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ABSTRACT First anion∙∙∙π contacts with quinoid rings have been described in novel co-crystals 

of tetrabromo- and tetrachloroquinone with iodide salts of substituted N-methylpyridinium 
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cations. In seven crystal structures of these co-crystals a centrosymmetric unit I-∙∙∙quinone∙∙∙I- is 

observed involving close contacts between iodide anions and electron-depleted carbon skeletons 

of the quinoid rings. However, the salt with N-methyl-4-methylcarboxypyridinium base 

crystallizes in two polymorphs characterized by O=C∙∙∙quinone∙∙∙C=O interaction instead of I-

∙∙∙quinone∙∙∙I-  one. A possible charge transfer, suggested by black color of the crystals, is probed 

by solid-state NMR and IR spectroscopies and analyzed by DFT calculations. 

 

INTRODUCTION 

Among intermolecular interactions of π-electron system anion∙∙∙π interactions are the least 

common.1 Since the aromatic ring is electron rich, it typically participates in π-stacking2-5 and C-

H∙∙∙π interactions;6,7 cation∙∙∙π contacts formed between aromatic rings and large, polarizable 

cations ("soft" cations) are also common.8 A close contact with an anion or a lone electron pair is 

possible for electron-depleted rings and a number of such interactions have been documented.9-16 

Unlike aromatics, which are mostly electron-rich (except those with five or six electron-

withdrawing substituents), quinoid rings are inherently electron-poor due to a lack of electron 

delocalization and the presence of carbonyl groups; they can be further depleted by introduction 

of electronegative substituents. Perhalogenoquinones act as mild oxidants and can easily be 

reduced into semiquinone radicals by mild reducing agents such as iodide ions.17 Due to their 

extreme electron depletion,18 they may be expected to form anion∙∙∙π interactions. 

While preparing solid-state semiquinone systems,17,19-22 we serendipitously obtained a series of 

co-crystals of tetrachloro- and tetrabromoquinone (Cl4Q and Br4Q, respectively, Scheme 1) with 

iodide salts of organic cations (mostly derivatives of N-methylpyridinium, Scheme 2), in which 

close contacts between the quinoid ring and the iodide anion occur almost without exception. 
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These contacts play a major role in crystal packing, however, the most intriguing part is charge 

transfer, which may be obvious from color change of the crystals. In this paper we present crystal 

structures of the first co-crystals of Cl4Q and Br4Q with organic iodides and describe for the first 

time observed charge transfer through an anion∙∙∙π interaction. 

 

 

Scheme 1 Quinones used in the preparation of co-crystals. 

 

 

Scheme 2 Cations of organic iodides used in the preparation of co-crystals: N-methyl-2-

picolinium (1), N-methyl-3-aminopyridinium  (2), N-methylpyrazinium (3), N-methyl-2,5-
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dimethylpyridinium (4), N-methyl-2,4,6-trimethylpyridinium (5), N-methyl-4-

methylcarboxypyridinium (N-methylisonicotinic acid methyl ester, 6), N-methylquinolinium (7).  

 

RESULTS AND DISCUSSION 

All eight prepared ionic co-crystals have a stoichiometry of two formula units of the organic 

iodide and one quinone molecules: 12∙Br4Q, 22∙Br4Q, 32∙Br4Q, 42∙Br4Q, 52∙Br4Q, 62∙Br4Q (two 

polymorphs, monoclinic and triclinic), 72∙Br4Q and 72∙Cl4Q (numbers in bold correspond to 

organic bases in Scheme 2). 

 

Structure/property correlations: Color/electronic structure and morphology of the 

crystals/crystal packing 

Oxidation state of quinoid compounds is correlated to their color: neutral quinones Cl4Q and 

Br4Q, are yellow (Fig. 1a), whereas the salts of their radical anions are black or very dark red 

(Fig. 1b). The studied ionic co-crystals, which formally comprise a neutral quinone and an iodide 

salt of an organic cation, are also black or very dark red (Fig. 1c). All organic iodide salts used in 

preparations were either white or pale yellow. Therefore, black color of the studied co-crystals 

can only be a result of charge transfer; a partial charge transfer from the iodide anion to the 

quinone molecule can be expected. 

While iodide co-crystals and semiquinone radical salts have the same color, morphology of the 

crystals are rather different. All salts of the semiquinone radical17,19-21,23,24 crystallize as needles 

and comprise infinite π-stacks of the radicals; the needles are elongated in the direction of 

stacking (Fig. 1b). This indicates that π-stacking of radicals is the strongest intermolecular 

interaction in their salts. Morphologies of iodide co-crystals vary considerably: some are plate-
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like, others are prismatic (Fig. 1c). Indeed, infinite π-stacking typical of semiquinone radicals is 

not detected in the series studied in this work (see below). 

In the sample of 32∙Br4Q that the plate-like ionic co-crystals form first; in a solution left 

overnight in sealed vessel, these co-crystals decomposed, and needle-like crystals of radical salts 

were grown.25 The reaction indicates that the formation of the iodide co-crystals is a kinetically 

controlled process, whereas the radical salts are thermodynamically more stable. 
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Figure 1 Crystals of studied compounds: a) neutral Br4Q, b) N-methylpyridinium salt of Br4Q 

anion radical [21], c) a co-crystal of Br4Q with N-methyl-3,5-dimethylpyridinium iodide 

(32∙Br4Q) and d) co-crystals of Br4Q with N-methyl-4-methylcarboxypyridinium (62∙Br4Q) with 

both polymorphs present. 

 

 

Crystal packing and close iodide-quinone contacts 

In all studied ionic co-crystals, except 62∙Br4Q, the basic unit I-∙∙∙quinone∙∙∙I- occurs: two iodide 

ions form close contacts with a quinoid ring in a "sandwich-like" fashion (Fig. 2). These contacts 

involve iodide-carbon distances shorter than the sum of van der Waals radii (3.76 Å); charge 

transfer between the iodide anion and the quinoid ring may be possible, and this would explain 

the black color of the crystals. Indeed, crystals of both 62∙Br4Q polymorphs lacking I-

∙∙∙quinone∙∙∙I- unit, are light brown and transparent (Fig. 1d). 

In these structures the quinone and the corresponding I-∙∙∙quinone∙∙∙I- units are 

centrosymmetric, with a single symmetry-independent close contact. To describe geometry of 

the close contacts, we defined the following geometric parameters: distance between the ring 

centroid and the iodide anion, d(Cg), distance between the ring mean plane and the iodide anion, 

d(plane), angle between the ring plane and d(Cg), α, and direction of the offset relative to the 

molecular axis O=C∙∙∙C=O, β (Fig. 3). Offset can be calculated as d(Cg)∙cos α. Geometric 

parameters of the close contacts between the quinoid rings and iodide anions are listed in the 

Table 1. The I-∙∙∙quinone∙∙∙I- units reveal the anion offset along the O=C∙∙∙C=O direction typically 

by 0.8 - 1.5 Å (α angles are less than 20°, Fig. 3) resulting in close contacts between the iodide 

and C atoms (Table S3), of which carbonyl C is the most electron-depleted one (Fig. 4). 
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Analysis of Hirshfeld surfaces and electrostatic potential reveals that the carbon skeleton has 

considerable positive potential (Fig. 4a), which indicates attractive interactions between the ring 

and the iodide anions. The central part of the quinoid ring is slightly depressed, making the 

contact area between the carbon skeleton and the iodide anion larger. This effect is even more 

pronounced in Voronoi-Dirichlet polyhedra (Fig. 4b). While the depression consists of six small 

faces, the total area represents 5 - 10 % of the total molecular VDP surface. Since size of a VDP 

face is approximately proportional to the energy of the interaction,26 these quinone∙∙∙I- 

interactions cannot be neglected as justified by DFT calculations presented in this work. 

Crystal packings of 12∙Br4Q - 52∙Br4Q, 72∙Br4Q and 72∙Cl4Q are characterized by I-

∙∙∙quinone∙∙∙I- units and cations involved in polar contacts. In two polymorphs of 62∙Br4Q there 

are close contacts between carbonyl oxygen of the methoxycarboxyl group of the cation and the 

quinoid π-system. This very contact is the n→π* interaction occuring between lone pair of 

carbonyl group and π-system.14 It is dominated by the electron delocalisation of a lone pair from 

a carbonyl oxygen and an empty antibonding π* orbital. A signature of this interaction would be 

that iodine points towards to one of carbonyls rather than to the centroid of the ring (Fig. 5a). 

Sandwich-like carbonyl∙∙∙quinone∙∙∙carbonyl moieties are formed (Fig. 5), which which play an 

analogous role in crystal packing to I-∙∙∙quinone∙∙∙I- units observed in other compounds (Fig. 5). 

Iodide ions are involved in C-H∙∙∙I hydrogen bonds and C-Br…I- contacts.  Crystal packing of 

two polymorphs of of 62∙Br4Q are essentially close packings of carbonyl∙∙∙quinone∙∙∙carbonyl 

motifs and iodide anions (Figs. 5b and S23). 

The iodides additionally participate in halogen bonding with the neighbouring Br4Q molecules. 

Neutral Br4Q is a respectable halogen bond donor as evidenced by the regions of positive ESP on 

bromine atoms (generally referred to as σ-holes, Fig. 4), and also by partial charge on the 
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bromine of +0.153 e, which implies Br4Q is a somewhat stronger halogen bond donor than the 

'classical' 1,4-dibromotetrafluorobenzene27 (+0.149 e), and weaker than N-bromoimides (+0.18 - 

+0.2 region).28,29 As a result, generally all four bromine atoms of each Br4Q molecule form 

halogen bonds with iodide anions (halogen bond lengths between 3.42 Å and 3.70 Å), the only 

exception being 42∙Br4Q, where only two bromine atoms participate in halogen bonding. Each 

iodide on the other hand acts as an acceptor of two halogen bonds (again 42∙Br4Q being the only 

exception, with only one halogen bond per iodide), with the angle between the two halogen 

bonds between 90° and 120°. Similar bent geometry has been described in numerous structures 

of organic halogen30 and hydrogen31 bonded organic halides, and have been explained by the 

polarization of the halide upon forming a non-bonding interaction – the electron density in the 

continuation of the contact somewhat decreases, while it increases in a torus perpendicular to it. 

The second contact atom (i.e. a positive region of a halogen or hydrogen donor) then approaches 

the halide from the direction in which the negative charge on the halogen is maximal, i.e. at a 90° 

and 120° angle to the first one. 

The most intriguing aspect of close iodide-π contacts is the apparent charge transfer. While it 

is common to estimate degree of charge transfer from molecular geometry,32 in our case 

unfortunately results are inconclusive at best. Due to the presence of iodide ions and bromine 

atoms (high absorption), lengths of C-C and C-O bonds could not be determined with a sufficient 

accuracy, and structural correlation is not very reliable. Therefore, we decided to study the 

charge transfer by IR and solid-state NMR spectroscopy and theoretical quantum calculations 

based on the density functional theory (DFT) approach. 
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  a)       b) 

Figure 2 a) The I-∙∙∙quinone∙∙∙I- unit observed in all studied structures with exception of two 

polymorphs of 62∙Br4Q. Atom numbering scheme applied to all structures is indicated; a centroid 

of the ring located at the crystallographic inversion centre is denoted by red sphere. b) Crystal 

packing of 12∙Br4Q comprising I-∙∙∙quinone∙∙∙I- units (blue) and N-methylpicolinium cations (red). 
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Figure 3 Geometric parameters describing contact between a quinoid ring and an iodide anion. 

Cg is the centroid of the ring (red sphere), d(Cg) is distance between the iodide anion and ring 

centroid, d(plane) is the distance between the iodide anion and the mean plane of the quinoid 

ring, α is the angle between Cg∙∙∙I- line and ring plane, and β is an angle defining direction of 

offset. Offset can be calculated as d(Cg)∙cos α. 
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Figure 4 a) Calculated electrostatic potential of a tetrabromoquinone molecule plotted onto a 

Hirshfeld surface (red: -0.04, blue +0.25 au) showing an electron-depleted quinoid ring and σ-

holes on the bromine atoms; b) VDP polyhedra of the iodide (above) and Br4Q (below) in 

12∙Br4Q. 
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Figure 5 a) The "sandwich-like" motif found in the two polymorphs of 62∙Br4Q formed by lone 

pair-π interaction: two carbonyl oxygens of methoxycarboxyl groups are in close contacts with 

π-system of a quinoid ring (a centroid denoted by a red sphere); b) crystal packing of monoclinic 

62∙Br4Q with lone pair-π contact highlighted. 

 

Table 1 Geometric parameters of close contacts between iodide ions and quionid rings (Å, °), as 

defined in Fig. 3.   

 12·Br4Q 22·Br4Q 32·Br4Q 42·Br4Q 62∙Br4Q, 

100 K 

62∙Br4Q, 

RT 

72·Br4Q 72∙Cl4Q  

d(Cg) 3.746 3.704 3.697 3.798 3.865 3.938 3.667 3.537  
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d(plane) 3.731 3.477 3.607 3.698 3.569 3.659 3.509 3.424  

α 84.5 71.0 76.5 76.5 68.0 67.5 73.0 76.5  

β 0.8 6.5 10.5 5.5 16.5 18.5 20.0 16.5  

offset 0.94 1.22 0.91 0.36 1.20 0.86 0.88 1.45  

 

 

Solid-state NMR study of charge transfer 

Anticipating that an additional insight into the charge transfer between iodide anions and 

quinoid rings could be obtained by solid-state NMR spectroscopy, we recorded 13C NMR spectra 

of selected samples and compared these spectra to the 13C NMR spectra of Br4Q and H2Br4Q. 

The latter two solids exhibit very different carbon spectra. Br4Q shows two broad contributions, 

one belonging to C=O carbon nuclei resonating at ca. 170 ppm, and another belonging to C-Br 

carbon nuclei extending between 160 ppm and 125 ppm. The 13C NMR signals of H2Br4Q are 

significantly shifted with respect to the signals of Br4Q; C-OH nuclei resonate at ca. 146 ppm, 

and the broad contribution of C-Br extends between 140 ppm and 100 ppm. (The spectrum of 

H2Br4Q shows also an additional signal at 166 ppm, which belongs to an unidentified impurity. 

Similar signals can be detected also in the 13C MAS spectra of other samples; see Figure S38.) 

According to the large chemical shift difference of the C=O and C-OH groups in Br4Q and 

H2Br4Q, one would expect that chemical shift of C=O carbon nuclei will be quite sensitive to the 

extent of charge transfer between iodide anions and quinoid rings in our materials. Unfortunately 

the measured spectra disprove that. The C=O signals of 12Br4Q, 22Br4Q, and 72Br4Q all 

resonate at 174 ppm, and the C=O signal of 42Br4Q resonates at 172 ppm. The spectra thus show 

that charge transfer does not significantly influence the chemical shift of the carbonyl carbon 

nuclei of the quinoid rings. 
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The above conclusion is, of course, based on the assumption that the signals resonating at 

about 170 ppm belong to carbonyl carbon nuclei of the quinoid rings. This assumption is 

supported by the ab-initio computations of 13C chemical shifts of the inspected materials. Figure 

S39 shows that the computed chemical shifts agree well with the measured chemical shifts of the 

C=O carbon nuclei and of the carbon nuclei within the N-methyl-2-picolinium (1), N-methyl-3-

aminopyridinium (2), N-methyl-3,5-dimethylpyridinium (4), and N-methylquinolinium (7) 

cations. The assignment of all these signals is thus reliable. Oppositely, in all samples, even in 

the simple Br4Q and H2Br4Q, the computations quite inaccurately predict chemical shifts of the 

C-Br carbon nuclei. This might be due to an inappropriate pseudopotential for bromine, as 

included within CASTEP and used in these calculations. Inappropriate pseudopotential could 

affect the prediction of electron density and consequently of chemical shifts in the close vicinity 

of bromine atoms. 

In fact, it is very difficult to identify the signals of C-Br nuclei in 12Br4Q, 22Br4Q, 42Br4Q 

and 72Br4Q. Carbon NMR spectra of these samples in Figure 6 were measured with the 1H-13C 

CPMAS approach, which enhances the signals of carbon nuclei with hydrogen nuclei in their 

neighborhood. It is thus not surprising that the C-Br signals cannot be seen, as they have no 

hydrogen nuclei close by. Figure S38 shows directly excited 13C MAS spectra of the same 

samples. As one can see, in spite of the long measurements, the signal-to-noise ratio of these 

spectra is rather low. Furthermore, whereas the signals of N-methyl-2-picolinium (1), N-methyl-

3-aminopyridinium (2), N-methyl-3,5-dimethylpyridinium (4), and N-methylquinolinium (7) 

cations are relatively sharp, the C=O signals in 22Br4Q, 42Br4Q and 72Br4Q are quite broad, 

similarly broad as the corresponding signal in Br4Q. It can thus be expected that the C-Br signals 

are also smeared and as such more or less buried in the baseline of the spectra. The single 
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exception is the spectrum of 12Br4Q, in which the C=O signal is very sharp. Perhaps this is due 

to its different magnetic properties as compared to the properties of other inspected samples. In 

the spectrum of 12Br4Q, the signal of C-Br most probably resonates at 140 ppm; at least this 

signal is the strongest signal that cannot be assigned to N-methyl-2-picolinium (1) and that gets 

'suppressed' by the CPMAS approach. As mentioned above, this is to be expected for the 13C 

NMR signals of carbon nuclei that do not have hydrogen nuclei in their vicinity. 
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Figure 6 13C MAS NMR spectra of Br4Q and H2Br4Q, and 1H-13C CPMAS NMR spectra of 

12Br4Q, 22Br4Q, 42Br4Q and 72Br4Q. (13C MAS NMR spectra of 12Br4Q, 22Br4Q, 42Br4Q 

and 72Br4Q have significantly lower signal-to-noise ratio and are presented in Figure S38). 

Signals resonating at 170 ppm and more belong to carbonyl carbon nuclei of quinoid rings, and 

the signal resonating at 146 ppm belongs to C-OH nuclei of H2Br4Q. Weak signal at 166 ppm 

belongs to an unidentified impurity. 
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IR spectroscopic study of the charge transfer 

The assignment of the most significant bands is presented in the Table 3. The fingerprint 

region in spectrum of pure Br4Q begins with structured band culminated at 1664 cm-1. The origin 

of this band may be attributed to C=O stretching vibration. Two less intense but sharp bands 

surround the main peak at 1678 cm-1 and 1640 cm-1. The C=C-C ring vibration is attributed to 

complex band at 1542 cm-1. Next intense band can be found at 1047 cm-1 and is assigned to 

coupled C=C, and C-C stretchings and CCC and CCBr bending vibrations. Strong vibrational 

coupling is a common characteristic for all bands in the spectra of neutral compounds and co-

crystals. The appearance of COH group in H2Br4Q drastically changes the left side of the 

spectrum in the fingerprint region. The first sharp band of medium intensity appears at 1378 cm-1 

and is attributed to C-O-(H) stretching. The high frequency counterpart (OH stretching) can be 

found as a sharp peak located at 3389 cm-1. The differences mainly in frequencies can be 

observed also for peaks that are associated with ring vibrations. The most prominent bands are 

thus located at 1450 cm-1 and 1165 cm-1. 

The presence of cations significantly increases the complexity of the spectra of co-crystals. 

Strong overlapping between the Br4Q bands with those of cations screens the accurate 

assignment, especially in the region below 1500 cm-1. Therefore the most accurate assigned are 

bands due to C=O stretching of carbonyls in bromanil molecule, which band frequency depends 

only slightly on the type of cation. 7 and 2 cations shift the C=O stretching to values found in 

neutral Br4Q, while 1 and 4 blue shift C=O frequencies to 1672 cm-1 and 1670 cm-1, respectively. 

The prolongation of C=O bond may results in red shift of C=O stretch. Using the same approach 

the blue shift of C=O stretch may have origin in the shortening of the C=O bond length. 

However, we must have in mind that vibrational bands observed in spectra of probed co-crystals 
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are extremely coupled. This is true not only for ring vibrations but to some extend also for C=O 

stretch, which is at least partially coupled to various ring modes. Beside the change in bond 

length, the variation of the degree of coupling may also contribute to the frequency shifts of band 

which is predominately ascribed as C=O stretch. Calculation of PED for bromanil revealed that 

the band at 1664 cm-1 contains only 85 % of C=O stretching mode.33 Variation in coupling 

between C=O stretching and ring vibrations among different cations may be reason of lacking 

the correlation between the measured d(Cg∙∙∙I)/Å and the C=O stretching frequency. Similar 

situation is observed in the case of C-Br stretching. This mode is coupled with various types of 

low frequency ring vibrations and extend of coupling may be cation depended. The variation in 

frequencies are quite pronounced but with no applicable correlation with d(Cg∙∙∙I)/Å. 

Described changes cannot be attributed to charge transfer phenomena. To clarify the predicted 

effect of charge transfer we have to emphasize that in the spectra of potassium salt of Br4Q 

radical anion the C=O shifts to 1579 cm-1,33 which is still far away from the C-O stretch observed 

in H2Br4Q but significantly lower than in the case of probed co-crystals. 

 

Table 3 Assignment of the major absorption bands in the infrared spectra. Absorption bands of 

neutral Br4Q
34 have been given for comparison.  

 Br4Q
34 

 

H2Br4Q N-

MePy∙Br4Q 

12∙Br4Q 22∙Br4Q 42∙Br4Q 72∙Br4Q 

d(Cg∙∙∙I)/Å -  - 3.746 3.704 3.789 3.667 

ν(OH)  3389      

ν(C=O)b or 

ν(C=C)a 

1664  1656  1672 1662 1670 1664 

 ringi   1633  1636 1623 1632 1621 
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ν(C=C)b,e 1542  1525  1579 1582, 

1551 

1562 1587 

ν(C=O) + 

ν(C=C)g 

  1527  1567 1506 1547 1560, 

1521 

ν(C=C)b,e,g   1486  1514, 

1479 

 1499 1438 

νas(C=C)e  1450  1452    

νas(C=C, 

aromatic)f 

  1410  1428 1413 1428 1438 

ν(C-O)  1378      

ν(C–C)b,e   1360  1380, 

1325 

1346, 

1317 

1331 1345 

ν(C–C)b 1248  1278  1285 1256 1304 1264 

ν(C–C) + 

δ(OCC)d 

1176, 

1169 

1165  1214 1206 1213 1203 

δ(C-H)f   1190      

δ(O-H)h        

r(CH3)
g 1040  1092      

δ(C-C), ν (C-

Cl)g 

  1023  1051 1049 1054 1046 

ν(C–

Br)+δ(OCC)d 

948 954 922      

δ(OCC)b 707  761  773 796 759 773 

ν(C–Br)g 638 645 668, 648 694 671 690, 675 683,  

δ(OH)h  606      

        

a Assignation according to Miller & Dixon, 1987;35 b Assignation according to Boesch & 

Wheeler, 1997;36 c Assignation according to Boesch & Wheeler, 1995;37 d Assignation 

according to Zhang et al., 2013;38 e Our assignation according to our B3LYP calculations;20 f N-

MePy band, assignation according to Arenas et al., 1996;39 g Br4Q
- assignation, according to 6, 11; 

h out of plane OH; i Cation in co-crystal 
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DFT study of the charge transfer 

Quantum chemical modelling of intermolecular interactions with charge transfer is a rather 

complex issue, which is further complicated by the novelty of the studied systems. Therefore, 

elaborate quantum chemical computational study of the quinone-iodide co-crystals is a challenge 

on its own. Nevertheless, we present in this work results of selected theoretical treatments which 

point out to a partial charge transfer between the iodide and the quinone. The analysis is based on 

DFT calculations imposed both on the periodic solid state models, as well as on isolated clusters.   

Bader charge analysis imposed on the electron density obtained by periodic DFT yields 

reliable estimate of charges contained within ‘atomic’ domains of the structure. Selected Bader 

charges of atoms and molecular/ionic entities are listed in Table 4. 

 

Table 4 Bader charges calculated from periodic models treated by the PBE DFT method and 

plane-wave basis set using the VASP package.  

 Br4Q 12∙Br4Q 22∙Br4Q 32∙Br4Q 42∙Br4Q 

C1 +1.04 +0.99 +0.96 +0.97 +1.02 

C2 -0.04 +0.09 -0.05 -0.03 -0.06 

C3 -0.04 -0.21 -0.05 -0.07 -0.06 

O1 -1.03 -1.06 -1.06 -1.06 -1.07 

Br1 +0.04 +0.01 +0.02 +0.01 +0.01 

Br2 +0.03 +0.01 0.00 0.00 +0.01 

total quinone 0 -0.35 -0.36 -0.35 -0.28 

I- - -0.65 -0.61 -0.62 -0.64 

total cation - +0.82 +0.79 +0.79 +0.78 

 

Table 4 Cont’d 
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 52∙Br4Q 62∙Br4Q(1)* 62∙Br4Q(2)* 72∙Br4Q 72∙Cl4Q 

C1 +1.01 +0.98 +0.97 +0.98 +0.98 

C2 -0.08 -0.10 -0.06 -0.10 +0.11 

C3 -0.10 -0.02 -0.08 +0.01 +0.14 

O1 -1.05 -1.04 -1.03 -1.06 -1.07 

Br1/Cl1 +0.01 +0.02 +0.02 +0.01 -0.15 

Br2/Cl2 +0.01 +0.02 +0.03 +0.02 -0.16 

total quinone -0.40 -0.29 -0.31 -0.28 -0.30 

I- -0.61 -0.62 -0.62 -0.61 -0.60 

total cation +0.81 +0.77 +0.77 +0.75 +0.75 

* 62∙Br4Q(1) – monoclinic form; 62∙Br4Q(2) – triclinic form. 

 

The computed charges are quite consistent, so we may consider them as reliable. As expected, 

in the quinone molecule the most electron-depleted atom is C1 (carbonyl C), while the O1 is the 

electron-richest. The C=O bond is considerably polarized, but the negative charge accumulated 

on O1 slightly outweighs the positive charge on C1. In most cases, the same is true for the C—Br 

bonds; however, these are by far less polarized. As a result, in co-crystals the Br4Q molecules 

have a negative charge between -0.28 and -0.40, while the charge of the iodide anions is about -

0.6 (or slightly above), which is considerably less than its formal charge of -1. At the same time, 

the charges accumulated on the cations (about +0.8) are also lower than the formal value of +1, 

indicating that the presently calculated degree of charge transfer may be overestimated. 

Experimentally determined charges of similar substituted N-methylpyridinium cations from our 

recent X-ray charge density studies of salts of Cl4Q radical anions18,22 are very close to +1 (in 

fact, they all exceed +0.9); if we assume similar values for our crystals, the degree of charge 

transfer would be less than 5 %. 



 

 22 

This is in agreement with observations: since the radical is a strong absorber of visible light, 

only a few percent of charge transfer would be enough to cause black color, while its impact on 

vibrational frequencies, chemical shifts and molecular geometry would still remain negligible or 

ambiguous. As recent results on halogen bonding show, a non-negligible degree of charge 

transfer is present even in interactions which are commonly believed to be purely electrostatic 

[40]. 

Worthy to note, the computed amount of charge transfer in 62∙Br4Q is barely different from 

other systems (Table 4), therefore the color difference between 62∙Br4Q (transparent) and other 

systems cannot be explained by the amount of charge located on entities forming the crystals; not 

at least on the basis of present calculations. Therefore we also considered the HOMO-LUMO 

gap, i.e. the energy required to promote the most excitable electron to the most stable vacant 

orbital; this quantity is indicative of light absorption properties of chemical systems. The 

HOMO-LUMO gap of a gas-phase cluster of Br4Q (Cl4Q) and its six closest iodide neighbors 

extracted from crystal structures is listed in Table 5. 

 

Table 5 HOMO-LUMO gap (in a.u.) of an isolated cluster of quinone and its six closest iodide 

neighbors. 

compound HOMO-LUMO gap 

12∙Br4Q 0.139242 

22∙Br4Q 0.151254 

32∙Br4Q 0.147417 

42∙Br4Q 0.141963 

52∙Br4Q 0.146553 
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62∙Br4Q(1)* 0.099038 

62∙Br4Q(2)* 0.107601 

72∙Br4Q 0.148262 

72∙Cl4Q 0.151681 

* 62∙Br4Q(1) – monoclinic form; 62∙Br4Q(1) – triclinic form. 

 

The HOMO-LUMO gap exhibits variations with the geometry of the polyhedron formed by 

iodide ions around the central Br4Q (Cl4Q) molecule. These variations are relatively small as 

long as the coordination of quinone remains the same (i.e. a quasi-octahedron in all cases but 

62∙Br4Q). For the latter however, the completely different arrangement of the neighboring iodide 

ions results in a substantially lower HOMO-LUMO gap which is by about 30% narrower than in 

other cases. Inspection of heterodimer clusters formed by one quinone molecule and one iodide 

ion reveals that the in-plane C—Br…I interactions contribute to significantly smaller HOMO-

LUMO gaps than the interactions with the ring. While the presently computed HOMO-LUMO 

gaps cannot be used for quantitative prediction of the light absorption properties, let alone for the 

color of the crystals – the models lack the entire body of interactions actually present in the solid 

state – it is clear that in terms of light absorption compound 62∙Br4Q is different from others, as 

reflected by the color of crystals.  

Finally, we considered individual interactions between Br4Q and the surrounding iodide ions. 

The pairwise interaction energies Br4Q…I– mainly depend on the location of the iodide ion, and 

the in-plane I…Br(–C) interactions (estimated to 11-13 kcal/mol) are noticeably weaker than in 

the case where I– resides above the ring (17-19 kcal/mol). It should be noted however that the 

presently employed M06-2X functional yields unusually high energies of this interaction; the 

values obtained by the ab initio perturbational MP2 approach are lower by nearly one half 
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(between 6 and 10 kcal/mol). Having in mind that the interaction between iodide and quinone is 

to a large extent of dispersion nature, we feel that the MP2 approach yields more reasonable 

estimate of its energy. Nevertheless, regardless of the approach, the interaction appears to be 

strongest when iodide resides above the edge of the quinone ring (e.g., in 22·Br4Q) rather than 

above the center of the ring (e.g., in 12·Br4Q). The Natural Bond Orbital (NBO) analysis reveals 

that the in-plane interactions mainly involve electron lone pairs of iodide as the donating orbitals, 

and the C-Br antibond orbitals as acceptors, meaning that the attraction between iodide and 

bromine weakens the C-Br bonds; the effect increases on decreasing I…Br distance. On the other 

hand, when the iodide resides above the ring, its lone electron pairs tend to penetrate into the 

C=O and C=C antibond orbitals, thus facilitating charge transfer and affecting the π-system of 

quinone. As reflected in the interaction energies, the orbital interaction tends to be stronger when 

iodine is located above the edge of the quinoid ring (i.e. as close to the C=O and C=C bonds as 

possible).    

The understanding of the iodide···quinone interaction poses a computational challenge on its 

own, therefore we plan to proceed in the future with advanced theoretical treatments, including 

superior electronic structure methodologies and energy decomposition analysis. 

 

 

CONCLUSIONS 

For the first time we have described anion∙∙∙π contacts with quinoid rings, and have determined 

seven novel crystal structures with the I-∙∙∙quinone∙∙∙I- unit; in addition there are two polymorphs 

of 62·Br4Q where this unit is not present. According to color of the crystals, charge transfer 

between the iodide anion and the quinoid ring is expected; however according to solid-state 
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NMR and IR spectroscopies the interaction between the iodide anion and the quinoid ring is 

predominantly electrostatic, with a minor component of charge transfer. Preliminary 

computational study indicates that the interaction between the iodide and quinoid ring may be 

described as n → π* interaction which implies delocalization of a lone pair of the carbonyl or the 

iodide into an empty π* orbital of the quinone. To gain more insight into this unusual type of 

intermolecular interactions, more elaborate quantum chemical studies are in progress. 

Charge transfer seems to be a more common phenomenon than previously believed: recent 

computational study of halogen bonding (which are generally believed to be electrostatic) found 

that the degree of charge transfer is non-negligible.40 Therefore, we believe that a more detailed 

computational study will allow us to accurately assess the charge transfer. 

The studied co-crystals may shed some light on the mechanism of reduction of the neutral 

quinones into their anion radicals.41 The I-∙∙∙quinone∙∙∙I- unit may be regarded as arrested 

reactions of reduction of the quinoid ring by the iodide anions. The closest contact between the 

iodide and the carbonyl carbon atom (> 3.52 Å) and n → π* donation indicate a possible 

mechanism of this reduction: a nucleophilic attack towards the carbonyl carbon. Another 

indication is prevalence of co-crystals with Br4Q vs. those with Cl4Q (7:1): more electronegative 

substituents stabilize the radical and facilitate reduction of the neutral quinone. Thus, Br4Q, 

which reacts more slowly is more likely to form co-crystals, rather than radical salts. 

 

EXPERIMENTAL 

Preparation 

Quinones and solvents used were purchased from commercial sources (Kemika Zagreb, 

Merck, Sigma-Aldrich) and were of p.a. grade. Iodide salts of N-methylated organic cations were 
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prepared by slowly adding a solution of methyl iodide in acetone (20 mmol in 10 mL) to an 

acetone solution of a corresponding organic base (20 mmol in 10 mL) with stirring. Crystalline 

solid started to precipitate almost immediately. After mixing of the reagents, the solutions were 

left to cool to 0 °C, then the N-methylated organic iodides were filtered and washed with cold 

acetone. Co-crystals of quinones and N-methylated organic iodides were prepared as described 

previously:21 an excess of iodide salt was added to a saturated solution of a quinone in acetone. A 

reaction between neutral quinone and the iodide in the solution could be noted due to color 

change: the quinone is reduced to the radical anion, and the iodide to I2 (indicated by dark brown 

color of the solution). However, instead of the radical salts, co-crystals of organic iodides with 

neutral quinones were formed. Dark red or black crystals would form within 2 - 3 hours. This 

may be a kinetically controlled process, since in some samples, upon standing in solution, 

crystals of semiquinone radical salt would start growing, and the iodide co-crystals would start to 

decompose. 

 

X-ray diffraction and refinement 

All structures were measured on an Oxford Diffraction Xcalibur Nova R (microfocus Cu tube). 

Program package CrysAlis PRO 42 was used for data reduction and multi-scan absorption 

correction. The structures were solved using SHELXS97 43 and refined with SHELXL-2017.43 

The models were refined using the full-matrix least squares refinement; all non-hydrogen atoms 

were refined anisotropically. Hydrogen atoms bound to C atoms were modelled as riding entities 

using the AFIX command. 

Molecular geometry calculations were performed by PLATON,44 and molecular graphics were 

prepared using ORTEP-3,45 and CCDC-Mercury.46 Voronoi-Dirichlet polyhedra were drawn by 
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Topos PRO 47 and for calculation of Hirshfeld surfaces and electrostatic potential 

[DFT/B3LYP/6-311G(d,p)] was used Crystal Explorer 3.1.48 Crystallographic and refinement 

data for the structures reported in this paper are shown in Table 6. 

Supplementary crystallographic data for this paper can be obtained free of charge via 

www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data 

Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or 

deposit@ccdc.cam.ac.uk). CCDC 1839281 – 1839290 contain the supplementary 

crystallographic data for this paper. 

 

 

 

 

Table 6 Crystallographic, data collection and structure refinement details. 

Compound 12∙Br4Q 22∙Br4Q 32∙Br4Q 42∙Br4Q 

Empirical formula C10H10Br2INO C9H9Br2IN2O C16H14Br4I2N4

O2 

C11H12Br2INO 

Formula wt. / g mol-1 446.91 447.90 867.71 460.94 

Crystal dimensions / 

mm 

0.15 x 0.12 x 

0.10 

0.20 x 0.12 x 

0.09 

0.19 x 0.11 x 

0.10 

0.15 x 0.15 x 

0.15 

Space group P 21/n P 21/n P 21/n P 21/n 

a / Å 7.7255(3) 6.9830(2) 7.35090(10) 9.1002(1) 

b / Å 12.2744(5) 13.1092(4) 11.9263(2) 11.4827(2) 

c / Å 14.0922(5) 14.0234(4) 13.9728(2) 13.8538(2) 

α / ° 90 90 111.483(4) 90 

β / ° 91.029(4) 92.475(3) 95.3900(10) 91.5910(10) 
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γ / ° 90 90 90 90 

Z 4 4 2 4 

V / Å3 1336.09(9) 1282.53(6) 1219.57(3) 1447.09(4) 

Dcalc / g cm-3 2.222 2.320 2.366 2.116 

 / mm-1 25.652 26.749 28.100 23.709 

Θ range / ° 4.78 – 76.39 4.62 – 75.69 4.88 – 75.67 5.00 – 75.82 

T / K 293(2) 293(2) 293(2) 293(2) 

Radiation wavelength 1.54179 

(CuKα) 

1.54179 

(CuKα) 

1.54179 

(CuKα) 

1.54179 

(CuKα) 

Diffractometer type Xcalibur Nova Xcalibur Nova Xcalibur Nova Xcalibur Nova 

Range of h, k, l –9 < h < 9; 

–15 < k < 14; 

–17 < l < 14 

–5 < h < 8; 

–16 < k < 16; 

–17 < l < 17 

–9 < h < 9; 

–12 < k < 14; 

–11 < l < 17 

–11 < h < 5; 

–13 < k < 14; 

–16 < l < 17 

Reflections collected 6819 6045 5947 4666 

Independent 

reflections 

2754 2627 2509 2977 

Observed reflections  

(I ≥ 2σ) 

2427 2485 2467 2721 

Absorption 

correction 

Multi-scan Multi-scan Multi-scan Multi-scan 

Rint 0.0500 0.0466 0.0304 0.0445 

R (F) 0.0887 0.0675 0.0424 0.0578 

Rw (F2) 0.274 0.1842 0.1220 0.1672 

Goodness of fit 1.069 1.064 1.051 1.049 

H atom treatment Constrained Constrained Constrained Constrained 

No. of parameters 138 136 127 145 

No. of restraints 1 0 0 0 

max , min (eÅ–3) 2.543; -1.024 2.190; -2.741 1.809; -1.421 1.716; -1.497 
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Table 5 Cont'd.  

Compound 52∙Br4Q, 100 K 52∙Br4Q, RT 62∙Br4Q, 

monoclinic 

62∙Br4Q, 

triclinic 

Empirical formula C24H28Br4I2N2

O2 

C24H28Br4I2N2

O2 

C11H10Br2INO3 C11H10Br2INO3 

Formula wt. / g mol-1 949.92 949.92 490.92 490.92 

Crystal dimensions / 

mm 

0.15 x 0.12 x 

0.10 

0.15 x 0.08 x 

0.06 

0.20 x 0.15 x 

0.14 

0.10 x 0.08 x 

0.6 

Space group P 21/c P 21/c P 21/c P 1 

a / Å 9.0199(2) 9.0792(3) 8.5556(1) 7.8911(4) 

b / Å 11.7488(3) 11.9304(3) 7.8155(1) 8.3400(3) 

c / Å 13.9845(4) 14.1276(4) 22.7206(2) 11.6370(5) 

α / ° 90 90 90 97.364(3) 

β / ° 102.981(3) 103.421(3) 99.959(1) 100.646(4) 

γ / ° 90 90 90 93.359(3) 

Z 2 2 4 2 

V / Å3 1444.11(6) 1488.49(7) 1496.35(3) 743.80(6) 

Dcalc / g cm-3 2.185 2.119 2.179 2.192 

 / mm-1 23.784 23.074 23.091 23.227 

Θ range / ° 4.97 – 75.65 4.91 – 75.93 3.95 – 76.03 3.90 – 75.86 

T / K 100(2) 293(2) 293(2) 293(2) 

Radiation vawelength 1.54179 

(CuKα) 

1.54179 

(CuKα) 

1.54179 

(CuKα) 

1.54179 

(CuKα) 

Diffractometer type Xcalibur Nova Xcalibur Nova Xcalibur Nova Xcalibur Nova 

Range of h, k, l –11 < h < 9; 

–13 < k < 14; 

–11 < h < 11; 

–14 < k < 9; 

–10 < h < 10; 

–6 < k < 9; 

–9 < h < 9; 

–6 < k < 10; 
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–15 < l < 17 –17 < l < 17 –28 < l < 28 –14 < l < 14 

Reflections collected 6932 5345 13970 6432 

Independent 

reflections 

2962 3069 3117 3051 

Observed reflections  

(I ≥ 2σ) 

2796 2876 2998 2873 

Absorption 

correction 

Multi-scan Multi-scan Multi-scan Multi-scan 

Rint 0.0499 0.0378 0.0546 0.0480 

R (F) 0.0459 0.0575 0.0377 0.0486 

Rw (F2) 0.1209 0.1786 0.1043 0.1421 

Goodness of fit 1.038 1.078 0.985 0.890 

H atom treatment Constrained Constrained Constrained Constrained 

No. of parameters 155 156 163 164 

No. of restraints 1 0 0 0 

max , min (eÅ–3) 2.097; -1.791 1.579; -2.937 0.824; -1.434 1.408; -1.776 

 

Table 5 Cont'd.  

Compound 72∙Br4Q 72∙Cl4Q 

Empirical formula C12H9Br2IN2O C12H9Cl2IN2O 

Formula wt. / g mol-1 483.93 395.01 

Crystal dimensions / 

mm 

0.18 x 0.15 x 

0.11 

0.15 x 0.12 x 

0.07 

Space group P 21/n P 21/n 

a / Å 7.0071(3) 6.925(5) 

b / Å 14.7358(6) 14.471(5) 

c / Å 14.0153(5) 13.695(5) 
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α / ° 90 90 

β / ° 96.498(4) 97.578(5) 

γ / ° 90 90 

Z 4 4 

V / Å3 1437.86(10) 1360.4(12) 

Dcalc / g cm-3 2.236 1.929 

 / mm-1 23.934 22.027 

Θ range / ° 4.37 – 75.73 4.47 – 76.46 

T / K 293(2) 293(2) 

Radiation vawelength 1.54179 

(CuKα) 

1.54179 

(CuKα) 

Diffractometer type Xcalibur Nova Xcalibur Nova 

Range of h, k, l –8 < h < 8; 

–17 < k < 18; 

–10 < l < 17 

–8 < h < 8; 

–18 < k < 16; 

–17 < l < 17 

Reflections collected 7097 11515 

Independent 

reflections 

2948 2817 

Observed reflections  

(I ≥ 2σ) 

2745 2587 

Absorption 

correction 

Multi-scan Multi-scan 

Rint 0.0338 0.0772 

R (F) 0.0423 0.0499 

Rw (F2) 0.1181 0.1419 

Goodness of fit 1.064 1.097 

H atom treatment Constrained Constrained 

No. of parameters 163 163 



 

 32 

No. of restraints 0 0 

max , min (eÅ–3) 1.199; -0.876 1.8; -1.192 

 

 

Solid-state NMR 

13C magic-angle spinning (MAS) and 1H-13C cross-polarization MAS (CPMAS) NMR 

measurements were carried out on a 600 MHz Varian NMR system equipped with a 3.2 mm 

Varian CPMAS probe. Larmor frequencies for 1H and 13C were 599.51 MHz and 150.75 MHz, 

respectively, and sample rotation frequency was 16 kHz. The CPMAS experiment employed 

RAMP 49 during the CP block with duration of 5 ms and high-power XiX 50 heteronuclear 

decoupling during acquisition; number of scans was 400 and repetition delay between scans was 

30 s. In the MAS experiment, number of scans was 800 and repetition delay between scans was 

100 s. Frequency axis of the 13C NMR spectra was referenced to tetramethylsilane. 

 

DFT computations 

First-principles calculations of isotropic chemical shifts of 13C nuclei were carried out with the 

GIPAW/DFT approach51,52 using CASTEP software package (Materials Studio v. 5.5.3, Accelrys 

Software Inc.). Plane-wave basis, generalized gradient approximation of Perdew-Burke-

Ernzerhof, and ultrasoft pseudopotentials (generated on-the-fly with CASTEP) were employed. 

Prior to GIPAW calculations, the structural models were optimized employing the DFT-based 

relaxation. Upon relaxation, force on each atom was smaller than 0.01 eV/Å and stress was 

below 0.02 GPa. In all calculations kinetic-energy cutoff for the plane-wave basis was set to 700 

eV, and the reciprocal-space sampling was performed with the k-point grid spacing of 0.030 Å-1 
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or less. GIPAW calculations yielded isotropic chemical shielding  iso, from which isotropic 

chemical shift was obtained as CS
iso = 169 ppm   iso. 

Charge transfer between entities constituting the crystal structure was investigated by 

computing atomic charges using the established Bader population analysis [53] of the electron 

density. The density was computed by the program package VASP v. 5.3.5 [54-58], using the 

revised version [59] of the Perdew-Burke-Ernzerhof functional [60] corrected for dispersion 

interactions by the DFT-D3 method of Grimme et al. [61], Projector Augmented Wave atomic 

pseudopotentials [62], and a plane wave basis set with a kinetic energy cutoff of 500 eV. For 

each of the considered structures geometry optimization was performed, preserving the 

experimentally determined space group and keeping the unit cell parameters fixed. The integrals 

in the reciprocal space were computed on a Monkhorst-Pack k-point mesh [63] of sufficient 

density, such that the number of k-points in a given direction multiplied by the corresponding 

direct unit cell vector length exceeded 20 Å. Bader atomic charges of the computed density were 

calculated by scripts provided by the Henkelman group of the University of Texas at Austin [64-

67].   

Orbital interactions and the HOMO-LUMO gap were studied by isolated gas-phase cluster 

models consisting of one quinone molecule and up to 6 nearest iodide ions extracted from the 

experimental crystal structure of all the systems reported in the present study. For each of the 

models a single point calculation was performed, and was followed by the Natural Bond Orbital 

(NBO) analysis of the electronic structure [68], yielding the donor-acceptor stabilization energies 

between orbitals of the molecular entities included in the model. All gas-phase calculations were 

performed by the Gaussian09 program package [69] using the M06-2X density functional [70] 

coupled with the Dunning’s valence double-zeta basis set [71], whereas the core electrons were 
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approximated by the Los Alamos pseudopotentials [72] (LANL2DZ). The use of 

pseudopotentials is mandatory due to the fact that the core part of the electronic structure of 

iodine exhibits sizable relativistic effects and is thus beyond the all-electron explicit treatment. 

 

IR spectroscopy 

Infrared spectra were measured on Vertex 80 (Bruker) by applying Golden Gate (Specac) 

diamond ATR equipment and MCT detector. The displacement of moving mirror was 0.25 that 

corresponds to a resolution of 4 cm-1. Typically 64 scans were averaged. All spectra were 

recorded at room temperature. 
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