	10	23.04					
Alcohol dehydrogenase	150	5	21.78					
β-amilase	200	4	20.38					
Apoferritin	443	10	17.84					
Thyroglobulin	669	8	16.08					

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

Table 3. Elution times (t_e) and molecular masses (MM) of biomolecules contained in cytosolic fractions of liver of brown trout (*Salmo trutta* Linnaeus, 1758) in which respective elements were eluted after separation by SEC-HPLC (Superdex 200 10/300 GL column). Table contains peak maxima of each analyzed element (i.e., the information on fractions with the highest trace element concentrations), as well as peak widths presented within the brackets.

Element		^a HMM 1		^a HMM 2		^b MMM		^c LMM		^d VLMM 1		^d VLMM 2	
		t _e / min	MM / kDa	t _e / min	MM / kDa	t _e / min	MM / kDa	t _e / min	MM / kDa	t _e / min	MM / kDa	t _e / min	MM / kDa
Highly toxic elements	Cd	15 (14-17)	818 (1052-494)					31 (29-34)	15 (24-7)				
	Tl			22 (19-24)	140 (299-85)					34 (32-36)	7 (11-4.1)		
Essential elements	Co			21 (18-24)	180 (384-85)	26 (24-29)	51 (85-24)			35 (33-38)	5 (9-2.5)		
	Cu	15 (14-17)	818 (1052-494)	19 (18-24)	299 (384-85)			31 (29-34)	15 (24-7)				
	Fe			18 (14-21)	384 (1052-180)	26 (24-28)	51 (85-31)			34 (32-35)	7 (11-5)		
	Mn	16 (14-17)	636 (1052-494)	21 (18-23)	180 (384-109)	24 (23-26)	85 (109-51)	29 (26-31)	24 (51-15)				
	Mo			20 (17-23)	232 (494-109)					35 (34-37)	5 (7-3.2)		
	Se	15 (14-17)	818 (1052-494)	22 (20-24)	140 (232-85)					37 (35-38)	3.2 (5-2.5)	42 (40-44)	0.9 (1.5-0.5)
	Zn	15 (14-17)	818 (1052-494)	23 (18-29)	109 (384-24)			31 (30-33)	15 (19-9)				

^aHMM peak – a peak of trace element concentration in the cytosolic fractions with a maximum in high molecular mass protein region (>100 kDa) ^bMMM peak – a peak of trace element concentration in the cytosolic fractions with a maximum in medium molecular mass protein region (30-100 kDa) ^cLMM peak – a peak of trace element concentration in the cytosolic fractions with a maximum in low molecular mass protein region (10-30 kDa)

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

^dVLMM peak – a peak of trace element concentration in the cytosolic fractions with a maximum in very low molecular mass protein region (<10 kDa)

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

10 Figure captions

- 11 Figure 1. Distribution profiles of two highly toxic metals (a Cd, b Tl) among
- 12 cytosolic biomolecules of different molecular masses in the liver of brown trout (Salmo
- 13 trutta) from two sites at the Krka River (Krka River source and Krka River downstream
- 14 of Knin town) in two sampling campaigns (autumn: October 2015; spring: May 2016).
- 15 The results are presented as nanograms of metals eluted at the specific elution times,
- 16 which can be associated to corresponding molecular masses based on the column
- 17 calibration (Table 2, Table 3). Twelve fish in total were used for these analyses, three
- 18 per each site in each season. Total cytosolic concentrations of analyzed elements in the
- 19 liver of brown trout are presented within each figure (taken from Dragun et al., 2018).

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

- Figure 2. Distribution profiles of two essential metals (a Co, b Cu) among cytosolic
- 24 biomolecules of different molecular masses in the liver of brown trout (*Salmo trutta*)
- 25 from two sites at the Krka River (Krka River source and Krka River downstream of
- 26 Knin town) in two sampling campaigns (autumn: October 2015; spring: May 2016).
- 27 The results are presented in the same way as in Figure 1.
- 28

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

- 31 Figure 3. Distribution profiles of two essential metals (a Fe, b Mn) among cytosolic
- 32 biomolecules of different molecular masses in the liver of brown trout (*Salmo trutta*)
- 33 from two sites at the Krka River (Krka River source and Krka River downstream of
- 34 Knin town) in two sampling campaigns (autumn: October 2015; spring: May 2016).
- 35 The results are presented in the same way as in Figure 1.
- 36

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

- **Figure 4.** Distribution profiles of two essential elements (a Mo, b Se) among
- 40 cytosolic biomolecules of different molecular masses in the liver of brown trout (Salmo
- 41 *trutta*) from two sites at the Krka River (Krka River source and Krka River downstream
- 42 of Knin town) in two sampling campaigns (autumn: October 2015; spring: May 2016).
- 43 The results are presented in the same way as in Figure 1.
- 44

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

Dragun, Z., Krasnići, N., Kolar, N., Filipović Marijić, V., Ivanković, D., & Erk, M. (2018). Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry. *Chemosphere*, 207, 162–173. https://doi.org/10.1016/j.chemosphere.2018.05.088

Figure 5. Distribution profiles of essential metal Zn among cytosolic biomolecules of different molecular masses in the liver of brown trout (*Salmo trutta*) from two sites at the Krka River (Krka River source and Krka River downstream of Knin town) in two sampling campaigns (autumn: October 2015; spring: May 2016). The results are presented in the same way as in Figure 1. Unlike the other analyzed elements (Fig. 1-4), the results for only 10 fish are presented for Zn. Two samples from spring season were excluded from interpretation due to evident Zn contamination during the sample

- 54 processing.
- 55

