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1. Introduction 

        

     

Figure 1 Structures of the studied DABCO-cyanine dyes 

In recent years, structurally diversified low molecular weight derivatives that are able to 

recognize and delineate tiny structural distinctions of DNA/RNA have attracted increasing 

interest, due to their various potential applications in many areas [1-5]. Therefore, the design 

and discovery of new low molecular weight molecules targeting DNA/RNA has been a 

subject of extensive studies. The underlying noncovalent interactions involved in these 

processes of specific recognition mainly combine few different binding modes, among which 

intercalation is highly represented [6]. Within this context, aromatic cationic dyes with the 

ability to penetrate through the cell membranes are of great interest. The tendency of such 

lipophilic cationic dyes to preferentially retain in the mitochondrial space makes them 

important group of fluorescent probes for the study of mitochondrial lipid bilayer, membrane-

permeability and specific staining of these organelles [7-9]. Shortcomings of such dyes are 

most commonly related to effects on mitochondrial respiration (electron transport chain 
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activity), (photo)chemical stability (photobleaching), selectivity and high toxicity [10-14]. 

Although beneficial for the photo-chemotherapeutic applications, the singlet oxygen, O2 (
1∆g), 

as a reactive intermediate generated from energy transfer causes severe mitochondrial 

dysfunction [15]. Consequently, to overcome problems of probing the morphology and 

functions of mitochondria, the development of novel dyes with improved photochemical 

features is still a huge challenge. In that sense, 1,4-diazabicyclo[2.2.2]octane (DABCO) has 

been shown to be an efficient electron transfer quencher able to quench the singlet oxygen, 

stabilize fluorescence and reduce photobleaching effect [16]. Moreover, the DABCO-based 

species, with the ability to have two positive charges (with both nitrogen atoms reacted), have 

higher fixed charge density than other commonly used cationic antimicrobial agents. This 

increases their ability to specifically target mitochondria due to their high membrane potential 

Δψmito = 150-180 mV [8]. 

Encouraged by our previous research efforts in design of specific mitochondrial fluorescent 

probes based on benzoxazolium and benzothiazolium derived dicationic monomethine 

cyanine dyes [17-19], we have prepared new series of lipophilic cyanine dyes equipped with 

several cationic quaternary ammonium moieties. This was achieved by introducing DABCO 

within the structures. Furthermore, to investigate the influence of the additional cationic 

charges to the mitochondrial uptake, DABCO was quaternized with methyl group or alkyl 

piperidine cation. Spectroscopic and isothermal titration calorimetry studies as well as MTT 

assay and subcellular localization using confocal laser scanning microscopy revealed the 

presented dyes combine very low cytotoxicity with efficient cellular uptake and remarkable 

fluorescent marking of mitochondria. 

2. Materials and methods 

2.1. Materials 
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Unless otherwise stated, all starting materials and solvents required for the synthesis of the 

DABCO cyanine dyes were purchased from Sigma-Aldrich, Organica Feinchemie GmbH 

Wolfen, Fluka, Alfa-Aesar, TCI Europe, Deutero GmbH, and used without any further 

purification. The solvents used for the spectroscopic analyses were purchased form Macron 

Fine Chemicals TM. All other starting materials and solvents were commercial products of 

analytical grade and were used without further purification. 

2.2 Synthesis and spectroscopic analysis of the dyes 

2.3. Analysis methods and equipment 

All products were characterized using various spectroscopic techniques. The progress of the 

reactions was monitored employing TLC (Merck F 254 silica gel; chloroform: methanol: 

acetic acid - 80:15:5). Recrystallization from methanol yielded analytical samples of the title 

cyanines. 1H-NMR and APT-NMR spectra of the compounds were recorded on a Brucker 

Avance III 500 MHz instrument in DMSO-d6 at room temperature. Chemical shifts were 

reported in ppm in δ-values with respect to tetramethylsilane (TMS) as an internal reference, 

or the corresponding peak of the deuterated solvent. Coupling constants JH-H were expressed 

in Hz. The structures of all intermediates were also evaluated on the target cyanine dyes. 

Melting point temperatures were evaluated on a Kofler bench and are uncorrected. Absorption 

and steady state fluorescence spectra of the unbound dyes were recorded in methanol 

solutions at room temperature, using 10-mm path-length quartz cuvettes on a Cecil Aurius CE 

3021 UV-Vis spectrophotometer and Perkin Elmer LS45 fluorescence spectrometer (fixed 

slits 10–10 nm) at room temperature. 

2.4. Synthetic approach to the DABCO monomethine cyanines and intermediate products 

2.4.1. Preparation of intermediates 2a-2c 
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1,4-diazabicyclo[2.2.2]octane DABCO (1.12 g, 10 mmol) were suspended in 30 mL diethyl 

ether, and methyl iodide 1a (0.94 mL, 15 mmol) or butyl iodide 1b (1.70 mL, 15 mmol) were 

added dropwise to it over 15 minutes with stirring. A white precipitate was formed, and the 

reaction mixture was further stirred for 30 minutes at room temperature and filtered under 

vacuum (Scheme 1). The products 2a and 2b were found to be highly hygroscopic, hence they 

were stored in a desiccator. 

1-methyl-1,4-diazabicyclo[2.2.2]octan-1-ium iodide (2а); yield of crude product = 87 % - 

(white powder), m.p. =. 213-215 oC, lit. m.p. = 220 oC [20-23]; 1H-NMR (500 MHz, DMSO-

d6, δ/ppm): 2.98 (s, 3H, CH3-N), 2.99-3.05 (m, 6H, 3×CH2), 3.26-3.32 (m, 6H, 3×CH2); 
13C-

NMR (125 MHz, DMSO-d6, δ/ppm): 44.68, 50.77, 50.81, 50.84, 53.21, 53.24, 53.26; 

1-butyl-1,4-diazabicyclo[2.2.2]octan-1-ium iodide (2b) [21]; yield of crude product = 83 % - 

(white powder), m.p. = 36-37 oC; 1H-NMR (500 MHz, DMSO-d6, δ/ppm): 0.92 (t, 3H, JH-H 

7.4, CH3-CH2), 1.30 (sext., 2H, JH-H 7.5, -CH2-CH2-CH3), 1.64 (m, 2H, CH2), 3.02 (t, 6H, JH-H 

7.7, 3×CH2), 3.20 (m, 2H, CH2), 3.29 (t, 6H, JH-H 7.1, 3×CH2); 
13C-NMR (125 MHz, DMSO-

d6, δ/ppm): 13.5, 19.25, 23.02, 44.64, 51.42, 51.45, 51.47, 62.96, 62.98, 63.01; 

1,4-diazabicyclo[2.2.2]octane 1 (5.61g, 50 mmol) and 1-(3-bromopropyl)-1-methylpiperidin-

1-ium bromide 1c (3.01 g, 10 mmol) [24] were dissolved in 50 mL methanol, and the reaction 

vessel was stored in dark place at room temperature for 1 week. Subsequently, the methyl 

alcohol was evaporated to 10-15 mL and 50 mL of acetone was added to it. The reaction 

mixture was placed in a freezer for 12 hours, after which the precipitated product 2c was 

filtered and stored in a desiccator (Scheme 1). 

1-(3-(1-methylpiperidin-1-ium-1-yl)propyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide (2c); 

yield = 79% - (white powder), m.p. > 300 oC; 1H NMR (DMSO-d6, 500 MHz) δ/ppm: 1.53-
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1.57 (2H, m, CH2), 1.79-1.85 (4H, m, 2×CH2), 2.22-2.28 (2H, m, CH2), 3.03-3.06 (6H, m, 

3×CH2), 3.10 (3H, s, CH3-N), 2.32-2.35 (2H, m, CH2), 3.39-3.46 (12H, m, 6×CH2); 
13C NMR 

(DMSO-d6, 125 MHz) δ/ppm: 15.29, 19.29, 20.53, 44.61, 51.76, 59.90, 60.29; 

2.4.2. Preparation of intermediates 3a, 3b 

Products 3a and 3b (Scheme 1) and N-quaternary intermediate chromophores required for 

their synthesis of the target polycationic DABCO cyanine dyes, were obtained via methods 

described in the literature [25-33]. 

2.4.3. Synthesis of the tetracationic dye A 

In a reaction vessel equipped with magnetic stirrer, (E)-2-((1-(3-iodopropyl)quinolin-4(1H)-

ylidene)methyl)-3-methylbenzo[d]oxazol-3-ium iodide 3a (1 g, 1.75 mmol) and 1-(3-(1-

methylpiperidin-1-ium-1-yl)propyl)-1,4-diazabicyclo[2.2.2]octan-1-ium bromide 3c ( 3.62 g, 

8.75 mmol) were dissolved in 20 mL 2-methoxyethanol, and the reaction mixture was heated 

at 135 оC for 3 hours with stirring. After cooling down to room temperature, 20 mL of 

methanol and 5 mL water were added to the crude product. Precipitated A dye was suction 

filtered and washed with diethyl ether (Scheme 1). The tetracationic product was purified by 

triple recrystallization from methanol. 

2.4.4. Synthesis of the tricationic B1, B2, and C cyanine dyes 

(E)-2-((1-(3-iodopropyl)quinolin-4(1H)-ylidene)methyl)-3-methylbenzo[d]oxazol-3-ium 

iodide 3a (1.14g, 2 mmol) or 2-((1-(3-iodopropyl)pyridin-4(1H)-ylidene)methyl)-3-

methylbenzo[d]thiazol-3-ium iodide 3b (1.07g, 2 mmol) and mono-N-quaternary derivative of 

1,4-Diazabicyclo[2.2.2]octane 2a (1.52g, 6 mmol) or 2b (1.78g, 6 mmol) were suspended in 5 

mL 2-methoxyethanol, and the reaction mixture was heated to reflux for 40 minutes with 

stirring. After cooling down to room temperature, 3 mL of N,N-dimethylformamide were 
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added, and the reaction vessel was placed in freezer for 2 hours. Precipitated DABCO dyes 

were suction filtered and washed with diethyl ether (Scheme 1). The tri-cationic products 

were purified by recrystallization from methanol. Chemical structures, yields and melting 

point temperatures are given in Table 1. 

 

Scheme 1. Synthetic approach to the DABCO cyanine dyes. 

Table 1. Chemical structures, yields and melting point temperatures of DABCO dyes. 

Dye X Heterocycle R A Yield (%) a m.p. (оC) b 

A O quinoline 
 

Br 40 249-251 

B1 O quinoline 
CH3 

I 92 213-214 

B2 S pyridine CH3 I 55 258-260 

C O quinoline C4C9 I 87 210-212 

a yield of pure product after recrystallization. b all ϑ values are uncorrected. 

(E)-1-(3-(4-((3-methylbenzo[d]oxazol-3-ium-2-yl)methylene)quinolin-1(4H)-yl)propyl)-4-(3-

(1-methylpiperidin-1-ium-1-yl)propyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium dibromide 

diiodide (A); yield of crude product = 40 % - (orange solid), m.p. = 249-251 оС; 1H-NMR 

(500 MHz, DMSO-d6, δ/ppm): 1.50-1.63 (m., 2H, CH2), 1.81 (m, 2H, CH2), 2.18-2.31 (m., 

2H, CH2), 2.31-2.44 (m., 2H, CH2), 3.07 (s, 3H, CH3-N), 3.34-3.43 (m, 6H, 3×CH2), 3.53-

3.64 (m., 2H, CH2), 3.74-3.85 (m., 2H, CH2), 3.90 (s, 3H, CH3-N), 3.97 (s, 8H, 4×CH2), 4.67 

(t, 2H, JH-H 6.9, CH2), 6.35 (s, 1H, CH), 7.42 (td, 1H, JH-H 1.0, 8.1, ArH), 7.52 (td, 1H, JH-H 
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0.8, 7.8, ArH), 7.69 (d, 1H, JH-H 7.8, ArH), 7.72-7.80 (m, 1H, ArH), 7.83 (d, 1H, JH-H 7.9, 

ArH), 7.97 (d, 1H, JH-H 7.4, ArH), 8.03 (d, 1H, JH-H 7.8, ArH), 8.23 (d, 1H, JH-H 8.8, ArH), 

8.51 (d, 1H, JH-H 7.4, ArH), 8.82 (d, 1H, JH-H 7.9, ArH); APT-NMR(75 MHz, DMSO-d6, 

δ/ppm): 16.06, 19.74, 20.99, 31.11, 39.15, 39.43, 39.71, 39.99, 40.27, 40.55, 40.83, 48.60, 

51.19, 60.88, 75.03, 109.60, 111.41, 118.39, 123.87, 125.00, 127.01, 131.82, 133.93, 137.66, 

143.97, 146.58, 150.57, 162.12; UV/VIS (methanol, 1×10-5 mol dm-3): λmax = 482 nm, λfl = 

565 nm; 

(E)-1-methyl-4-(3-(4-((3-methylbenzo[d]oxazol-3-ium-2-yl)methylene)quinolin-1(4H)-

yl)propyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium iodide (B1); yield of crude product = 92 

% - (orange solid), m.p. = 213-214 оС; 1H-NMR (500 MHz, DMSO-d6, δ/ppm): 2.28-2.38 (m, 

2H, CH2), 3.27 (s, 3H, CH3-N), 3.67-3.73 (m, 2H, CH2), 3.87 (s, 10H, 5×CH2), 4.65 (t, 2H, JH-

H 7.2, CH2), 6.34 (s, 1H, CH), 7.40-7.45 (m, 1H, ArH), 7.48-7.54 (m, 1H, ArH), 7.68 (d, 1H, J 

7.9, ArH), 7.72-7.78 (m, 1H, ArH), 7.82 (d, 1H, JH-H 8.1, ArH), 7.97 (d, 1H, JH-H 7.3, ArH), 

7.99-8.03 (m, 1H, ArH), 8.17 (d, 1H, JH-H 8.8, ArH), 8.45 (d, 1H, JH-H 7.4, ArH), 8.81 (d, 1H, 

JH-H 8.3, ArH); APT-NMR (75 MHz, DMSO-d6, δ/ppm): 19.84, 21.98, 30.67, 50.42, 50.65, 

52.43, 60.51, 74.58, 109.14, 110.94, 117.86, 123.44, 124.57, 126.11, 126.33, 126.56, 129.78, 

131.37, 133.45, 137.15, 143.54, 146.12, 150.10, 161.66; UV/VIS (methanol, 1×10-5 mol dm-

3): λmax = 482 nm, λfl = 566 nm; 

1-methyl-4-(3-(4-((3-methylbenzo[d]thiazol-3-ium-2-yl)methylene)pyridin-1(4H)-yl)propyl)-

1,4-diazabicyclo[2.2.2]octane-1,4-diium iodide  (B2); yield of crude product = 55 % - (yellow 

solid), M.p. = 258-260 оС; 1H-NMR (500 MHz, DMSO-d6, δ/ppm): 2.25-2.41 (m, 2H, CH2), 

3.29 (m, 7H, 2×CH2 + CH3-N), 3.50-3.63 (m, 2H, CH2), 3.76 (s, 3H, CH3-N), 3.88 (s, 8H, 

4×CH2), 4.31 (t, 2H, JH-H 7.0, CH2), 6.32 (s, 1H, CH), 7.30-7.38 (m, 1H, ArH), 7.45 (d, JH-H 

7.2, 2H, 2×ArH), 7.51-7.59 (m, 1H, ArH), 7.65 (d, 1H, JH-H 8.0, ArH), 7.95 (dd, 1H, JH-H 0.6, 
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7.8, ArH), 8.36 (d, 1H, JH-H 7.1, ArH); APT-NMR (75 MHz, DMSO-d6, δ/ppm): 23.27, 

33.03, 50.60, 51.52, 52.41, 54.21, 60.04, 89.79, 112.30, 122.65, 123.37, 123.78, 127.96, 

140.49, 141.27, 150.57, 157.61; UV/VIS (methanol, 1×10-5 mol dm-3): λmax = 453 nm, λfl = 

487 nm; 

 (E)-1-butyl-4-(3-(4-((3-methylbenzo[d]oxazol-3-ium-2-yl)methylene)quinolin-1(4H)-

yl)propyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium iodide (C); yield of crude product = 87 % 

- (orange solid), m.p. = 210-212 оС; 1H-NMR (500 MHz, DMSO-d6, δ/ppm): 0.94 (t, 3H, JH-H 

7.3, CH3-CH2), 1.33 (quint., 2H, JH-H 7.4, CH2), 1.62-1.72 (m, 2H, CH2), 2.27-2.35 (m, 2H, 

CH2), 3.47-3.53 (m, 2H, CH2), 3.68-3.74 (m, 2H, CH2), 3.85 (s, 8H, 4×CH2), 3.90 (s, 3H, 

CH3-N), 4.64 (t, 2H, JH-H 6.8, CH2), 6.34 (s, 1H, CH), 7.40-7.45 (m, 1H, ArH), 7.50-7.55 (m, 

1H, ArH), 7.69 (d, 1H, JH-H 7.8, ArH), 7.73-7.78 (m, 1H, ArH), 7.82 (d, 1H, JH-H 8.0, ArH), 

7.97 (d, 1H, JH-H 7.4, ArH), 8.02 (d, 1H, JH-H 7.3, ArH), 8.19 (d, 1H, JH-H 8.7, ArH), 8.45 (d, 

1H, JH-H 7.4, ArH), 8.82 (d, 1H, JH-H 8.4, ArH); APT-NMR (75 MHz, DMSO-d6, δ/ppm): 

13.47, 18.99, 22.0, 23.31, 30.65, 50.41, 50.75, 60.47, 63.24, 74.56, 109.14, 110.96, 117.88, 

123.41, 124.54, 126.08, 126.29, 126.29, 126.54, 131.35, 133.44, 137.18, 143.50, 146.10, 

150.10, 161.65; UV/VIS (methanol, 1×10-5 mol dm-3): λmax = 482 nm, λfl = 565 nm; 

2.5 Study of DNA/RNA interactions 

2.5.1 UV/Visible Spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy 

The UV/Vis spectra were recorded on a Varian Cary 100 Bio spectrophotometer; 

fluorescence spectra on a Varian Cary Eclipse fluorescence spectrophotometer and CD 

spectra were collected with a Jasco J-810 spectropolarimeter at 25 ºC using 1 cm path quartz 

cuvettes. 
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The polynucleotides: p(dAdT)2, p(dGdC)2, p(rA-rU), and calf thymus (ct)-DNA (Sigma-

Aldrich, St. Louis, USA) were dissolved in sodium cacodylate buffer, I = 0.05 mol dm-3, 

pH=7, ct-DNA was additionally sonicated and filtered through a 0.45 µm filter. Aqueous 

solutions of compounds were buffered to pH=7 (sodium cacodylate buffer, I = 0.05 mol dm−3). 

The polynucleotide concentration was determined as the concentration of phosphates by UV 

absorption [34]. Spectrophotometric titrations were performed at pH = 7.0 (sodium cacodylate 

buffer, I = 0.05 mol dm-3) by adding portions of polynucleotide solution into the solution of 

the studied compound. Thermodynamic equilibrium is reached within a minute of 

polynucleotide addition to dye and 2-3 min incubation time was maintained through all the 

experiments. 

In fluorescence spectroscopy experiments the excitation wavelength above 450 nm (exc 

(A; B1; C) = 482 nm; exc (B2) = 452 nm; excitation slits 5 nm) was used to avoid the possible 

inner filter effect caused by increasing absorbance of the polynucleotide. The emission spectra 

were collected in the range em= 490 – 650 nm and em= 460 – 650 nm respectively, slits were 

set to 5 nm in both cases. The CD experiments were performed by adding aliquots of the 

aqueous solutions of the compounds into the buffered solution of polynucleotide. The titration 

data was processed using Scatchard equation by fitting fluorescence data with Origin 7.0 

software package. 

2.5.2 Thermal denaturation experiments 

Thermal melting curves for p(dAdT)2, p(rA-rU) and ct-DNA and their complexes with 

studied compounds were determined by following the change in the absorption at 260 nm as a 

function of temperature. The absorbance of the ligands was subtracted from each curve and 

the absorbance scale was normalized. Tm values are the midpoints of the transition curves, 
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determined from the maximum of the first derivative and checked graphically by the tangent 

method. The Tm values were calculated subtracting Tm of the free nucleic acid from Tm of 

the complex. The Tm values (with the instrumental error  0.5 °C) reported are the average 

of at least duplicate measurements. 

2.5.3 Isothermal titration calorimetry (ITC) 

Titrations were performed on MicroCal VP-ITC (Malvern Panalytical, UK), the 

polynucleotide solutions (ct-DNA, p(dAdT)2, p(dGdC)2 prepared as in Section 2.1.1. The 

compounds were prepared from dimethyl sulfoxide (DMSO) stock solutions, dissolving them in 

50 mM sodium cacodylate buffer, pH 7.0, resulting in c = 100×10−6 mol dm−3 of the dyes and 1% 

DMSO in the buffer. To avoid buffer mismatch, 1% DMSO was added to the polynucleotide 

solution. Origin 7.0 software, supplied by the manufacturer was used for data analysis. The 

reference cell was filled with ultrapure water. In the experiments, one aliquot of 2 μL five aliquots 

of 5 μL and 24 aliquots of 10 μL of the compound A, B1, B2, or C were injected from a rotating 

syringe (220 rpm) into the isothermal cell, equilibrated at 25.0  °C, containing 1.4406 mL of the 

polynucleotide (c = 30×10−6 mol dm−3). 

The spacing between each injection was in the range 240–300 s. The initial delay before the 

first injection was 2000 s in all experiments. All solutions used in ITC experiments were degassed 

prior to use under vacuum (0.64 bar, 10 min) to eliminate air bubbles. 

Microcalorimetric experiment directly gave three parameters: reaction enthalpy change (ΔrH), 

binding constant (Ks) and stoichiometric ratio (N), number of dye molecules bound per 

polynucleotide. The value of ΔrG was calculated from the binding constant (ΔrG= −RT ln K) and 

the reaction entropy change was calculated from the binding enthalpy and Gibbs energy (ΔrS= 

(ΔrH− ΔrG)/T). 
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2.6 Biological assays 

2.6.1 Subculturing of cells 

Adherent human cell lines (H460, non-small cell lung cancer) growing as monolayers on 

the surface of T-25 flasks (Sigma) were used. Dulbecco's Modified Eagle's medium (DMEM) 

(Sigma-Aldrich) containing amino acids and vitamins, as well as additional supplementary 

components were used for cell growth (complete medium). The primary cell culture media 

spent was removed and discarded from the culture flask. Cells were rinsed with 5 ml of the 

pre-warmed phosphate-buffered saline (PBS) to remove protease inhibitors, and 0.1% trypsin 

solution was added to detach the cells from the substrate. Flask was further placed back in an 

incubator at 37 ºC. The progress of the enzyme treatment was checked with an inverted phase 

contrast microscope. As the cells have rounded up and detach from the surface, 5 ml of 

growth medium was added to the cell suspension and cells were vigorously washed. 

Suspended cells were further centrifuged (100×g for 5 minutes) and trypsin containing 

medium was replaced with the fresh complete medium. Cells were further counted using 

Neubauer chamber under inverted phase contrast microscope. Considering the required 

dilutions, the amount of the cells in fresh medium was transferred to new flasks. 

2.6.2 Anti-proliferative activity evaluation by MTT assay 

The test was performed using H460 cells. Tested compounds, (A, B1, B2, and C) were 

prepared as stock solutions (4×10-2 mol dm-3) in DMSO, working solutions (10-4-10-8 mol dm-

3) were prepared in DMEM medium accordingly. Cells were seeded in a 96 micro well flat 

bottom plates at the concentration 1×104 cells/l and incubated overnight allowing them to 

attach to the plate surface, before exposure to the compounds. After 72 h incubation with 

tested compounds, growth medium was discarded and 5 mg ml-1 of MTT was added. After 4h 
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incubation at 37C water insoluble MTT-formazan crystals were dissolved in DMSO. 

Absorbance was measured at 570 nm on a microplate reader (Multiskan EX, Thermo Fisher 

Scientific). Control cells were grown under the same conditions, with the absence of dyes. 

The experiments were performed in tetraplicates. The IG50 value, defined as compound 

concentration leading to cellular viability reduction by 50%, compared to the control was 

calculated and used as a comparison parameter. 

2.6.3 Confocal Laser Scanning Microscopy (CLSM)  

Leica SP8X FLIM was used for fluorescence experiments in live-cell imaging (H460 

cells). The images were processed in LAS X Leica Microsystems software packages. The 

cells were seeded into 4-chamber 35mm glass bottom petri dishes (Cellvis, Mountain View, 

USA) and incubated overnight allowing them to attach to the glass bottom of the petri dish. 

Three hours prior to cell imaging, the dyes were added to the medium (c = 10-6 mol dm−3).  

3.  Results and Discussion 

3.1 Synthesis and structural analysis of DABCO cyanine dyes 

A series of 1,4-diazabicyclo[2.2.2]octane derived unsymmetrical tri- and tetra-cationic 

cyanine dyes was obtained in moderate to high (40-92%) yields by heating to reflux the two 

main components for 2-3 hours in a minimum amount of 2-methoxyethanol. The DABCO 

moieties were obtained by mono N-quaternization using an excess of the corresponding 

alkylating agent 1a-1c (either 1.5 equivalents of methyl iodide / butyl iodide or 2-fold excess 

of 1-(3-bromopropyl)-1-methylpiperidin-1-ium bromide). The reactions were implemented at 

room temperature, yielding the products 2a-2c (79-87% yield). The former derivatives were 

subsequently attached to a monomethine dye scaffold containing a good leaving group-iodide, 

aiming to introduce multicationic nature on cyanine dyes. The chemical structures of the 1,4-
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diazabicyclo[2.2.2]octane derivatives and the target DABCO dyes, were elucidated by 1H-

NMR, 13C-NMR, APT-NMR spectroscopy and melting point temperatures. In the present 

work, our synthetic strategy was focused on the introduction of multiple positive charges on 

the main scaffold of oxazole yellow and thiazole orange derivatives in order to enhance the 

affinity towards polynucleotide structures. Another variation on the chromophore possessing a 

methyl group at para-position with respect to the N-quaternary nitrogen atom (pyridine or 

quinoline moiety) was directed by both electronic and steric properties. Namely, the 

formation of H-aggregates due to pi-stacking of the aromatic system, which can subsequently 

lead to alternation with respect to the binding mode (intercalation as monomer or 

accumulation in the hydrophobic grooves of the double stranded polynucleotide helixes as 

dimer). Hence, this alternation could potentially express selectivity towards certain nucleic 

acid sequences. 

3.2 Interactions of A, B1, B2 and C dyes with ds-DNA and ds-RNA. 

The UV/vis spectra of the dyes aqueous solutions are proportional to their concentration 

up to 0.01 mM concentrations and solution thermal stability upon heating to 95 oC was 

excellent. Due to the problems with aggregation at higher conncentrations, UV/vis titration 

experiments were not used to calculate binding parameters and are not presented. Molar 

extinction coefficients are given in Table 2.  

Table 2. Absorption maxima and molar extinction coefficients of the dyes 

Dye max (nm)  (dm-3 mol-1 cm-1) 

A 482 8.55×104 

B1 482 7.49×104 

B2 482 9.17×104 

C 452 8.22×104 
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Dye solutions in buffer exhibit negligible fluorescence emission, however upon addition 

of DNA/RNA the emission intensity increases dramatically, as shown in the figure 3 and 

supp. info. The increase of the fluorescence intensity upon planarization and rigidification of 

carbocyanines, due to DNA/RNA binding is well documented and studied phenomena [35, 

36]. In short, by binding with biomacromolecules, cyanine dye loses the freedom of torsional 

motion around the methine bridge which is the main mode of nonradiative decay of the free 

dye molecule in the excited state. Thus, instead of losing absorbed energy through such 

nonradiative process, the bound dye shows increased emission quantum yield [37, 38]. 
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Figure 2. Changes in fluorescence spectrum of B1 (c = 7.65×10-8 mol dm−3) upon titration with p(dGdC)2 

Therefore, the intensity of fluorescence response upon DNA/RNA binding depends on 

number of different factors such as: the dye structure (absorption, Table 2), but even more so 

on the mode of binding (intercalation, groove binding or electrostatic interaction), magnitude 

of the interaction (represented by Kd or Ks), the differences between DNA/RNA secondary 

motifs, groove geometry (Table S3, Supp. info) and the local micro-environment at the 

binding site. 
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Figure 3. The increase of the fluorescence intensity upon addition of the polynucleotide (ct-DNA, pApU, 

p(dAdT)2 and p(dGdC)2) to the dye solutions (c = 1×10-7 mol dm−3 in 50 mM Na cacodylate, pH7). The increase 

was calculated by subtraction of the intrinsic dye fluorescence intensity from the maximal measured intensity of 

the formed complex [bound dye/polynucleotide], upon saturation of the binding sites. 

 As a result, the prediction of the fluorescence response is never straightforward and 

correlating it individually to any one of these factors is not possible. 

To further evaluate the mode of interaction and gain more structural information on the 

resulting dye-polynucleotide complex, we used CD spectropolarimetry (Figure 4, supp. info.), 

sensitive method for the elucidation of conformational changes in the secondary structure of 

polynucleotides [39].  Also, the dye-DNA/RNA complex often shows induced (I)CD band 

coinciding with the UV/Vis absorption band of the dye, which in this case is far from the CD 

bands of DNA/RNA. The appearance, sign and magnitude of such bands provides information 

on the binding mode (intercalation, groove binding, agglomeration, etc.) [40]. 
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Figure 4. CD titration of a) p(dAdT)2 (c = 2×10-5 mol dm−3), b) p(rA-rU) (c = 2×10-5 mol dm−3), with a) B1; b) 

C at molar ratios r = [compound] / [nucleotide] (pH 7.0, buffer sodium cacodylate, I = 0.05 mol dm−3). 

Considering that the DNA/RNA CD bands (230-290 nm) coincide with the absorption 

bands of the dyes (supp. info), the changes in those bands, induced by the addition of dyes 

could appear as a result of the changes in the DNA/RNA secondary structure or as a ICD 

signal of a complex. Therefore the mode of binding could only be elucidated from the 

appearance of ICD bands at 450-550 nm. Addition of A, B1, B2 and C dyes to ds-DNA 

resulted in negative ICD band within 450-550 nm range, characteristic for the intercalative 

binding mode (Figure 4a, Supp. Info). At higher ratios r (r > 0.3) dye is in the excess with 

respect to the intercalative binding sites, according to the “neighbour exclusion principle” 

[41]. Thus the saturation of the intercalative binding sites could be observed even at lower 

ratios, represented by the absence of changes in the ICD bands. On the other hand, upon 

addition of dyes to ds-RNA solution, binding event represented by bisignate CD signals at 

450-550 nm can be observed (Figure 4b, Supp. info), which indicates excitonic coupling of 

dye aggregates [35]. After meticulous examination it can be observed that at lower ratios (r = 

0.1), there is only slight positive ICD signal, the bisignate ICD appears only after more dye 

has been added. This strongly signifies two different binding modes; first occuring at lower 

ratios is followed by dimerization or higher scale aggregation within the ds-RNA groove, 

most probably major groove, due to the unfavoured geometry of the minor groove (Table S3, 

Supp. Info). 

Although, binding parameters (stability constant Ks; stoichiometric binding ratio N) can 

be calculated from the fluorimetric titration data, we used calorimetric titrations (ITC) to 

evaluate binding of the dyes with DNA/RNA. Above mentioned binding parameters along 

with the thermodynamic properties of the binding process (ΔrH, ΔrG, and -TΔrS) are presented 

in the Table  4. Calorimetric titration of ds-DNA/RNA sequences (mixed sequence-ctDNA, 
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alternating AT and GC, homopolymer rArU sequences) with the studied compounds revealed 

comparable stability constants (Ks), with somewhat higher affinity for DNA/RNA binding of 

A (Figure 5).  
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Figure 5. The stability constants (Ks) obtained by ITC, using specific models and Origin 7.5 software 

The binding isotherms (Figure 6, supp. info), indicate that in the case of binding of B1 and 

C to p(dAdT)2 there are two independent binding sites. The first binding process, that occurs 

when the dye molecules are scarce (lower N ratios) is characterised by high enthalpic 

contribution to the free Gibbs energy ΔrG and adverse entropic contribution (Table 4). Such 

combination usually indicates intercalative binding [42]. The interaction that drives 

intercalation, π-π stacking results in high enthalpic contribution, while loss of freedom of 

motion results in decrease of enthropy and therefore works against free energy.    
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Figure 6. Final figure of the ITC titration of p(dAdT)2 (c = 3.00×10-5 mol dm−3)) with C (c = 1×10-4 mol dm−3) in 

50 mM Na-cacodylate buffer, pH 7.00 at 25 °C. Raw data above, calculated binding isotherm bellow.  

The entropic contribution to ΔrG is related to non-specific hydrophobic interaction, 

displacement of water molecules hydrophobic pockets, such as DNA/RNA grooves  [43]. So 

the second binding incident has thermodynamic signature of groove binding. The enthropic 

contribution drives binding process with RNA sequence. With the exception of compound A 

which again shows two independent binding sites, with second one showing all the signs of 

groove binding and first has a thermodynamic signature of intercalation. 

Table 4 Binding parameters and thermodynamic properties of the binding process from ITC titrations 

 

[Cell] 

(mol dm-3) 

N 

(sites) 

Ks 

(mol-1dm3) 

∆rH 

(kJ/mol) 

∆rG 

(kJ/mol) 

-T∆rS 

(kJ/mol) 

N₂ 
(sites) 

Ks₂ 
(mol dm-3) 

∆rH₂ 
(kJ/mol) 

∆rG₂ 
(kJ/mol) 

-T∆rS₂ 
(kJ/mol) 

A-p(dAdT)2 3.14×10-5 0.15 7.46×106 -9.69 -39.3 -29.6 - - - - - 

A-ctDNA 3.14×10-5 0.213 1.17×106 -14.5 -34.6 -20.2 - - - - - 

A-p(dGdC)2 3.15×10-5 0.181 7.87×106 -17.6 -39.4 -21.8 
     

A-p(rA-rU) 3.83×10-5 0.139 1.54×107 -256 -41.1 215 0.1 1.62×107 321 -41.2 -362 

 

[Cell] 

(mol dm-3) 

N 

(sites) 

Ks 

(mol-1dm3) 

∆rH 

(kJ/mol) 

∆rG 

(kJ/mol) 

-T∆rS 

(kJ/mol) 

N₂ 
(sites) 

Ks₂ 
(mol dm-3) 

∆rH₂ 
(kJ/mol) 

∆rG₂ 
(kJ/mol) 

-T∆rS₂ 
(kJ/mol) 

B1- p(dAdT)2) 2.20×10-5 0.034 4.08×105 -82.4 -32 50.3 0.244 1.79×106 -2.63 -35.7 -33.1 
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B1-ctDNA 3.40×10-5 0.127 1.19×106 -13.2 -34.7 -21.5 - - - - - 

B1- p(dGdC)2 3.40×10-5 0.208 4.17×106 -15.5 -37.8 -22.3 - - - - - 

B1-p(rA-rU) 3.30×10-5 0.434 7.09×106 -9.89 -39.1 -29.2 - - - - - 

 

[Cell] 

(mol dm-3) 

N 

(sites) 

Ks 

(mol-1dm3) 

∆rH 

(kJ/mol) 

∆rG 

(kJ/mol) 

-T∆rS 

(kJ/mol) 

N₂ 
(sites) 

Ks₂ 
(mol dm-3) 

∆rH₂ 
(kJ/mol) 

∆rG₂ 
(kJ/mol) 

-T∆rS₂ 
(kJ/mol) 

B2- p(dAdT)2 3.60×10-5 0.17 3.32×106 -14.8 -37.3 -22.4 - - - - - 

B2-ctDNA 3.00×10-5 0.087 2.38×106 -55.1 -36.4 18.7 - - - - - 

B2- p(dGdC)2 3.00×10-5 0.179 1.02×106 -24.7 -34.3 -9.62 - - - - - 

B2-p(rA-rU) 7.40×10-5 0.117 1.06×106 -19.4 -34.4 -15 - - - - - 

 

[Cell] 

(mol dm-3) 

N 

(sites) 

Ks 

(mol-1dm3) 

∆rH 

(kJ/mol) 

∆rG 

(kJ/mol) 

-T∆rS 

(kJ/mol) 

N₂ 
(sites) 

Ks₂ 
(mol dm-3) 

∆rH₂ 
(kJ/mol) 

∆rG₂ 
(kJ/mol) 

-T∆rS₂ 
(kJ/mol) 

C- p(dAdT)2 3.00×10-5 0.037 1.10×106 -67.2 -34.5 32.7 0.159 3.46×106 -0.733 -37.4 -36.6 

C-ctDNA 2.45×10-5 0.141 1.38×106 -21 -35.1 -14 - - - - - 

C- p(dGdC)2 3.00×10-5 0.163 3.97×106 -23.8 -37.7 -13.9 - - - - - 

C-p(rA-rU) 3.60×10-5 0.297 3.73×106 -13.8 -37.5 -23.7 - - - - - 

 

3.3 Biological activity, cellular uptake and distribution 

We tested A, B1, B2 and C for their antiproliferative activity against human tumour cell 

line H460 (Table 5). The compounds showed considerable antiproliferative effect after 3 days 

of incubation at concentrations exceeding 10-5 mol dm−3 (Table 5). Therefore, to assess their 

subcellular localisation in H460 cell line, we used “safe” 10-6 mol×dm−3 concentration for the 

confocal microscopy live cell imaging experiment. After initial screening, we performed co-

localisation study to confirm the cellular accumulation of the dyes. We used MitoTracker™ 

Deep Red FM (MitoTracker, ThermoFisher Scientific) as a mitochondrial probe and Hoechst 

34580 (Hoechst, Sigma Aldrich) for the staining of nuclei.      

Table 5 IG50 values, compound concentrations leading to cellular viability reduction by 50%, compared to the 

control.  

Dye A B1 B2 C 

IG50  (mol×dm−3) 6.86×10-5 1.25E×10-4 2.3×10-5 7.25×10-5 
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Cells were incubated with the compounds for 2h prior to confocal microscopy, allowing 

enough time to enter the cell and reach their preferred subcellular location. Considering their 

structural similarity, relatively similar interaction with the DNA/RNA and similar 

antiproliferative activity, their faith after cell access is remarkably different. The A and B1 

dyes enter the cell and target mitochondria, showing excellent denotation of those organelles, 

B2 marks nucleoli, while C seems not able to cross the cellular membrane or its fluorescence 

response is somehow quenched (Figure 7). The co-localization with the commercially 

available probes was used to verify these claims. MitoTracker (c = 200 nM) was added 30 

min prior to visualisation, Hoechst was added 10 min before confocal microscopy. To excite 

the compounds A, B1 and B2 we used 482 nm laser line, and the emission was collected with 

a band pass detector 498 – 535 nm. Compound C was excited at 452 nm and emission was set 

to 499 – 547 nm. The excitation wavelength for the MitoTracker was set to 647 nm, emission 

was captured at 670 – 712 nm and Hoechst was excited at 405 nm, emission at 420 – 469 nm. 

Co-localization of the compounds and the probes was confirmed by overlaying the 

photomicrographs of the A, B1 vs. MitoTracker channels of the same specimen and B2 vs. 

Hoechst 33342 (Figure 8, 9, 10). 

 

Figure 7. Confocal photomicrographs of live H460 cells after incubation with 1×10-6 mol dm−3 of A, B1, B2 

and C dyes. 

A B1 B2 C 
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Figure 8. Confocal photomicrographs of live H460 cells after incubation with 1×10-6 mol dm−3 of A and 

0.2×10-6 mol dm−3 MitoTracker probe, LEFT: A channel, green; RIGHT: MitoTracker channel, red; MIDDLE: 

Overlay of the two channels. 

 

Figure 9. Confocal photomicrographs of live H460 cells after incubation with 1×10-6 mol dm−3 of  B1 and 

0.2×10-6 mol dm−3 MitoTracker probe, LEFT: B1 channel, green; RIGHT: MitoTracker channel, red; MIDDLE: 

Overlay of the two channels. 

 

Figure 10. Confocal photomicrographs of live H460 cells after incubation with 1×10-6 mol dm−3 of  B2 and 

0.5×10-6 mol dm−3 Hoechst probe, LEFT: B2 channel, green; RIGHT: Hoechst channel, blue; MIDDLE: 

Overlay of the two channels. 

 

4. Conclusions 

The A, B1, B2 and C dyes bind with high affinity to ds-DNA/RNA. The dyes 

predominantly intercalate into ds-DNAs, but also exhibit certain secondary binding event with 

alternating AT sequences. From CD titrations assessment we can conclude that the ds-RNA 

A 

B1 
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binding site could be major groove, where dyes form aggregates, most probably dimers [40]. 

As mentioned in the discussion, fluorimetric response of the dye-polynucleotide complexes 

depends on the number of parameters, and therefore too complex to control and predict, 

however compound A shows highest fluorescence increase upon interaction with the 

DNA/RNA. Even though they interact strongly with biomacromolecules, their influence on 

the proliferation of cells is not so prominent. Only at high concentrations (10-5 M or higher), 

after 3 days the compounds hamper the proliferation to 50% compared to the control. With 

the exception of C, the dyes enter the cell and accumulate within the mitochondrial space (A 

and B1) or in the nucleoli (B2). Noteworthy, compound B2 also shows highest 

antiproliferation potential, as its subcellular target seems to be DNA rich nucleus. Brilliant 

fluorescence denotation of the mitochondria even at low concentrations of A and B1 dyes, 

absence of photobleaching effect and relative safety for the cell homeostasis, marks this two 

dyes as promising fluorescent markers for live cell imaging. Our previous live cell fluorescent 

imaging dyes [18, 19] were also based on oxazole yellow or thiazole orange scaffold bearing 

usually two positive charges. We added multiple charges to increase the water solubility and 

selectively accumulate the compounds in the mitochondria, while the other substituents were 

designed to keep the impact on cell proliferation minimal. Accumulation of compounds with 

such high charge density in intracellular space is not common and will be further explored in 

comparative studies.  
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