
J. Chem. Phys. 150, 154119 (2019); https://doi.org/10.1063/1.5084961 150, 154119

© 2019 Author(s).

Assessing the performance of trajectory
surface hopping methods: Ultrafast internal
conversion in pyrazine
Cite as: J. Chem. Phys. 150, 154119 (2019); https://doi.org/10.1063/1.5084961
Submitted: 07 December 2018 . Accepted: 01 April 2019 . Published Online: 19 April 2019

Weiwei Xie , Marin Sapunar , Nađa Došlić , Matthieu Sala, and Wolfgang Domcke 

ARTICLES YOU MAY BE INTERESTED IN

Direct quantum dynamics using variational Gaussian wavepackets and Gaussian process
regression
The Journal of Chemical Physics 150, 041101 (2019); https://doi.org/10.1063/1.5086358

Radical pair intersystem crossing: Quantum dynamics or incoherent kinetics?
The Journal of Chemical Physics 150, 151102 (2019); https://doi.org/10.1063/1.5095204

Unsupervised machine learning in atomistic simulations, between predictions and
understanding
The Journal of Chemical Physics 150, 150901 (2019); https://doi.org/10.1063/1.5091842

https://images.scitation.org/redirect.spark?MID=176720&plid=1007006&setID=378408&channelID=0&CID=326229&banID=519800491&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9f34f1cb620828b56eaf9bdebc7286d6c339bcff&location=
https://doi.org/10.1063/1.5084961
https://doi.org/10.1063/1.5084961
https://aip.scitation.org/author/Xie%2C+Weiwei
http://orcid.org/0000-0001-8224-5340
https://aip.scitation.org/author/Sapunar%2C+Marin
http://orcid.org/0000-0002-5717-1930
https://aip.scitation.org/author/Do%C5%A1li%C4%87%2C+Na%C4%91a
http://orcid.org/0000-0001-6535-9020
https://aip.scitation.org/author/Sala%2C+Matthieu
https://aip.scitation.org/author/Domcke%2C+Wolfgang
http://orcid.org/0000-0001-6523-1246
https://doi.org/10.1063/1.5084961
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5084961
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5084961&domain=aip.scitation.org&date_stamp=2019-04-19
https://aip.scitation.org/doi/10.1063/1.5086358
https://aip.scitation.org/doi/10.1063/1.5086358
https://doi.org/10.1063/1.5086358
https://aip.scitation.org/doi/10.1063/1.5095204
https://doi.org/10.1063/1.5095204
https://aip.scitation.org/doi/10.1063/1.5091842
https://aip.scitation.org/doi/10.1063/1.5091842
https://doi.org/10.1063/1.5091842


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Assessing the performance of trajectory
surface hopping methods: Ultrafast
internal conversion in pyrazine

Cite as: J. Chem. Phys. 150, 154119 (2019); doi: 10.1063/1.5084961
Submitted: 7 December 2018 • Accepted: 1 April 2019 •
Published Online: 19 April 2019

Weiwei Xie,1,2,3,a) Marin Sapunar,4 Nad̄a Došlić,4,b) Matthieu Sala,5 and Wolfgang Domcke1,c)
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ABSTRACT
Trajectory surface hopping (TSH) methods have been widely used to study photoinduced nonadiabatic processes. In the present study, nona-
diabatic dynamics simulations with the widely used Tully’s fewest switches surface hopping (FSSH) algorithm and a Landau-Zener-type TSH
(LZSH) algorithm have been performed for the internal conversion dynamics of pyrazine. The accuracy of the two TSH algorithms has been
critically evaluated by a direct comparison with exact quantum dynamics calculations for a model of pyrazine. The model comprises the three
lowest excited electronic states (B3u(nπ∗), A1u(nπ∗), and B2u(ππ∗)) and the nine most relevant vibrational degrees of freedom. Considering
photoexcitation to the diabatic B2u(ππ∗) state, we examined the time-dependent diabatic and adiabatic electronic population dynamics. It
is found that the diabatic populations obtained with both TSH methods are in good agreement with the exact quantum results. Fast popu-
lation oscillations between the B3u(nπ∗) and A1u(nπ∗) states, which reflect nonadiabatic electronic transitions driven by coherent dynamics
in the normal mode Q8a, are qualitatively reproduced by both TSH methods. In addition to the model study, the TSH methods have been
interfaced with the second-order algebraic diagrammatic construction ab initio electronic-structure method to perform full-dimensional on-
the-fly nonadiabatic dynamics simulations for pyrazine. It is found that the electronic population dynamics obtained with the LZSH method
is in excellent agreement with that obtained by the FSSH method using a local diabatization algorithm. Moreover, the electronic populations
of the full-dimensional on-the-fly calculations are in excellent agreement with the populations of the three-state nine-mode model, which
confirms that the internal conversion dynamics of pyrazine is accurately represented by this reduced-dimensional model on the time scale
under consideration (200 fs). The original FSSH method, in which the electronic wave function is propagated in the adiabatic representation,
yields less accurate results. The oscillations in the populations of the diabatic B3u(nπ∗) and A1u(nπ∗) states driven by the mode Q8a are also
observed in the full-dimensional dynamics simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084961

I. INTRODUCTION

The vast majority of chemistry relies on the Born-Oppenheimer
(BO) approximation, that is, on the assumption that the electronic

and nuclear motions can be separated. Within the BO approxima-
tion, the nuclei move on a single adiabatic potential energy sur-
face (PES) provided by the electrons. In photoinduced processes,
the BO approximation often breaks down and the nuclear motion
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takes place on several coupled PESs. An important reason for the
breakdown of the BO approximation is the existence of conical
intersections (CI).1–4 These are subspaces of the nuclear configura-
tion space in which two or more electronic states become degener-
ate and which allow efficient population transfer between different
electronic PESs.5

The theoretical study of photoinduced processes requires hav-
ing at hand accurate and efficient methods for the description of
nuclear motion on coupled multidimensional PESs. In the past few
decades, a number of nonadiabatic dynamics methods have been
developed which differ in the accuracy with which nuclear motion
is treated.6–9 The multi-configuration time-dependent Hartree
(MCTDH) method is a well-established approach for the numer-
ical solution of the time-dependent Schrödinger equation (TDSE)
for nuclear motion.6,10 In MCTDH, the multidimensional wave
function is expanded in a time-dependent basis of so-called single-
particle functions (SPF). This time-dependent basis yields a com-
pact representation of the evolving wave packet which can result
in substantial computational savings. This renders MCTDH the
method of choice for treating the dynamics of multidimensional
systems in which nuclear quantum effects cannot be neglected.11–16

Importantly, the MCTDH method can provide benchmark results
for assessing the accuracy of approximate methods.17–19 The major
drawback of the grid-based MCTDH approach is the necessity
of precalculating and interpolating multidimensional PESs which
cover the chemically relevant portion of the full-dimensional nuclear
configuration space. Very recently, it has been shown that the
MCTDH method can be implemented without the prior com-
putation of global electronic PESs using machine learning tech-
niques.20,21

There exist nonadiabatic quantum molecular dynamics meth-
ods which bypass the computation of PESs,9 such as the ab initio
multiple spawning (AIMS) method2,22–24 and direct-dynamics ver-
sions of the variational multi-configurational Gaussian (vMCG)
method.25,26 These methods are gaining increasing popularity.27–31

In the AIMS method, the nuclear wave function is expanded in
a linear combination of time-dependent Gaussian basis functions
which follow classical trajectories. The expansion coefficients are
determined from the time-dependent Schrödinger equation and the
spawning algorithm ensures that the nonadiabatic process is ade-
quately described by introducing new basis functions, i.e., by spawn-
ing new ones. In the vMCG method, the TDSE for the expan-
sion coefficients is solved variationally in a basis of time-dependent
Gaussian basis functions. These methods are suitable to describe
nuclear tunneling effects.26 It goes without saying that the cost
of performing these quantum molecular dynamics calculations is
high.

In photochemical reactions, the time-dependent population
probabilities of electronic states are usually the observables of inter-
est and major quantum effects arise from the nondiabatic popu-
lation transfer between electronic states. Trajectory-based mixed
quantum-classical methods which account for switching between
electronic states, but otherwise neglect nuclear quantum effects, are
well suited to deliver this information. In trajectory surface hop-
ping (TSH) methods,8,32 trajectories evolve independently of each
other, each of them in a given electronic state. Energies and forces
are computed on the fly.2,7,33,34 At given time steps, the surface

hopping (SH) algorithm determines whether the active state is
changed or not. Tully’s fewest switches (FS) algorithm relates the
switching probability from the active electronic state i to another
state j to the flux of population determined from the time-dependent
electronic wave function.35 Recently, practical solutions have been
proposed to correct shortcomings of the original algorithm such as
overcoherence36–41 or numerical problems such as the identification
of trivial crossings where the trajectory should follow the diabatic
state.42–44 These improvements as well as the inherent versatility and
applicability to a wide range of different chemical problems render
the fewest switches surface hopping (FSSH) method the most widely
used SH algorithm.

Within the framework of independent trajectory calculations
for several electronic states, one also can apply the time-honored
Landau-Zener (LZ) formula45–47 for the estimation of the SH prob-
ability. Although less popular than the FS algorithm, the LZ model
has been widely employed in the seventies and eighties in atomic
and molecular collision dynamics.3,48,49 Among other applications,
it was used by Tully and Preston in the first TSH calculation for
the H + D2 reaction.32 The semiclassical LZ formula relates the
transition probability between electronic states to the shape of the
diabatic PESs in the vicinity of energy crossings rather than to
the time-dependent electronic wave function. Therefore, (i) the so-
called “lack of decoherence” problem of the FSSH method does
not arise in this approach, (ii) it may be computationally more
efficient, since the propagation of the TDSE is not required, and
(iii) electronic-structure methods can be employed which provide
only energies, but not wave functions, such as propagator meth-
ods or density functional theory. The diabatic formulation of the
LZ formula does not lend itself readily to be implemented in
on-the-fly TSH computations. However, a recent reformulation of
the LZ hopping probability in terms of adiabatic potentials opened
the door to straightforward on-the-fly Landau-Zener-type TSH
(LZSH) computations.50

Recently, Xie and Domcke evaluated the performance of the
FSSH and LZSH algorithms in comparison with exact nonadiabatic
quantum dynamics calculations for a three-state two-mode model
of the photoinduced hydrogen-atom detachment reaction in phe-
nol.51 They found that both algorithms give similar results, but failed
to reproduce the time-dependent populations of the 1ππ∗ and 1πσ∗
states or the branching ratio of the two electronic dissociation chan-
nels. Because the photodissociation of phenol involves nonadiabatic
H-atom tunneling, it was difficult to judge the performance of the
two algorithms due to the inherent inability of TSH to describe
nonadiabatic tunneling effects.52,53 Several other studies performed
on low-dimensional model Hamiltonians also found that the neglect
of nuclear quantum effects, such as the quantization of energy levels,
which is directly related to problem of defining accurate initial con-
ditions, quantum interference, or tunneling significantly affect the
quality of trajectory-based simulations.35,50,51,54–56

Low-dimensional models, however, may not be representa-
tive for complex polyatomic systems. Therefore, the goal of this
work is to assess the accuracy of the FSSH and LZSH algorithms
beyond low-dimensional models. The performance of the two algo-
rithms will be evaluated for one of the theoretically most exten-
sively studied photophysical processes—the internal conversion in
pyrazine after the excitation to the B2u(ππ∗) state. The absorption
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spectrum of pyrazine is characterized by a broad band in the region
between 230 and 280 nm assigned to the B2u(ππ∗) state.57–59 Early
theoretical studies predicted that an easily accessible CI between
the B2u(ππ∗) and B3u(nπ∗) states leads the ultrafast decay of the
former.60–64 Time-resolved photoelectron spectroscopy experiments
confirmed the theoretical predictions revealing a very short life-
time of the B2u(ππ∗) state of about 20 fs.65,66 Low-dimensional
model Hamiltonians captured the essence of the B2u(ππ∗) decay,
but several aspects of the dynamics remained unclear. Recently, new
insight into the excited-state dynamics of pyrazine was obtained
from TDDFT-based FSSH studies which predicted the transient
population of the dark A1u(nπ∗) and B2g(nπ∗) states.67,68 To investi-
gate the role of these excited states in the photodynamics of pyrazine,
Sala et al. using multi-configuration multi-reference electronic-
structure methods, constructed vibronic coupling model Hamilto-
nians encompassing two, three, and four excited electronic states
and up to sixteen vibrational modes.69 They performed nonadiabatic
nuclear dynamics simulations with the MCTDH method and found
that the nonadiabatic decay of the B2u(ππ∗) state is governed by the
competition of two decay pathways, one proceeding through the
B2u(ππ∗)/A1u(nπ∗) CI and the other through the well-established
B2u(ππ∗)/B3u(nπ∗) CI. It was found that the B2g(nπ∗) state plays a
minor role in the dynamics. The two-state and three-state vibronic
coupling model Hamiltonians and the benchmark MCTDH study
of Sala et al.69 are an ideal opportunity for comparing the perfor-
mance of the LZSH and FSSH algorithms for nonadiabatic dynam-
ics simulations at CIs. In addition, we performed full-dimensional
ab initio on-the-fly TSH simulations using the computationally effi-
cient second-order algebraic diagrammatic construction (ADC(2))
method, in which we explored to what extent TSH methods are capa-
ble of capturing the intricate features of the nonadiabatic dynam-
ics associated with multiple CIs in pyrazine. On the basis of these
calculations we are not only able to compare the two algorithms
but also to critically evaluate the accuracy of the three-state nine-
mode vibronic coupling model which is an interesting research topic
per se.

II. THE MODEL
The three-state model developed by Sala et al.69 includes the

three lowest excited states of pyrazine, the B3u(nπ∗) state, the dark
A1u(nπ∗) state, and the bright B2u(ππ∗) state. The nine vibrational
normal modes included in the model are the four most impor-
tant totally symmetric tuning modes (Q6a, Q1, Q9a, Q8a), which
modulate the interstate energy gaps, and five non-totally symmet-
ric coupling modes (Q10a, Q4, Q5, Q3, Q8b). The couplings of the
B2u(ππ∗) state with the B3u(nπ∗) and A1u(nπ∗) states are medi-
ated by the Q10a and Q4, Q5 modes, respectively. The B3u(nπ∗)
and A1u(nπ∗) states are coupled through the Q3, Q8b modes. The
vibronic Hamiltonian is given in the diabatic representation as
the sum of a reference Hamiltonian and a potential energy (PE)
matrix

H(Q) = H0(Q) + Vd
(Q), (1)

where Q is the vector of dimensionless normal coordinates. The
reference Hamiltonian is the ground-state Hamiltonian in the har-
monic approximation

H0 =∑
i

ωi

2
(P2

i + Q2
i )I, (2)

where Pi is the momentum operator of the ith normal coordinate
and ωi is the corresponding harmonic vibrational frequency. The
diagonal and off-diagonal terms of the diabatic PE matrix Vd(Q)
are

Vd
nn(Q) = En +∑

i
κni Qi +∑

j
γnj Q

2
j (3)

and
Vd
nn′(Q) =∑

k
λnn

′
k Qk, (4)

where n and n′ denote electronic states, κni is the linear intrastate
coupling constant of the ith totally symmetry mode in the nth elec-
tronic state, γnj is the quadratic intrastate coupling constant of the
jth non-totally symmetry mode in the nth electronic state and λnn

′
k is

the linear interstate coupling constant between the nth and n′th elec-
tronic state. The features of the diabatic PE surfaces are discussed in
Sec. IV.

The diagonalization of the matrix Vd(Q)

Va
(Q) = U†

(Q)Vd
(Q)U(Q) (5)

yields the diagonal matrix with the adiabatic energies, Va(Q), and
the transformation matrix U(Q) which relates the adiabatic and
diabatic wavefunction as

ψa
(Q) = U(Q)ψd

(Q). (6)

In addition to the three-state model, we also consider the
dynamics of a further simplified model (henceforth referred to as
two-state model) including the B3u(nπ∗) and B2u(ππ∗) electronic
states, four totally symmetric modes, and the single coupling mode
Q10a. We note that similar two-state three-mode models of pyrazine
have extensively been used as benchmark models to test the accuracy
of various trajectory-based methods.70–73

III. THEORETICAL AND COMPUTATIONAL METHODS
A. Landau-Zener surface hopping

In the framework of the LZSH method, introduced by Tully
and Preston,32 the nonadiabatic transition probability between two
adiabatic electronic states j and k is given by the LZ formula45–47

P j→k
LZSH = exp

⎛

⎝

−

2πH2
jk

̵hṘ∣H′

jj −H′

kk∣

⎞

⎠

, (7)

where Hjj and Hkk are diagonal matrix elements of the electronic
Hamiltonian which depend linearly on the vector of nuclear coordi-
nates, Hjk is a constant off-diagonal matrix element, H′

jj and H′

kk
denote derivatives with respect to nuclear coordinate R, and Ṙ is the
velocity vector.

Without any approximation, the diabatic LZ formula [Eq. (7)]
can be expressed in terms of the adiabatic PEs as50

P j→k
LZSH = exp

⎛

⎜
⎜

⎝

−
π
2̵h

¿

Á
Á
ÁÀ

Z3
jk

Z̈jk

⎞

⎟
⎟

⎠

, (8)
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where Z̈jk is the second-order time derivative of the absolute adi-
abatic energy gap Zjk between two electronic states. In the present
implementation, Z̈jk is evaluated by the three-point finite difference
formula. In its adiabatic form, the LZ formula becomes a practi-
cal tool for computing SH probabilities in on-the-fly TSH calcu-
lations.55 During the dynamics simulations, the absolute adiabatic
energy gap is monitored at each time step. If a local minimum of
the energy gap is attained, the hopping probability from the current
adiabatic state j to another adiabatic state k is evaluated according to
Eq. (8). A pseudorandom number uniformly generated from (0, 1)
is compared with P j→k

LZSH to determine whether the trajectory hops
to a different state or continues in the current state. When a hop-
ping event occurs, the momenta are adjusted by a scaling factor α,
P′ = αP, to ensure the conservation of total energy

1
2

P2 + Va
j =

1
2
α2P2 + Va

k . (9)

The specification of initial conditions in the LZSH calculations
encompasses the initial coordinates and momenta of each trajectory
and the specification of a single adiabatic state in which the dynam-
ics is initialized. In the Condon approximation, the molecular wave
function at t = 0, ∣Ψ⟩ = ∣χ0⟩∣ψd

f ⟩, is given as the product of the
lowest vibrational state of the electronic ground state |χ0⟩ and the
excited diabatic state ∣ψd

f ⟩ since the dipole transition operator acts
on the diabatic electronic wave function. The initial normal mode
coordinates Q0 and momenta P0 were obtained from the Wigner
distribution function74

Ŵ = ∫ e
i
h̵ P0S
∫ ⟨Q0 −

S
2
∣χ0⟩⟨χ0∣Q0 +

S
2
⟩∣ψd

f ⟩⟨ψ
d
f ∣dS

=W(Q0, P0)∣ψd
f ⟩⟨ψ

d
f ∣ (10)

and then transformed to their Cartesian counterparts. To specify the
initially excited adiabatic state, we employed the unitary transforma-
tion U between the diabatic and adiabatic representations [Eq. (6)]
to obtain the Wigner distribution in the adiabatic basis

Ŵ =W(Q0, P0)∑
i
∣Uf i∣

2
∣ψa

i ⟩⟨ψ
a
i ∣. (11)

The initially active adiabatic state is chosen randomly from the
manifold of the adiabatic states ∣ψa

i ⟩ with the probability |U f i|2.
In the LZSH simulations, the adiabatic population probabil-

ity of the state i is defined as the percentage of the trajectories
propagating in the adiabatic state i

Pa
i (t) =

Ni(t)
Ntraj

, (12)

where N i(t) is the number of trajectories evolving on the adiabatic
PES i and Ntraj is the total number of trajectories. The LZSH and
MCTDH results are most conveniently compared in the diabatic
representation. Therefore, we transform the time-dependent adia-
batic population probabilities obtained by the LZSH simulations to
the diabatic representation. The population probability of the dia-
batic state i is given by transformation of the adiabatic projector to
the diabatic representation

Pd
i (t) = [U†PaU]

ii
, (13)

where Pa is the adiabatic projector, i.e., a diagonal n × n matrix with
unity at the position of active adiabatic state and zeros otherwise. U
is given by Eq. (6).

B. Fewest switches surface hopping
In the FSSH method,35 the electronic wave function evolves

along the nuclear trajectory l according to the time-dependent
Schödinger equation

i̵h
dCj(R(l)(t))

dt
= Cj(R(l)(t))Va

j (R(l)(t))

− i̵h∑
k
Ck(R(l)(t))Djk(R(l)(t)), (14)

where the Cj(R( l)(t)) are the expansion coefficients of the electronic
wave function in the adiabatic representation, Va

j (R(l)(t)) is the PE
of the jth adiabatic state and Djk(R(l)(t)) is the time derivative cou-
pling (TDC) between the adiabatic electronic states j and k, which
also can be written as

Djk(R(l)(t)) = ⟨ψj(R(l)(t))∣
d
dt

∣ψk(R(l)(t))⟩

= Ṙ(l)(t)djk(R(l)(t)), (15)

where djk(R( l)(t)) denotes the nonadiabatic coupling vector.
The essential criterion of the FSSH algorithm is the consis-

tency of the number of trajectories evolving in the electronic state
j, denoted N j, with the average population |Cj(R( l) (t))|2 of this state
at time t in the electronic wave function, such that

Nj(t)
Ntraj

≈
1

Ntraj

Ntraj

∑

l
∣Cj(R(l)(t))∣

2
. (16)

The FSSH algorithm is designed to minimize the number of state
switches in order to satisfy the consistency relation in such a way
that hops between PESs occur only when the currently occupied
state exhibits a reduction of population. The hopping probability is
defined as

P j→k
FSSH = max

⎧
⎪⎪
⎨
⎪⎪
⎩

0,−
d∣Cj→k(R(l)(t))∣2

dt

⎫
⎪⎪
⎬
⎪⎪
⎭

= max
⎧
⎪⎪
⎨
⎪⎪
⎩

0,
2Djk(R(l)(t))Re[C∗k (R(l)(t))Cj(R(l)(t))]dt

∣Cj(R(l)(t))∣2

⎫
⎪⎪
⎬
⎪⎪
⎭

.

(17)

The maximum value criterion assures that the probability is always
positive and hops only take place from the state undergoing depop-
ulation. A uniform random number ξ between 0 and 1 is generated
and a switch from state j to state k takes place, if

k−1
∑

i=1
P j→i

FSSH < ξ ≤
k
∑

i=1
P j→i

FSSH . (18)

To ensure the conservation of total energy for each trajectory,
the mass-weighted momenta are adjusted along the nonadia-
batic coupling vector. In the present implementation of the FSSH
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method, the nonadiabatic coupling vector is not explicitly evaluated,
and the momenta are adjusted by a scaling factor α calculated by
Eq. (9).

The time-dependent adiabatic and diabatic population proba-
bilities are calculated by Eqs. (12) and (13), respectively. In the FSSH
method, the diabatic/adiabatic populations can also be calculated as
averages of the squares of the coefficients of the diabatic/adiabatic
electronic wave functions over all trajectories. However, these two
recipes do not provide identical results due to the lack of electronic
decoherence (see Sec. III C 1) in the FSSH method.

C. Computational implementation
1. Surface hopping methods

In the two-state and three-state vibronic models, the initial con-
ditions were randomly sampled from the Wigner distribution func-
tion given in Eq. (10). The initially populated electronic state was
the diabatic B2u(ππ∗) state. We distributed the trajectories among
the adiabatic states according to Eq. (11). The classical equations of
motion were integrated by the fourth-order Runge-Kutta algorithm
with an integration time step 0.5 fs. Since the electronic Hamil-
tonian in the model studies is given in the diabatic representa-
tion, U is straightforwardly obtained by the diagonalization of the
electronic Hamiltonian and the diabatic populations can be com-
puted according to Eq. (13). All trajectories were propagated for
200 fs. A swarm of 1000 trajectories was sufficient to obtain con-
verged averages of the observables. To avoid numerical inaccura-
cies caused by peaked nonadiabatic couplings at conical intersec-
tions, the TDSE in the FSSH method was propagated in the diabatic
representation.

To perform full-dimensional ab initio on-the-fly TSH cal-
culations for pyrazine, we interfaced the code with the ADC(2)
electronic-structure method75–78 implemented in Turbomole.79 Ini-
tial geometries and momenta were sampled from the Wigner dis-
tribution function in the electronic ground state obtained from the
Hessian matrix computed at the MP2/aug-cc-pVDZ level. The ini-
tial population probability of the adiabatic S1, S2, and S3 excited
states was sampled stochastically from the oscillator strengths of
the adiabatic states. Since the dipole transition moments of the two
diabatic nπ∗ states (A1u and B3u) from the electronic ground state
are very small compared with the transition dipole moment of the
bright diabatic B2u(ππ∗) state, the former transition moments can
be set to zero. The initial population of the adiabatic excited states
according to their oscillator strengths is then equivalent to the initial
population of the diabatic B2u state with probability unity and zero
initial population in the diabatic A1u and B3u states. The sampling
of the initial electronic states in the ab initio on-the-fly simulations
is therefore identical to the initial sampling employed in the simula-
tions for the three-state model. Newton’s equations were integrated
with the velocity-Verlet algorithm using a time step of 0.5 fs. For
each initial sample of adiabatic population probability, coordinates,
and momenta, 500 trajectories were launched and propagated in the
electronic subspace spanned by the electronic ground state and the
four lowest excited electronic states for 200 fs. Taking account of
the orthogonality of the diabatic-to-adiabatic transformation matrix
U in Eq. (6) and the fact that the transition dipole moments of
the diabatic A1u and B3u states are zero, the matrix U can be

reconstructed at each nuclear geometry from the oscillator strengths
f 01, f 02, f 03 of the adiabatic electronic states. With this local matrix
U , the adiabatic population probabilities at time t, given by the frac-
tion of trajectories in each adiabatic state, can be transformed to the
diabatic electronic populations at time t. This back-transformation
yields the time-dependent diabatic electronic population proba-
bilities which can directly be compared with the diabatic elec-
tronic population probabilities obtained with quantum wave-packet
calculations.

It is well known that the FSSH algorithm suffers from a num-
ber of shortcomings, including lack of decoherence and numeri-
cal inaccuracies that can arise in the propagation of the TDSE in
the adiabatic representation due to strongly peaked nonadiabatic
coupling elements at conical intersections. Because the TDSE for
the electronic wave function is solved using a single trajectory,
the FSSH method tends to overestimate electronic coherence. Sev-
eral recipes have been proposed for reducing the electronic coher-
ence.36–41 Owing to its simplicity, we employed in the FSSH cal-
culations the empirical correction of Granucci and Persico40 with
a correction parameter α = 0.1 Eh. In general, the effect of the
decoherence correction is minor on the time scales considered in
the present work (200 fs). A comparison of electronic state popu-
lations calculated with the FSSH method with and without deco-
herence corrections is provided in Sec. II of the supplementary
material.

In the FSSH method, the time derivative couplings (TDCs)
are needed for the integration of the electronic TDSE in the adi-
abatic representation. The TDCs exhibit singularities at CIs which
can cause numerical inaccuracies in the propagation of the elec-
tronic wave function. To identify possible numerical inaccuracies,
we implemented two versions of ab initio on-the-fly FSSH simu-
lations. In the first implementation (i), the electronic wave func-
tion was propagated in the adiabatic representation and the TDCs
were determined from the overlap of electronic wave functions
using the norm-preserving interpolation algorithm of Meek and
Levine.80 This implementation of the FSSH method is denoted as
A-FSSH in the following. In the second implementation (ii) of the
FSSH method in the ab initio on-the-fly simulations, the electronic
wave function was propagated in a locally diabatic representation
as proposed by Granucci et al.81 This implementation is referred
to as LD-FSSH in what follows. A more detailed description of
these integration schemes is given in Sec. I of the supplementary
material.

2. Quantum dynamics method
Benchmark quantum dynamics calculations were performed

using the MCTDH method. The MCTDH method is an effi-
cient grid-based method to solve the nuclear TDSE designed to
study multi-dimensional problems. In MCTDH, the wavefunction
is expanded in a contracted basis of time-dependent functions called
single-particle functions (SPF), which is determined variationally
from an underlying direct-product primitive basis. Detailed descrip-
tions of the method have been published elsewhere, see Refs. 6 and
10. The calculations were performed in the so-called multi-set for-
malism, in which different sets of SPF basis functions are used to
describe the nuclear wavepackets on different electronic states.82 A
Hermite polynomial discrete variable representation (DVR)83 prim-
itive basis was used for all nuclear degrees of freedom. The numbers
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TABLE I. Number of SPF and primitive basis functions used in the MCTDH calculations.

Model Combinations of modes Numbers of SPFs Numbers of grid points

Two-state (ν6a, ν10a), ν1 [26,17], [8,6], (36,40), 26
ν9a, ν8a [5,4], [5,4] 18, 24

Three-state (ν6a, ν10a), (ν1, ν4), [34,40,17], [15,18,10], (42,48), (26,24),
(ν9a, ν3, ν8b), (ν8a, ν5) [20,22,11], [21,25,10] (20,14,22), (30,14)

of primitive and SPF basis functions used in the calculations for the
two-state and three-state models are given in Table I. In each calcu-
lation, the initial condition for the time propagation was constructed
by vertical excitation, i.e., by the transfer of the vibrational ground
state of the S0 state to the diabatic B2u(ππ∗) electronic state. The con-
stant mean field integration scheme84 with an initial step size of 0.01
fs and an error tolerance of 10−7 was used.

IV. RESULTS AND DISCUSSION
A. Electronic structure calculations

Figures 1(a)–1(d) display one-dimensional cuts of the dia-
batic PESs of the lowest three excited states of pyrazine along the
four most relevant dimensionless tuning modes, calculated with
the XMCQDPT2/aug-cc-pVDZ method.85 The results of the accu-
rate but computationally expensive multi-reference XMCQDPT2
method serve as benchmarks for the estimation of the accuracy of the
computationally less expensive single-reference ADC(2) method. In
the energy scan along the Q6a mode [Fig. 1(a)], the position of
the CI between the B2u(ππ∗) and B3u(nπ∗) states (Q6a = −1.0) is

more than three times further from the ground-state equilibrium
geometry than the position of the B2u(ππ∗)/A1u(nπ∗) CI. On the
other hand, the coupling of the B2u(ππ∗) state with the B3u(nπ∗)
state is stronger than the coupling with the A1u(nπ∗) state.69 This
implies that after excitation to the B2u(ππ∗) state, internal conver-
sion to the B3u(nπ∗) state is in competition with internal conver-
sion to the A1u(nπ∗) state. Figure 1(d) presents the energy scan
along the Q8a mode and shows the existence of a A1u(nπ∗)/B3u(nπ∗)
CI. It has been found in recent quantum dynamics calculations69

that this CI is responsible for population oscillations between the
A1u(nπ∗) and B3u(nπ∗) states after the decay from the B2u(ππ∗)
state.

A comparison of the ADC(2) vertical excitation energies of the
four lowest excited states with previous calculations as well as exper-
imental data is shown in Table II. The 0-0 transition energy of the
B3u(nπ∗) state at the ADC(2)/aug-cc-pVDZ level is 4.05 eV, 0.22 eV
higher than the experimental value of 3.83 eV.86 The ADC(2) vertical
excitation energy of the B3u(nπ∗) state is 0.16 (0.25) eV higher than
the vertical excitation energy of the B3u(nπ∗) state at the CASPT287

(XMCQDPT269) level. The 0-0 transition energy and the vertical
excitation energy of the B2u(ππ∗) state at the ADC(2)/aug-cc-pVDZ

FIG. 1. One-dimensional cuts of
the potential energy surfaces of the
B3u(nπ∗) (black), A1u(nπ∗) (red), and
B2u(ππ∗) (green) states along the four
most important totally symmetric dimen-
sionless normal modes, Q6a (a), Q1 (b),
Q9a (c), Q8a (d). The full and dashed
lines represent the XMCQDPT2/aug-cc-
pVDZ and ADC(2)/aug-cc-pVDZ results,
respectively.
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TABLE II. Vertical excitation energies (in eV) computed with the ADC(2)/aug-cc-pVDZ(AVDZ) method compared with previous
theoretical results and experimental data. The 0-0 transition energies are given in parentheses.

B3u(nπ∗) A1u(nπ∗) B2u(ππ∗) B2g(nπ∗)

Expt.86 −(3.83) . . . 4.81a
(4.69b

) . . .
ADC(2)/AVDZ 4.18(4.05) 4.83 5.08(4.81) 5.85
CASPT2/AVTZ87 4.02 4.75 4.80 5.56
XMCQDPT2/AVDZ69 3.93 4.45 4.79 5.38
CC2/TZVP88 4.26 4.95 5.13 5.92
CC3/TZVP88 4.24 5.05 5.02 5.74
TDDFT/B3LYP/TZVP67 3.96 4.6 5.46 6.3

aBand maximum.
b0-0 transition.

level are found to be 0.12 eV and 0.27 eV, respectively, higher than
the experimental values.86 The ADC(2) B2u(ππ∗) vertical excitation
value of 5.08 eV is also in good agreement with the benchmark
values of 4.80 eV and 4.79 eV obtained with the CASPT2 and XMC-
QDPT2 methods. The CC288 and CC388 methods yield similar ver-
tical excitation energies as the ADC(2) method, while the TDDFT
method significantly overestimates the vertical excitation energy of
the B2u(ππ∗) state.67

In contrast to the consistent experimental data for the verti-
cal excitation energy of the bright B2u(ππ∗) bright state,57,86,89 the
vertical energy of the dark A1u(nπ∗) state is controversial. Walker
and Palmer reported an experimental value of 5.0 eV based on
near-threshold electron-energy loss spectra.90 On the other hand,
the A1u(nπ∗) state was not detected in a recent photoelectron
imaging experiment by Suzuki and co-workers.66 On the theo-
retical side, the location of the A1u(nπ∗) state is sensitive to the
electronic-structure method used for the calculation. The XMC-
QDPT2, CC2, ADC(2) and TDDFT methods predict the A1u(nπ∗)
state below the B2u(ππ∗) state, while the CASPT2 and CC3 calcu-
lations predict the A1u(nπ∗) and B2u(ππ∗) states to be essentially
degenerate.

Similarly, the position of the dark B2g(nπ∗) state is uncertain.
Walker and Palmer90 proposed an experimental value of 6.0 eV,
while a UV-IR double resonance dip measurement by Okuzawa
et al.59 reported a much lower value of 5.19 eV. As seen in Table II,
all computational results included in the table predict the energy
of the B2g(nπ∗) state to be significantly higher than the energy of
the B2u(ππ∗) state. This implies the B2g(nπ∗) state should have a
negligible influence on the nonadiabatic dynamics of pyrazine after
photoexcitation to the B2u(ππ∗) state.

The dashed lines in Figs. 1(a)–1(d) show one-dimensional PE
cuts along four totally symmetric normal coordinates calculated at
ADC(2)/aug-cc-pVDZ level. Overall, the PE functions calculated
with the XMCQDPT2 and ADC(2) methods are nearly parallel along
these normal coordinates. The crossings between the ADC(2) PE
curves are located virtually at the same positions as those of the
XMCQDPT2 calculations, which indicates that the ADC(2) method
is a reliable and computationally efficient alternative to the XMC-
QDPT2 method for on-the-fly dynamics calculations for the excited
states of pyrazine.

B. Two-state model
We first consider the two-state model in which the cou-

plings of the A1u(nπ∗) state with the B2u(ππ∗) and B3u(nπ∗) states
are switched off. Figure 2(a) shows the time-dependent popula-
tion probability of the diabatic B2u(ππ∗) state. The exact quantum
mechanical result obtained with the MCTDH method is shown by
the black curve. The population of the B2u(ππ∗) state decays to a
value of 0.15 within 45 fs and then exhibits recurrences with a period
of about 60 fs. The recurrences reflect the coherent driving of the
populations of the diabatic B2u(ππ∗) and B3u(nπ∗) states by wave-
packet dynamics in the mode Q6a [see Fig. 1(a)]. The population
of the adiabatic S2 state is displayed in Fig. 2(b). Compared to the
diabatic population, the adiabatic population exhibits a faster decay
on a time scale of about 30 fs and exhibits a single recurrence at
170 fs.

The population dynamics obtained with the LZSH and FSSH
methods is shown by the red and green curves, respectively, in

FIG. 2. Populations of the diabatic B2u(ππ∗) state (a) and the adiabatic S2 state
(b) for the two-state model. The black, red, and green lines are calculated with
the multi-configuration time-dependent Hartree (MCTDH), Landau-Zener surface
hopping (LZSH) and Tully’s fewest switches surface hopping (FSSH) methods,
respectively.
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Figs. 2(a) and 2(b). Overall, the exact electronic population dynam-
ics (black curve) is accurately reproduced by both TSH methods.
The deviations between the FSSH and LZSH results are smaller
than their deviations from the exact quantum results. The popu-
lation recurrences in the diabatic B2u(ππ∗) state and in the adia-
batic S2 state are qualitatively reproduced by both TSH methods.
These findings demonstrate that the electronic population oscil-
lations are the consequence of vibrational rather than electronic
coherence. The latter cannot be reproduced by surface-hopping
simulations.91

C. Three-state model
The diabatic electronic populations for the three-state model

obtained with the numerically exact MCTDH method are shown
as black lines in Figs. 3(a)–3(c). The population of the diabatic
B2u(ππ∗) state decays to almost zero on a time scale of 45 fs, in con-
trast to the relatively high value of 0.18 in the simulation for the two-
state model. The population oscillations between the B2u(ππ∗) and
B3u(nπ∗) states are suppressed by the coupling between the B3u(nπ∗)
and A1u(nπ∗) states in the three-state model for two reasons. First,
internal conversion from the B2u(ππ∗) state to the A1u(nπ∗) state
reduces population transfer to the B3u(nπ∗) state. Second, the wave
packet in the B3u(nπ∗) state passes through the B3u(nπ∗)/A1u(nπ∗)
CI and partly relaxes to the A1u(nπ∗) state, reducing the compo-
nents of wave packet in the B2u(ππ∗) state. The populations of the
diabatic A1u(nπ∗) and B3u(nπ∗) states, shown in Figs. 3(b) and 3(c),
rise quickly during the first 30 fs, revealing the competition between
the population transfers to the A1u(nπ∗) and B3u(nπ∗) states. After
40 fs, the diabatic population starts to oscillate between the A1u(nπ∗)
and B3u(nπ∗) states. As discussed, the oscillations reflect nonadia-
batic electronic transitions driven by coherent dynamics in the Q8a
mode.

The diabatic populations calculated with the LZSH method
and FSSH methods are shown by red and green lines, respectively.
Overall, both TSH results are in very good agreement with the
exact results. The weak recurrences in the B2u(ππ∗) population

FIG. 3. Populations of the diabatic B2u(ππ∗) (a), A1u(nπ∗) (b) and B3u(nπ∗) (c)
states for the three-state model. The black, red, and green lines are calculated
with the MCTDH, LZSH and FSSH methods, respectively.

and the quasi-periodic feature in the populations of the B3u(nπ∗)
and A1u(nπ∗) states are qualitatively reproduced by both TSH
methods.

Figures 4(a)–4(c) presents the adiabatic populations obtained
with two TSH methods. In the MCTDH method, the time-
dependent wave function is computed in the diabatic representa-
tion. Adiabatic electronic populations can be obtained by evaluating
expectation values of projection operators on adiabatic states with
the diabatic wave function, which is equivalent to a transforma-
tion from the diabatic to the adiabatic electronic basis.6,10 It was
not possible to obtain fully converged adiabatic electronic popula-
tion probabilities with the MCTDH method for the model including
three electronic states and nine nuclear degrees of freedom. There-
fore, numerically exact reference adiabatic populations are not avail-
able for comparison in Fig. 4. The populations of the S1, S2 and S3
states calculated with the LZSH and FSSH methods are in excellent
agreement. At t = 0, the diabatic B2u(ππ∗) state is populated, which
corresponds to a 77%/21% population ratio of the adiabatic S3 and S2
states. The S3 state population decays on a time scale of about 20 fs.
The S2 population calculated by the LZSH (FSSH) method rises to a
maximum of 0.5 (0.4) within the first 15 fs, and then slowly transfers
to the S1 state. The increase of the S1 population, on the other hand,
is monotonous. After 60 fs, the population dynamics is essentially
finished and about 20% and 80% of populations remain on the S1
and S2 states, respectively.

D. Ab initio on-the-fly simulations
Nonadiabatic on-the-fly dynamics simulations were performed

with the ADC(2) method assuming instantaneous excitation of the
optically bright diabatic B2u(ππ∗) state. Since internal conversion to
the ground state takes place on picosecond time scales,92 this process
is not considered in the present simulations covering 200 fs. The per-
formance of the LZSH method has been compared with the A-FSSH
and LD-FSSH methods.

Figures 5(a)–5(c) show the time-dependent populations of
the three lowest adiabatic excited states, S1, S2, and S3. At t = 0,

FIG. 4. Populations of the adiabatic S3 (a), S2 (b), and S1 (c) states for the three-
state model. The red and green lines are calculated with the LZSH and FSSH
methods, respectively.
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FIG. 5. Populations of the adiabatic S3 (a), S2 (b), and S1 (c) states calculated with
full-dimensional ab initio ADC(2) simulations. The red line shows the populations
calculated with the LZSH method. The green and blue lines give the populations
calculated with two versions of the FSSH method. In the LD-FSSH method (green),
the electronic wave function is propagated in a locally diabatic basis. In the A-
FSSH method (blue), the electronic wave function is propagated in the adiabatic
representation using the norm-preserving scheme.

the diabatic B2u(ππ∗) state is populated, which corresponds to a
78.5%/20.5% population ratio of the adiabatic S2 and S3 states. The
initial population of the S4 state is only 1.0%. In addition, the popu-
lation of the S4 state (not shown) attains a maximum of less than
0.03 during the course of the simulation, which further confirms
that the B2g(nπ∗) state plays a negligible role in the internal con-
version dynamics of pyrazine. The S3 state population decays to zero
within a time scale of 25 fs. The population of the S2 state calcu-
lated with the LZSH (LD-FSSH) method reaches a maximum value
of 0.60 (0.55) at 14 (12) fs. The population of the S1 state increases
in the first 50 fs and then basically become constant. The over-
all population dynamics of full-dimensional pyrazine is similar to
that obtained for the three-state nine-mode model (Fig. 4), indi-
cating that this model comprises the relevant electronic states and
vibrational modes governing the the internal conversion process of
pyrazine.

Comparing the LZSH, A-FSSH, and LD-FSSH results, the LD-
FSSH populations are in significantly better agreement with the
LZSH results than the A-FSSH results. Apart from a slightly slower
initial decay of the S3 population and a somewhat lower maxi-
mum value of the S2 population in the LD-FSSH result, the LZSH
and LD-FSSH results are essentially identical (Fig. 5). The A-FSSH
method underestimates the decay rate of the intermediate S2 popu-
lation and, correspondingly, the increase of the S1 population. The
sharply peaked nonadiabatic coupling at the S2/S1 CI is possibly not
fully captured by the propagation of the electronic TDSE in this
implementation of FSSH. In the long-time limit (200 fs), all three
methods give the same electronic populations. We mention that
the LD-FSSH method without decoherence corrections underesti-
mates the asymptotic limit of the S1 population (see Sec. II of the
supplementary material).

To gain further insight into the performance of the TSH meth-
ods and differences between the LZSH, LD-FSSH, and A-FSSH

algorithms, we evaluated the dependence of the number of success-
ful hops between the S3 and S2 states and S2 and S1 states on the
instantaneous adiabatic energy gaps. As shown in Figs. 6(a) and
6(b), the distribution of the number of S3–S2 and S2–S1 hops is
peaked at small energy gaps (∼0.1 eV), which shows that most hop-
ping events occur in the vicinity of CIs for all three algorithms.
The LZSH distribution is somewhat more localized than the two
FSSH distributions. In the LZSH calculations, no hopping events
take place for S2–S1 energy gaps larger than 0.5 eV, in contrast
to a substantial number of hops occurring in both FSSH meth-
ods. In close proximity of the S3/S2 and S2/S1 CIs (energy gap
< 0.05 eV), the hops of the LD-FSSH method exhibit almost iden-
tical probability as the hops of the A-FSSH method. When the S2–S1
or S3–S2 energy gap is larger than 0.05 eV, the hopping probabil-
ity of the A-FSSH method is lower than the hopping probability
of the LD-FSSH method. This leads to slower increase of the rate
of the adiabatic population of the S1 state calculated with the A-
FSSH method compared to the LD-FSSH method [see Fig. 5(c)]. The
FSSH method in principle is more general than the LZSH method
and presumably preferable in cases where the nuclear dynamics is
not dominated by conical intersections or weakly avoided crossings.
The LZSH method is most suitable for the simulation of ultrafast
nonadiabatic dynamics occurring at or near conical intersections.
One can anticipate that larger differences between the LZSH and
FSSH simulations may arise in systems in which the probability
of nonadiabatic transitions is small and hops take place at geome-
tries in which the energy gap between adiabatic PESs is relatively
large.

The populations of the diabatic B2u(ππ∗), A1u(nπ∗), and
B3u(nπ∗) states obtained with the LZSH and LD-FSSH methods are
presented in Figs. 7(a)–7(c). Excellent agreement between the results
of the LZSH and LD-FSSH methods is observed for the diabatic pop-
ulations. The population of the B2u(ππ∗) state decays monotonously
with a time constant of 23 fs, in excellent agreement with the experi-
mental measurement of 23 ± 4 fs.66 The populations of the A1u(nπ∗)

FIG. 6. Distribution of the number of successful hops between the S3 and S2
states (a) and the S2 and S1 states (b) vs the instantaneous energy gap in the full-
dimensional ADC(2) simulations. The red, green, and blue lines were calculated
with the LZSH, LD-FSSH and A-FSSH methods, respectively.
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FIG. 7. Populations of the diabatic B2u(ππ∗) (a), A1u(nπ∗) (b), and B3u(nπ∗) (c)
states calculated with full-dimensional ab initio ADC(2) simulations. The red and
green lines are calculated with the LZSH and LD-FSSH methods, respectively. The
dashed line indicates the exponential fitting curve.

FIG. 8. Time-dependent displacement of the dimensionless Q8a mode (a) in com-
parison with populations of the diabatic A1u(nπ∗) (b) and B3u(nπ∗) (c) states
obtained with full-dimensional ADC(2) simulations. The red and green lines are
calculated with the LZSH and LD-FSSH methods, respectively. The dashed lines
mark the peaks of the population of the A1u(nπ∗) state.

and B3u(nπ∗) states rise within the first 40 fs, and then exhibit oscil-
lations with a period of ∼35 fs. The oscillatory features are similar
to those obtained for the three-state model and reflect the electronic
transitions in the diabatic representation driven by coherent dynam-
ics in the Q8a mode. This is confirmed by the time evolution of the
dimensionless displacement of the Q8a mode shown in Fig. 8. The
maxima of the population probability of the A1u(nπ∗) state and the
minima of the population probability of the B3u(nπ∗) state coincide
with maxima of the displacement of the Q8a mode.

V. CONCLUSIONS
In the present study, the nonadiabatic excited-state dynam-

ics of pyrazine has been revisited within a model comprising three

excited electronic states and nine nuclear degrees of freedom. Exact
numerical diabatic electronic population probabilities obtained for
this model with the MCTDH method allow a quantitative assess-
ment of the accuracy of two versions of TSH methods, FSSH and
LZSH, by a direct comparison with the exact results. This com-
parison has become possible by the transformation of the adia-
batic populations obtained with the SH methods to the diabatic
representation. We first considered a reduced model comprising
two excited electronic states, B2u(ππ∗) and B3u(nπ∗), and five nor-
mal modes. The results for this model show that both TSH meth-
ods are capable of providing a qualitatively correct description of
the nonadiabatic population transfer dynamics dominated by the
B2u(ππ∗)/B3u(nπ∗) CI. In the three-state model, which includes the
A1u(nπ∗), B2u(ππ∗), and B3u(nπ∗) states and nine normal modes,
the LZSH and FSSH diabatic populations are in very good agreement
with the exact MCTDH results. An interesting feature of the three-
state model are the population oscillations between the A1u(nπ∗)
and B3u(nπ∗) states which reflect nonadiabatic electronic transitions
driven by coherent dynamics in the Q8a mode. We have shown
that such vibrationally driven diabatic population oscillations are
qualitatively reproduced by both TSH methods. Decoherence cor-
rections to the FSSH method are not relevant for these models of
the excited-state dynamics of pyrazine on the timescale of interest.
Thanks to the availability of exact numerical time-dependent elec-
tronic population probabilities obtained with the MCTDH method
for the three-state model, the accuracy of nonadiabatic TSH simu-
lation methods could be tested in a far more realistic setting than
previous tests of TSH methods against exact quantum dynamics
results.

In addition to the reduced-dimensional model studies for
pyrazine, full-dimensional on-the-fly simulations have been per-
formed with the ADC(2) electronic-structure method to explore the
performance of the TSH algorithms. The LZSH algorithm described
in Sec. III A has been implemented for the first time for full-
dimensional ab initio simulations. The accuracies of two FSSH vari-
ants, one in which the electronic wavefunction is propagated in the
adiabatic basis (A-FSSH), and the other in which the propagation
is performed in a locally diabatic basis (LD-FSSH), were compared.
The time evolutions of the populations of the adiabatic states cal-
culated using the LD-FSSH and LZSH methods are in excellent
agreement. The decay time constant of the B2u(ππ∗) state is also
in excellent agreement with the experimental result. The LD-FSSH
version of the FSSH method was found to be more accurate than
the A-FSSH version for the case of ultrafast dynamics at conical
intersections.

In good agreement with the three-state model study, the pop-
ulations of the diabatic A1u(nπ∗) and B3u(nπ∗) states show clear
oscillatory structures, whereas the adiabatic populations are essen-
tially featureless. These findings imply that the three-state model of
pyrazine with nine nuclear degrees of freedom provides an authen-
tic description of the internal conversion dynamics of pyrazine on
ultrafast time scales.

In the present implementation of the full-dimensional simula-
tions, the LZSH calculations are only slightly (10%) faster than the
FSSH calculations. However, pyrazine is a relatively small molecule
that may not be representative for the comparison of the computa-
tional efficiencies of the LZSH and FSSH methods. Therefore, appli-
cations of the LZSH and FSSH methods to nonadiabatic processes
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in large systems (e.g., organic semiconductors or biomolecules) are
necessary to access the relative computational efficiency of the LZSH
and FSSH methods.

SUPPLEMENTARY MATERIAL

See supplementary material for descriptions of the different
integration schemes for the TDSE and a figure comparing the adi-
abatic populations calculated with the different integration schemes.
Two figures comparing the adiabatic populations calculated with
the LZSH method and LD-FSSH method with and without deco-
herence corrections for the three-state model and full-dimensional
pyrazine.
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support by the Croation Science Foundation (Grant No. IP-2016-
06-1142) and computing time provided by the Croatian National
Grid Infrastructure (Cro-NGI). N. Došlić and W. Domcke grate-
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