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Dodecanuclear Zirconium Precursor Enables Green and Rapid 
Mechanosynthesis of High-Porosity NU- and UiO-type Metal-
Organic Frameworks 

 Athena M. Fidelli†,a,b Bahar Karadeniz†,c Ashlee J. Howarth,d,e Igor Huskić,b Luzia S. Germann,f 
Ivan Halasz,c Martin Etter,g Su-Young Moon,d  Robert E. Dinnebier,f Vladimir Stilinović,h Omar K. 
Farhad,i*, Tomislav Friščićb,c * Krunoslav Užarevićc* 

The use of a dodecanuclear zirconium acetate cluster as a precursor 

enables the rapid, clean mechanochemical synthesis of high-

microporosity metal-organic frameworks NU-901 and UiO-67, with 

surface areas up to 2250 m2 g–1. Real-time X-ray diffraction 

monitoring reveals that  mechanochemical reactions involving the 

conventional hexanuclear zirconium methacrylate precursor are 

hindered by the formation of an inert intermediate, which does not 

appear when using the dodecanuclear acetate cluster as a reactant. 

Metal-organic frameworks (MOFs) are modular porous 

materials1-3 with proposed or commercial3c uses in gas storage 

and separation,4 catalysis,5 degradation of harmful agents,6 

functional thin films,7 electrochemical8 and molecular sensing,9 

light harvesting10 and others. MOFs based on cationic 

[Zr6O4(OH)4
12+] (“Zr6”, Fig. 1d) clusters11 are particularly 

intriguing as they combine high porosity11e and catalytic 

activity12 with excellent resistance to water, high temperatures 

and pH.13 Among different techniques for MOF synthesis,14 

mechanochemistry has emerged as a rapid, clean approach to 

synthesise a wide range of popular MOFs at room 

temperature,15 without resorting to bulk solvents or auxiliary 

reagents. Whereas mechanochemistry has been successfully 

used to synthesise a number of popular MOFs, including pillared 

MOFs,16 IRMOFs,17 MOF-74,18 HKUST-1,19 metal azolate 

frameworks20 and UiO-66 derivatives21 such work has remained 

limited to materials involving di- or tritopic linkers based on a 

single aromatic ring, with porosities between 500-1500 m2g–1. 

Consequently, the ability of mechanochemistry to access MOFs 

of high microporosity, based on complex, larger ligands, has 

remained unexplored. 

 We now describe the use of mechanochemistry for the 

synthesis of the highly porous scu-topology NU-90111f MOF, 

based on the tetratopic ligand 1,3,6,8-tetrakis(p-benzoic 

acid)pyrene, (H4TBAPY, Fig. 1). Whereas this is the first entry of 

mechanochemistry into the assembly of MOFs based on 

complex linkers, it is also the first example of a NU-type MOF 

synthesised by a solvent-free route. In addition, we show the 

mechanochemical assembly of an fcu-topology UiO-6711a,11c 

framework with a Brunauer-Emmet-Teller (BET) surface area of 

2250 m2 g-1, demonstrating the ability of mechanochemistry to 

generate materials with very high microporosity. Central to 

these mechanochemical advances is the use of a dodecanuclear 

zirconium acetate cluster 1 as a precursor (Fig. 1a). 

 
Figure 1. a) the Zr12 acetate oxocluster 1. Milling of 1 with tetratopic or ditopic 
ligands results in rapid formation of: b) NU-901 or c) UiO-67 MOFs. d) Different 
modes of binding of ligands to the Zr6 node in each respective MOF. 

Our initial attempt to mechanochemically synthesize a NU-type 

MOF was based on the liquid-assisted grinding (LAG) procedure 

previously used to synthesize the terephthalate-based UiO-66, 

by milling the carboxylic acid ligand with either the benzoate or 

the methacrylate-based (2) Zr6 clusters as precursors.21a While 

milling with benzoate precursor produced only a mixture of 

reactants, subsequent aging of the mixture in a N,N-

dimethylformamide (DMF) atmosphere yielded NU-901, which 

was characterised by powder X-ray diffraction (PXRD), and 

exhibited a BET surface of 1250 m2g–1 after activation. In situ 

synchrotron PXRD monitoring of the milling reaction of 2 and 

H4TBAPY in stoichiometric ratio 1:2 revealed immediate 

appearance of NU-901 (see ESI),11f concomitant to the gradual 

loss of H4TBAPY. After 45 min, PXRD pattern of the reaction 

mixture exhibited only signals of NU-901. However, the product 

was a sticky solid, difficult to remove from the vessel, with 

moderate BET surface area after activation (450-900 m2g–1, ESI). 
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Figure 2. In situ synchrotron PXRD monitoring of mechanochemical synthesis of: a) NU-

901 from 2, showing the concomitant formation of 3 and NU-901. The reaction mixture 

stuck to the wall of the vessel after ca. 20 minutes of milling, resulting in a disappearance 

of diffraction signal; and b) NU-901 from 1. Simulated PXRD patterns are shown above. 

Monitoring the milling reaction of 2 and H4TBAPY in the 1:1 

stoichiometric ratio revealed the appearance of another set of 

X-ray reflections, that could not be matched to any known 

MOFs involving zirconium nodes and H4TBAPY-based linkers 

(Fig. 2). Further work revealed that the signals correspond to a 

new phase (3), which was also obtained as a pure material by 5 

minutes milling of 2 with DMF, even in the absence of H4TBAPY 

(see ESI). Compound 3 was subsequently isolated and identified 

as a new Zr6 cluster with a structure significantly different from 

2 (Figs. 3 and ESI). In contrast to Zr6-clusters that are decorated 

by 12 carboxylate ligands, the cluster in 3 involves a total of 16 

ligands, including 12 carboxylates and four DMF molecules. The 

six Zr atoms in 3 form a distorted octahedron of S4 symmetry, 

unlike the C3 symmetry present in 2 (CSD code REBNUH). The 

main difference between the clusters of 2 and 3 is in 

coordination of the ancillary ligands. In 2, three methacrylate 

ligands chelate the zirconium cations, whereas the remaining 

nine act as bridging ligands in the Zr6 core. In 3, no chelating 

ligands are present; from the 12 methacrylate anions, eight are 

bridging and four are coordinated in a monodentate fashion 

(two on each Zr atom positioned on the S4 axis), with each free 

carboxylate oxygen stabilized by hydrogen bonding to one of 

the μ3-OH groups of the oxo-zirconium core (d(O∙∙∙O) = 

2.7632(3) Å, Fig. 3). The coordination sphere of the remaining 

four Zr cations is completed by a DMF molecule, thus 

introducing four ancillary ligands onto the Zr6 core. Importantly, 

3 appears to be a hindrance in the mechanosynthesis of NU-

901, as it persists in the reaction mixture and appears before 

H4TBAPY is consumed (see ESI). 

 
Figure 3. Mechanochemical transformation of the 12-coordinated Zr6 cluster 2 (left) into 

a 16-coordinated cluster 3 by LAG using DMF. The PXRD data for each cluster is presented 

at the top. Hydrogen atoms, except those on the cluster core, are omitted for clarity. 

Hydrogen bonds are shown as green dotted lines. 

Next, we explored the synthesis of NU-901 using a 

dodecanuclear oxo-bridged zirconium acetate cluster 1 (Figs. 1a 

and ESI), with the same core as the one recently reported in 

solvothermal synthesis of new Zr12 and Zr6 MOFs.22 Real-time 

PXRD monitoring of the milling reaction of 1 and H4TBAPY 

revealed rapid formation of NU-901, and complete 

disappearance of reactants within 30 minutes (Fig. 2). In this 

case, the sample remained a free-flowing powder that was 

readily removed from the reaction vessel. Whereas PXRD 

indicated quantitative conversion, in order to ensure purity, the 

product was rapidly washed with a minimal amount of DMF. 

The sample after activation exhibited a BET area of 1610 m2 g-1, 

matching well to reported values for NU-901 (see ESI).23  

The significant improvement in mechanosynthesis of NU-901 

upon using the dodecanuclear precursor 1 led us to explore its 

use in the mechanosynthesis of UiO-67, an fcu zirconium MOF 

based on the extended ligand biphenyl-4,4’-dicarboxylic acid 

(H2BPA, Fig. 1). Mechanosynthesis of UiO-67 was recently 

described by the Lamaty group, by milling of H2BPA with the 

methacrylate precursor 2, yielding a material with BET surface 

area of 750 m2 g-1.24 Our attempts to use 2 as the precursor gave 

similar results, with porosity ranging from 380 to 1165 m2g–1, 

possibly due to methacrylate impurities trapped in UiO-67. 

Whereas the BET areas of the MOF could be increased to 1740 

m2g–1 by aging for a week at 45 °C in DMF vapor, the samples 

still appeared poorly crystalline by PXRD (see ESI). 

In contrast, LAG of 1 and 4,4’-H2BPA in the required 1:12 

stoichiometric ratio, and using DMF as liquid additive, led to 

rapid formation of highly crystalline UiO-67). After activation, 

the purified UiO-67 exhibited an outstanding BET area of 2250 

m2 g-1 (see ESI). Whereas this surface area exceeds any 

previously reported ones for UiO-67, it is also the highest so far 

reported BET area for a mechanochemically prepared MOF. 

Importantly, the nitrogen sorption isotherm indicates a high 

level of ordering in the MOF structure, with a low fraction of 

missing linker defects, which was also corroborated by 

thermogravimetric analysis (TGA) showing average of 5.5 

ligands per Zr6 node (see ESI). Consequently, the synthesis of 

UiO-67 from precursor 1 demonstrates the ability to synthesize 



materials with very high microporosity and high crystallinity 

using mechanochemistry. 

In situ monitoring of the LAG mechanosynthesis of UiO-67 also 

revealed different reaction pathways dependent on the choice 

of precursor cluster. LAG reaction of 2 with 12 equivalents of 

4,4’-H2BPA in presence of DMF revealed almost immediate 

formation of 3, which remained stable for 90 minutes milling, 

without appearance of UiO-67. The formation of UiO-67 was 

observed only upon longer, more intense milling (ESI). We 

surmise that 3 is a less reactive form of the Zr6 cluster, which 

interferes with the formation of zirconium MOFs in DMF, which 

may also explain the poorer yields and crystallinity previously 

reported for UiO-66 MOFs prepared from 2 by LAG with DMF.21a 

 
Figure 4. In situ XRD monitoring of mechanochemical synthesis of: a) UiO-67 from 2, 

revealing immediate and exclusive formation of 3 which remains stable for almost 90 

minutes milling; b) UiO-67 from 1. The Bragg reflection at 2.25 2theta (*) belongs to 4,4’-

H2BPA reactant.  

In contrast, in situ monitoring of the reaction involving 1 as the 

precursor led to immediate formation of UiO-67 after 5 

minutes, with complete conversion after ≈35 minutes (Fig. 4).  

 The high crystallinity and outstanding BET area of UiO-67 

mechanochemically generated from 1 led us to explore its 

activity as a heterogeneous catalyst in hydrolytic degradation of 

the nerve agent simulant dimethyl 4-nitrophenyl phosphate 

(DMNP, Fig. 5), standard compound in testing the Zr-MOFs 

hydrolytic activity.6b The UiO-67 sample prepared from 1 

displayed high hydrolytic activity, 2.5 min for an initial half-life 

for degradation of DMNP, which is much faster than the popular 

and successful UiO-67 catalysts, made from solution (t1/2(UiO-

67) = 5 min). The importance of using 1 as the precursor is 

evident from the catalytic activity of UiO-67 mechanochemically 

prepared from 2 (Fig. 5), which exhibited an initial half-life of 

>20 minutes even for samples with a high BET surface area of 

1750 m2 g–1. The high catalytic activity of UiO-67 generated 

mechanochemically from 1 is likely to be facilitated by small 

particle size range of 40-80 nm, established by scanning 

electron microscopy (see ESI).  

 
Figure 5. Hydrolysis of nerve agent simulant DMNP using UiO-67: a) reaction 
scheme and b) comparison of hydrolysis profiles in the presence of UiO-67 made 
solvothermally (black: low-defect phase; red: high-defect phase); 
mechanochemically from 1 (blue) and by milling and aging from 2 (magenta). 

In summary, the use of a Zr12-acetate cluster as a precursor 

enabled the rapid solvent-free synthesis of highly porous NU-

901 and UiO-67 MOFs, in high yields and with minimum work-

up requirements. The synthesis of these MOFs demonstrates 

the ability to use mechanochemistry for the synthesis of highly 

porous materials based on complex organic ligands, with the 

herein prepared UiO-67 representing the first example of a 

material with a BET surface area above 2000 m2 g–1 obtained by 

ball milling. In situ monitoring revealed that mechanochemical 

formation of zirconium MOFs from the conventional 

hexanuclear methacrylate precursor is hindered by the 

appearance of a previously not reported inert Zr6-cluster 

bearing ancillary DMF ligands. In contrast, the use of a 

dodecanuclear precursor does not lead to this phase, enabling 

rapid and direct synthesis of zirconium MOFs, even on gram 

scale. We are currently exploring further applications of such 

dodecanuclear clusters in mechanochemical reactions. 
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