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Abstract

We study a supersymmetric model in curved background spacetime. We calculate

the effective action and the vacuum expectation value of the energy momentum tensor

using a covariant regularization procedure. A soft supersymmetry breaking induces

a nonzero contribution to the vacuum energy density and pressure. Assuming the

presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric

field an effective equation of state is derived in a self-consistent approach at one loop

order. The net effect of the vacuum fluctuations of the supersymmetric fields in the

leading adiabatic order is a renormalization of the Newton and cosmological constants.

1 Introduction

Observational evidence for an accelerating expansion [1, 2, 3] implies that the vacuum en-
ergy density dominates the total energy density today. The vacuum energy or cosmological
constant (CC) which was introduced ad-hoc in the Einstein-Hilbert action is related to the
vacuum energy density of matter fields. The main CC problem is that the vacuum energy
contribution estimated in quantum field theory is much larger than the observed value. In
general, the result depends quartically on a quantity Λcut that represents the UV momen-
tum cutoff, i.e., the vacuum energy density goes as Λ4

cut. If Λcut is of the order of the Planck
mass, the estimated vacuum energy density is by about 120 orders of magnitude larger than
the value required by astrophysical and cosmological observations [4]. This term, if really
there, would be disastrous even if the cutoff were in the mass range of the standard model
of particle physics.

The above mentioned estimate was based on field theory in flat spacetime in which one
can easily solve the problem by redefining the vacuum energy. Since the energy is defined
up to an arbitrary additive constant one can subtract the divergent contributions and make
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the vacuum energy exactly zero 1. However , in curved spacetime this procedure cannot be
performed because the energy is a source of the gravitational field and adding or subtracting
(even constant) energy changes the spacetime geometry. In spite of that, the quantum field
theory in curved spacetime is renormalizable provided higher derivative terms in addition
to the Einstein-Hilbert term with a cosmological constant are introduced at the classical
level. In what follows we use the low energy formulation of quantum field theory in curved
spacetime [5, 6]. The theory is described by the gauged matter Lagrangian in addition to
the Einstein-Hilbert action.

Phenomenologically, it is desirable to have the vacuum energy exactly zero or comparable
to the tiny value of the critical density of the universe. To achieve that, one must either kill
the flat spacetime contribution simply by fiat or invent a symmetry principle that forbids
a nonzero vacuum energy. Such a principle is indeed provided by supersymmetry [7]. In
field theory with exact supersymmetry, the contributions of fermions and bosons to vacuum
energy precisely cancel [8].

In references [9, 10] a residual quadratic contribution of the form H2Λ2
cut has been found

after canceling the flat spacetime parts in the SUSY limit. Such a contribution is phenomeno-
logically acceptable owing to the fact that the present value of the CC density is of the same
order, if Λcut is taken to be of the order of the Planck mass. Such quadratic contribution was
also found in recent papers [11, 12] and in some earlier papers [13, 14] in a different context.
In particular, the work [11] presents a similar calculation of the zero-point energy using only
a massless boson field and obtains two types of contributions: the quartic type Λ4

cut and the
quadratic part H2Λ2

cut. Then, the quartic contributions to CC was canceled on the basis of
the procedure used previously in the literature with the so-called ADM mass. In [9, 10] it
has been demonstrated that in a supersymmetric world a cancellation by fiat is unnecessary
because the cancellation between bosons and fermions of all (not only quartically divergent)
flat-spacetime contributions is naturally provided by supersymmetry. However, in real world
where SUSY is broken this cancellation will affect only the quartic contribution. If SUSY is
broken at scales mSUSY the dominant flat-spacetime contributions will be the quadratically
divergent contribution of the type m2

SUSYΛ
2
cut and the mass terms of the type m4

SUSY. These
flat-spacetime contributions will of course be present in nonflat spacetime too.

Another important point of both papers [10] and [11] is that the vacuum fluctuations
cannot be interpreted as a part of CC because the vacuum fluctuations do not yield the
equation of state p = −ρ, as a consequence of the energy momentum tensor not having a
CC form. This behavior was already observed in flat space time if a three-dimensional cutoff
regularization was employed [15, 16, 17]. A possible way out has recently been suggested by
Maggiore et al [18, 19]. If the regularization scheme breaks general covariance, one must also
allow for noncovariant counterterms, and these can be chosen so to obtain fully covariant
results for the renormalized energy density and pressure. For example, since the quartic term
in the bare energy density and pressure does not satisfy p = −ρ (the vacuum fluctuations of
a minimally coupled scalar field gives p = ρ/3), one may introduce appropriate noncovariant

1 Unfortunately, the cancellation of the divergent contributions does not solve the cosmological constant

problem. The remaining finite contributions of the type m
4 in a realistic field theory are still much larger

then the observed vacuum density. Besides, all such contributions coming from different sectors of the

standard model of particle physics should somehow conspire in order to reproduce the observe tiny value of

the vacuum energy density. Extreme fine tuning is needed for this to happen.
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counterterms so that the renormalized quantities satisfy pren = −ρren. The explicit form
of these counterterms, and a detailed discussion of the above issues, has been given in [19]
(elaborating on results of [18]).

Using a three-dimensional cutoff Λcut procedure is perhaps not the most elegant way
to regularize a quantum field theory. First, the three-dimensional cutoff violates Lorentz
invariance and, as a result, the flat space time terms in the energy density and pressure
do not satisfy the CC equation of state. This is not a problem for a model with an exact
supersymmetry since these terms cancel anyway. However, one cannot be sure that the
residual EOS coming from the dominant contribution of the type H2Λ2

cut is robust, i.e. one
does not know how much it is scheme dependent. Therefore, it would be desirable to use an
explicitly covariant scheme to regularize the integrals. A covariant regularization in flat space
time should yield the vacuum energy momentum tensor of the form Tµν = ρηµν . Naively, in
curved spacetime one would generalize this to the CC form Tµν = ρgµν . However, since a
curved geometry involves the Riemann tensor and its covariant derivatives we may expect the
energy momentum tensor at linear curvature order to be of the form Tµν = (α+βR)gµν+γRµν

where α, β, and γ are constants that do not depend on curvature.
The main motivation for this paper is to investigate the fate of vacuum energy when an

unbroken supersymmetric model is embedded in a general curved spacetime. We propose an
approach based on the effective action. We calculate one loop contributions to the effective
and we regularize divergences using a covariant UV cutoff. Our approach is similar to
Sobreira et al [20] who calculated the scalar and fermion one loop contributions to the
effective potential. From the effective action we derive the effects of the vacuum energy
fluctuations of the supersymmetric fields on the expansion of the universe, specifically on
the cosmological constant. With a cutoff scale of the order of the Planck mass mPl the
contribution of the supersymmetric field fluctuations is found to be of the same order of
magnitude as that of the cosmic fluid. For example, in the case of CC, i.e., in the de Sitter
background with the expansion parameter H , the contribution is of the order H2m2

Pl no
fine-tuning is needed.

Unlike in flat spacetime, the vacuum energy density turns out to be nonzero depending
on background metric. This type of “soft” supersymmetry breaking is similar to the su-
persymmetry breaking at finite temperature where the Fermi-Bose degeneracy is lifted by
quantum statistics ([21] and references therein). In addition to the supersymmetric field
we assume the presence of a cosmic fluid obeying the equation of state of the general form
p = p(ρ) so that that the global geometry is determined by a combined effect of both the
cosmic fluid and vacuum fluctuations of the supersymmetric field.

The remainder of the paper is organized as follows. In section 2 we introduce a super-
symmetric model in an arbitrary curved background. The calculations of the effective action
at one loop order are presented in section 3. In section 4 we derive the vacuum expectation
value of the energy momentum tensor and discuss the effective equation of state. Concluding
remarks are given in section 5.
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2 The model

We consider a Wess-Zumino supersymmetric model with N species and calculate the energy
density of vacuum fluctuations in arbitrary curved background. Our notations follow [10].
In general, the supersymmetric Lagrangian for N chiral superfields has the form [22]

LN =
∑

i

Φ†
iΦi|D +W (Φ)|F + h.c. , (1)

where the index i distinguishes the various left chiral superfields Φi The quantity W (Φ)
denotes the superpotential for which we take

W (Φ) =
∑

i

(

mi

2
Φ2

i +
λ

3
Φ3

i

)

. (2)

so that the Lagrangian (1) is just a sum of N chiral Lagrangians Li of each species. For
simplicity, from now on we suppress the dependence on i. Assuming a curved background
spacetime geometry with metric gµν and eliminating auxiliary fields by equations of motion,
the Lagrangian for each species takes the form

L = gµνφ†
,µφ,ν − V (φ) +

i

4

(

Ψ̄γ̃µΨ;µ − Ψ̄;µγ̃
µΨ

)

− 1

2
mΨ̄Ψ

−λ

2
Ψ̄(1− γ5)Ψφ− λ

2
Ψ̄(1 + γ5)Ψφ†, (3)

with
V (φ) = |mφ+ λφ2|2 + ξR|φ|2. (4)

Here, φ and Ψ are the complex scalar and the Majorana spinor fields, respectively, and γ̃µ

are the curved spacetime gamma matrices [5]. For completeness, we included in the scalar
field potential (4) the nonminimal coupling term ξR|φ|2 of the scalar field to the scalar
curvature R. The term is needed for renormalization because, even if set ξ = 0 in (3), the
loop corrections would generate in the effective action a term of this type [5, 23].

In the chiral (m → 0) limit, the Lagrangian (3) becomes invariant under the chiral U(1)
transformation

φ → ei2αφ, (5)

(1− γ5)Ψ → e−iα(1− γ5)Ψ, (6)

(1 + γ5)Ψ → eiα(1 + γ5)Ψ. (7)

This invariance reflects the R-invariance of the cubic superpotential [24]. The action may
be written as

S =

∫

d4x
√
−g(LB + LF), (8)

where LB and LF are the boson and fermion Lagrangians, respectively. Using

φ =
1√
2
(σ + iπ), (9)
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the Lagrangian for a complex scalar field φ may be expressed as a Lagrangians for two real
fields σ and π. Then, the potential (4) becomes

V (σ, π) =
m2 + ξR

2
(σ2 + π2) +

λ2

4
(σ2 + π2)2 +

mλ√
2
σ(σ2 + π2). (10)

Variation of (8) with respect to Ψ̄ yields the Dirac equation in curved spacetime:

iγ̃µΨ;µ − (m+
√
2λσ − i

√
2λπγ5)Ψ = 0. (11)

3 Effective action

In this section we derive the effective action in a general curved background defined by a
metric gµν and the corresponding curvature tensor Rµν . We use the method described in
[23, 25] based on the calculation of the Feynman propagator at one loop order. We introduce
the background fields σ̄ and π̄ and redefine the fields

σ → σ̄ + σ; π → π̄ + π. (12)

The effective action at one loop order is given by [23]

Γ[σ̄, π̄] = S(0)[σ̄, π̄]− i ln

∫

[dσ, dπ, dΨ] exp(iS(2)[σ̄, π̄, σ, π,Ψ]), (13)

where [dσ, dπ, dΨ] denotes the measure of the functional integral, S(0) is the classical part of
the action (8) and S(2) is the part of the action which is quadratic in quantum fields. The
classical part is just the boson part of the action (8) in which the fields σ and π are replaced
by σ̄ and π̄.

For the quadratic part we find

S(2) =

∫

d4x
√−g(L(2)

B + L(2)
F ), (14)

where

L(2)
B =

1

2
gµνσ,µσ,ν +

1

2
gµνπ,µπ,ν −

m2
σ

2
σ2 − m2

π

2
π2 − ξ

2
R(σ2 + π2) (15)

and

L(2)
F =

i

4

(

Ψ̄γ̃µΨ;µ − Ψ̄;µγ̃
µΨ

)

− 1

2
mFΨ̄Ψ +

iλπ̄√
2
Ψ̄γ5Ψ. (16)

The effective boson masses m2
σ and m2

π, are the coefficients of the diagonalized quadratic
form in σ and π, and mF is the effective fermion mass . We find

m2
σ = a+ b; m2

π = a− b; mF = m+
√
2λσ̄, (17)

where
a = m2 + 2λ2(σ̄2 + π̄2) + 2

√
2mλσ̄ (18)

and

b = λ

√

(σ̄2 + π̄2)
[

(λσ̄ +
√
2m)2 + λ2π̄2

]

. (19)

In the following we calculate separately the contributions of the fermion and scalar fields.
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3.1 Scalar fields

Following Parker and Toms [23] the contribution of each scalar field may be calculated using
the expression

Γs = − i

2

∫

d4x
√−g

∫ m2
s

d(m2)∆(x, x), (20)

where the subscript s stands for either σ or π. The renormalized Feynman propagator

∆(x, x′) = −i〈ϕ(x)ϕ(x′)〉 (21)

satisfies the equation

(−�−m2 − ξR)∆(x, x′) = (−g(x))−1/2δ(x− x′), (22)

where � = gµν∇µ∇ν . In the coincidence limit, x → x′,

∆(x, x) =

∫

ddk

(2π)d

[

1 +

∞
∑

j=1

f j(−
∂

∂m2
)j

]

[

k2 −m2 − (ξ − 1

6
)R(x)

]−1

, (23)

where k2 = ηµνk
µkν and the coefficient f j involve covariant terms formed from the Riemann

tensor, its contractions and covariant derivatives [23]. It is important to note that the
expansion (23), although obtained using the Riemann normal coordinates [26], is valid in
a general coordinate system. Three remarks are in order. First, in the expansion of ∆
increasingly high orders in curvature are compensated by increasingly high orders in (k2 −
m2)−1. Second, any Feynman diagram in flat spacetime is substituted in curved spacetime by
an infinite set of diagrams. However, these diagrams have better UV convergences than the
diagrams in flat Minkowski space. Third, if one starts with a multiplicatively renormalizable
theory in Minkowski spacetime, then in curved spacetime the total number of divergent
diagrams, at any given loop order, is finite. Hence, the locality of UV terms is secured [27].

The Feynman propagator (21) may be written as [28]

∆(x, x′) = (−g(x))−1/4∆̄(x, x′), (24)

where the modified propagator ∆̄ satisfies

(−�−m2 − ξR)∆̄(x, x′) = δ(x− x′). (25)

In Riemann normal coordinates the modified propagator takes the form

∆̄(x, x′) =

∫

ddk

(2π)d
e−ik(x−x′)

[

1

k2 −m2
+

(

ξ − 1

6

)

R

(k2 −m2)2
+ . . .

]

. (26)

where the ellipses denote the terms of higher curvature order. Here, x′ is the origin of
the Riemann normal coordinate system and R is evaluated at the origin of these normal
coordinates.

In the limit x′ → x, the momentum integrals in (26) are divergent in 4 dimensions and
must be regularized. Naively, one would expect that using a four-dimensional covariant cutoff
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automatically ensures the correct answer. Unfortunately, it is not so, as Ossola and Sirlin
[15] demonstrated in flat spacetime. Even doing the regularization of zero point-energy of the
scalar field one gets wrong signs of the vacuum energy density vs. pressure. The most elegant
way to deal with divergencies seems to be dimensional regularization (DR)[29]. However,
DR has its own obstacles. First, DR does not identify the quadratic divergencies which
are important in any effective field theory. Loosing the track of quadratic divergencies may
corrupt the Wilson’s renormalization group method. Next, since DR is essentially a mass
independent scheme, particle thresholds and particle decoupling is not properly described
and one is forced to put them in theory by fiat. Ossola and Sirlin [15] showed that the
Pauli-Villars regularization, although covariant, leads to unacceptable result: the vacuum
energy density of a scalar field turns out to be negative. Besides, the quartic divergencies
break the scale invariance of the free field theory in the massless limit.

Keeping all previously said in mind, we perform the calculations using the prescriptions of
Cynolter and Lendvai [30]. Veltman has early noticed that a correct calculation of quadratic
divergencies in d = 2 − 2(ǫ − 1) leads to a cutoff regularization based on the DR. Doing
correctly all conditions, preserving the symmetries, and using the prescription

lEµlEν → 1

d
gµνl

2
E (27)

dictated by Lorenz invariance, with the parameter d to be determined using the Euclidean
four-dimensional momentum cutoff, a relation between the cutoff and the DR is obtained.
Matching different powers of Λcut and preserving the gauge invariance, the following pre-
scription is proposed [30]

1

d
Λ2

cut → 1

2
Λ2

cut, (28)

1

d
ln

(

Λ2
cut +m2

m2

)

→ 1

4

(

ln

(

Λ2
cut +m2

m2

)

+
1

2

)

, (29)

1

d
→ 1

4
for finite terms, (30)

which yields
∫

ddk

(2π)d
1

k2 −m2
= − i

(4π)2

(

Λ2
cut −m2 ln

Λ2
cut

m2

)

, (31)

∫

ddk

(2π)d
1

(k2 −m2)2
=

i

(4π)2

(

ln
Λ2

cut

m2
− 1

)

. (32)

Evaluating the integral over m2 in (20) we find

Γs =
1

2(4π)2

∫

d4x
√−g

[

m4
s

4
−m2

sΛ
2
cut +m2

s

(

m2
s

2
+

(

ξ − 1

6

)

R

)

ln
Λ2

cut

m2
s

+c1Λ
4
cut + c2Λ

2
cutR + . . .

]

, (33)

where the ellipses denote the terms of higher adiabatic order. The last two terms in square
brackets are the m2

s independent “constants” of integration where c1 and c2 are arbitrary
dimensionless constants.
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3.2 Spinor fields

The contribution of fermions to the effective action may be calculated in a similar way.
Taking a derivative with respect to mF of the expression (13), in which the action S(2) is
replaced by

S
(2)
F =

∫

d4x
√
−gL(2)

F , (34)

with the Lagrangian (16), we find

∂ΓF

∂mF
=

i

2

∫

d4x
√−g trS(x, x), (35)

where the trace is taken over the spinor indices. The Feynman Green function S defined as

Sab(x, y) ≡ −i < TΨa(x)Ψ̄b(y) >, (36)

in the limit y → x may be expressed as [25]

S(x, x) =
∫

ddk

(2π)d
(−γµkµ +mF − i

√
2λπ̄γ5)G(k), (37)

where, to second adiabatic order,

G(k) =
[

1 +
R

12

∂

∂m2
F

]

(k2 −m2
F)

−1. (38)

Using this we find

∂ΓF

∂mF
= 2i

∫

d4x
√−g

∫

dnk

(2π)n

(

mF

k2 −m2
F

+
mFR

12(k2 −m2
F)

2

)

. (39)

Finally, using (31) and (32) and integrating (35) over mF we obtain

ΓF =
1

(4π)2

∫

d4x
√
−g

[

m2
FΛ

2
cut −

m4
F

4
−m2

F

(

m2
F

2
+

R

12

)

ln
Λ2

cut

m2
F

+c3Λ
4
cut + c4Λ

2
cutR + . . .

]

. (40)

Again, the last two terms in square brackets are the mF independent “constants” of integra-
tion where c3 and c4 are arbitrary dimensionless constants.

3.3 All together

Assembling the boson and fermion contributions, the resulting effective action for each species
is given by

Γ = Γσ + Γπ + ΓF (41)

as a function of the background fields σ̄ and π̄. The background fields are determined from
the requirement that the vacuum minimizes the potential (10). One may easily verify that
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the function (10) has two minima: The first one is obviously the trivial minimum at π̄ = 0,
σ̄ = 0 in which case all the effective masses are equal mσ = mπ = mF = m. The second
minimum occurs at π̄ = 0, σ̄ = −

√
2m/λ. In this case we find mσ = mπ = −mF = m and

hence, this vacuum breaks the supersymmetry and yields a negative fermion mass. However,
we immediately note that the fermion contribution, being a function of m2

F, is the same
for both solutions. Hence, both solutions yield a cancellation of the mass dependent flat
spacetime contributions in (41), i.e., the mass dependent terms that do not vanish in the
zero curvature limit in the fermion part ΓF precisely cancel the corresponding terms in the
boson parts Γσ and Γπ.

Next, we fix the unknown constants c1 and c2 in (33) and c3 and c4 in (40) from the
following considerations [20]. Evaluating formally the functional integral in (13) over boson
and fermion fields we may write the one loop effective action as

Γ = 2Γs + ΓF = −2i ln(detDs)
−1/2 − i ln detDF = i tr lnDs − i tr lnDF, (42)

where Ds and DF are the bilinear operators of the Lagrangians (15) and (16) (with mπ =
mσ = mF = m and π̄ = 0) defined as

Ds = −�−m2 − ξR (43)

and
DF = iγ̃µ∇µ −m. (44)

Since the final result should depend on m as a function of m2 only, we can simplify the trace
of the fermion operator using

tr lnDF(m) =
1

2
tr lnDF(m)DF(−m) = tr(−�− 1

4
R−m2), (45)

where the factor 1/2 in front of the trace has been compensated by a factor of 2 for the two
degrees of freedom of the Majorana spinor. Hence, the trace of the fermion operator is just
the trace of the scalar operator with ξ = 1/4.

Next, we use (22) to invert the operator Ds and calculate the trace using

tr lnDs = −tr ln∆. (46)

Working in normal coordinates, in this equation we may replace ∆ by ∆̄ given by (26) which
may be expanded as

∆̄ = ∆̄0 + ∆̄1R + . . . , (47)

where ∆0 is the inverse of ηµν∂µ∂ν −m2. Hence, we have

tr lnDs = −tr ln(∆̄0 + ∆̄1R + . . .) = −tr ln ∆̄0 − tr ∆̄−1
0 ∆̄1R + . . . . (48)

The first term on the right-hand side of this equation is the flat spacetime contribution which
cancels the similar term from the fermion part owing to (42) and (45). Hence, we only need
to evaluate the last term in (48)

tr ∆̄−1
0 ∆̄1R =

∫

d4x
√−g

∫

d4x′∆̄−1
0 (x, x′)∆̄1(x

′, x)R, (49)

9



which, with a help of the Fourier transform yields

tr ∆̄−1
0 ∆̄1R =

∫

d4x
√−g

∫

d4k

(2π)4

(

ξ − 1

6

)

R

k2 −m2
. (50)

Using the regularized momentum integral (31) we find

2Γs = itr lnDs = −itr ln ∆̄0 −
1

16π2

∫

d4x
√
−g

(

ξ − 1

6

)(

Λ2
cut −m2 ln

Λ2
cut

m2

)

R. (51)

Comparing this result with (33) we find

c2 =
1

6
− ξ. (52)

Using (45) the fermion part is given by

ΓF = −itr lnDF = −itr lnDs|ξ=1/4, (53)

which yields

c4 = −c2|ξ=1/4 =
1

12
. (54)

Finally we find the total contribution to the effective action

Γ = − 1

16π2

∫

d4x
√−gNξ̃

(

Λ2
cut −m2 ln

Λ2
cut

m2

)

R, (55)

where

ξ̃ = ξ − 1

4
. (56)

Owing to the cancellation of the first term on the right-hand side of (51) with a similar term
in the fermion part we obtain c1+ c3 = 0. This secures that all the terms in (40) that do not
vanish in the zero curvature limit, precisely equal one half of the corresponding terms in the
scalar field expression (33), with an opposite sign. In this way, in the sum (41) these terms
precisely cancel as they should, because, as demonstrated in [9], supersymmetry provides a
cancellation of all flat-spacetime contributions irrespective of the regularization method one
uses.

4 Energy Momentum Tensor

The vacuum expectation value of the energy momentum tensor is derived from the effective
action as

T vac
µν =

2√−g

δΓ

δgµν
, (57)

yielding

T vac
µν = − N

8π2
ξ̃

(

Λ2
cut −m2 ln

Λ2
cut

m2

)(

Rµν −
1

2
gµνR

)

. (58)
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First, we note that we generally do not recover the vacuum form of the energy momentum
tensor

Tµν = ρgµν . (59)

Clearly, the energy momentum tensor (58) cannot be put in the form (59) unless the metric
satisfies

Rµν ∝ gµνR. (60)

Among homogeneous geometries, this equation holds only for Minkowski and de Sitter space-
times.

Now, we consider the case when the starting background is provided by pure gravity with
the cosmological constant Λ. Adding (55) to the Einstein-Hilbert action we obtain the total
action

S =
1

16πG

∫

d4x
√−g

[

R− GNξ̃

π

(

Λ2
cut −m2 ln

Λ2
cut

m2

)

R − 2Λ

]

, (61)

which may be recast in the standard Einstein-Hilbert form

S =
1

16πGeff

∫

d4x
√−g (R− 2Λeff) . (62)

Here we have introduced the effective Newton and cosmological constants given by

Geff

G
=

Λeff

Λ
= λ, (63)

where

λ =

[

1− GNξ̃

π

(

Λ2
cut −m2 ln

Λ2
cut

m2

)

]−1

. (64)

More specifically, if we demand homogeneity and isotropy the starting background geom-
etry is de Sitter with the expansion parameter H =

√

Λ/3. Then, the resulting effective

background is also de Sitter with the effective expansion parameter Heff =
√

Λeff/3.
Consider next a more general case of gravity with matter or dark energy described by

the energy momentum tensor Tµν . The total energy momentum tensor is the sum of Tµν and
T vac
µν given by (58). The Einstein field equations then read

(

Rµν −
1

2
gµνR

)

=
GNξ̃

π

(

Λ2
cut −m2 ln

Λ2
cut

m2

)(

Rµν −
1

2
gµνR

)

− 8πGTµν , (65)

which may be written as
(

Rµν −
1

2
gµνR

)

= −8πGλTµν . (66)

This equation may be interpreted as the standard Einstein equations in which either the
Newton constant G is renormalized as in (63) or the energy momentum tensor is replaced
by the effective one

T eff
µν = λTµν . (67)

11



Assuming a general perfect fluid form

Tµν = (ρ+ p)uµuν − pgµν , (68)

the energy density and pressure in comoving coordinates are

ρ =< T 0
0 >, (69)

p =
1

3
< T 0

0 − T µ
µ > . (70)

Obviously, equations (68)-(70) also apply to T eff
µν defined in (67), with ρ and p replaced by ρeff

and peff , respectively. Hence, if the energy density and pressure satisfy an equation of state
of a simple form p = wρ, then the effective equation of state is of the same form peff = wρeff .
In particular, if the background satisfies the vacuum equation of state pvac = −ρvac, the
effective equation of state also describes vacuum. However, if the equation of state were
more involved, e.g., in the form of a general function p = p(ρ) then the effective equation of
state would be deformed, peff = λp(ρeff/λ).

In order to make comparison with a similar calculations in which a three-dimensional
momentum cutoff has been used [10] (see also [11] and [12] for massless scalars) we specify
our result to a spatially flat FRW spacetime and ξ = 0. From (58), we find the leading
contribution to the density and pressure as a function of the expansion rate and acceleration

ρvac = −3NΛcut

32π2

ȧ2

a2
, (71)

pvac =
NΛcut

32π2

(

ȧ2

a2
+ 2

ä

a

)

. (72)

Obviously, the contribution to the energy density is negative and to the pressure is positive for
an accelerated expansion. In contrast, a three-dimensional momentum cutoff regularization
yields [10]

ρ =
3NΛcut

24π2

ȧ2

a2
, (73)

p =
NΛcut

24π2

(

ȧ2

a2
− 2

ä

a

)

. (74)

Here, the density is positive and the pressure is negative if ȧ2 < 2aä. For example, for a
de Sitter expansion one finds p = −ρ/3 whereas in the present paper pvac = −ρvac. Hence,
apart from an irrelevant numerical factor (which may be absorbed in the cutoff) and the
relative sign between the expansion and acceleration terms in the pressure, we disagree in
the overall sign but we agree in the magnitude of the energy density. In both cases a UV
cutoff of the order mPl/

√
N yields a magnitude of the leading term in the energy density of

the order H2m2
Pl, where H = ȧ/a. Hence, if we identify the expansion parameter H with

the Hubble parameter today, the contribution to CC is of the phenomenologically acceptable
order of magnitude and no fine tuning is needed.

Clearly, the above comparison between results obtained with a three-dimensional momen-
tum cutoff and with the present covariant cutoff regularization does not concern renormalized
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quantities. Instead, our aim is to compare the results of the two approaches to an effective
field theory with a physical cutoff [31], and, hence, we do not have bare and renormalized
Λ and G, as in [18, 19] (see also [32]). This approach is in spirit similar to [8] where a
discrepancy by a factor of about 10120 was obtained in an effective theoretical estimate of
the vacuum energy density with respect to the value compatible with astrophysical and
cosmological observations.

Although our aim is not to fit observational data, it is important to note that one cannot
have a pure H2m2

Pl for the vacuum energy without additional contributions. At the phe-
nomenological level, it has been already pointed out that only after including an additive
term one can get full compatibility with the expansion and structure formation data [33, 34].

5 Conclusion

We have calculated the contribution of supersymmetric fields to vacuum energy in a general
curved geometry. In addition to supersymmetric fields we have assumed existence of a fluid
obeying the equation of state p = p(ρ). Unlike in flat spacetime, the vacuum fluctuations
turn out to be nonzero depending on background metric. Combining effects of both the
background fluid and vacuum fluctuations of the supersymmetric field in a self-consistent
way, we have found the effective equation of state.

In an expanding FRW universe with H = ȧ/a, we have found that the leading term in the
energy density of vacuum fluctuations is negative and, if we impose a UV cutoff of the order
mPl its magnitude is of the order H2m2

Pl. Hence, the vacuum fluctuations of SUSY fields
provide a phenomenologically acceptable contribution to the cosmological constant and no
fine tuning is needed. The negative sign of the energy density indicates that the vacuum
field fluctuations cannot account for CC alone, hence, one additional positive contribution,
either in the form of CC or a more general form of dark energy, is needed.
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