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Abstract

The ring-polymer instanton (RPI) method is an efficient technique for calculating

approximate tunneling splittings in high-dimensional molecular systems. In the RPI

method, tunneling splitting is evaluated from the properties of the minimum action path

(MAP) connecting the symmetric wells, whereby the extensive sampling of the full po-

tential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless,

the search for the MAP is usually the most time-consuming step in the standard nu-

merical procedures. Recently, nudged elastic band (NEB) and string methods, originaly

developed for locating minimum energy paths (MEPs), were adapted for the purpose of

MAP finding with great efficiency gains [J. Chem. Theory Comput. 2016, 141, 024101].

In this work, we develop a new quadratic string method for locating instantons. The

Euclidean action is minimized by propagating the initial guess (a path connecting two

wells) over the quadratic potential energy surface approximated by means of updated

hessians. This allows the algorithm to take many minimization steps between the po-

tential/gradient calls with further reductions in the computational effort, exploiting the
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smoothness of potential energy surface. The approach is general, as it uses Cartesian

coordinates, and widely applicable, with computational effort of finding the instanton

usually lower than that of determining the MEP. It can be combined with expensive

potential energy surfaces or on-the-fly electronic-structure methods to explore a wide

variety of molecular systems.

1 INTRODUCTION

Tunneling splitting in symmetric well systems manifests itself in the energy difference of

the otherwise degenerate ground state level.1 The magnitude of the splittings in molecular

systems varies over many orders of magnitude and it is sensitive to the non-equilibrium

regions of potential energy surface (PES).2 Numerical determination of splittings can thus

be used to learn about interactions and dynamics, and to interpret experimental spectra,

with the study of rearrangement dynamics in water clusters, as a recent notable example.3–5

Tunneling spittings can be obtained numerically by a direct solution of the Schrödinger

equation. However, this is a formidable computational task even for small gas-phase sys-

tems6–8 and scales exponentially with the number of degrees of freedom (DOF). For large

systems, either the diffusion Monte Carlo can be used,9–11 which is possible if one can locate

the nodal diving surface of the first excited state (by symmetry arguments or otherwise),

or the recent method based on the path integral techniques.12 Those methods scale roughly

linearly with the system size and give the exact result. All exact numerical approaches for

calculating tunneling splittings probe the PES at a vast number of molecular geometries

that are accessible to the nuclear wave function and are therefore computationally expen-

sive. A number of approximate semiclassical methods have therefore developed,13–18 which

often give qualitative agreement with the experimental splittings. The instanton method be-

longs to the class of approximate semiclassical methods. The tunneling splitting is obtained

from a single imaginary-time trajectory, which carries the dominant contribution in the path

integral representation, and its harmonic vicinity. The accuracy of the tunneling splittings
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increases as the symmetric wells get better separated and as the barrier between them rises.

In this limit, when the tunneling splittings are extremely small, instanton method can even

rival the accuracy of the exact quantum methods based on basis set representation, as it

becomes increasingly difficult to resolve the levels with a reasonable basis set size.

The instanton method has first been introduced in the rate theory19,20 and subsequently

extended to treat tunneling splittings by Vainshtein et al.21 Mil’nikov and Nakamura ex-

tended the theory to treat multidimensional systems and developed a numerical approach

for calculating tunneling splittings,22 which they applied to a number of molecules.23 They

used the internal molecular coordinates in their approach, which means that it was not triv-

ial to adapt it to treat new molecular geometries. The method has been rederived as the

ring-polymer instanton (RPI)24,25 method, where discrete mathematics and Cartesian coor-

dinates were employed to simplify algebra. This formulation led to a general computational

tool that is readily applicable to systems of arbitrary geometries.25 The approach was also

extended to treat any number of symmetric wells26 and low vibrationally excited states.27

Instantons have recently been a topic of active investigation. In rate theory context, a

derivation from first principles was proposed28 (that avoids the Im F premise), as well as the

extensions to treat certain non-adiabatic systems,29–31 approaches to calculate microcanon-

ical rates32,33 and the rates above the cross-over temperature.34–36

At low temperatures, investigative work concentrated on improving efficiency. Rommel

et al38 used unequal imaginary time steps in order to distribute ring polymer beads along

the path more uniformly and prevent the clustering of beads near turning points. Einars-

dóttir et al39 tackled the same problem using nudged elastic band method (NEB)40 to locate

the instanton path by minimizing the abbreviated action. Kryvohuz developed an instanton

search algorithm based on the Fourier representation of the path,37 which is independent of

the path length. Kawatsu and Miura41 found a way to take the zero-temperature limit ana-

lytically, which is a powerful tool in high accuracy calculations. Smedarchina et al developed

a modified instanton approach18,42,43 based on the potential and hessian at the stationary
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points only, without the explicit evaluation of the instanton trajectory. In a recent paper,44

the chain-of-states-based minimum-energy path (MEP) finding methods, such as the nudged

elastic band (NEB)40 and string methods,45,46 were used to minimize the abbreviated ac-

tion at zero temperature in order to calculate tunneling splittings, which resulted in orders

of magnitude efficiency savings, measured in terms of the number of potential evaluations

needed.

In the present paper, we develop a way to apply another MEP-finding tool, the quadratic

string method (QSM),47 to further reduce the computational work in finding instantons in

calculations of tunneling splittings in molecules. We measure the required work for locating

instantons in terms of the number of calls to the potential/gradient subroutine, i.e., the

number of geometries at which potential and gradient are evaluated. The assumption is that

the time overhead of the specific numerical method employed is negligible compared to the

ab initio potential/gradient evaluations, with the future on-the-fly applications in view. The

minimization methods that rely on the exact hessian evaluation at every iteration have not

been considered.

In the quadratic string method,47 the abbreviated action is minimized by integration in

the direction perpendicular to the path. The minimum action path (MAP) is represented by

a string of beads and the trajectory of every bead is integrated on an approximate quadratic

surface obtained by a local Taylor expansion that uses updated hessians. Updated hessians

are approximate hessians calculated using the standard formulae48 that are based on the

gradient information from previous bead positions. The integration range and the quality

of the approximate PES are controlled using a trust region algorithm. In the MEP finding

applications, the method proved to be more efficient than the standard NEB with the global

LBFGS minimizer for certain benchmark systems.47 The number of steps taken, i.e., the

number of local integrations performed, during a minimization depends on how ’quadratic’

the surface is and on how much the properties of the PES change as beads travel over the

potential energy landscape in course of a minimization. The abbreviated action surface
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parametrized by Cartesian coordinates of bead positions is a much more complicated and

rugged surface than the PES. The action gradients are composed of two forces: one tries to

minimize the potential, whereas the other wants to minimize the path length and couples

the beads. So the idea behind the QSM is to gain the computational savings by using a

search that is guided by the simplicity of the PES instead of the perpendicular-to-the-path-

projected gradients of the abbreviated action surface, which is contained in the integration

scheme on the approximated potential.

After the MAP has been determined using the QSM in the first step, the numerical eval-

uation of tunneling splittings proceeds by (ii) evaluating hessians along the MAP connecting

the minima, and, (iii) evaluating the contribution of neighboring paths in harmonic approx-

imation using hessians from step (ii). In the RPI method, the harmonic contributions in

step (iii) are calculated using the eigenvalues of the discretized action hessian (see Section

2), which, at low temperatures, involves a diagonalization of a large banded matrix. Instead,

we use the zero-temperature limit formula by Mil’nikov and Nakamura,22 which is a multi-

dimensional extension of the original expression by Vainsthein et al,21 and evaluate it, for

the first time, in Cartesian coordinates (Section 5). In this way, all numerical effort has been

transfered into the MAP search using the QSM and the subsequent hessian evaluation along

the MAP.

The RPI method for calculating tunneling splittings is summarized in Sec. 2, together

with the standard and the chain-of-states-based numerical methods for evaluating them. It

is shown that the chain-of-states methods based on minimizing the abbreviated action are

equivalent to those that are based on the full action minimization with optimally adjusting

time steps44 (at every iteration in course of a minimization). In Sec. 3, we develop the

quadratic string method for instanton search. Sec. 4 summarizes the evaluation of harmonic

contributions using the Mil’nikov-Nakamura formula in Cartesian coordinates. In Sec. 5, the

quadratic string method is applied to calculate the tunneling splittings in malonaldehyde,

ammonia and hydronium and the efficacy of the method is compared to the string method

5



(with LBFGS optimizer) for finding instantons.44 Concluding remarks are given in Sec. 6.

Atomic units are used throughout, with h̄ = 1.

2 RING POLYMER INSTANTON METHOD

In the formulation of statistical Feynman path integrals, the instanton represents the path

with the dominant contribution to the quantum partition function. Tunneling splittings can

be obtained from the ratio of quantum partition functions, whereby the contribution from

the dominant path is calculated and that of the harmonic fluctuations about it is evaluated

and added analytically using potential hessians along the path. The above approximation

thus avoids the need to sample the PES extensively.

The tunneling splitting, ∆, between two symmetric wells can be obtained from the ratio

of partition functions,1,21

lim
β→∞

Q(β)

Q0(β)
= cosh

(

β∆

2

)

, (1)

where Q(β) is the partition function of the full system and Q0(β) is the partition function of

the system in the absence of tunneling. The expression in Eq. (1) is evaluated in the zero-

temperature limit, with β = 1/kT , where k is the Boltzmann constant. Quantum partition

functions can be expressed in the discretized path-integral (ring polymer) formalism by

splitting paths into N infinitesimal, and not necessarily equal,38 imaginary time steps di,

where i = 1, ..., N and
∑N

i=1 di = β,

Q(β) = Tr
[

e−βĤ
]

= lim
N→∞

∏

i

1√
2πdi

∫

dxe−S(x), (2)

where S is recognized as the Euclidean action discretized on the imaginary time grid di as

S(x) =
N
∑

i=1

[

1

2

f
∑

j=1

(xi+1,j − xi,j)
2

di
+ V (xi,1, ..., xi,f)

di + di+1

2

]

. (3)
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The molecular system follows the path discretized using mass-scaled Cartesian coordinates

(the ring-polymer coordinates) xi,j (xi,j =
√
mj × position of atom j), where i denotes

the imaginary time index or the bead number, and j denotes the degree of freedom, and

f = 3× (number of atoms) is the dimensionality of the system.

The dominant contribution to the partition function comes from path that minimizes the

action S in the exponent of Eq. (2) and its vicinity. According to the least action principle,

the minimum of Euclidean action corresponds to the classical trajectory on the inverted

potential energy surface.1 In the RPI method,25 the ratio in Eq. (1) is evaluated approxi-

mately by expanding the Euclidean action S to second order in the time- and mass-scaled

Cartesian coordinates xi,j

√

(di+1 + di)/2
38 about the classical periodic orbit connecting the

two symmetric minima, the instanton. The instanton orbit is of infinite period, β → ∞, i.e.,

zero energy (where zero is defined at the PES minimum), and the contributions of arbitrary

number of passages between the minima are included.21 The final result for the tunneling

splitting ∆ is expressed in terms of the single kink action Skink, which is the action of a single

passage from one minimum to another, and the prefactor Φ as25

∆ =
2

Φ

√

Skink

2π
e−Skink. (4)

The prefactor Φ is the ratio of the non-zero eigenvalues λl of the hessian of the action Skink,38

Hi,j;i′,j′ =
∂2Skink

∂xi,j∂xi′,j′

2
√

di+1 + di
√

di′+1 + di′
, (5)

in time- and mass-scaled coordinates, and the action hessian eigenvalues λ0
l of the corre-

sponding non-tunneling system as

Φ =

[ ∏

l λl
∏

l′ λ
0
l′

]1/2

. (6)

The matrix elements of the action hessian in Eq. (5) are given in Appendix I of Ref. 44. The
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excluded zero eigenvalues of the action hessian come from the invariance under imaginary-

time translation of the kink21,25 and, if the system considered is free in space, from overall

ring polymer (path) translation and rotation. The RPI theory neglects the overall rotational

motion of the molecule and the anharmonicity perpendicular to the instanton tunneling path.

Numerical implementation of the RPI method consists of finding the MAP by minimizing

the kink action in Eq. (3), and, subsequently, the evaluation of hessians along the MAP and

the calculation of the prefactor Φ.

The prefactor Φ can be calculated in several ways. In a direct approach, one can determine

the eigenvalues of the S-hessian by explicit diagonalization of the banded matrix.25 In the

approach adopted here and developed by Mil’nikov and Nakamura,22 a semiclassical formula,

obtained in the β → ∞ limit and based on the integration of Jacobi fields, is used. Other

approaches exist, but have so far only been applied to the rate calculations.19,30

3 LOCATING INSTANTONS

Before proceeding to develop the QSM, we overview below the current methodology of lo-

cating insantons numerically. We describe the standard RPI approach25 and the recent

chain-of-states methods,44 based on either the string or NEB representation, which offer su-

perior performance. We also show that the two chain-of-state methods, the Euclidean action

minimization using variable time steps and the string method, both developed in Ref. 44,

are equivalent.

In the standard RPI approach for calculating tunneling splittings in molecules, the in-

stanton orbit is obtained numerically by Euclidean action minimization in Eq. (3). The

single kink path is represented by N beads along the path in Cartesian coordinates xi,j ,

which serve as minimization parameters. Each bead is a molecular state of dimensionality f ,

a snapshot of the imaginary-time trajectory that connects the two symmetric minima. We

need to specify the starting guess (initial values for xi,j), set the time duration of the kink, β,
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and the imaginary-time step sizes di in Eq. (3). The Nf -dimensional minimization of action

is then performed, most commonly using the limited-memory Broyden-Fletcher-Goldfarb-

Shano (LBFGS) algorithm,49 to iteratively provide improved estimates of the instanton

orbit. The minimization algorithm is guided by the action gradients,

∂S

∂xi,j

=
xi,j − xi−1,j

di−1

+
xi,j − xi+1,j

di
+

∂V (xi)

∂xi,j

di + di−1

2
. (7)

The potential gradients are evaluated at each bead at every iteration to provide the action

gradients for the next-step generation through Eq. (7). The convergence criterion is based

on the vanishing gradients. By equating the right-hand-side of Eq. (7) with zero, discretized

Newton’s equations of motion are obtained,24 indicating that the trajectory evolves indeed

classically in the imaginary time over the inverted PES.

In the standard RPI calculations, the minimization run needs to be repeated many times

in order to converge the instanton (kink) orbit with respect to the kink duration β and the

number of beads N . The kink duration has to be long enough to allow the trajectory to

connect the symmetric minima within the convergence criterion of the minimization algo-

rithm. The number of beads needs to be high enough to allow a faithful description of the

path for the calculation of the prefactor Φ. If the imaginary time step is uniform, di = β/N ,

a larger duration β requires a larger number of beads N , with most of them clustering at

turning points, where the speed of the system (in the upside-down potential) is low. In

order to represent the shape of the orbit with fewer beads, unequal time steps di have been

proposed,38

di = ri/pi, (8)

where ri is the length of vector ri = xi+1 − xi, i.e., the Euclidean length (in the mass-scaled

coordinate system) of the path segment between bead i and bead i+1, and pi is the absolute

value of the mass-scaled velocity of the system in segment i (p = ẋ). The energy of the orbit

E is zero (with system at rest at the PES minima), so speed in segment i can be determined
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from energy conservation using the mid-segment potential,

pi =

√

2

(

Vi + Vi+1

2
− E

)

=
√

Vi + Vi+1, (9)

where Vi is the potential at bead i. It was shown that the equidistant beads along the path,

ri = r, facilitate the instanton finding, whereas the prefactor calculation requires dense grid

near turning points.38,44 The standard RPI approach often works best using a compromise

between equal time steps and equal distances.38,44

In the chain-of-states-based methods for finding instantons, the shape of a classical tra-

jectory is determined by exploiting the Jacobi version of the least action principle,50 in

which the time variable is factored out. The abbreviated (Jacobi) action SA =
∫

pdx at the

constant energy E = 0 is discretized as,

SA =

N−1
∑

i=1

piri =

N−1
∑

i=1

√

Vi + Vi+1|xi+1 − xi|, (10)

which, we note, is slightly different to earlier expressions.39,44 The abbreviated action in

Eq. (10) is minimized using either the string or NEB method. In the full action minimization

above, the beads were kept separated by keeping the time steps di fixed and finite. To prevent

beads falling on top of each other in the course of the abbreviated action minimization,

the beads are redistributed equidistantly after each iteration by interpolation, in the string

method, or are kept separated by the introduction of the artificial spring forces that act

along the path, in the NEB method. The gradient of abbreviated action in Eq. (10),

∂SA

∂xi,j
=

ri−1

2
√
Vi−1 + Vi

∂V (xi)

∂xi,j
+

ri
2
√
Vi + Vi+1

∂V (xi)

∂xi,j

+ pi−1
xi,j − xi−1,j

ri−1
+ pi

xi,j − xi+1,j

ri
, (11)

is projected at every iteration to act perpendicular to the path. The so-called upwinding

tangents51 are used to define the path direction for the projection of action gradients, which
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facilitate stability of chain-of-states based algorithms.

The above projection scheme eliminates entirely the force on the path ends. We, therefore,

fixed the end beads at the minimum geometries, which are determined in advance, and orient

them so as to minimize their contribution to the abbreviated action in Eq. (10) following

every move of the optimizer.44 The reorientation of end beads reduces to the least squares

problem, e.g., |x2 − x1| = min, which has an analytical solution for the orientation of x1
52

in terms of quaternion algebra.

It was demonstrated that the chain-of-states-based methods reduce the number of po-

tential evaluations by two orders of magnitude compared to the standard RPI method for

locating instantons.44 The savings mainly come from the small number of beads N used

to represent the instanton path using an equidistant grid in the (mass-scaled) configuration

space.

However, the calculation of the prefactor Φ requires many geometries along the path,

specifically near the turning points. The imaginary-time dependence of the closely spaced

geometries cannot be obtained by the interpolation in imaginary time or by using the velocity-

Verlet algorithm with sufficient accuracy. Instead, another standard RPI optimization of the

full imaginary-time-dependent action with a much higher number of beads is undertaken in

one dimension along the interpolated potential at the converged instanton to determine the

geometries at a prespecified dense time grid. Hessian matrix elements at the dense grid of

geometries are then determined by interpolation in terms of the path length from the set of

hessian matrices evaluated at beads, and the tunneling splittings determined using Eq. (4)

without the additional potential/gradient evaluations.

The Euclidean action and abbreviated action at the converged minimum have the same

value at zero energy. It can be noted that the Euclidean action gradient, Eq. (7), and the

abbreviated action gradient, Eq. (11), are also identical, if one chooses the time steps in

Eq. (7) according to the prescription given by Eqs. (8) and (9). Ref. 44 proposed an efficient

chain-of-states method based on Euclidean action minimization in which the time steps di
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were recalculated at every iteration so as to zero the component of action gradient ∇iS along

the path,

τ̂i∇iS = 0, (12)

where τ̂i is the unit tangent vector to the path at bead i, in order that the action gradient

does not act along the path to distort the uniform bead distribution. This condition leads to

the quadratic equation for di+1 in terms of di, with d1 = r1/p1. The beads were redistributed

equidistantly at every step by interpolation. In fact, Eq. (12) is the least action principle

applied to the motion along the current guess for the instanton path. We can think of the

current shape of the instanton guess as a holonomic constraint for the motion defined by

Eq. (12). The forces of the constraint are perpendicular to the motion and hence do no work.

The solution to Eq. (12) is therefore the classical orbit along the current path, the energy of

which was determined by setting d1. The remaining di can then be calculated from E = 0

condition analytically, as in Eqs. (8) and (9), which is, within the discretization accuracy,

equivalent to the numerical solution of Eq. (12), proposed in Ref. 44. Having set the di,

the perpendicular constraint force is then effectively equal to the perpendicular component

of the abbreviated action gradient in Eq. (11) and is used to propagate the string. The

string is propagated until the force of the constraint becomes zero and the constraint can be

removed. This demonstrates the equivalence (to within the discretization accuracy) of the

two chain-of-states methods proposed in Ref. 44, i.e., the full action minimization with the

variable time steps and the abbreviated action minimization.

All chain-of-states-based methods, the NEB and the string method using either the full

action or the abbreviated action as the object function, proved to be similar in the efficiency

of locating instantons.44 Below, we use the string method with the LBFGS optimizer for the

efficiency comparisons with the quadratic string method.
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4 QUADRATIC STRING METHOD

Quadratic string method47 is an extension of the string method, introduced to find minimum

energy paths, which uses local quadratic estimates of the PES to propagate the string towards

the MEP. This enables us to evaluate the potential less frequently and take larger steps in

course of a minimization. In the spirit of Ref. 44 of using the MEP methods for finding

instantons, we adapt the QSM method for MEP finding for the instanton search below.

A comparative study53 found that in the standard string/NEB method for finding MEPs,

it is most efficient to use the global LBFGS (without line minimization) optimizer55 to

propagate a chain of beads. All beads are moved simultaneously with a single instance of the

optimizer. The study considered optimizers based on the potential/gradient knowledge only.

It was noted that the convergence properties of the string/NEB methods are degraded by the

non-conservative forces and the non-hermitian character of the hessian matrix, a consequence

of the use of the projected forces.53,54 The strategy behind using the QSM for locating MEPs

is to wrap the effect of using non-conservative forces into a local propagation scheme that uses

an approximate potential and does not require the evaluation of potential/gradient (ab initio

or otherwise provided). Instead, the convergence of QSM is governed by the range of validity

of the locally approximated potentials, which is controlled by a trust region method.48

The local potentials are quadratic expansions at every bead and their performance is

reliant on the approximate hessians of the potential. The symmetric hessian matrices are

constructed using gradients evaluated at beads along the trajectory they traverse in course of

the minimization. In this way, the undesirable properties of the action hessian are sidestepped

in terms of the convergence properties, and the convergence depends on the properties of the

potential along the transit of beads. The number of potential/gradient evaluations needed

for the convergence of QSM depends on the form of the potential that needs to be traversed

by the beads and the quality of the local quadratic surface representation in terms of the

approximate symmetric hessians. The effect of coupling terms between beads in Eq. (11) on

convergence is, along with the effect of projection forces, wrapped into the local propagation,
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which requires no additional potential evaluations.

The outline of the QSM is given below, with further details described in the following

sections:

(I) The geometries of the two symmetric minima are assumed to be known in Cartesian

coordinates (or determined using an f -dimensional LBFGS minimisation). The initial path

with N beads is constructed with end beads fixed in two symmetric potential minima. The

intermediate beads are distributed by interpolation (see Section 4.4) using either the end

points only, or the end points supplemented by a set of points aimed at guiding the path

away from high-potential regions, or the path obtained in a previous calculation.

(II) Evaluate the potential and gradients gi at all N−2 intermediate geometries i. Potential

at end beads is defined as zero.

(III) Construct the action gradient using Eq. (11) and stop if a chosen convergence criterion

based on the perpendicular components of the action gradient is satisfied.

(IV) Update each local potential hessian Hi at bead i using the new potential and its gradient.

(V) Update each trust radius ∆i.

(VI) Integrate xi along the steepest descent of action surface over the quadratic potentials

given by Hi in order to minimize the abbreviated action, stopping when one bead reaches

the trust radius, negative potential region, or when the MAP is found.

(VII) Redistribute beads along the path by interpolation (if required). Go back to (II).

4.1 Hessian update

In order to move the path towards the minimum of action without evaluating potential/gradients,

a local quadratic surface mi(xi) is constructed at each intermediate bead i along the path

as the second order Taylor series,

mi(xi) = V (xk
i ) +∇iV (xk

i )δxi +
1

2
δxT

i H
k
i δxi, (13)
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where V (xk
i ) and ∇iV (xk

i ) are the potential and gradient evaluated (ab initio or otherwise)

at xk
i , the position of bead i at kth iteration, δxi = xi−xk

i and Hk
i is an approximate hessian,

(Hk
i )j′j = ∂2V (xk

i )/∂x
k
ij′∂xij . The approximate hessian is updated at every iteration based

on gradient knowledge according to one of the standard quasi-Newton updating formulae.

Quasi-Newton updating formulae maintain the symmetry of the hessian matrix and

satisfy the quasi-Newton condition (with more details given in Appendix). The following

schemes are used in the present study.

BFGS (Broyden-Fletcher-Goldfarb-Shanno) update56 is the most prevalent updating

scheme in global minimizations. It preserves the positive definiteness of the hessian through-

out if certain conditions are met (see Appendix). The path connecting the symmetric minima

has to pass through a maximum, where at least one of the hessian eigenvalues is negative.

BFGS can nevertheless be useful, as the negative eigenvalue usually lies along the path and

the hessian of the potential is usually positive definite in the hypersurface perpendicular

to the path, within which the search is performed. The wrong curvature of the potential

tangential to the path is projected out during the minimization. Alternatively, one can

implement the right curvature along the path into the hessian matrix explicitly, as shown

below.

SR157 is the simplest symmetric rank-1 updating scheme. A safeguard needs to be

implemented and the update skipped, if conditions for a breakdown are met. More details

are given in Appendix. SR1 does not guarantee positive definiteness, so it is appropriate to

describe hessians with negative eigenvalues along instantons.

PSB (Powell-Symmetric-Broyden)58 update is a non-positive-definite rank-2 update that

does not fail in the same way as SR1. More details are given in Appendix.

Bofill update59 is a combination of SR1 and PSB updates. It switches to PSB update

whenever the conditions for failure of SR1 are approached. Bofill’s method is the method

of choice for transition state searches, when one or more hessian eigenvalues are expected to

be negative.
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In similar fashion, Ayala and Schlegel update60 uses a combination of BFGS and PSB

updates. The BFGS update is predominantly used for displacements perpendicular to the

path, whereas the PSB dominates for moves nearly parallel to the path or along negative

eigenvalue directions.

If beads represent the path faithfully, we can determine the curvature of the potential

along the path with relative accuracy and use this information to improve the quality of

approximate hessians. We parametrize the path in terms of the arc length s and determine

tangents τ̂i = dxi/ds at each bead, as described in Section 4.4. The potential V (xi) and

its derivative along the path, dV (xi)/ds = τ̂i∇V (xi), at xi−1, xi and xi+1 can be used to

construct a quintic polynomial interpolant of the potential along the path, which then yields

the second derivative of the potential along the path at bead i,

d2V (xi)

ds2
=

d

ds
(∇V (xi)τ̂i) = τ̂iHiτ̂i +∇V (xi)

dτ̂i
ds

, (14)

where (d/ds)τ̂i = κN̂i, κ is curvature and N̂i is unit normal to the path. The procedure was

used in Ref. 60 for MEP searches, but the last term in Eq. (14) was missing. This term may

become important when search is nearing the converged instanton. In MEP applications,

it is zero for the converged MEP, because the potential gradient and the path normal are

perpendicular to each other. The updated hessian at xi can be supplemented by the d2Vi/ds
2

knowledge using

H
updated
i = (1− τ̂iτ̂

T
i )Hi(1− τ̂iτ̂

T
i ) +

(

d2V (xi)

ds2
−∇V (xi)

dτ̂i
ds

)

τ̂iτ̂
T
i , (15)

where use has been made of Eq. (14). The path normal at bead i can be obtained by a cubic

spline interpolation of bead positions in terms of arc length, Ni = d2xi/ds
2. Alternatively,

it can be determined by finite differences using coordinates of neighboring beads, xi−1 and

xi+1.

We also considered using more accurate updating formulae by Wu et al.61 Previous ap-
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plications in MD simulations62 included occasional evaluation of exact hessians. If one starts

without the knowledge of initial hessian and does not evaluate it in course of a minimization,

we found that the use of those formulae is unsuitable.

4.2 Trust radius update

The trust radius ∆k
i defines the region in which the quadratic approximation to the potential

around the bead i in Eq. (13) is considered valid. Initial trust radius is chosen as the

Euclidean length of the path segment (distance to the nearest-neighbor bead), unless it

is user specified. Its value is updated when the next position of the bead is reached and

potential evaluated at xk+1
i = xk

i + δxk
i , where k counts iterations. Potential V (xi) is used

as a merit function and mi in Eq. (13) provides the expected value. The parameter ρi is

determined using

ρi =
V (xk+1

i )− V (xk
i )

mi(δxk
i )−mi(0)

. (16)

Based on the parameter ρi, which measures how close the merit function is to the expected

value at bead i, the trust radius is updated as

∆k+1
i =























√
2∆k

i if 0.75 < ρi < 1.25 and 1.25|δxk
i | > ∆k

i

0.25∆k
i if ρi > 1.75 or ρi < 0.25

∆k
i otherwise

. (17)

The prescription in Eq. (17) is slightly more conservative than in the original QSM for MEP

search,47 and it is similar to the prescriptions for transition state search.59 The performance

of the method should only weakly depend on the details of the formulation.

4.3 Integration along the steepest descent

After a local quadratic approximation to the PES has been constructed, we integrate the

positions of beads along the steepest descent direction on the action surface, perpendicular
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to the path. The differential equation that governs the motion of beads is

dxi

dt
= (1− τ̂iτ̂

T
i )

dSquad
A

dxi
, (18)

where t is the parameter of integration. The action gradient dSquad
A /dxi is obtained from

Eq. (11), where the quadratic approximation of the potenial mi in Eq. (13) is used in place

of Vi and the potential gradients replaced by the approximate expression

∇im(xi) = ∇iV (xk
i ) +Hk

i δxi. (19)

The integration of Eq. (18) does not require further (ab initio or subroutine-provided) po-

tential/gradient evaluations.

Original QSM formulation47 uses Runge-Kutta adaptive step-size method63 for integra-

tion of Eq. (18). The method adjusts the step size ∆t based on the accuracy needed ǫ0. It

determines the error of a given step by comparing to the lower-order (RK4) to higher-order

method and updates the step size as described in Ref. 63. The desired accuracy of integration

is set to ǫ0 = max(max(|dS⊥
A/dxi|/10, ǫ)/(10||d2S⊥

A/dx
2
i ||)), in analogy with Ref. 47. Here,

ǫ = max(∇iS
⊥) is the preset accuracy of the instanton path based on the vanishing of the

perpendicular action gradients, and a rough estimate of ||d2S⊥
A/dx

2
i || is obtained by adding

norms of the derivatives of each term on r.h.s. in Eq. (11), neglecting terms that couple

different beads and using perpendicular projection of the local updated hessian.

Alternatively, we use a damped molecular dynamics (DMD) scheme, similar to the orig-

inal NEB optimizer40 or FIRE64 without the step variation. The force (r.h.s. of Eq. (18))

acts perpendicular to the path and accelerates every bead. At every step, a portion of the

velocity of each bead is kept and a portion is redirected to act along the force at that bead.

Velocities of all beads are reset to zero when the Nf -dimensional force becomes antiparallel

to the full Nf -dimensional velocity.

Using one of the above integrators, the string of beads is propagated until a minimum of
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action on the approximate potential is reached or a bead reached its trust radius or an area

of negative potential (on approximate surface) is entered. The integration is then stopped for

potential/gradient evaluation, followed by hessian and trust-radius updates. The updates

can either be performed simultaneosly or for each bead independently, when one of the

criteria for stopping is reached (negative potential or trust radius limit).

4.4 Redistribution of beads

In the string method, beads need to be regularly redistributed to keep the bead spacings at a

desired level. We keep beads approximately equally spaced and achieve this by redistributing

them after every local integration step or, in a more relaxed way, after bead spacings have

become uneven. The criterion used for respacing the beads is

max
i

||xi+1 − xi| − |xi − xi−1|| >
∑

i|xi+1 − xi|
10(N − 1)

. (20)

Both approaches worked equally well in all our tests.

Beads are redistributed using interpolation of Cartesian coordinates of beads with arc

length as the parametric variable. Linear interpolation and use of upwinding tangents51 is

a stable way to propagate the string using Eq. (18).

Natural cubic splines can be used when higher accuracy is needed. We interpolate bead

coordinates using splines with distances between beads (in mass-scaled coordinates) as arc

lengths. We use a dense grid on the interpolated path to obtain arc lengths more accurately

and subsequently reinterpolate bead coordinates using improved arc lengths. Natural cubic

splines provide tangents as τ̂i = dxi/ds and normals as Ni = d2xi/ds
2 at beads, which can

be used for hessian updates in Eq. (15) and force projection scheme in Eq. (18).
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5 MIL’NIKOV-NAKAMURA FORMULA

After we have obtained the minimum action path, the hessians of the potential need to be

evaluated at beads along the path in order to calculate the contributions of the neighboring

paths to the tunneling splitting contained in the prefactor Φ in Eq. (6). In the standard

RPI approach, the prefactor Φ is evaluated as the ratio of the action hessian eigenvalues,

obtained by the diagonalization of the Nf -dimensional banded matrix of the discretized

action hessian, which is a time-consuming step.

Alternatively, the prefactor can be obtained by exploiting the relationship between the

ratio of action determinants and that of Jacobi fields65 and taking the zero-temperature

limit.1,21 Mil’nikov and Nakamura generalized the original one-dimensional treatment22 and

obtained, after a lengthy and non-trivial derivation, the expression

1

Φ
=

√

2

Skink

√

detA(−∞)

detA⊥(0)
exp

[
∫ 0

−∞

dτ [TrA(−∞)− TrA(τ)]

]

, (21)

where A(τ) is the log-derivative of a Jacobi field, which satisfies the Riccati equation,

d

dτ
A(τ) = H(τ)− A(τ)2, (22)

where τ is the imaginary time with τ = ±∞ at the symmetric minima, H(x(τ)) is the

hessian of the potential at the geometry x, where the system is situated at the imaginary

time τ ,

Hj′j(τ) = ∂2V (x(τ))/∂xj′∂xj . (23)

A⊥(0) in Eq. (21) is the matrix A projected to the (f − 1)-dimensional configuration space

perpendicular to the instanton path at the imaginary time τ = 0, which corresponds to the

symmetrical mid point of the path. The initial condition for the desired solution of Eq. (22)

is

A2(−∞) = H(−∞). (24)
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We discretized the integrand in Eq. (21) on an equally-spaced time grid τi, specified by

the imaginary time duration β and the size of the grid N . The system geometries on the time

grid x(τi) where obtained in a 1D full action minimisation on the interpolated potential along

the instanton. The hessian matrices at x(τi) are obtained from the hessian matrices at the N

beads by cubic spline interpolation. The integration of Eq. (22) in time was performed by the

log derivative algorithm using modified Simpson’s rule and a constant reference potential.66

The integration of Eq. (22) was started at a finite imaginary time τk that corresponds to

the geometry x(τk) on the grid that is closest to a prespecified offset distance away from

the minimum of the potential along the instanton to avoid the singularity in the integral in

Eq. (21). The initial A(τk) was obtained by linearization procedure as described in Ref. 22

and the integral in Eq. (21) was evaluated using trapesium rule.

6 TUNNELING SPLITTING CALCULATIONS

In numerical tests below, the QSM is tested in tunneling splitting calculations on the hy-

drogen transfer in malonaldehyde and on umbrella motion in the inversion of ammonia and

hydronium. The efficiency of QSM is measured in terms of the number of potential/gradient

calls to the external routine that provides them, and it is compared to the string method with

the global LBFGS optimizer.44 Numerical overhead of the QSM is considered negligible. The

initial guess is the linear path with equidistant beads in mass-scaled coordinates connecting

the two symmetric minima. The end bead geometries are fixed at potential minima. The

orientation of end beads and half of the intermediate beads are optimized, whereas the other

half is obtained by symmetry. The convergence parameter is ǫ = max(∇iS
⊥), the maximum

absolute value of the perpendicular-to-the-path action gradient.

21



6.1 MALONALDEHYDE

The potential energy surface of malonaldehyde by Sewell et al67 was used for testing of

the string method and other gradient-based search methods for finding instantons,22,25,44 so

it provides an ideal benchmark system for testing the QSM. The malonaldehyde molecule

has 27 degrees of freedom and the surface is full-dimensional and analytic (with analytic

gradients). It is, however, inaccurate, with energy barrier of 3497 cm−1 along MEP and

tunneling splitting of ≈ 51 cm−1 22,44 obtained by the instanton method. The experimental

value is 21.6 cm−1.68

Ref. 44 provides the details of the tunneling splitting calculations on this model system

using the string method. There is a slight modification in the discretization of the action

integral in Eq. (10) and correspondingly in the gradient, Eq. (11) (to be compared with

Eq. (15) and (17) in Ref. 44), so the iteration count obtained using the string method with

LBFGS optimizer here may not be identical to that obained in Ref. 44. The tunneling

splittings were determined sufficiently accurately to within 3 % (1 %) using 18 (27) equally

spaced beads. With 2 beads fixed in potential minima and half of the path obtained by

symmetry, optimization was 8× 27 (13× 27)-dimensional.

The QSM and string method optimize the same object, a string of equidistant beads, so

they require the same number of beads N for a given accuracy in the tunneling splitting ∆.

The difference comes in the number of iterations required for a given N and convergence

parameter ǫ. In QSM method, we have used the DMD (damped molecular dynamics) opti-

mizer described in Subsection 4.3, with propagator parameters fixed to values given in Ref.

64, apart from the ‘time step’ that was fixed to 1.5 a.u. Local potential hessians at each

bead were initialized to diagonal matrices with |∇iV (xi)|/∆0
i on diagonal, where ∆0

i is the

initial trust radius. We fixed ∆0
i to 5 m

1/2
e a0 in our first set of calculations. Updates were

performed simultaneously on all beads, whenever one of the beads met criteria for updating

(partial convergence, trust radius violation or negative potential encounter). First update

on all beads was performed if all beads have moved by 0.5 m
1/2
e a0, to guarantee that the first
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update takes place relatively soon. We also place a limit on the minimum trust radius of

0.1m
1/2
e a0 to prevent updating too often near zero potential and in the non-quadratic regions.

At each update k, the convergence criterion ǫk is set to max(max(|∇iS
⊥|/10), ǫ) to serve as

a criterion for the partial convergence in order to prevent many integrator steps away from

the true minimum of action (but near the minimum on the approximate potential). Hessian

updates were performed using Bofill formula, Eqs. (33) and (34). Upwinding tangents51

were used to define tangents for the gradient projections and beads were redistributed using

linear interpolation at every step of the integrator. We have also tried using Eq. (20) with

no noticable gains in efficiency.

Comparison between the string method and QSM is shown in Fig. 1. The number of

iterations in the string method grows approximately lineraly with the number of beads N .

With 18 (27) beads, the number of gradient evaluations for converging the action gradient to

tolerance ǫ = 10−4 a.u. is 568 (1261). This can be compared to 216 (299) gradient evaluations

with QSM. With 40 beads, the number of gradient evaluations for the string method / QSM

is 3496 / 456. This ratio does not change appreciably when tolerance ǫ is reduced.

Fig. 1 shows that the number of iterations required by QSM remains approximatelly

constant with N ; it does not depend strongly on the number of beads used to represent the

path. As we shall see later (inset of Fig. 3), the number of steps of the DMD integrator does

grow with N . The number of iterations of QSM, on the other hand, depends on how far

the string has travelled and properties of the potential, on how quadratic the surface is. It

shows that the bead-coupling forces in Eq. (11) have successfully been absorbed in the DMD

integrator, which requires no additional gradient calls.

Fig. 2 shows the influence of different updating techniques in QSM. Results are shown for

damped BFGS, SR1, PSB, Bofill and Ayala-Schlegel updates. The formulae are summarized

in Appendix. Initial trust radius was set to 5 m
1/2
e a0. It is immediately obvious that no

method has a clear advantage over the rest. Ayala-Schlegel updating gives best results by a

narrow margin. The next best is the QSM with Bofill updating. SR1 updating gives worst
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results. BFGS updating resulted in 5 failures (over 36 calculations with N = 5− 40). When

we added the tangent updating (dashed gray line) using Eq. (15), we managed to avoid the

failures of convergence using BFGS updates. The onset of failure of the damped BFGS was

always (in all our tests, not only those shown in the figure) associated with the moves that

break the curvature condition in Eq. (27) (which implies a skip of update in the damped

BFGS). Additional tangent updates in general did not bring a performance advantage, but

improved the stability of calculations that use the damped BFGS updates.

The damped BFGS update provides a positive definite hessian by construction, whereas

the instanton has at least one negative hessian eigenvalue along its path. BFGS usually works

because tangential moves are projected out and the remaining (f − 1)-dimensional hessian

is positive definite. Alternatively, the negative eigenvalue can be supplied using Eq. (15).

Nevertheless, through numerous tests (using different initial paths and time steps in DMD),

we found that BFGS and SR1 are less stable than the other updating schemes tested above.

In Fig. 3, we again study the QSM with Bofill updates. This time we set the initial trust

radius to the average distance between beads at the start of the calculations, in an attempt

to avoid having to make a choice about its value at start. The solid black line shows the

number of iterations as a function of the number of beads. The number of iterations slowly

grows with the number of beads N . The solid red line in Fig. 3 shows the dependence with

∆0
i set to 5 m

1/2
e a0 for comparison. The curve is flattened and shows no growth with N .

The starting path length is 71 m
1/2
e a0, which means that for N > 14, the initial trust radius

is shorter than 5 m
1/2
e a0. So the larger trust radius and less updating leads to a better

performance at large N . In this test system, more frequent updating is unnecessary for

large N . The trust region mechanism has not equilibrated over a short propagation (20−40

updates) and efficiency depends on the initial trust radius choice. The initial trust radius set

at the average bead distance (at the start of the calculation) provides a good initial guess

for the converged tunneling splittings (within 3%44) with N = 18.

In Fig. 3, we have also tried using the QSM with Runge-Kutta (RK) integrator, described

24



in Subsection 4.3, and compared it to the QSM with DMD integrator. When RK integrator

is used, we implemented a safeguard to prevent integration without progress. Updating is

triggered if the number of RK steps exceeds 500 or if the RK step becomes negligible. The

total number of integrator steps in an instanton optimization is much larger with the RK

integrator (dashed line) in comparison with the DMD (solid line), as shown in the inset in

Fig. 3, but the performance in terms of the number of QSM iterations is similar (initial trust

radius set to the average bead distance is used).

We also tried the QSM with the individual updating instead of the simultaneous updat-

ing used in the calculations above. In the individual updating, we update only the beads

that reached the trust radius or the area of negative potential (symmetrically). For the first

5 updates and also if partial convergence was accomplished, all beads are updated simulta-

neously. Solid blue line in Fig. 3 shows the ’effective’ number of iterations as a function of

N . Each update of a bead accounts for 1/(N − 2) iterations for comparison with the simul-

taneous updates. The figure shows that the performance of the individual and simultaneous

updating is similar. The dotted blue line shows the number of string geometries at which

the updating takes place showing that the individual updates do often take place after 5

simultaneous updates at the start (which are forced). When nearing the full convergence,

the simultaneous updates again take over as partial convergences are reached.

Fig. 4 shows the rate of convergence of the string method using QSM (Bofill updates) and

LBFGS (with the global optimizer) using 18 beads (for which the tunneling splittings are

converged to within 3 %) (red line) and 40 beads (black line). The initial trust radius was set

to 5 m
1/2
e a0. It can be seen that the QSM is capable of superlinear convergence. It is clear

that the superior performance of the QSM holds over orders of magnitude of accuracy. The

approximate N-independence of QSM persists for all accuracies. The QSM requires about

3 times less potential/gradient evaluations than the string method/LBFGS for a converged

tunneling splitting calculation (≈ 1%) in this system and the ratio grows with the added

beads and accuracy.
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Next, we compare the instanton search with the MEP search. The convergence criterion

based on the gradient of action and potential, respectively, needs to be changed (as respective

gradients have different units). We measured the average root-mean-square distance to the

converged result with the same number of beads N and set ǫ = 0.1m
1/2
e a0 (which corresponds

to the gradient-based ǫ ≈ 10−4 a.u.). We again compare the efficiency of the string method

and the QSM for locating instantons (red line) and MEPs (black line) in Fig. 5. QSM is

used with ∆0
i = 5 m

1/2
e a0, Bofill updates and the DMD integrator. The DMD time step was

set to 1.5 a.u. in the instanton search, as above, and to 25 a.u. in the MEP search.

Fig. 5 shows again that the QSM performance is superior to the string method. The

efficiency of instanton search is comparable to the MEP search for the string method. The

average r.m.s. distance of the starting path to instanton and MEP are 19 and 69 m
1/2
e a0,

respectively. The longer distance to the solution is compensated by the less complicated

force scheme (no inter-bead couplings) in the MEP search. In QSM, the number of iterations

remains independent of the number of beads for both, the instanton and the MEP search,

which proves that the distance to the solution is the main factor affecting the performance.

The instanton search clearly overperforms MEP search, because the burden of the more

complicated force scheme is carried by the DMD integrator, and the distance to the solution

is smaller for the instanton.

In Fig. 6, we plot the average r.m.s. distance of the converged path with N beads to the

fully converged path (N → ∞) against the number of beads N . It can be seen that for

a given accuracy of the path, MEP requires a much larger number of beads. The inset in

Fig. 6 shows that the MEP is 2.5 times longer than the instanton path. Both paths have

end points in PES minima. The difference in length is due to the corner-cutting effect of the

minimum action path, which is very pronounced in this system. The conclusion is that in the

model system of malonaldehyde the full tunneling splitting calculation is computationally

less expensive than finding the MEP.
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6.2 AMMONIA

For further validation of the QSM, we tested the method on inversion tunneling in ammonia.

The potential energy surface by Marquardt et al69 was used, which is again analytical and

full dimensional. It is obtained by a fit to ab initio data on a combination of the CCSD(T)

and MRCI levels of theory with aug-cc-pVQZ basis. The surface has inversion barrier of

1774 cm−1.

We optimized the instanton using the string method with LBFGS and QSM. The number

of iterations as a function of number of beads is shown in Fig. 7. The starting path length was

the linear interpolation between minima and is 95.76 m
1/2
e a0 long. The converged instanton

(N → ∞) is 97.47 m
1/2
e a0, with the average r.m.s. deviation from the starting path of

5.72 m
1/2
e a0. We note here that the length of MEP is 97.61 m

1/2
e a0 with the average r.m.s.

deviation from the starting path of 5.98 m
1/2
e a0 and 0.259 m

1/2
e a0 from the instanton path.

This makes the calculation trivial, but realistic in terms of the accuracy of the potential.

The trust radius was set to the average bead distance at the starting path. We used all

hessian updating formulae listed in Appendix. Only results obtained using Bofill and Ayala-

Schlegel updates are shown. The other updates gave almost identical results with a maxium

±1 iterations difference in each calculation. The advantage of QSM over the string method

using LBFGS begins to show for N > 10 beads and grows to a factor of 3 advantage at

N = 40.

The converged instanton was interpolated using splines and a 1D full action minimization

with β = 4000 a.u. and N = 401 using equal imaginary time steps was performed in order

to obtain bead positions on an imaginary time grid. The prefactor was calculated using

Eq. (21) with the integrand obtained by a log-derivative propagation of Eq. (22) on the

precalculated imaginary time grid, with the offset of 0.1 m
1/2
e a0 along the instanton away

from the minimum. The splittings ∆ were obtained using Eq. (4). The convergence of the

splittings is shown in the inset in Fig. 7. The results with 4 beads and above are already

within 15 % of the fully converged result. The splitting ∆ is converged within 3 % using
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12 beads and within 1 % using 20 beads. Using 20 beads, QSM requires 5 iterations for

convergence, which means 9×5 = 45 potential/gradient evaluations. String method requires

11 iterations and 99 potential/gradient calls.

The comparison of tunneling splittings and the associate actions for the isotopically

substituted ammonia molecules obtained using the RPI method is given in Table I, together

with accurate quantum mechanical results of Ref. 69 and the experiment.70–73 Results deviate

up to 40 %, which is in line with the expectancies of the instanton theory.

Table 1: Tunneling splittings in ammonia obtained using RPI-QSM. Comparison to accurate
quantum results by Marquardt et al69 and experiment.70–73

∆ / cm−1 instanton Marquardt et al69 experiment Action / a.u.
NH3 0.476 0.75 0.7970 8.085
NDH2 0.250 0.38 0.40671 8.707
NHD2 0.108 0.16 0.17172 9.499
ND3 0.0344 0.05 0.05373 10.55

6.3 HYDRONIUM

Another realistic example is the inversion tunneling in hydronium ion. We use the potential

by Huang et al,74 a fit to ab initio energies obtained using CCSD(T) and aug-cc-pVQZ basis

set. The inversion barrier is 690 cm−1.

We again optimized instantons using the string method and QSM and show the number

of iterations vs. number of beads in Fig. 8. Linear starting path is 72.59 m
1/2
e a0 long, whereas

the instanton and MEP are 73.42 and 73.46 m
1/2
e a0 long, respectively. Average r.m.s. distance

of the instanton to the starting path and MEP are 3.46 and 0.0915 m
1/2
e a0. This is another

example where the solution is pratically within the trust radius, initially set to the average

bead separation at the starting path, but it is also a realistic example. We again tried using

all hessian updating formulae listed in Appendix, with only ±1 iterations difference between

them when converged. Only results obtained using Bofill and Ayala-Schlegel updates are
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shown in Fig. 8. For N > 10 beads, QSM again dominates the string method. At 40 beads,

efficiency ratio between the string and QSM is 2.6.

The converged instanton was interpolated using cubic splines and a 1D action minimiza-

tion with β = 5000 a.u. and N = 201 using equal imaginary time steps was performed

in order to obtain the grid for the prefactor calculation. Eq. (22) was solved using a log

derivative propagation on the grid with the starting offset of 0.1 m
1/2
e a0 along the path, and

the splittings obtained using Eqs. (21) and (4). Convergence of the splittings is shown in

the inset in Fig. 8.

The converged instanton was interpolated using splines and a 1D full action minimization

with β = 4000 a.u. and N = 401 using equal imaginary time steps was performed in order

to obtain bead positions on an imaginary time grid. The prefactor was calculated using

Eq. (21) with the integrand obtained by a log-derivative propagation of Eq. (22) on the

precalculated imaginary time grid, with the offset of 0.1 m
1/2
e a0 along the instanton away

from the minimum. The splittings ∆ were obtained using Eq. (4).

The results with 4 beads and above are already within 16 % of fully converged result.

∆ is converged within 3 % using 11 beads and within 1 % using 19 beads. Using 19 beads,

QSM requires 4 iterations, which means 9 × 4 = 36 potential/gradient evaluations. String

method requires 9 iterations and 81 potential/gradient calls.

The comparison of tunneling splittings and the associate actions for the isotopically

substituted hydronium ions obtained using RPI-QSM is given in Table II, together with

accurate quantum mechanical results of Ref. 74 and the experiment.75,76 Instanton results

deviate up to 50 % from the quantum results, which is, again, in line with the expectancies

of the instanton theory.

The instanton results in hydronium and ammonia above show similar or better agreement

to quantum results than the competing reduced dimensional quantum theories.77 The full

power of instantons lies in the applications in systems that are beyond reach of quantum

calculations and the full power of QSM lies in the systems with demanding potentials. The
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above tests on simple systems give us the reassurance that the tunneling splittings in large

systems can be obtained using RPI-QSM with signicant computational savings.

Table 2: Tunneling splittings in hydronium obtained using instantons and compared to
accurate quantum results by Huang et al74 and experiment.75,76

∆ / cm−1 instanton Huang et al74 experiment Action / a.u.
H3O+ 67.0 46 55.3575 3.679
DH2O+ 48.4 33 − 3.968
HD2O+ 31.6 22 − 4.339
D3O+ 17.5 12 15.3576 4.836

6.4 COMPUTATIONAL CONSIDERATIONS

The search for the instanton and the evaluation of hessians along the instanton both require

a significant computational effort. The above results show that the QSM brings considerable

efficiency savings to the instanton search. We examine below how does the share of the effort

of the instanton search scale up in larger systems.

The instanton search is based on the potential and gradient evaluations. For illustrative

purposes, we assume that gradients are obtained using a 3-point stencil, which requires 2f

potential calls. For a complete instanton search, the number of potential evaluations needed

is Niter×(N−2)×(2f+1), where Niter is the number of iterations in a converged calculation,

whereby potential and gradient are evaluated at N − 2 beads (N − 1, if the symmetry of the

path is included explicitly) at every iteration.

If analytical hessians are not available, the hessian at a bead can be obtained with

sufficient accuracy from the potential evaluations in the neighborhood of the bead using

finite differences based on a 3-point stencil (using formulae 25.3.23 and 25.3.27 from Ref.

78). The hessian evaluation based on 3-point stencil requires f 2+f+1 potential evaluations,

where 2f+1 of them are already known from the instanton search. The added effort is f 2−f

potential evaluations (or similar, if using other schemes of comparable accuracy are used).
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Hessians need to be evaluated at all beads along the MAP resulting in ≈ N × f 2 potential

evaluations. Evaluating hessians at a denser or sparser grid along the instanton did not bring

any accuracy gains or efficiency savings.

Therefore, the instanton search is more demanding than the subsequent hessian evalua-

tion if Niter > f/2, approximately, which is satisfied for all but the simplest systems.

The number of iterations Niter in the string method based on the global LBFGS optimizer

in a converged calculation scales itself proportionaly to the number of degrees of freedom

being optimized, Niter ∼ Nf . This means that in the high-accuracy calculations, or for the

more demanding paths that require a large number of beads N for a faithful description, the

instanton search will dominate the hessian evaluation more drastically.

The number of iterations Niter in the QSM is proportional to the number of degrees of

freedom f , where the remaining effort proportional to Nf is picked up by the local integrator,

as can be seen in Figs. 1 and 3. The consequence of the above is that the share of the effort

of the instanton search using the QSM in the tunneling splitting calculations is expected to

remain independent of the system size. It will however depend on how far the initial guess

is from the solution and on the complexity of the potential and dynamics involved. In the

malonaldehyde test case, with a a pronounced skeletal rearrangement and a relatively large

corner-cutting effect, the effort of instanton search using the QSM with 18, 27 and 40 beads

is ≈ 1.88, 1.67 and 1.79 times more demanding, respectively, than the subsequent hessian

evaluation, in terms of the number of potential evaluations under the assumptions given

above. In the trivial examples of ammonia (and hydronium) with N = 20 and 40, the effort

ratio is 0.85 and 0.90 (and 0.68 and 0.90), meaning that the instanton search takes less time

than the hessian evaluation (as the initial guess is already very close to the instanton in those

systems). The numbers are illustrative as the above calculations use analytical gradients,

which are expected to aid the convergence. The numerical effort of the prefactor calculation

using the Mil’nikov-Nakamura formula is negligible in comparison.
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7 CONCLUSIONS

We have proposed the quadratic string method for locating instantons in the calculations of

tunneling splittings in molecular systems, as an effective way of reducing the number of ab

initio potential/gradient evaluations compared to other state-of-the-art methods. Instanton

path is represented by a string of equidistant beads in Cartesian coordinates, where each

bead represents the molecular geometry along the tunneling path. The end beads remain

fixed at potential minima. The quadratic string method, first developed for locating MEPs,

was modified to minimize the abbreviated action with bead coordinates as parameters. The

path is iteratively improved upon by minimizing abbreviated action in the local quadratic

potentials centered at beads, constructed using updated hessians. The method requires

potential/gradients along the path at every iteration and is thus trivially parallelizable.

The QSM was tested on a model potential of malonaldehyde, and on inversion tunnel-

ing in ammonia molecule and hydronium ion, where the instanton tunneling splittings were

obtained for all isotopically substituted systems. The computational cost of locating instan-

tons using the QSM is about three times lower than the cost of using the string method

with LBFGS optimizer, measured in terms of the number of potential/gradient evaluations.

The method is general, as it uses Cartesian coordinates, and widely applicable, as locating

instantons takes less effort than locating MEPs. The instanton search using the QSM takes

a comparable amount of time to the hessian evaluation along the path. The prefactor was

obtained from hessians at beads using the Mil’nikov-Nakamura formula in Cartesian coordi-

nates with little extra effort. The QSM relies on the techniques for updating hessians and

a trust region algorithm that have both been extensively tested in the MEP search appli-

cations. With this added reassurance, having in mind that the tunneling paths are usually

simpler than MEPs, the QSM is expected to provide a simple and powerful way of calculating

tunneling splittings using instanton theory in large systems of systems with more complex

motions and in combination with expensive potential energy surfaces or on-the-fly electronic

structure calculations.
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APPENDIX: Hessian updating formulae

The updating formulae are used to obtain the approximation to hessian Hk+1 at iteration

k + 1 from the hessian at iteration k, Hk. The restriction on the form of the updating

formulae are symmetry (hessian must remain a symmetric matrix) and the quasi-Newton

condition, defined as

Hk+1δxk = δgk, (25)

where δxk = xk+1−xk, δgk = gk+1−gk and gk = ∇V (xk), which ensures that the quadratic

expansion at xk+1 with the updated hessian Hk+1 reproduces gk at xk. We have made use

of the following updating formulae.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update56

Hk+1 = Hk − Hkδxk(Hkδxk)T

(δxk)THkδxk
+

δgk(δgk)T

(δgk)Tδxk
(26)

The BFGS update is positive definite if curvature condition,

(δxk)Tδgk > 0, (27)

is satisfied at every move. In case a step is performed that does not satisfy Eq. (27), a

damped BFGS update48 can be performed,

δgk
damped = θkδgk + (1− θk)Hkδxk, (28)
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where

θk =











1 if (δxk)Tδgk ≥ 0.2(δxk)THkδxk

0.8(δxk)THkδxk

(δxk)THkδxk−(δxk)Tδgk otherwise
, (29)

which ensures that the curvature condition is always satisfied, (δxk)Tδgk
damped = 0.2(δxk)THkδxk >

0, and hessian remains positive-definite. The damped BFGS interpolates between BFGS

(θ = 1) and no-update, Hk+1 = Hk (θ = 0).

Symmetric rank 1 (SR1) update57

Hk+1 = Hk +
(δgk −Hkδxk)(δgk −Hkδxk)T

(δgk −Hkδxk)Tδxk
(30)

SR1 update does not guarantee positive-definiteness of hessian. A safeguard needs to be

introduced against vanishing denominator in Eq. (30). We skip the update if

|(δxk)T(δgk −Hkδxk)| ≥ r|δxk||δgk −Hkδxk|, (31)

where we take r = 10−8.48

Powell-symmetric-Broyden (PSB) update58

Hk+1 = Hk +
(δgk −Hkδxk)(xk)T + xk(δgk −Hkδxk)T

(δxk)Tδxk

−
[

(δxk)T(δgk −Hkδxk)
]

δxk(δxk)T

((δxk)Tδxk)2
(32)

PSB update does not guarantee a positive-definite hessian and fails at different circumstances

to SR1 update. It is used as part of Bofill and Ayala-Schlegel update.
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Bofill update59

Hk+1
Bofill = (1− φk)Hk+1

SR1 + φkHk+1
PSB, (33)

where

φk = 1−
[

(δxk)T(δgk −Hkδxk)
]2

[(δxk)Tδxk] [(δgk −Hkδxk)T(δgk −Hkδxk)]
. (34)

Bofill update uses SR1 updating formula unless it is close to its validity limit, Eq. (31), when

it uses the PSB updating formula instead.

Ayala-Schlegel update60

Hk+1
AS = (1− φk)Hk+1

BFGS + φkHk+1
PSB, (35)

where

φk =











1 if (δgk)Tδxk < 0 or (δxk)THkδxk < 0
(

(gk+1)Tδxk

|gk+1||δxk|

)2

otherwise
. (36)

The Ayala-Schlegel update uses BFGS updating formula, unless curvature condition in

Eq. (27) breaks down or a region of negative curvature along the path is encountered, when

it uses the PSB updating formula.

35



References

(1) Benderskii, V. A.; Makarov, D. E.; Wight, C. A. Chemical Dynamics at Low Temper-

atures. Adv. Chem. Phys. 1994, 88, 1-358.

(2) DeVault, D. Quantum Mechanical Tunneling in Biological Systems. Q. Rev. Biophys.

1980, 13, 387-564.

(3) Keutsch, F. N.; Saykally, R. J. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10533-10540.

(4) Richardson, J. O.; Wales, D. J.; Althorpe, S. C.; McLaughlin, R. P.; Viant, M. R.;

Shih, O.;, Saykally, R. J. J. Phys. Chem. A 2013, 117, 6960-6966.

(5) Richardson, J. O.; Pérez, C.; Lobsiger, S.; Reid, A. A.; Temelso, B.; Shields, G. C:;

Kisiel, Z.; Wales, D. J.; Pate, B. H.; Althorpe, S. C. Science 2016, 351, 1310-1313.

(6) Hammer, T.; Coutinho-Neto, M. D.; Viel, A; Manthe, U. J. Chem. Phys. 2009, 131,

224109.

(7) Neff, M.; Rauhut G. Spectrochim. Acta A 2014, 119, 100-106.

(8) Marquardt, R.; Sagui, K.; Zheng, J.; Thiel, W.; Luckhaus, D.; Yurchenko, S.; Mariotii,

F.; Quack, M. J. Phys. Chem. A 2013, 117, 7502-7522.

(9) Coker, D. F.; Watts, R. O. J. Phys. Chem. 1987, 91, 2513-2518.

(10) Wang, Y.; Braams, B. J.; Bowman, J. M.; Carter, S.; Tew, D. P. J. Chem. Phys. 2008,

128, 224314.

(11) Ceperley, D. M.; Jacucci, G. Phys. Rev. Lett. 1987, 58, 1648-1651.

(12) Mátyus, E.; Wales, D.J.; Althorpe, S. C. J. Chem. Phys. 2016, 144, 114108.

(13) Miller, W. H. J. Phys. Chem. 1979, 83, 960-963.

(14) Makri, M.; Miller, W. H. J. Chem. Phys. 1989, 91, 4026-4036.

36



(15) Ben-Nun, M.; Martinez, T. J. J. Phys. Chem. A 1999, 103, 6055-6059.

(16) Wales, D. J. J. Am. Chem. Soc. 1993, 115, 11191-11201.

(17) Takahashi, M.; Watanabe, Y.; Taketsugu, T.; Wales, D. J.; J. Chem. Phys. 2005, 123,

044302.

(18) Smedarchina, Z.; Siebrand, W.; Fernandez-Ramos A. J. Chem. Phys. 2012, 137,

224105.

(19) Miller, W. H. J. Chem. Phys. 1975, 62, 1899-1906.

(20) Callan, C. G.; Coleman, S. Phys. Rev. D 1977, 16, 1762-1768.

(21) Vainshtein, A. I.; Zakharov, V. I.; Novikov, V. A.; Shifman, M. A. Phys. Usp. 1982,

25, 195-215.

(22) Mil’nikov, G. V.; Nakamura, H. J. Chem. Phys. 2001, 115, 6881-6897.

(23) Nakamura, H.; Mil’nikov, G. V. Quantum Mechanical Tunneling in Chemical Physics;

CRC Press Inc, 2013.

(24) Richardson, J. O.; Althorpe, S. C. J. Chem. Phys. 2009, 131, 214106.

(25) Richardson, J. O.; Althorpe, S. C. J. Chem. Phys. 2011, 134, 054109.

(26) Richardson, J. O.; Althorpe, S. C.; Wales, D. J. J. Chem. Phys. 2011, 135, 124109.

(27) Mil’nikov, G.V.; Nakamura, H. J. Chem. Phys. 2005, 122, 124311.

(28) Richardson, J. O. J. Chem. Phys. 2016, 144, 114106.

(29) Richardson, J. O.; Bauer, R.; Thoss, M. J. Chem. Phys. 2015, 143, 134115.

(30) Richardson, J. O. J. Chem. Phys. 2015, 143, 134116.

(31) Cao, J.; Minichino, C.; Voth, G.A. J. Chem. Phys. 1995, 103, 1391-1399.

37



(32) Richardson, J. O. Faraday Discuss. 2016, 195, 49-67.

(33) McConnell, S.; Löhle, A.; Kästner, J. J. Chem. Phys. 2017, 146, 074105.

(34) Zhang, Y.; Rommel, J.B.; Cvitaš, M. T.; Althorpe, S. C. J. Chem. Phys. 2014, 16,

24292-24300.

(35) McConnell, S.; Kästner, J. J. Comput. Chem. 2017, 38, 2570-2580.

(36) Kryvohuz, M. J. Chem. Phys. 2011, 134, 114103.

(37) Kryvohuz, M. J. Chem. Phys. 2012, 137, 234304.

(38) Rommel, J. B.; Kästner, J. J. Chem. Phys. 2011, 134, 184107.

(39) Einarsdóttir, D. M.; Arnaldsson, A; Óskarsson, F.; Jónsson, H. Path optimization with

application to tunneling. Lecture Notes in Computer Science 2012, 7134, 45-55.

(40) Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding mini-

mum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase

Simulations; World Scientific, 1998; pp 385-404.

(41) Kawatsu, T.; Miura S. J. Chem. Phys. 2014, 141, 024101.

(42) Smedarchina, Z.; Siebrand, W.; Zgierski, M.Z.; Fernandez-Ramos, A. J. Chem. Phys.

1999, 18, 5-41.

(43) Smedarchina, Z.; Siebrand, W.; Fernandez-Ramos, A. J. Chem. Phys. 2013, 117,

11086-11100.

(44) Cvitaš, M. T.; Althorpe, S. C. J. Chem. Theory Comput. 2016, 141, 024101.

(45) E, W.; Ren W.; Vanden-Eijnden, E. Phys. Rev. B 2002, 66, 052301.

(46) E, W.; Ren, W.; Vanden-Eijnden, E. Phys. Rev. B 2007, 126, 164103.

38



(47) Burger, S. K.; Yang, W. J. Chem. Phys. 2006, 124, 054109.

(48) Nocedal, J.; Wright, S. J. Numerical Optimization, Springer-Verlag New York, 1999.

(49) Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J. ACM. Trans. Math. Softw. 1997, 23, 550-560.

(50) Goldstein, H. Classical Mechanics, Addison-Wesley, 1950; pp 365-371.

(51) Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113, 9978-9985.

(52) Karney, C. F. F. J. Mol. Graph. Model. 2007, 5, 595-604.

(53) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128, 134106.

(54) Bohner, M. U.; Meisner, J.; Kästner, J. J. Chem. Theory Comput. 2013, 9, 3498-3504.

(55) Trygubenko, S. A.; Wales, D. J. J. Chem. Phys. 2004, 120, 2082-2094.

(56) Broyden, C.G. IMA J. Appl. Math. 1970, 6, 76-90. Fletcher, R. Comput. J. 1970,

13, 317-322. Goldfarb, D. Math. Comput. 1970, 24, 23-26. Shanno, D.F. Math. Com-

put. 1970, 24, 647-656.

(57) Murtagh, B.A.; Sargent R.W.H. Comput. J. 1972, 13, 185-194.

(58) Powell, M.J.D. Math. Program. 1971, 1, 26-57.

(59) Bofill, J. M. J. Comput. Chem. 1994, 15, 1-11.

(60) Ayala, P.Y.; Schlegel, H.B. J. Chem. Phys. 1997, 107, 375-384.

(61) Wu, H.; Rahman, M.; Wang, J.; Louderaj, U.; Hase, W.L.; Zhuang, Y. J. Chem. Phys.

2010, 133, 074101.

(62) Zhuang, Y.; Siebert, M.R.; Hase, W.L.; Kay, K.G.; Ceotto, M. J. Chem. Theory Com-

put. 2013, 9, 54-64.

39



(63) Press, W.H.; Teukolsky, S.A:; Vetterling, W.T.; Flannery, B.P. Numerical Recipes,

Cambridge University Press, New York, 2007.

(64) Bitzek, E.; Koskinen, P.; Gähler, F.; Moseler, M.; Gumbsch, P. Phys. Rev. Lett. 2006,

97, 170201.

(65) Van Vleck, J.H. Proc. Natl. Acad. Sci. U.S.A. 1928, 14, 178-188.

(66) Manolopoulos, D.E. J. Chem. Phys. 1986, 85, 6425-6429.

(67) Sewell, T. D.; Guo, Y.; Thompson, D. L. J. Chem. Phys. 1995, 103, 8557-8565.

(68) Baba, T.; Tanaka, T.; Morino, I.; Yamada, K. M. T.; Tanaka, K. J. Chem. Phys. 1999,

110, 4131-4133.

(69) Marquardt, R.; Sagui, K.; Zheng, J.; Thiel, W.; Luckhaus, D.; Yurchenko, S.; Mariotti,

F.; Quack, M. J. Phys. Chem. A 2013, 117, 7502-7522. 109, 8439-8451.

(70) Urban, Š.; Špirko, V.; Papoušek, D.; Kauppinen, J.; Belov, S.B.; Gershtein, L.I.; Krup-

nov, A.F. J. Mol. Spetrosc. 1981, 88, 274-292.

(71) Coudert, L.; Valentin, A.; Henry, L. J. Mol. Spetrosc. 1986, 120, 185-204.

(72) Kartha, S.B.; Singh, K.; Job, V.A.; Kartha, V.B. J. Mol. Spetrosc. 1988, 129, 86-98.

(73) Fusina, L.; Di Leonardo, G.; Johns, J.W.C. J. Mol. Spetrosc. 1986, 118, 397-423.

(74) Huang, X.; Carter, S.; Bowman, J. J. Chem. Phys. 2003, 118, 5431-5441.

(75) Liu, D.; Haese, N.N.; Oka, T. J. Chem. Phys. 1985, 82, 5368-5372.

(76) Sears, T.J,; Bunker, P.R.; Davies, P.B.; Johnson, S.A.; Špirko, V. J. Chem. Phys. 1985,

83, 2676-2685.

(77) Kamarchik, E.; Wang, Y.; Bowman, J. J. Chem. Phys. 2009, 113, 7556-7562.

40



(78) Abramowitz, M.; Stegun I.A. Handbook of Mathematical Functions, National Bureau

of Standards, 1972; pp 884.

41



Figure Captions

Figure 1 Number of iterations needed to converge the instanton tunneling path in mal-

onaldehyde to tolerance ǫ (colors denote the tolerance levels as indicated in the legend) as

a function of the number of beads. Growing dependencies are obtained using the string

method with LBFGS optimizer (denoted as LBFGS), flat dependencies are obtained with

the QSM with Bofill updates.

Figure 2 Number of iterations needed to converge instanton path in malonaldehyde (ǫ =

10−4 a.u.) using the QSM as a function of the number of beads. Different colors refer to

different hessian updating formulae used, as shown in legend. Dashed black line is obtained

using BFGS and tangent updating according to Eq. (15). Missing black circles for certain

bead numbers point to the convergence failures.

Figure 3 Number of iterations needed to converge the instanton path in malonaldehyde

(ǫ = 10−4 a.u.) using the QSM method with Bofill updates as a function of the number of

beads. Initial trust radius ∆0 is set to the average bead distance at the start of the calculation

or fixed at 5 m
1/2
e a0, as indicated in the legend. Blue line refers to the calculation in which

hessian updates are performed individually (more details in the text). Dotted blue line shows

the number of different path configurations at which a hessian update is performed. Inset

shows the number of local propagator iterations. Solid line refers to the DMD integrator

and dashed line to RK4.

Figure 4 Tolerance (maximum value of the perpendicular action gradient at a bead) as a

function of the number of iterations for the instanton calculations in malonaldehyde. Com-

parison is made between the QSM method with Bofill updates (marked QSM) and the string

method with LBFGS optimizer (marked LBFGS) for the number of beads N = 18 (red line)

and 40 (black line).

Figure 5 Number of iterations needed to converge the instanton path (black line) and MEP

(red line) using the string method with LBFGS optimizer and QSM with Bofill updates in

malonaldehyde as a function of the number of beads. Convergence criterion ǫ is the average
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r.m.s. Euclidean distance in the mass-scaled coordinates to the converged path with the

given number of beads, ǫ = 0.1 m
1/2
e a0.

Figure 6 Average r.m.s. deviation of the converged path with N beads to the fully-converged

path (N → ∞) for instanton (black line) and MEP (red line) in malonaldehyde. Inset shows

the potential energy along the instanton path and MEP as a function of the mass-scaled

distance travelled along the path.

Figure 7 Number of iterations needed to converge instanton tunneling path in ammonia to

tolerance ǫ (colors denote tolerance levels as indicated in the legend) as a function of the

number of beads. Growing dependencies are obtained using string method with LBFGS op-

timizer (denoted as LBFGS), flat dependencies are obtained with QSM, where hessians were

updated according to Bofill (line) and Ayala-Schlegel (circles). Inset shows the convergence

of tunnesling splittings ∆ with the number of beads.

Figure 8 Number of iterations needed to converge instanton tunneling path in hydronium

to tolerance ǫ (colors denote tolerance levels as indicated in the legend) as a function of the

number of beads. Growing dependencies are obtained using string method with LBFGS op-

timizer (denoted as LBFGS), flat dependencies are obtained with QSM, where hessians were

updated according to Bofill (line) and Ayala-Schlegel (circles). Inset shows the convergence

of tunnesling splittings ∆ with the number of beads.
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