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ABSTRACT: We present a solvent-free, green and rapid mechanochemical route for the synthesis 

of a series of zirconium metal-organic frameworks (MOFs) comprised of Zr6-cluster nodes, UiO-

66, UiO-66-NH2, MOF-801 and MOF-804, both on a laboratory scale and by scalable and flow 

mechanochemical processing. The methodology, based on the use of a non-conventional 
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zirconium dodecanuclear acetate cluster and a minute amount of water as an additive, affords high-

quality MOFs in less than an hour of milling, with minimal requirements for work-up processing 

and eliminating the need for conventional hazardous solvents, such as dimethylformamide. 

Moreover, the use of a dodecanuclear zirconium acetate precursor circumvents the need for 

modulators resulting in acetic acid as the only byproduct of the reaction, which does not harm 

these acid-resistant materials. The porosity, thermal and chemical stability, as well as catalytic 

activity of mechanochemically prepared Zr-based MOFs are similar to those of solvothermally 

synthesized counterparts. Finally, the synthesis is readily applicable on a 10-gram scale by using 

planetary mill, and is also performed by solid-state flow synthesis using twin-screw extrusion 

(TSE), affording more than 100 g of catalytically active UiO-66-NH2 material in a continuous 

process at a rate of 1.4 kg/h. 

Keywords: Zirconium MOFs, zirconium acetate precursor, mechanochemistry, simple activation 

procedures, twin-screw extrusion, catalytic activity 

 

INTRODUCTION 

There is a growing interest in the synthesis and design of metal–organic frameworks (MOFs) as 

highly tunable, microporous functional materials for uses in gas storage, separation, catalysis and 

more.1–4 Among diverse MOF designs, zirconium-based architectures with [Zr6O4(OH)4]
12+ cluster 

nodes and bridging carboxylate linkers are particularly attractive for their high chemical and 

thermal stability, including resistance to water,5,6 high surface area, biocompatibility,7,8 and 

excellent catalytic activity,1,9,10 e.g. in detoxification of chemical warfare agents and simulants.11 

The archetypal zirconium MOFs of the UiO-family1, which are based on 12-connected metal nodes 

and adopt the fcu-topology, are particularly noted for their catalytic activity - which can be 
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enhanced by the introduction of electron withdrawing groups on the linker,12,13 or by the controlled 

introduction of defects (e.g. missing linkers or missing nodes). 12,14 

Despite recent commercialization,15 wider use of MOFs is hindered by long, often costly 

synthetic procedures16,17 which commonly involve high-boiling and hazardous organic solvents 

such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), as well as soluble 

nitrate or chloride metal salts, combined with acidic modulators, long reaction times, and large 

amounts of waste by-products which need to be remediated and/or recycled.1,18,19 In contrast to 

process chemistry and organic synthesis, which have placed strong focus on the development of 

cleaner, safer and sustainable reactions and techniques, there has been much less attention to such 

development in the context of coordination chemistry and MOF synthesis. Recently, however, a 

number of studies have begun to address the need for new, greener procedures for preparation of 

metal-organic materials.20,21 

Mechanochemistry,22,23 i.e. chemical reactivity induced by mechanical force, has surfaced as a 

versatile technique for conducting clean, solvent-free reactions in a wide range of areas, including 

organic,24–30 pharmaceutical,31,32 inorganic,33-37 organometallic,38–40 supramolecular41–46 and 

coordination47–50 chemistry. Indeed, over the past decade mechanochemistry has provided 

efficient, rapid routes for the assembly of coordination polymers and microporous MOFs, without 

resorting to solvents or high temperatures common in solvothermal synthesis, and often from 

simple, readily accessible reagents.51-54 Particularly useful in that context are liquid-assisted 

grinding (LAG), which uses a small amount of a liquid phase to accelerate reactivity, template the 

structure, and ensure a high degree of crystallinity of the product,55-57 and ion- and liquid-assisted 

grinding (ILAG), which also uses a catalytic amount of a salt to enable MOF assembly from 

typically inert metal oxides.58,59 The introduction of LAG and ILAG methods has enabled rapid 
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progress in mechanochemical MOF synthesis, with reliable, rapid room-temperature procedures 

reported for a number of popular MOFs, including IRMOF-1,58 MOF-74,60 MIL-100,61 

Al(fumarate)(OH)5 and UiO-66.9,62 While all these reports highlight quantitative reactions yields 

achieved at room temperature and in significantly less time compared to most conventional 

solution-based or solvothermal processes (30-60 minutes compared to days), they nevertheless 

require the use of minuscule amounts of organic liquid additives. 

We now demonstrate the next step in achieving a cleaner, safer, as well as scalable access to 

useful MOF products, by developing a generally applicable mechanochemical synthesis of high-

performance zirconium MOFs based on Zr6-cluster nodes, UiO-66, UiO-66-NH2, MOF-801 and 

MOF-804, requiring the use of only water as the LAG liquid additive. Whereas the synthesis of a 

UiO-66 derivative by water-assisted milling was recently reported, the procedure was limited only 

to the fluorinated framework UiO-66-F4.
63 Central to the herein presented procedure are the 

stability of zirconium MOFs in aqueous environments and the use of a non-conventional 

dodecanuclear zirconium acetate cluster Zr12O8(OH)8(CH3COO)24, (1) as a precursor. This 

compound is readily prepared on a 100 g scale from Zr(IV) propoxide and acetic acid (Scheme 1). 

While the MOF materials prepared by this procedure exhibit porosity and catalytic activity 

comparable to the conventionally-prepared counterparts, the reactions provide the environmental 

benefit of generating acetic acid as the only by-product, and are readily scalable to multi-gram 

amounts by using a planetary mill. In case of UiO-66-NH2, a MOF of high activity for catalytic 

breakdown of nerve gas simulants, this mechanochemical procedure was adapted for continuous 

twin screw extrusion (TSE)5,64–66 manufacture at a rate of almost 1.4 kg/h. 
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Scheme 1. Water-assisted mechanochemical procedure for green synthesis of zirconium MOFs. 

 

RESULTS AND DISCUSSION 

The first reported mechanochemical syntheses of UiO-66 and UiO-66-NH2 relied on the use of 

a pre-synthesized Zr6 methacrylate cluster9 2 as the precursor, in the presence of small volumes of 

DMF or methanol (MeOH) as LAG additives. Notably, 2 was also shown to be an efficient 

precursor for the water-assisted milling synthesis of the fluorinated UiO-66 analogue UiO-66-F4.
63 

However, the water-assisted synthesis was limited only to UiO-66-F4, which was tentatively 

ascribed to the higher solubility of fluoroterephthalic acid in water compared to other terephthalic 

acid linkers. Whereas the use of 2 enables rapid and efficient synthesis of several UiO-materials, 

it also involves certain environmental and safety concerns due to release of methacrylic acid during 

the reaction. In particular, methacrylic acid is considered a hazardous, corrosive and reactive 

substance by the National Institute for Occupational Safety and Health (NIOSH) and the US 

Occupational Safety and Health Administration (OSHA).67 Released methacrylic acid also 

provides a potential polymerization link upon milling in presence of water. Such polymerization 

could tentatively lead to clogging of MOF pores, requiring complicated purification procedures 

and diminishing the product quality. The herein presented results demonstrate that the 

dodecanuclear zirconium acetate cluster 1 can be used as an efficient, and more broadly applicable 
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precursor for mechanochemical synthesis of UiO-type MOFs, at the same time avoiding the 

generation of reactive and hazardous methacrylic acid byproduct. 

 

Water-assisted milling synthesis from the methacrylate cluster 2 

In order to evaluate the relative efficiencies of 1 and 2 as precursors for the synthesis of UiO-

type materials, we first explored the synthesis of UiO-66, UiO-66-NH2, MOF-804 and MOF-801 

from methacrylate cluster 2 using the water-assisted milling procedure. As established by Fourier-

transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD), water-assisted 

milling reactions (η(H2O)=0.36 µL/mg) of 1:6 stoichiometric mixtures of 2 with terephthalic acid 

(tpa), 2-aminoterephthalic acid (atpa), 2,5-dihydroxyterephthalic acid (dhta), and fumaric acid 

(fum) produced either only a physical mixture of reactants, or a mixture of reactants with low 

amount of product (please check ESI). Specifically, the procedure was successful only for the 

synthesis of MOF-801, based on the short fumaric acid linker (Figure 1a). After thorough washing 

with water, the purity of mechanochemically synthesized MOF-801 was tested by NMR analysis. 

1H NMR of MOF-801 suspended in deuterated chloroform revealed that the product contained 

methacrylic acid residues that could not be completely removed by simple work-up procedures 

(Figure 1b).  
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Figure 1. a) Comparison of PXRD patters for products obtained by water-assisted grinding using 

methacrylate cluster 2 precursor; and b) Section of 1H NMR data in chloroform-d1 for MOF-801 

product obtained from 2 collected after work-up procedure. The peaks for methacrylic acid 

residues are noted with asterisk. For a more detailed NMR spectrum please check Supporting 

Information.  

 

Water-assisted milling synthesis from the acetate cluster 1 

After exploring methacrylate 2 as the precursor for mechanosynthesis of UiO-type MOFs, we 

turned to the dodecanuclear zirconium acetate cluster 1 as the starting material. Compound 1 was 

previously used for solvothermal68 synthesis of the biphenyl-based UiO-671,69 and, very recently, 

we have shown its use for rapid mechanochemical synthesis of high-porosity NU-90170 and UiO-

67 MOFs using DMF as the additive.71 
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Here, milling of 1 with twelve equivalents of bridging ligand and with water as a liquid additive 

in laboratory IST-500 mixer mill (InSolido Technologies) afforded UiO-66-NH2, MOF-804 and 

MOF-801 in high yield after 45-90 minutes milling and simple washing with small volumes of 

water or methanol (Figure 2a). However, the same procedure yielded only poorly crystalline 

framework UiO-66, and the reaction mixture contained significant amount of unreacted ligand, 

even after 300 minutes of uninterrupted milling (please check Supporting Information). In order 

to resolve this problem, we attempted to activate the terephthalic acid reactant by addition of 

triethylamine (TEA) to the reaction mixture. The modified reaction procedure was conducted in 

two successive mechanochemical steps, by first milling TEA and terephthalic acid in 2:1 

stoichiometric ratio over 30 minutes, followed by addition of 1 and milling for further 90 minutes. 

After washing with MeOH, the product was identified by PXRD as highly crystalline UiO-66 

target (Figure 2a). 
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Figure 2. a) PXRD patterns for UiO- products obtained by LAG-H2O synthesis of (from top to 

bottom) MOF-801, calculated pattern of MOF-801, MOF-804, UiO-66-NH2, UiO-66, and 

calculated pattern of UiO-66. b) SEM micrographs for UiO-MOF derivatives prepared by water-

assisted mechanochemical procedure using cluster 1. 

Scanning electron microscopy (SEM) analysis showed that in most cases milling with acetate 

cluster 1 afforded MOFs with particle size below 100 nm, which agglomerate to form loosely 

bound spherical conglomerates with ca. 1 µm dimeter, as in UiO-66-NH2 and MOF-804; or leaf-

like formations in MOF-801 and UiO-66, where the MOF particles seem strongly bound (Figure 
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2b). Thermal decomposition of each MOF was investigated by thermogravimetric analysis (TGA) 

and the results were consistent with solvothermally prepared compounds. The first step of each 

TGA curve shows the loss of solvent and is followed by degradation of MOF, occurring between 

350-500 °C. The residue above 600 °C is assumed as ZrO2 and was confirmed by PXRD (please 

check SI). 

The applicability of 1 for development of the green synthesis of zirconium MOFs on a multigram 

scale was tested on UiO-66-NH2, one of the most potent and investigated zirconium catalysts 

today. Here, we devised the mechanochemical procedure to scale the reaction to 10 grams using a 

planetary Fritsch Pulverisette 6 reactor equipped with one 50 mL zirconia jar. 90 minutes milling 

with 4 mL of water additive at 500 rpm yielded more than 11 g of pale-yellow powder which was 

identified by PXRD as highly crystalline UiO-66-NH2
 (Figure 3). The crude product was washed 

with small amount of methanol to remove the acetic acid byproduct and linker residues and was 

further subjected to porosity measurements. 

 

Continuous mechanochemical procedure for the synthesis of UiO-66-NH2 by twin-screw 

extrusion 

As our target reaction scale of ca. 100 g would require large and cumbersome reactor vessels, 

we switched from batch synthesis to a continuous manufacturing methodology based on twin-

screw extrusion (TSE) procedure. Notably, TSE was recently described in continuous- and 

solvent-free synthesis of four other commercially interesting MOFs.5 The procedure is based on 

use of a twin-screw laboratory extruder (Figure 3a), wherein the reaction mixture, added 

continuously through the feeder, is milled and transported along two co-rotating screws before 

exiting the instrument. In our case we have used Rondol 21mm LAB TWIN extruder where the 
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die at the end of the tube was removed in order to avoid clogging by product particles. To be able 

to use this equipment on larger scale, the main prerequisite is the accessibility of a large quantity 

of starting compounds. Whereas the 2-aminoterephthalic acid linker is commercially available, 

compound 1 was synthesized readily on 100 g scale, simply by mixing of a solution of zirconium 

propoxide with acetic acid (Experimental section). Colorless crystals can be isolated and filtered 

after a day or two of standing on room temperature. We premixed 1 and 2-aminoterephthalic acid 

in a large glass beaker before starting to add it carefully through feeder, and MeOH was added 

through the adjacent inlet to provide necessary lubrication and to catalyze the reaction. We have 

chosen MeOH rather than water, used in milling procedures involving mixer or planetary mills, as 

mixtures in liquid-assisted grinding with methanol additive seemed to flow more readily through 

the extrusion reactor.  
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Figure 3. a) The TSE setup used for continuous mechanochemical synthesis of UiO-66-NH2. 

Extruded UiO-66-NH2 was collected in 1 L beaker; b) SEM micrographs of UiO-66-NH2 prepared 

by TSE (left) and by milling in planetary mill (right); and c) PXRD patterns of UiO-66-NH2 

obtained on 10 g scale in planetary mill and on 100 g scale by continuous mechanochemical 

procedure using TSE. 

 

The product after the first pass was pale yellow in color, consistent with the color expected of 

UiO-66-NH2. In accordance with standard TSE procedure, the obtained mixture was fed through 
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extruder one more time to ensure larger residence times, and consequentially, a higher yield of the 

product. At the screw speed of 180 rpm, the accomplished throughput was around 23 g/min, 

equivalent to almost 1.4 kilograms of product per hour. The obtained pale-yellow powder was 

washed with small volume of MeOH and identified as UiO-66-NH2 using PXRD analysis (Fig 3c). 

The particles in the sample are smaller than 100 nm in dimeter and agglomerate to loosely bound 

spheres, similar to UiO-66-NH2 obtained on 200 milligram scale by LAG procedure using 

laboratory mixer mill (Figure 3b, left). 

 

Porosity measurements  

In addition to confirming crystallinity and topology, it is important to determine how the 

proposed mechanochemical procedures affect the MOF porosity. Zirconium MOFs are generally 

considered to be highly stable in aqueous environments, which is a basis for their potential 

application in remediation of chemical warfare agents and other pollutants. The surface area of 

UiO-66, UiO-66-NH2, MOF-801, MOF-804 samples prepared by LAG with water and activated 

by a standard procedure, shows that the proposed laboratory mechanochemical LAG procedure 

did not influence significantly on the porosity of prepared materials (Figure 4). The measured 

Brunauer-Emmett-Teller (BET) areas for samples of UiO-66, UiO-66-NH2, MOF-801 and MOF-

804 were 1145, 815, 540 and 755 m2 g-1, respectively (Table 1 and Figure 4). These results are 

consistent with the literature values for analogous materials synthesized solvothermally69 or by 

mechanochemical batch synthesis using LAG in the presence of MeOH additive.9 The hysteresis 

observed in isotherm of the UiO-66 sample is most likely due to small particles (<100 nm 

diameter) which are compacted strongly (Figure 2a), thus creating inter-particle voids that may act 

like larger mesopores. UiO-66-NH2 prepared in a planetary mill on 10 g scale with water additive 
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displayed excellent BET surface area (885 m2/g), while the sample made on 100 g scale by TSE 

showed somewhat lower surface area (610 m2/g).  

Importantly, the latter two samples were activated using a much simpler procedure than 

conventionally used for MOFs and applied for other tested samples (Experimental section). As 

these samples were synthesized in the presence of small amounts of water or alcohols, we aimed 

to avoid the conventional solvent-exchange procedure which is inherently wasteful, involves 

multiple washing with the volatile and hazardous organic solvents, and requires specialized 

equipment. In the herein developed procedure, the MOFs were simply kept overnight in vacuum 

at 120 °C, leading to excellent BET surface areas. Consequently, the herein developed green and 

environmentally-friendly synthetic procedures also enable a cleaner, more materials-efficient 

activation of the MOF products. 

 

Table 1. BET surface areas of mechanochemically prepared UiO-MOFs (in m2/g), determined 

from N2 sorption measurements at 77 K. 

MOF Additive H2O   Additive MeOH   Literaturea 69 

MOF-801 540 - 690 (SCb), 990 (Pb)72 

MOF-804 755 - 56069 

UiO-66 1145 10209 110069 

UiO-66-NH2 815 9459 83069 

UiO-66-NH2 (planetary)c 885   

UiO-66-NH2 (TSE)c  610  

a – Solvothermally obtained MOFs. 

b - SC: Single Crystal; P: Powder. 
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c – Materials were activated without the solvent exchange, by heating the samples to 120 °C in a 

lowered pressure atmosphere. 

 

 

Figure 4. Nitrogen adsorption-desorption isotherms measured at 77K for Zr-MOFs prepared by 

mechanochemical procedures from 1. 

 

Catalytic activity 

After confirming the permanent porosity and phase purity of the mechanochemically produced 

UiO-type MOFs, we evaluated their applicability by assessing their activity as catalysts for 

hydrolysis of the nerve agent simulant dimethyl 4-nitrophenyl phosphate (DMNP, Figure 5). The 

mechanochemically prepared samples of UiO-66-NH2, previously established to be one of the 

most potent catalysts for this reaction, expectedly displayed much higher catalytic activity (t1/2 is 

≈ 6 min for the UiO-66-NH2 made by milling in IST-500 mixer mill) compared to UiO-66, 



 16 

consistent with the previously described behavior of solvothermally prepared UiOs.73 

Interestingly, UiO-66-NH2 prepared by TSE on a 100 g scale showed the best catalytic activity 

among all tested samples (t1/2 is ≈ 5 min), which is possibly due to the good dispersibility of the 

loosely bound particles (Figure 3b) in water. The UiO-66-NH2 sample obtained from the planetary 

mill formed large agglomerates in the solid-state (please check Supporting Information) and the 

solution, which would not disperse despite the long sonication, and that was the only tested UiO-

66-NH2 sample that showed moderate hydrolytic activity under these experimental conditions. It 

is worth noting that the overall catalytic activity reported here is slightly lower compared to 

solvothermally prepared UiO-66-NH2 due to the formation of larger agglomerates, resulting in 

limited dispersibility in water. 

  

 

Figure 5. Comparison of hydrolysis profiles for a degradation of nerve simulant DMNP in the 

presence of UiO-66 (red – prepared by LAG in IST-500 mixer mill) and UiO-66-NH2 (purple – 
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sample from batch LAG in IST-500 mill; green – sample prepared by TSE; and blue – sample 

prepared by milling in planetary Fritsch Pulverisette 6 mill). 

 

 

CONCLUSIONS 

In summary, we have developed a rapid, scalable and green mechanochemical synthesis of a 

series of Zr6-based MOFs with fcu topology (UiO-66, UiO-66-NH2, MOF-801 and MOF-804) via 

water-assisted grinding. The procedure relies on use of a Zr12 acetate precursor and a minute 

amount of liquid additive to afford high-quality fcu-Zr6 MOFs in a batch- or flow 

mechanochemical reactors, with minimum work-up needed and with acetic acid as an exclusive 

by-product. Reactivity of the Zr12 acetate cluster proved superior to reactivity of the more 

commonly used Zr6 methacrylate cluster, which was successful for MOF-801 synthesis only. The 

proposed mechanochemical procedure can be scaled to 10-gram scale using a planetary mill, or 

even to larger scales using continuous processing by twin-screw extrusion, affording >100 g of 

UiO-66-NH2 MOF at a rate of ca. 1.4 kg/h. The obtained products showed high crystallinity and 

porosity without the need for excessive work-up or the stabilization of the framework by DMF. 

For materials prepared on a larger scale, simple thermal activation without long and costly solvent-

exchange procedures was sufficient to yield activated MOFs with high BET surfaces. The catalytic 

activity of UiO-66-NH2 and UiO-66 prepared from the acetate precursor by water-assisted 

mechanochemistry was comparable to their conventionally-prepared counterparts. Based on these 

encouraging results, we believe this Zr12 acetate cluster may become a common precursor in 

development of greener and safer synthetic procedures for other commercially interesting 

zirconium MOFs. 
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EXPERIMENTAL SECTION  

Zr(IV) propoxide (70 % wt. in 1-propanol solution) was obtained from Sigma Aldrich, acetic 

acid (99.5% purity) was obtained from Kemika, terephthalic acid (tpa) was obtained from Merck, 

2-aminoterephthalic acid (atpa) and fumaric acid (fum) were obtained from TCI, and 2,5-

dihydroxyterephthalic acid (dhta) (97% purity) was obtained from Alfa Aesar. All reagents were 

used without further purification, and all reactions were conducted with deionised water. Cluster 

2 (Zr6O4(OH)4(C2H3CO2)12) was prepared according to the literature.71 

 

Synthesis of acetate cluster [Zr6O4(OH)4(CH3COO)12]2 (1). Synthesis of 1 was conducted 

according to the literature method.74 Zirconium(IV) propoxide (% 70 wt. % 1-propanol solution) 

(1g, 3.05 mmol) and acetic acid (3.50 mL) (1:20 ratio) were mixed in a sealed beaker and left 

overnight at room temperature. Microcrystalline colourless powder was collected by filter suction, 

washed with acetic acid gently and dried at room temperature. Yield: 0.825 g, 95 % based on 

zirconium(IV) propoxide. 

 

Attempted water-assisted LAG synthesis of UiO-66, UiO-66-NH2, MOF-801 and MOF-804 

using methacrylate cluster 2. The methacrylate-based cluster 2 (0.052 mmol), organic linkers 

(terephthalic acid, 2-aminoterephthalic acid, 2,5-dihydroxy terephthalic acid and fumaric acid) 

(0.315 mmol) (1:6 molar ratio of cluster 2 to organic linker) and 50 µL H2O were placed into a 

Teflon jar equipped with two stainless steel balls (1.38 g each) and milled for 90 minutes using 

IST-500 mixer mill operating at 25 Hz. Resulting powders for each reaction were washed with 

water or MeOH and analysed by PXRD and FTIR-ATR.  
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Water-assisted milling synthesis of UiO-66-NH2 from 1. Optimised LAG assisted milling 

reaction of UiO-66-NH2 was performed at IST-500 mixer mill at 25 Hz for 90 min. Zr12 precursor 

(64.8 mg, 0.023 mmol), 2-aminoterephthalic acid (50.77 mg, 0.28 mmol) (molar ratio of 1:12) and 

50 µL H2O were placed into a Teflon jar (10 mL) with two stainless steel balls (1.38 g each). The 

resulting yellow powder was washed with water or MeOH and analysed by PXRD, FTIR-ATR 

and TGA. Isolated: 111 mg.  

 

Water-assisted milling synthesis of MOF-801 from 1.  

Compound 1 (89.5 mg,0.0263 mmol), fumaric acid (36.66 mg, 0.315 mmol) and 50 µL H2O 

were placed into a plastic jar (10 mL) with two stainless steel balls (1.38 g each). The reaction 

mixture was milled using IST-500 mixer mill at 25 Hz for 90 min. The resulting white powder was 

washed with water or MeOH and analysed by PXRD, FTIR-ATR and TGA. Isolated: 87 mg. 

 

Water-assisted milling synthesis of MOF-804 from 1.  

Compound 1 (89.5 mg, 0.0263 mmol), 2,5-dihydroxyterephthalic acid (62.58 mg, 0.315 mmol) 

and 50 µL H2O were placed into a plastic jar (10 mL) with two stainless steel balls (1.38 g each). 

The reaction mixture was milled using IST-500 mixer mill at 25 Hz for 90 min. The resulting 

yellow powder was washed with water or MeOH and analyzed by PXRD, FTIR-ATR and TGA. 

Isolated: 108 mg. 

 

Two-step water-assisted milling synthesis of UiO-66 from 1.  
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UiO-66 was synthesised in two reaction step. First, terephthalic acid (52.47 mg, 0.315 mmol), 

triethylamine (63.80 mg, 0.631 mmol) and 50 µL H2O were placed into a Teflon jar (10 mL) and 

milled for 30 min at 25 Hz using two stainless steel balls (1.38 g each) and InSolido Technologies 

IST-500 mixer mill. Zr12 precursor 1 (89.5 mg,0.0263 mmol) was added afterwards to this mixture 

and stirred for additional 90 min. The resulting white powder (isolated 95 mg) was washed with 

methanol (MeOH), dried in air and analysed by PXRD, FTIR-ATR and TGA. 

 

10-gram scale mechanochemical synthesis of UiO-66-NH2 in a planetary mill.  

Gram-scale mechanochemical synthesis of UiO-66-NH2 was conducted using a Fritsch 

Pulverisette 6 planetary mill operating at 500 rpm. 7.16 g of compound 1 was mixed with 4.58 g 

of 2-aminoterephthalic acid in a 50 mL reaction vessel made of ZrO2 with three ZrO2 balls (each 

weighing 3 g), followed by the addition of 4 mL of water. After 90 minutes milling, pale-yellow 

product was isolated and washed three times with small volume of methanol. Isolated:11.3 g of 

UiO-66-NH2. 

 

Continuous mechanosynthesis of UiO-66-NH2 by TSE.  

Continuous mechanochemical synthesis experiment was carried out in Rondol 21mm LAB 

TWIN co-rotating, intermeshing twin screw extruder (TSE), shown in Figure 3a. Total barrel 

length was 630 mm, leading to L/D ratio of 30. Apart from forward-conveying sections, screws 

were equipped with three kneading blocks comprising 5mm wide bi-lobed elements arranged in 

30, 60 and 90° stagger angles with lengths of 65, 25 and 50 mm respectively. Barrel of the extruder 

consisted of five individual heating/cooling sections (Figure 3a). Barrel was kept at 40°C to ensure 

smooth screw rotation. For the purpose of this experiment, die at the end of the extruder barrel was 
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removed and the extruded material was collected in a weighed beaker. Reactants were gently 

premixed in a beaker and fed manually through the first feed port. Screw speed was kept at 180 

rpm, at which torque was kept at 90 % of maximum value, providing as high as possible throughput 

for current screw configuration. To facilitate longer residence times and ensure higher conversion, 

obtained product was fed through extruder one more time. Isolated: 104 g of UiO-66-NH2. 

 

Activation and porosity measurements 

Samples were shipped to Northwestern University as wet powders containing a minimal amount 

of H2O or methanol. Nitrogen adsorption and desorption isotherm measurements were performed 

on a Micromeritics Tristar II at 77K. All gases used were Ultra High Purity Grade 5 gases from 

Airgas Specialty Gases. Prior to measuring the nitrogen adsorption-desorption isotherms, the 

materials obtained by milling in mixer mill were activated as following: each sample (≈60 mg 

each) was then soaked in 12 mL of acetone in a 15 mL polypropylene centrifuge tube. After 

soaking for 3 hours, the MOF sample was centrifuged and the acetone was removed using a Pasteur 

pipette. 12 mL of fresh acetone was then added to the MOF sample in the 15 mL polypropylene 

centrifuge tube. The sample was allowed to soak in the fresh acetone for 3 hours before repeating 

centrifugation and removal of solvent. Finally, 12 mL of fresh acetone was added to the MOF 

sample in the 15 mL polypropylene centrifuge tube and allowed to soak for 18 hours before 

repeating centrifugation and removal of solvent. The sample was then placed in a vacuum oven 

set at 80 °C for 6 hours to remove the majority of the acetone in the sample. Lastly, the MOF was 

thermally activated under ultra-high vacuum at 120 ºC for 18 h on a Micromeritics Smart VacPrep 

instrument.  
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A bit milder technique using supercritical CO2 drying was performed for activation of UiO-66 

sample using a TousimisTM Samdri® PVT-30 critical point dryer (Tousimis, Rockville, MD, 

USA). Supercritically dried samples were prepared in the following manner. The solvent is 

exchanged with absolute ethanol overnight. The ethanol-dispersed sample was transferred into the 

sample holder with a glass pipet and allow for settling down overnight. The next day, excess of 

EtOH was pipetted out and the sample holder was placed into a Tousimis Samdri-PVT-3D 

supercritical CO2 dryer. The temperature was lowered to 0 °C, and the chamber was filled with 

liquid CO2 (ultrahigh grade CO2 with a syphon from Air-Gas Inc was used). The sample was 

soaked for 8 hours total, with five minutes venting for every two hours. The chamber was then 

heated to 40 °C, and the supercritical CO2 was bled off at a rate of 0.5 mL/min until the chamber 

reached close-to-ambient pressure. The chamber was opened and the sample was quickly 

transferred into a pre-weighed glass sample tube which was sealed and quickly transferred to a 

system providing 10-4 torr dynamic vacuum. The sample was kept under vacuum at 50 °C for 2 

hours and was then used for N2 adsorption measurements using Micromeritics Tristar II at 77K. 

For the MOF samples prepared by TSE or planetary mill even simpler activation procedure was 

used. The materials were, without the solvent exchange or supercritical CO2 treatment, subjected 

to thermal activation under vacuum at 120 °C for 16 hours before the N2 adsorption measurements 

on a Micromeritics Tristar II at 77K were conducted. 

 

Catalytic activity measurements 

Hydrolysis profiles were recorded by in situ 31P NMR spectroscopy at room temperature. MOF 

catalyst 1.5 µmol (2.5 mg of UiO66; 3.2 mg of UiO-67 (corresponds to 6 mol% catalyst (Zr6 node)) 

weighted using a microbalance and transferred into a 1.5 dram (≈5.5. mL) vial and 0.4 M N-
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ethylmorpholine solution (1.05 mL; 0.05 mL N-ethylmorpholine, 0.9 mL deionized water and 0.1 

mL D2O) was added and then sonicated for 30 seconds to disperse homogeneously. DMNP (4 µL; 

25 µmol) was added to mixture solution and swirled for 15 seconds. The reaction mixture was then 

transferred to an NMR tube and the spectrum was immediately measured; the first data point was 

collected 120 seconds after the start of the reaction. The progress of the reaction was monitored 

with 1 min increments (number of scans = 16, delay time = 28 sec). 
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