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Abstract 

The eco-compatible, energy-efficient, low environmental impact, gram scale, 

mechanochemical preparation of marketed drugs such as Nitrofurantoin (Furantin©, 

antibacterial agent), Dantrolene (Dantrium©, a muscle relaxant also used for prevention of 

malignant hyperthermia) and their structurally related derivatives, is herein reported. The 

solvent-, base- and waste-free stoichiometric ball-milling of 1-amino-hydantoin chlorohydrate 

and various aldehydes led to the more stable E-regioisomers selectively, in high yield and pure 

form without post-reaction work-up. Not a drop of organic solvent was used for the entire 

process and hydrazones were stable in the presence of water and gaseous HCl, formed during 

the synthesis. Comparative mechanochemical experiments were performed using diverse 



 2 

milling devices and jar materials, the Active Pharmaceutical Ingredients were analyzed by 

PXRD and green metrics are calculated. 

  

 

Introduction 

“Medicinal mechanochemistry”1 is an emerging field based on the use of a sustainable 

technology to prepare organic molecules and pharmaceutically relevant fragments and 

functionalities. We previously demonstrated how this approach was successfully used for the 

mechanochemical preparation of imidazoline-2,4-diones, or hydantoins, a scaffold of synthetic2 

and pharmaceutical interest for its many biological properties,3 leading to clinical candidates4-

5 and marketed drugs.6  

Several added-value hydantoin-based molecules for the industry, including Active 

Pharmaceutical Ingredients (API) such as Phenytoin 17 and Ethotoin 2,8 antibacterial agents for 

polymer textiles 3-5,8-9 or the precursor 610 an inhibitor of the dihydroorodotase enzyme, were 

already described by us (Figure 1). Very recently, we described the first “mechanochemical 

sol-gel process” to prepare silicon-based biohybrid nanomaterials containing hydantoins.11  

With this background and aiming to still contribute to the advancement of the field of 

‘medicinal mechanochemistry’, we extended our investigation to the preparation of 

Nitrofurantoin 7 and Dantrolene 8 (Figure 1), APIs with annual global sales up to 37 UDS $ 

Million12 and expected to increase in the next five years. 

 

 

 

Figure 1. Industrially important hydantoin-based marketed drugs prepared by 

mechanochemistry.  
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Indeed, nitrofurantoin (Furadantin®) 7 is an antibacterial agent active against some gram 

positive organisms and specifically indicated for the treatement of urinary tract infections,13 

while dantrolene (Dantrium®) 8, initially discovered as an efficient and specific skeletal muscle 

myorelaxant,14 is nowadays the only clinically available agent for the treatement of malignant 

hyperthermia (MH)15 and substrate for breast cancer resistant protein.16-17 

Nitrofurantoin is usually prepared in solution via a condensation reaction between 1-

aminohydantoin (up to 10 equivalents) and: 1) 5-nitro-2-furancarboxaldehyde diethyl acetal in 

DMF using HCl 30% in large excess upon heating at 90°C,18 or 2) furfural, followed by an 

aqueous nitration reaction in a mixture of HNO3-H2SO4, at -4°C.19 The product is usually 

recoved after pH adjustment, by precipitation/filtration in water with yield in the range 83-92%. 

In the case of dantrolene, the condensation reaction leading to the hydrazone occurs in 

the presence of 5-(4-nitrophenyl)-2-furfural, in similar reaction conditions (DMF/HCl 35%20 

or in acetonitrile21 at room temperature up to 8 hours), with yields in the range 41-96% after 

purification by precipitation in hexane22 or water,20, 23-24 or by colum chromatography.21 

To our surprise, despite the simplicity of the preparation of arylhydrazones in solvent-

free conditions by mechanochemistry, grinding in a mortar25 or ball-milling (vibrating26-29 or 

planetary30-32) from aryl diazonium salts in the presence of active methylene compounds29 or 

more likely, by a condensation reaction,25, 27-28, 30-31 those methodologies were never applied to 

the preparation of nitrofurantoin 7 or dantrolene 8.  

 Thus, equimolar amounts of 1-aminohydantoin hydrochloride and 5-nitro-2-furfural 

were ground at 30 Hz in a 5 mL stainless steel jar (with 2 stainless steel balls, 5 mm Ø) without 

any special precaution. The conversion of the reactants was quantitative after 30 minutes and 

no other optimization studies were necessary on this first trial on small reaction scale (0.84 

mmol) (Scheme 1). Nitrofurantoin 7 was recovered in 85% yields by precipitation after addition 

of water to the crude and drying in vacuo over P2O5, the only waste being water and 

hydrochloric acid.  

It is worth noting that, coherently with our previous findings in other mechanochemical 

activated transformations,10, 33 the strong activation provided by mechanochemical shocks 

avoided the use of base to generate a more nucleophilic amine. Moreover, two semi-batch large 

scale experiments were also performed under different mechanical stress in a planetary ball mill 

(13.2 mmoll) or a SPEX mill (6.6 mmol) (Table 1). Similarly to the reaction performed in a 

vibrating ball-mill on smaller scale (0.84 mmol), the experiment carried out in the planetary 

ball-mill equipped with zirconia jars and balls (25 zirconium oxide balls, 5 mm Ø) led to 
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nitrofurantoin 7 in 87% yield (2.73 g!) after precipitation in water, with full conversion of the 

reactants after two hours. However, uncomplete conversion of the substrates, even after 

prolonged milling (up to 6 hours), was observed when agate jars were used instead of those in 

zirconium oxide, confirming the importance of the hardness and density of the material in the 

activation process.  

 

 
 

Scheme 1. Preparation of nitrofurantoin, dantrolene and their analogues by 

mechanochemistry.34 

 

To our delight, much better results were obtained when using SPEX Mill 8000, 

characterized by an angular harmonic displacement in the vertical plane and a synchronous 

rotation in the equatorial plane. 1.49 g of nitrofurantoin 7 were smoothly prepared in only 15 

minutes in 95% yield (Table 1). This time, the product was directly recovered as a powder from 

the jar without any post-synthetic treatment, except the removal of the water produced during 

the reaction, in vacuo at room temperature over P2O5.  
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 Powder X-Ray Diffraction analyses (PXDR) were performed on nitrofurantoin 7 

samples obtained after precipitation in water (reaction performed in the planetary ball-mill) or 

directly recovered from the jar without any post-synthetic work-up (reaction performed in the 

SPEX). In the first case, the diffraction patterns correspond to the nitrofurantoin known triclinic 

polymorph with at least two additional small peaks that are not accounted for suggesting there 

is an impurity present (Figure S1 in the supporting information). The same polymorph, but 

largely amorphous, is obtained on the powder directly recovered from the jar, displaying the 

same lower angle impurity peak as in Figure S1 (Figure S2 in the supporting information). 

 

Table 1. Comparative results for the preparation of nitrofurantoin 7. 

 Type of mill 

 Vibratinga Planetaryb SPEXc 

Reaction time (min) 30 120 15 

Reaction scale (mol) 0.84 x 10-3 13.2 6.6 

Yield (%) 85 87 95 

Quantity of 7 (g) 0.169 2.73 1.49 

Jar/balls material Stainless steel Zirconium oxide Zirconium oxide 

Jar volume (mL) 5 12 50 

Reaction conditions: 1-amino hydantoin chlorohydrate (1.0 equiv) and 5-nitro-2-furfural (1.0 

equiv) were ground as follows: a30 Hz, 2 balls (5 mm Ø); b 600 rpm, 25 zirconium oxide balls 

(5 mm Ø); c 2 zirconium oxide balls (12 mm Ø). 

 

The differences observed during the preparation of nitrofurantoin 7 in terms of reaction 

time (15 minutes vs 2 hours) and yields (95% vs 87%) might be due not only to the differences 

in reaction scale (6.6 mmol vs 13.2 mmol), but also to the different mechanical stress 

experimented by the reactants (Table 1).  

To clear up any confusion, two comparative large scale experiments (6.6 mmol) were 

performed for the preparation of dantrolene 8 using a planetary and a SPEX mill respectively.  

In both case, althought the full conversion of the reactants took longer (two hours) 

compared to nitrofurantoin 7 (15 minutes), almost identical yields (90%) were obtained, 

indipendently on the type of mill (planetary or SPEX) and the process parameters used 

(identical to those illustrated in Table 1). Therefore, the different reaction kinetics displayed by 

nitrofurantoin 7 (prepared in 15 minutes) and dantrolene 8 (prepared in two hours) could be 

exeplained on the base of the physical state of the reagents. Faster reaction kinetics were 
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possible with the low melting reagent 2-nitro-1-furfural (m.p. 37-39°C), while a melt reaction 

was excluded for a high melting solids such as 5-(4-nitrophenyl)-2-furfural (m.p. 204-205°C) 

and 1-amino hydantoin hydrochloride (m.p. 201-205°C). 

Since no more optimization was necessary, in order to investigate whether this approach 

was of general applicability, other hydantoin-based hydrazones were prepared (Scheme 1). 1-

Amino hydantoin hydrochloride reacted almost quantitatively with the different aldehydes 

leading to the corresponding hydrazones 7-16 upon stoichiometric milling of the components 

(Scheme 1). The completion of the reaction was checked by HPLC, the reactions were selective 

in favor of the more stable isomer E and the conversion was 100% in all the studied 

combinations, with yields approaching 100% in most of the cases, nonetheless the quantitative 

recovery of the powdered material from the jar was sometimes difficult. It is worth noting that 

resistant to hydrolysis despite the formation of water and gaseous HCl during milling. The 

method proved to be general (even on large scale) and the process presented the advantage of 

short reaction times, eco-friendliness, and ease of handling under solvent-free conditions, as no 

waste-producing purifying workup is necessary.  

Green chemistry metrics such as the environmental factor [E-factor = total waste 

(kg)/product (kg)],35 the Process Mass Intensity [PMI = total mass (kg) used in the process/mass 

of product (kg)],36 the Atom Economy [AE = Molecular Weight of the product / Sum of the 

Molecular Weights of all reactants]37 and Carbon Economy [Ec = Amount of carbon in the 

product / total carbon present in all reactants] for both mechanochemical and solvent-based 

procedures were calculated for nitrofurantoin 7 and dantrolene 8 to evaluate and benchmark the 

more sustainable process (Table 2). 

 

Table 2. Comparative green metrics for nitrofurantoin 7 and dantrolene 8. 

 In solution / by Mechanochemistrya 

 t (h) Yield (%) E-factor PMIb AE (%) Ec
c (%) 

Nitrofurantoin 7 838 / 0.25 9538 / 95 16d / 0.29 17 d / 1.29 81 100 

Dantrolene 8 124 / 2 9524 / 90 239 e / 0.30 240 e / 1.30 85 100 

a Data refer to the recovery of products without any post-synthetic work-up (reaction scale was 

6.6 mmol); b PMI = E-factor + 1; c Carbon Ecomony (Ec); 
d Value calculated from data in 

Reference 38; e Value reported (or calculated) from data in References 24 and 20. 

 

If metrics such as carbon economy (Ec), atom economy (AE), the nature of waste are 

the same and the yields comparable for both solution and ball-milling processes, the E–factor 
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and the PMI metrics were better, compared to the reactions in solution (Table 2) and no work-

up was need. In addition, the preparation of nitrofurantoin 7 was faster by mechanochemistry 

(15 minutes instead of 8 hours). 

 

Table 3. Comparative costsa for nitrofurantoin 7 and dantrolene 8. 

 
Synthesis 

in solution 

Synthesis by 

Mechanochemistry 

From commercial 

sources 

 Costs (€ g-1)a 

Nitrofurantoin 7 n.d. 40.7 3.4 

Dantrolene 8 133.924 54.7 498 
a Reaction costs in euros per gram of product, excluding energetic costs. Costs are calculated 

considering the prices of the reagents and solvents taken from the same supplier.  

 

Compared to solution based processes, the mechanochemical preparation of 

nitrofurantoin 7 and Dantrolene 8 presents several advantages: 1) to avoid the use of solvents 

(DMF, CAN and EtOH); 2) to avoid the use of an excess of concentrated aqueous solutions of 

strong bases and acids (NaOH, HCl 30%, HNO3-H2SO4),
38 overcoming the problems related to 

corrosion and hydrolysis of the hydrazone bond; 3) to avoid the number of synthetic steps, (in 

the case of nitrofurantoin 7, the aldehyde is in the form of diethyl acetal and need to be 

hydrolyzed in situ); 4) to reduce the energetic cost of the process, avoiding any heating (between 

45°C and 90°C) or cooling (between -2°C and -4°C) of the reaction mixtures;38 5) to increase 

the throughput/hour of the process, due to shorter reaction times and no need of work-up 

procedure, being the APIs recovered as powder directly from the jar; 6) reduce the 

environmental footprint of the process (Table 2); 7) to reduce the costs of the synthesis leading 

to reduced costs for the preparation of 1 g of product (Table 3). 

 

Conclusion 

Nitrofurantoin and dantrolene were prepared without no extra-reagents (to further activate the 

reactants), additives, catalysts. Even if there is still much to explore in the perspective of a 

manufacturing process of these APIs by mechanochemistry, these syntheses are good examples 

and prefigure the way towards a more sustainable production of APIs at industrial level in the 

near future. In this regard, twin screw extrusion (TSE) technology, already applied to the 

preparation of co-crystals, Metal Organic Frameworks (MOFs), for organic condensation 
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reactions39 and for organic light-emitting diode (OLED)40 constitute the tool to change the way 

in which chemistry can be conducted.  
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Experimental part. 

General remarks and experimental procedures 

All reagents were commercially available. NMR spectra were recorded at room temperature 

with the appropriate deuterated solvent (CDCl3 or d6-DMSO). Chemical shifts (δ) of 1H NMR 

and 13C NMR spectra are reported in ppm relative to residual solvent signals (DMSO in DMSO-

d6: δ = 2.50 ppm for 1H and DMSO-d6: δ = 39.52 ppm for 13C NMR); J values are given in Hz. 
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1H and 13C NMR spectra were registered at 300 MHz or 400 MHz, the samples were prepared 

by dissolving 10 mg of hydantoin in 0.7 mL of deuterated solvent. 1H and 13C NMR were 

recorded using 32 and 4096 scans respectively. The identity of analytically pure final product 

Dantrolene 8 was assessed by comparison of its spectral data previously described in the 

literature and by their fragmentation in LC/MS. HRMS measurements were performed on a 

TOF mass analyzer. Analytical high performance liquid chromatography (HPLC) was 

performed with a UV-detector at 214 nm using a CHROMOLITH RP18 column (50 x 4.6 mm), 

flow 5 mL/min, linear gradient CH3CN in water 0-100% (+ 0.1% TFA) in 3 min. LC-MS 

analyses were performed by HPLC, column Onyx C18, (25 x 4.6 mm), flow 3 mL/min linear 

gradient CH3CN in water 0-100% (+ 0.1% HCO2H) in 2.5 min. Melting points were measured 

on a Büchi Melting Point 510 apparatus and are uncorrected. The ball-milling experiments were 

performed in a MM400 vibrational ball mill (Retsch GmbH, Haan, Germany) using 5 mL 

stainless steel jar (2 stainless steel balls, 5 mm Ø), a Pulverisette P7 (Fritsch, Idar-Oberstein, 

Germany) using a 12 mL agate or zirconium oxide jars (8 agate balls 8 mm Ø, 25 zirconium 

oxide balls 5 mm Ø) or in a SPEX 8000 mill using a 50 mL zirconium oxide jar (2 zirconium 

oxide balls 12 mm Ø).  

 

General procedure for the preparation of compounds 7-16. 

1-aminohydantoin hydrochloride (1.0 equiv) and the aldehyde (1.0 equiv) were ground 

according to Method A, B or C as specified for each compound. The final product was 

recovered just scratching out the powder from the jar without further treatment (compounds 7-

11 and 14) or by precipitation in water and filtration (compounds 7, 8, 12, 13, 15, and 16). The 

crude was always dried in vacuo over P2O5 overnight.  

 

METHOD A - Vibrating ball mill (VBM) (only for compound 7 and 9): 5 mL stainless steel 

jars, 2 stainless steel balls (5 mm Ø, 0.507 g for each ball) at 30 Hz for 30 min or 2 h; 

METHOD B - Planetary ball mill (PBM) (for compounds 7, 8, 10-16): 12 mL zirconium 

oxide jars, 25 zirconium oxide balls (5 mm Ø, 0.391 g for each ball) at 600 rpm for 2 h except 

when differently stated for each compound; 

METHOD C – SPEX (only for compounds 7 and 8): 50 mL zirconium oxide jars, 2 zirconium 

oxide balls (12 mm Ø, 3.3 g for each ball) for 15 min (in the case of nitrofurantoin 7) or for 2 

h (in the case of dantrolene 8). 
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7 

(E)-N-(5-nitro-2-furfurylidene)-1-aminohydantoin (7) CAS 

[67-20-9]. For Method A (30 min reaction): the reaction scale 

was 0.84 mmol (169 mg, 85%); for Method B: the reaction 

scale was 13.2 mmol (2.73 g, 87%). For Method A and B : The 

final product was recovered by precipitation in water. For 

Method C: the reaction scale was 6.6 mmol (1.49 g, 95%). The 

product was scratched out from the jar without any further 

work-up. Pale yellow powder; m.p. 269 - 272 °C (lit. 270-

272°C with decomposition);41 1H NMR (300 MHz, DMSO-d6) 

δ (ppm): 11.46 (s, CH=N, 1H), 7.79 (s, CH and NH, 2H), 7.14 

(s, 1H, CH), 4.35 (s, 2H, CH2); 13C{1H} NMR (75 MHz, 

DMSO-d6) δ (ppm): 168.7, 153.2, 151.9, 151.7, 131.1, 114.7, 

114.5, 49.1; ESI-(+) m/z : 261.2 [M+Na]+, 256.2 

[M+H+H2O]+, 239.1 [M+H]+, 191.3, 170.1, 141.0, 131.2, 100.5 

; HRMS ESI-(+) calcd for C8H7N4O5 [M+H]+ 239.0416, found 

239.0415. 

  

 

 

 

 

 

8 

(E)-1-{[5-(4-nitrophenyl)-2-furyl]methylideneamino}-

imidazolidine-2,4-dione (8) CAS [7261-97-4]. The reaction 

scale was 6.6 mmol. For Method B: the final product was 

recovered by precipitation in water (1.84 g, 89%). For Method 

C: the product was scratched out from the jar without any 

further work-up (1.87 g, 90%). Deep orange powder; m.p. 

262.7 - 264.7 °C (lit. 258-260 °C);42 1H NMR (300 MHz, 

DMSO-d6)
20 δ (ppm): 11.37 (s, CH=N, 1H), 8.35 (dd, J = 6.9 

and 1.8 Hz, CHAr, 2H), 8.06 (dd, J = 6.9 and 1.9 Hz, CHAr, 2H), 

7.80 (s, 1H, NH), 7.49 (d, J = 3.7 Hz, 1H, CH), 7.09 (d, J = 3.7 

Hz, 1H, CH), 4.40 (s, 2H, CH2); 13C{1H} NMR (75 MHz, 

DMSO-d6)
21 δ (ppm): 169.8, 154.2, 153.1, 151.0, 147.2, 136.1, 

133.6, 125.5, 125.4, 116.5, 113.4, 49.9; ESI-(+) m/z : 337.1 

[M+Na]+, 315.1 [M+H]+, 130.2 ; HRMS ESI-(+) calcd for 

C14H11N4O5 [M+H]+ 315.0729, found 315.0731. 
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(E)-1-((2-hydroxybenzylidene)amino)imidazolidine-2,4-

dione (9) The reaction scale was 1.32 mmol (Method A, 2 h 

reaction). The product was scratched out from the jar without 

any further work-up (284 mg, 98%). Black powder; m.p. 244.0 

- 247.4 °C; 1H NMR (300 MHz, DMSO-d6) δ (ppm): 11.35 (s, 

CH=N, 1H), 10.66 (s, 1H, OH), 8.02 (s, 1H, CHAr), 7.59 (s, 1H, 

NH), 7.30 (d, 1H, CHAr), 6.95 (s, 2H, CHAr), 4.40 (s, 2H, CH2); 

13C{1H} NMR (75 MHz, DMSO-d6) δ (ppm): 169.8, 157.5, 

154.5, 154.2, 143.5, 131.9, 129.4, 120.3, 119.8, 117.2, 49.4; 

ESI-(+) m/z : 220.0 [M+H]+, 148.9, 130.2; HRMS ESI-(+) 

calcd for C10H10N3O3 [M+H]+ 220.0722, found 220.0721. 
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(E)-1-((2-nitrobenzylidene)amino)imidazolidine-2,4-dione 

(10). The reaction scale was 1.98 mmol (Method B). The 

product was scratched out from the jar without any further 

work-up (443 mg, 90%). White powder; m.p. 219.6 - 221.5 °C; 

1H NMR (300 MHz, DMSO-d6) δ (ppm): 11.41 (s, CH=N, 

1H), 8.08 (dd, J = 9.0 and 3.0 Hz, 3H, NH and 2 x CHAr), 7.85 

(dt, J = 9.0 and 3.0 Hz, 1H, CHAr), 7.71 (dt, J = 9.0 and 3.0 Hz, 

1H, CHAr), 4.40 (s, 2H, CH2); 13C{1H} NMR (75 MHz, 

DMSO-d6) δ (ppm): 169.7, 154.4, 149.0, 139.12, 134.7, 131.5, 

129.3, 129.1, 125.7, 49.8; ESI-(+) m/z : 271.1 [M+Na]+, 249.1 

[M+H]+, 134.0, 114.0; HRMS ESI-(+) calcd for C10H9N4O4 

[M+H]+ 249.0624, found 249.0624. 
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(E)-1-((3-chlorobenzylidene)amino)imidazolidine-2,4-

dione (11) The reaction scale was 1.98 mmol (Method B). The 

product was scratched out from the jar without any further 

work-up (453 mg, 96%). White powder; m.p. 256.4 - 257.4 °C; 

1H NMR (300 MHz, DMSO-d6) δ (ppm): 11.34 (s, CH=N, 

1H), 7.84 (s, 1H), 7.77 (m, 1H, CHAr), 7.71-7.67 (m, 1H), 7.53-

7.51 (m, 2H), 4.34 (s, 2H, CH2); 13C{1H} NMR (75 MHz, 

DMSO-d6) δ (ppm): 169.8, 154.3, 142.3, 137.5, 134.6, 131.9, 

N
NH

O

O
N

H

HO

N
NH

O

O
N

H

O2N

N
NH

O

O
N

H

Cl



 16 

130.5, 126.9, 126.5, 49.8; ESI-(+) m/z : 240.1 / 238.1 [M+H]+, 

167.0, 129.9, 114.0; HRMS ESI-(+) calcd for C10H9N3O2Cl 

[M+H]+ 238.0383, found 238.0385. 
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(E)-1-((4-chlorobenzylidene)amino)imidazolidine-2,4-

dione (12) The reaction scale was 1.98 mmol (Method B, 3 

cycles of 2h each, with 5 minutes pause in between). The final 

product was recovered by precipitation in water (439 mg, 

93%). White powder; m.p. 240.2 (darkening), 258.7 - 260.7 °C; 

1H NMR (300 MHz, DMSO-d6) δ (ppm): 11.31 (s, CH=N, 

1H), 7.84 (s, 1H, NH), 7.75 (d, J = 9 Hz, 2H, CHAr), 7.55 (d, J 

= 9 Hz, 2H, CHAr), 4.39 (s, 2H, CH2); 13C{1H} NMR (75 MHz, 

DMSO-d6) δ (ppm): 169.9, 154.3, 142.6, 135.1, 134.2, 129.9, 

129.4, 49.8; ESI-(+) m/z : 240.1 / 238.1 [M+H]+, 114.0 ; 

HRMS ESI-(+) calcd for C10H9N3O2Cl [M+H]+ 238.0383, 

found 238.0382. 
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(E)-1-((naphthalen-1-ylmethylene)amino)imidazolidine-

2,4-dione (13) The reaction scale was 1.98 mmol (Method B, 3 

cycles of 2h each, with 5 minutes pause in between). The final 

product was recovered by precipitation in water (466 mg, 

93%). White powder; m.p. 250.8 – 253.9 °C (darkening); 1H 

NMR (300 MHz, DMSO-d6) δ (ppm): 11.35 (s, CH=N, 1H), 

8.93 (dd, J = 8.4 and 1.5 Hz, 1H) 8.42 (s, 1H, NH), 8.06-7.98 

(m, 3H), 7.71-7.60 (m, 3H), 4.57 (s, 2H, CH2); 13C{1H} NMR 

(75 MHz, DMSO-d6) δ (ppm): 170.1, 154.5, 143.3, 134.5, 

131.2, 131.1, 130.7, 129.7, 128.1, 127.2, 126.5, 125.4, 49.9; 

ESI-(+) m/z : 276.0 [M+Na]+, 254.1 [M+H]+,  154.1, 114.3 ; 

HRMS ESI-(+) calcd for C14H12N3O2 254.0930, found 

254.0931. 

  

 

 

(E)-1-((naphthalen-2-ylmethylene)amino)imidazolidine-

2,4-dione (14) The reaction scale was 1.98 mmol (Method B, 3 
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14 

cycles of 2h each, with 5 minutes pause in between). The 

product was scratched out from the jar without any further 

work-up (477 mg, 95%). White powder; m.p. 251.84 °C 

(darkening); 1H NMR (300 MHz, DMSO-d6) δ (ppm): 11.33 

(s, CH=N, 1H), 8.17 (m, 1H), 8.04-7.95 (m, 5H), 7.63-7.58 (m, 

2H), 4.46 (s, 2H, CH2); 13C{1H} NMR (75 MHz, DMSO-d6) δ 

(ppm): 169.7, 154.4, 149.1, 139.1, 134.7, 131.5, 129.3, 129.1, 

125.7, 49.8; ESI-(+) m/z : 276.0 [M+Na]+, 254.1 [M+H]+, 

113.9 ; HRMS ESI-(+) calcd for C14H12N3O2 254.0930, found 

254.0932. 
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(E)-1-((3,5-dimethoxybenzylidene)amino)imidazolidine-

2,4-dione (15) The reaction scale was 1.98 mmol (Method B, 3 

cycles of 2h each, with 5 minutes pause in between). The final 

product was recovered by precipitation in water (453 mg, 

87%). Pale lila powder; m.p. 244.4 – 245.7 °C; 1H NMR (300 

MHz, DMSO-d6) δ (ppm): 11.31 (s, CH=N, 1H), 7.77 (s, 1H), 

6.90 (d, J = 3.0 Hz, 2H), 6.59 (t, J = 3.0 Hz, 1H), 4.38 (s, 2H, 

CH2), 3.82 (s, 6H, CH3); 13C{1H} NMR (75 MHz, DMSO-d6) 

δ (ppm): 169.9, 161.6, 154.4, 143.9, 137.3, 105.6, 102.9, 56.3, 

49.9; ESI-(+) m/z : 327.1 [M+Na+ACN]+, 286.1 [M+Na]+, 

264.1 [M+H]+, 114.0; HRMS ESI-(+) calcd for C12H14N3O4 

264.0984, found 264.0984. 
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(E)-1-((anthracen-9-ylmethylene)amino)imidazolidine-2,4-

dione (16) The reaction scale was 1.32 mmol (Method B, 3 

cycles of 2h each, with 5 minutes pause in between). The final 

product was recovered by precipitation in water (380 mg, 

95%). Yellow powder; m.p. 274.8 – 282.7 °C (darkening); 1H 

NMR (300 MHz, DMSO-d6) δ (ppm): 11.36 (s, CH=N, 1H), 

9.01 (s, 1H), 8.76 (s, 1H), 8.70 (s, 1H), 8.63 (d, J = 9.0 Hz, 2H), 

8.14 (d, J = 6.0 Hz, 2H), 7.66-7.51 (m, 3H), 4.71 (s, 2H, CH2); 

13C{1H} NMR (75 MHz, DMSO-d6) δ (ppm): 170.2, 142.2, 
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142.2, 131.8, 130.4, 129.9, 129.7, 127.7, 126.7, 126.5, 126.2, 

49.9; ESI-(+) m/z : 629.1 [2M+Na]+, 367.1 [M+Na+ACN]+, 

326.1 [M+Na]+, 304.1 [M+H]+, 205.1, 130.2 ; HRMS ESI-(+) 

calcd for C18H14N3O2 [M+H]+ 304.1086, found 304.1084.  

 

 

PXDR Analyses of Nitrofurantoin 7. 

 

 

Figure S1. XRD pattern of Nitrofurantoin 7 obtained by Method B and recovered by 

precipitation in water. Rietveld fit modelled with slight preferred orientation. The sample is the 

triclinic polymorph of nitrofurantoine (CSD refcode LABJON01). The appears to be some 

impurity with peaks marked with arrows.  

 
 

Figure S2. XRD pattern of Nitrofurantoin 7 obtained by Method C and directly recovered as 

a powder from the jar without post-synthetic treatement. Green pattern (overlaid with the 

pattern form given in Figure S1): the sample is the same polymorph of nitrofurantoin 7 as is 

visible from three strongest peaks. The sample seems to be very amorphous as evident from 

this big broad hump centered at ca. 17 degrees in 2.  
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