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Most existing approaches address multi-view subspace clustering problem by constructing the affinity
matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to
handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a
joint subspace representation by constructing affinity matrix shared among all views. Relying on the im-
portance of both low-rank and sparsity constraints in the construction of the affinity matrix, we introduce
the objective that balances between the agreement across different views, while at the same time encour-
ages sparsity and low-rankness of the solution. Related low-rank and sparsity constrained optimization
problem is for each view solved using the alternating direction method of multipliers. Furthermore, we
extend our approach to cluster data drawn from nonlinear subspaces by solving the corresponding prob-
lem in a reproducing kernel Hilbert space. The proposed algorithm outperforms state-of-the-art multi-
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view subspace clustering algorithms on one synthetic and four real-world datasets.
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1. Introduction

In many real-world machine learning problems the same data
is comprised of several different representations or views. For ex-
ample, same documents may be available in multiple languages
[1] or different descriptors can be constructed from the same im-
ages [2]. Although each of these individual views may be sufficient
to perform a learning task, integrating complementary information
from different views can reduce the complexity of a given task [3].
Multi-view clustering seeks to partition data points based on mul-
tiple representations by assuming that the same cluster structure
is shared across views. By combining information from different
views, multi-view clustering algorithms attempt to achieve more
accurate cluster assignments than one can get by simply concate-
nating features from different views.

In practice, high-dimensional data often reside in a low-
dimensional subspace. When all data points lie in a single sub-
space, the problem can be set as finding a basis of a subspace
and a low-dimensional representation of data points. Depending
on the constraints imposed on the low-dimensional representa-
tion, this problem can be solved using e.g. Principal Component
Analysis (PCA) [4], Independent Component Analysis (ICA) [5] or
Non-negative Matrix Factorization (NMF) [6-8]. On the other hand,
data points can be drawn from different sources and lie in a union

* Corresponding author.
E-mail  addresses:  maria.brbic@irb.hr (M.
ikopriva@gmail.com, ikopriva@irb.hr (I. Kopriva).

Brbi¢), ivica.kopriva@irb.hr,

http://dx.doi.org/10.1016/j.patcog.2017.08.024
0031-3203/© 2017 Elsevier Ltd. All rights reserved.

of subspaces. By assigning each subspace to one cluster, one can
solve the problem by applying standard clustering algorithms, such
as k-means [9]. However, these algorithms are based on the as-
sumption that data points are distributed around centroid and of-
ten do not perform well in the cases when data points in a sub-
space are arbitrarily distributed. For example, two points can have
a small distance and lie in different subspaces or can be far and
still lie in the same subspace [10]. Therefore, methods that rely on
a spatial proximity of data points often fail to provide a satisfactory
solution. This has motivated the development of subspace cluster-
ing algorithms [10]. The goal of subspace clustering is to identify
the low-dimensional subspaces and find the cluster membership of
data points. Spectral based methods [11-13] present one approach
to subspace clustering problem. They have gained a lot of atten-
tion in the recent years due to the competitive results they achieve
on arbitrarily shaped clusters and their well defined mathematical
principles. These methods are based on the spectral graph theory
and represent data points as nodes in a weighted graph. The clus-
tering problem is then solved as a relaxation of the min-cut prob-
lem on a graph [14].

One of the main challenges in spectral based methods is the
construction of the affinity matrix whose elements define the sim-
ilarity between data points. Sparse subspace clustering [15] and
low-rank subspace clustering [16-19] are among most effective
methods that solve this problem. These methods rely on the self-
expressiveness property of the data by representing each data
point as a linear combination of other data points. Low-Rank Rep-
resentation (LRR) [16,17] imposes low-rank constraint on the data
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representation matrix and captures global structure of the data. Table 1
Low-rank implies that data matrix is represented by a sum of  Notations and abbreviations.
small number of outer products of left and right singular vec- Notation Definition
tors weighted by corresponding singular values. Under assumption N Number of data points
that subspaces are independent and data sampling is sufficient, k Number of clusters
LRR guarantees exact clustering. However, for many real-world v View index
datasets this assumption is overly restrictive and the assumption ny Number of views
that data is drawn from disjoint subspaces would be more ap- b Dimension of data points in a view v
. . X® ¢ RPN Data matrix in a view v
propriate [20,21]. On the other hand, Sparse Subspace Clustering C) ¢ [RVN Representation matrix in a view v
(SSC) [15] represents each data point as a sparse linear combina- Ct e RV*N Centroid representation matrix
tion of other points and captures local structure of the data. Learn- WeRV*N Affinity matrix
ing representation matrix in SSC can be interpreted as sparse cod- X=UzV’ Singular value decomposition (SVD) of X
ing [22-27]. However, compared to sparse coding where dictionary *(XY) Dafta &i‘:ts in a view v mapped into high-dimensional
is learned such that the representation is sparse [28,29], SSC is K e RV*N Gr:; matsrl;;ciia view v

based on self-representation property i.e. data matrix stands for a
dictionary. SSC also succeeds when data is drawn from indepen-
dent subspaces and the conditions have been established for clus-
tering data drawn from disjoint subspaces [30]. However, theoreti-
cal analysis in [31] shows that it is possible that SSC over-segments
subspaces when the dimensionality of data points is higher than
three. Experimental results in [32] show that LRR misclassifies dif-
ferent data points than SSC. Therefore, in order to capture global
and the local structure of the data, it is necessary to combine low-
rank and sparsity constraints [32,33].

Multi-view subspace clustering can be considered as a part of
multi-view or multi-modal learning. Multi-view learning method
in [34] learns view generation matrices and representation ma-
trix, relying on the assumption that data from all the views share
the same representation matrix. The multi-view method in [35] is
based on the canonical correlation analysis in extraction of two-
view filter-bank-based features for image classification task. Simi-
larly, in [36] the authors rely on tensor-based canonical correlation
analysis to perform multi-view dimensionality reduction. This ap-
proach can be used as a preprocessing step in multi-view learning
in case of high-dimensional data. In [37] low-rank representation
matrix is learned on each view separately and learned represen-
tation matrices are concatenated to a matrix from which a uni-
fied graph affinity matrix is obtained. The method in [38] relies
on learning a linear projection matrix for each view separately.
High-order distance-based multi-view stochastic learning is pro-
posed in [39], to efficiently explore the complementary character-
istics of multi-view features for image classification. The method in
[40] is application oriented towards image reranking and assumes
that multi-view features are contained in hypergraph Laplacians
that define different modalities. In [41] authors propose multi-view
matrix completion algorithm for handling multi-view features in
semi-supervised multi-label image classification.

Previous multi-view subspace clustering works [42-45] address
the problem by constructing affinity matrix on each view sepa-
rately and then extend algorithm to handle multi-view data. How-
ever, since input data may often be corrupted by noise, this ap-
proach can lead to the propagation of noise in the affinity matri-
ces and degrade clustering performance. Different from the exist-
ing approaches, we propose multi-view spectral clustering frame-
work that jointly learns a subspace representation by construct-
ing single affinity matrix shared by multi-view data, while at the
same time encourages low-rank and sparsity of the representa-
tion. We propose Multi-view Low-rank Sparse Subspace Clustering
(MLRSSC) algorithms that enforce agreement: (i) between affinity
matrices of the pairs of views; (ii) between affinity matrices to-
wards a common centroid. Opposed to [35,40,46], the proposed ap-
proach can deal with highly heterogeneous multi-view data com-
ing from different modalities. We present optimization procedure
to solve the convex dual optimization problems using Alternat-
ing Direction Method of Multipliers (ADMM) [47]. Furthermore,
we propose the kernel extension of our algorithms by solving the

problem in a Reproducing Kernel Hilbert Space (RKHS). Experimen-
tal results show that MLRSSC algorithm outperforms state-of-the-
art multi-view subspace clustering algorithms on several bench-
mark datasets. Additionally, we evaluate performance on a novel
real-world heterogeneous multi-view dataset from biological do-
main.

The remainder of the paper is organized as follows.
Section 2 gives a brief overview of the low-rank and sparse
subspace clustering methods. Section 3 introduces two novel
multi-view subspace clustering algorithms. In Section 4 we present
the kernelized version of the proposed algorithms by formulating
subspace clustering problem in RKHS. The performance of the new
algorithms is demonstrated in Section 5. Section 6 concludes the

paper.
2. Background and related work

In this section, we give a brief introduction to Sparse Subspace
Clustering (SSC) [15], Low-Rank Representation (LRR) [16,17] and
Low-rank Sparse Subspace Clustering (LRSSC) [32].

2.1. Main notations

Throughout this paper, matrices are represented with bold cap-
ital symbols and vectors with bold lower-case symbols. || - || de-
notes the Frobenius norm of a matrix. The ¢; norm, denoted by
Il -111, is the sum of absolute values of matrix elements; infinity
norm || - ||« is the maximum absolute element value; and the nu-
clear norm || - ||« is the sum of singular values of a matrix. Trace
operator of a matrix is denoted by tr(-) and diag(-) is the vector
of diagonal elements of a matrix. 0 denotes null vector. Table 1
summarizes some notations used throughout the paper.

2.2. Related work

N that lie in

Consider the set of N data points X = {x; e R°}._
a union of k>1 linear subspaces of unknown dimensions. Given
the set of data points X, the task of subspace clustering is to clus-
ter data points according to the subspaces they belong to. The first
step is the construction of the affinity matrix We RN*N whose el-
ements define the similarity between data points. Ideally, the affin-
ity matrix is a block diagonal matrix such that a nonzero distance
is assigned to the points from the same subspace. LRR, SSC and
LRSSC construct the affinity matrix by enforcing low-rank, sparsity
and low-rank plus sparsity constraints, respectively.

Low-Rank Representation (LRR) [16,17] seeks to find a low-rank
representation matrix Ce RV*N for input data X. The basic model
of LRR is the following:

mcin ||C||* st. X =XC, (M
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where the nuclear norm is used to approximate the rank of C and
that results in the convex optimization problem.

Denote the SVD of X as UXV'. The minimizer of Eq. (1) is
uniquely given by [16]:

c=w' (2)

In the cases when data is contaminated by noise, the following
problem needs to be solved:

2
mmzHX—XC”F—l—X”C”*. (3)
The optimal solution of Eq. (3) has been derived in [18]:

c=v, (I— %z;2>vﬂ, (4)

where U= [U; U], X =diag(¥; ¥,) and V=
are partitioned according to the sets Z; = {i : g; >

[V1 V3]. Matrices
1)\} and 7, = {i :
Sparse Subspace Clustering (SSC) [15] requires that each data
point is represented by a small number of data points from its own
subspace and it amounts to solve the following minimization prob-
lem:

min I<| , St X=XC, diag(C) =0. (5)

The ¢; norm is used as the tightest convex relaxation of the ¢,
quasi-norm that counts the number of nonzero elements of the
solution. Constraint diag(C) = 0 is used to avoid trivial solution of
representing a data point as a linear combination of itself.

If data is contaminated by noise, the following minimization
problem needs to be solved:

min [ X - XC||; + A[c[, st. diag(€) =o0. (6)

5
This problem can be efficiently solved using ADMM optimization
procedure [47].

Low-Rank Sparse Subspace Clustering (LRSSC) [32] combines
low-rank and sparsity constraints:

mcin ||c||* +A||c}|1 s.t. X=XC, diag(C) =0. (7)

In the case of the corrupted data the following problem needs to
be solved to approximate C:

min [ X -XC|; + i |c|, + Bz |c|, st diag©)=0.  (8)

5
Once matrix C is obtained by LRR, SSC or LRSSC approach, the
affinity matrix W is calculated as:

W=I[Cl+Ic|". (9)

Given affinity matrix W, spectral clustering [11,12] finds cluster
membership of data points by applying k-means clustering to the
eigenvectors of the graph Laplacian matrix Le R¥*N computed
from the affinity matrix W.

3. Multi-view low-rank sparse subspace clustering

In this section we present Multi-view Low-rank Sparse Sub-
space Clustering (MLRSSC) algorithm with two different regu-
larization approaches. We assume that we are given a dataset
X= {X“),XQ),‘..,X(”“)} of n, views, where each X® = {xﬁ') €

]RD“)} j1 is described with its own set of D) features. Our objec-

tive is to find a joint representation matrix C that balances trade-
off between the agreement across different views, while at the
same time promotes sparsity and low-rankness of the solution.
We formulate joint objective function that enforces represen-
tation matrices {C, €@, ... )} across different views to be

regularized towards a common consensus. Motivated by [42], we
propose two regularization schemes of the MLRSSC algorithm:
(i) MLRSSC based on pairwise similarities and (ii) centroid-based
MLRSSC. The first regularization encourages similarity between
pairs of representation matrices. The centroid-based approach en-
forces representations across different views towards a common
centroid. Standard spectral clustering algorithm can then be ap-
plied to the jointly inferred affinity matrix.

3.1. Pairwise multi-view low-rank sparse subspace clustering

We propose to solve the following joint optimization problem
over n, views:

B

+ Z

1=<v,w=ny,v#w

st. X — X(“)C(U),

M“) Jc® —c ”i

diag(CV) =0, v=1,...n,, (10)

where CV) e IRV*N is the representation matrix for view v. Param-
eters B, B2 and A(") define the trade-off between low-rank, spar-
sity constraint and the agreement across views, respectively. In the
cases where we do not have a prior information that one view is
more important than the others, A(*) does not dependent on a view
v and the same value of A(") is used across all views v=1,..., ny.
The last term in the objective in (10) is introduced to encourage
similarities between pairs of representation matrices across views.

Wwith all but one C") fixed, we minimize the function (10) for
each C) independently:

ARV A Y

1<w=<n,, v£w

diag(CV) = 0. (11)

minf| o -c);

)

st. XV =X"cW®,

By introducing auxiliary variables €{"”, C{", Cg") and AV, we re-
formulate the objective:

pla”], + B2 X

1=w=ny, v£<w

ey e

mi
.. c” AW

st. XV =XWA® AV = ¢ — diag(C"),
AW — C(v) AW — C(U) (12)
The augmented Lagrangian is:
(1L AT AL = A+l
+A® Y e —cw ” l“ _XWA® ||

1<w=<n,,w#v

+ % |A® — € + diag(Cs”) ”i n % |A® — ¢ “i
+ % |A® — ¢ ||i + tr[Agv)T(x<u> _X®AO)]
Fur[AY (A0 - d"“g(cé")))] +er[AP AV — )]

+ tr[Af;))T(A(v) —a)] .

where {u; > 0}143=1 are penalty parameters that need to be tuned

and {Al.(") }?:1 are Lagrange dual variables.

To solve the convex optimization problem in (12), we use Alter-
nating Direction Method of Multipliers (ADMM) [47]. ADMM con-
verges for the objective composed of two-block convex separable
problems, but here the terms Cg"), C;v) and Cg") do not depend on
each other and can be observed as one variable block.
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Update rule for A" at iteration Given

k+1.
3 4
{C,.(”)}i_l,{Ai(”)}l.=1 at iteration k, the matrix A" that mini-

mizes the objective in Eq. (13) is updated by the following update
rule:
AV = [/’LIX(U)TX(U) + (U2 + 13+ M4)I]_]

x(aXOTXD 4 15 C0 4 s

+ €Y £ XOTAD AP —AY AW, (14)
The update rule follows straightforwardly by setting the partial

derivative of £ in Eq. (13) with respect to A") to zero.
Update rule for C%”) at iteration k+ 1. Given A(") at itera-

tion k+1 and Ag”) at iteration k, we minimize the objective in
Eq. (13) with respect to Cg"):

i ) Aaw) AW
ncagwﬁ(q LAY, AL)

i 7.+ A~ [ oA (60—
1

= min ;| €], + 22 |AY ¢ |} + er[AL (AV - €")]

c(lv)
2
1A
213
AW 2
—minB, |c?] +£2 HA<”> B 15
nclgg)nﬁlﬂ P+ 5 e (15)
From [48], it follows that the unique minimizer of (15) is:
A(V)
' =T, <A<“> + == ) (16)
n3 M3

where Tg(Y) =Unﬂ(Z)VT performs soft-thresholding operation
on the singular values of Y and UXV7 is the skinny SVD of Y, here
Y=AW 4 u;lAg"). 75 (%) denotes soft thresholding operator de-
fined as 73 (%) = (|1Z| - B)+sgn(X) and t;. = max(0,t).

Update rule for Cé”) at iteration k+ 1. Given A(") at iteration
k+1 and Ag”) at iteration k, we minimize the £ in Eq. (13) with
respect to Cé”):

min E(Cg"), AW A;”))

c;l’)
) M2 |l A ) ) A;”) 2
[ 1 v —
_rgwﬁzncz ||1+ 3 A" -7+ P
C;”) = Cé”) - diag(Cé”)). (17)

The minimization of (17) gives the following update rules for ma-
trix € [49,50]:

AW
W =7y (A(”) + o2 )
H2 M2
) = ¢ — diag(C"), (18)

where 7 g denotes soft thresholding operator applied entry-wise to
(804514,

Update rule for Cg") at iteration k+ 1. Given A(") at iteration
k+1and Ay, 31 _ynywey € at iteration k, we minimize the

objective in Eq. (13) with respect to Cg"):

min L(C;”), AW, Af;’))

(V)
c3

= minA® Z

ey - e

C(3V) 1<w=<n,, w#v
2 T
+ ELA® — |7+ er[A" (A0 - ). (19)
The partial derivative of £ in Eq. (13) with respect to Cg"):
oL
— ) ) )
O = [2K 1)+ ] - 240
3

x Y ™ A-AY. (20)

1<w=<n,,w#v

Setting the partial derivative in (20) to zero:

cgv) _ [2)\‘(1/) (ny — 1)+M4]—1 (2)\‘(1/) Z

1<w<n,,w#v

C™ AV + A L)

(21)

4
Update rules for dual variables {Al.(")}i:] at iteration k + 1.

3
Given AW, {Cl.(")}i=1 at iteration k + 1, dual variables are updated
with the following equations:

Agv) _ Agu) e (X(v) _X®AW)
AP =AY + (A - C3)
Agv) — A;”) + 143 (A(v) _ ng)
AP =AY + g (AY - ).

If data is contaminated by noise and does not perfectly lie in

the union of subspaces, we modify the objective function as fol-
lows:

ny

. 1 2
o min ) (§ |X = X0 | 4 g, €

""" v=1

D>

1<v,w<n, v#w

s.t. diag(CY) =0,

A Be],)
A0 |lc® — ¢ ||)2:

v=1,...n,.
(23)

Update rule for A" at iteration k+ 1 for corrupted data.

3 4
Given {Cf“)}i:r {Al.(")},.:1 at iteration k, the matrix A(") is obtained
by equating to zero partial derivative of the augmented Lagrangian

of problem (23):
AW — [xW)Tx(v) + (Ua + s + M)l]’1

x (XOTXO 4 11560+ 3C +104CY — AL - A — AL).
(24)

same as in (16), (18), (21), (22), respectively.

These update steps are then repeated until the convergence or
until the maximum number of iteration is reached. We check the
convergence by verifying the following constraints at each iteration
ki AV - se AV -6 e AV -] <€ and

||Al(<") —A,E'ﬂ ||C>O <e, for v=1,...,n,. After obtaining representa-

3 4
Update rules for {Cl.(’“)}Fl and dual variables {Ai(") }._, are the

tion matrix for each view {CV. €@, . )} we combine them
by taking the element-wise average across all views. The next step
of the algorithm is to find the assignment of the data points to
corresponding clusters by applying spectral clustering algorithm to

http://dx.doi.org/10.1016/j.patcog.2017.08.024
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Algorithm 1 Pairwise MLRSSC.

Input: X = {XV}"  k By, Bo, (ADY0 {1 Yy, ™, 0
Output: Assignment of the data pomts to k clusters

1: Initialize: {C}") = 0};, AW = {A(”) }l pi=1..m

2: while not converged do

3: for v=1 to n, do

4: Fix others and update A®) by solving (14) in the case

of clean data or (24) in the case of corrupted data

Fix others and update Cg") by solving (16)

Fix others and update CS’) by solving (18)

Fix others and update Cg") by solving (21)

Fix others and update dual variables Ag’), Ag”), Afl”) by

solving (22) and also Ag") in the case of clean data

9: end for

10: Update p; = min(pu;,

11: end while

12: Combine {€™, €@, ..,
average

13: Apply spectral clustering [12]
W= |cavg| + |cavg|T

WM i1 4
C("v)} by taking the element-wise

to the affinity matrix

the joint affinity matrix W = |Cayg| + |Carg|”. Algorithm 1 summa-
rizes the steps of the pairwise MLRSSC. Due to the practical rea-
sons, we use the same initial values of {y;}?,. p and pu™* for
different views v and update {;L,};L1 after the optimizations of all
views. However, it is possible to have more general approach with
different initial values of {ui}?zl, p and pu™* for each view v, but
this significantly increases the number of variables for optimiza-
tion.

The problem in (10) is convex subject to linear constraints and
all its subproblems can be solved exactly. Hence, theoretical re-
sults in [51] guarantee the global convergence of ADMM. The com-
putational complexity of Algorithm 1 is O(TnyN3), where T is the
number of iterations, n, < N is the number of views and N is the
number of data points. In the experiments, we set the maximal T
to 100, but the algorithm converged before the maximal number
of iterations is exceeded (T ~ 15 — 20). Importantly, the computa-
tional complexity of spectral clustering step is O(N3), so the com-
putational cost of the proposed representation learning step is Tn,
times higher.

3.2. Centroid-based multi-view low-rank sparse subspace clustering

In addition to the pairwise MLRSSC, we also introduce objective
for the centroid-based MLRSSC which enforces view-specific repre-
sentations towards a common centroid. We propose to solve the
following minimization problem:

0 Z (Bl

c c,

o+ 100 e

)

v=1,...ny,

(25)

s.t. X(") =XWC® | digg(CV) =
where C* denotes consensus variable.

This objective function can be minimized by the alternat-
ing minimization cycling over the views and consensus variable.
Specifically, the following two steps are repeated: (1) fix consen-
sus variable C* and update each CV), v=1,..., n, while keeping
all others fixed and (2) fix C),v=1,...,n, and update C*.

By fixing all variables except one C(*), we solve the following
problem:

RITgT

st. X® =XWcW,

+20 ] — |2

min B4 ||

cv (26)

diag(C) =0

Again, we solve the convex optimization problem using ADMM. We
introduce auxiliary variables Cg") , Cé”), Cg") and AV) and reformu-
late the original problem:

min B1 H 1

¢ ¢ A®
st. X® = xWpa® - AW _ (V) dlag(c(v))
AW — c('/) AW — c(U) (27)

R RS S

The augmented Lagrangian is:
wn3 wn?
E({civ }i=1’A(U)’ {Aiv }i=1) =
O c® _ cx)?
+20 | — ||+

RN
% [X® - x©A® Hi

a0 -al;

+ % |A® — € + diag(Cy) ||i +
+ % ||A<v> - c;v) ||i + tr[Agvﬂ(x(u) _ x(u>A(u))]
)]+ A (AW -

+er[APT A® — )]

+ tr[Agv)T(A(w - )+ diag(Cg"))]

(28)

Update rule for Cé”) at iteration k+ 1. Given A at iteration
k+1 and C*, Af‘”) at iteration k, minimization of the objective in

Eq. (28) with respect to Cg”) leads to the following update rule for
c¥:
3

CP = (29 4 pg) ' (2AVC + 1A + A, (29)

Update rule for C*. By setting the partial derivative of the ob-
jective function in Eq. (25) with respect to C* to zero we get the
closed-form solution to C*:

2311 20 cw)
AV

It is easy to check that update rules for variables A("), C(”) C(v) and

dual variables {A(")}A are the same as in the pairwise similarities
based multi-view LRSSC (equations (14), (16),(18) and (22)).

In order to extend the model to the data contaminated by ad-
ditive white Gaussian noise, the objective in (25) is modified as
follows:

C = (30)

i 23 X XY e e+ e,

31
+A(”)||C(”)—C* . G

st. diag(CV) =0

v=1,...n

Compared to the model for clean data, the only update rule that
needs to be modified is for A""), which is the same as in pairwise
MLRSSC given in Eq. (24).

In centroid-based MLRSSC there is no need to combine affin-
ity matrices across views, since the joint affinity matrix can be
directly computed from the centroid matrix i.e. W = |C*| + |C*|T.
Algorithm 2 summarizes the steps of centroid-based MLRSSC. The
computational complexity of Algorithm 2 is the same as the com-
plexity of Algorithm 1.
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- . Table 2
Algorithm 2 C(e)ntrmd—based MLRS(S)C 2 Statistics of the multi-view datasets.
. v v max
Input: X = {X }V 1wk B, fo. {2 } 2y A, }’ 1 R0 Dataset Samples  Views  Clusters
Output: Assignment of the data pomts to k clusters
et ) _ _ ) UCI Digit 2000 3 10
1: !nltlallze. {C 0}l p =0, AW =0, {A; 0}1 - Reuters 600 s 6
i=1,..,ny 3-sources 169 3 6
2: while not converged do Prokaryotic 551 3 4
3: for v=1 to n, do Synthetic 1000 2 2
4; Fix others and update A") by solving (14) in the case

of clean data or (24) in the case of corrupted data
Fix others and update Cg") by solving (16)

Fix others and update Cg") by solving (18)
Fix others and update Cg”) by solving (29)
Fix others and update dual variables A;"), Ag“), Afl") by

solving (22) and also Ag") in the case of clean data
9: end for
10: Update p©; = min(pu;,

® N QW

wmex) i=1,...4

11: Fix others and update centroid C* by solving (30)
12: end while
13: Apply spectral clustering [12] to the affinity matrix

W = |C*] + [C*|T

4. Kernel multi-view low-rank sparse subspace clustering

The spectral decomposition of Laplacian enables spectral clus-
tering to separate data points with nonlinear hypersurfaces. How-
ever, by representing data points as a linear combination of other
data points, the MLRSSC algorithm learns the affinity matrix that
models the linear subspace structure of the data. In order to re-
cover nonlinear subspaces, we propose to solve the MLRSSC in
RKHS by implicitly mapping data points into a high dimensional
feature space.

We define ®: ¥ — F to be a function that maps the origi-
nal input space X to a high (possibly infinite) dimensional feature
space F. Since the presented update rules for the corrupted data
of both pairwise and centroid-based MLRSSC depend only on the
dot products (X®, X®)) = X®T'X® y—1,... ny, both approaches
can be solved in RKHS and extended to model nonlinear manifold
structure.

Let &(XW) = {q>(xF”>) e FIY

X® = {x € ]RD} mapped into high-dimensional feature space.
The objective functlon of pairwise kernel MLRSSC for data contam-
inated by noise is the following:

denote the set of data points

nu

LD wamwwmw%mwm

+h2 Hl) Ly

1<v,w<ny, v#W

st. diag(CV)=0, v=1,...n,. (32)

A c® —cw “i

Similarly, the objective function of centroid-based MLRSSC in
feature space for corrupted data is:

319X - X e [ )

B ||c<v> [, 20 —c|?) ==

st. diag(CV)y=0, v=1,...n,.

Since A" is the only variable that depends on X(), the update

3 4
rules for {Cl.(”)}i:l and dual variables {A;U)},-:z remain unchanged.

Update rule for A" at Given

4
{C(")}l 1,{Ai(“)}i:2 at iteration k, the AM™ is updated by the
following update rule:

-1
AV =[@(X) D (XY) + (12 + 13 + ta)l]
x [X)TOXD) + 1€ + p3C” (34)
+10aC — A — A — AP].

iteration k+1.

Substituting the dot product {®(X("), (X)) with the Gram ma-
trix K", we get the following update rule for A™):

AV =[KY + (12 + 3 + M4)l]

x [K® + 1€ +143C" +114C" =AY — AL — A
(35)

Update rule for AV is the same in pairwise and centroid-based
versions of the algorithm.

5. Experiments

In this section we present results that demonstrate the ef-
fectiveness of the proposed algorithms. The performance is mea-
sured on one synthetic and three real-world datasets that are com-
monly used to evaluate the performance of multi-view algorithms.
Moreover, we introduce novel real-world multi-view dataset from
molecular biology domain. We compared MLRSSC with the state-
of-the-art multi-view subspace clustering algorithms, as well as
with two baselines: best single view LRSSC and feature concate-
nation LRSSC.

5.1. Datasets

We report the experimental results on synthetic and four real-
world datasets. We give a brief description of each dataset. Statis-
tics of the datasets are summarized in Table 2.

UCI Digit dataset is available from the UCI repository.! This
dataset consists of 2000 examples of handwritten digits (0-9) ex-
tracted from Dutch utility maps. There are 200 examples in each
class, each represented with six feature sets. Following experi-
ments in [45], we used three feature sets: 76 Fourier coefficients
of the character shapes, 216 profile correlations and 64 Karhunen-
Love coefficients.

Reuters dataset [52] contains features of documents available
in five different languages and their translations over a common
set of six categories. All documents are in the bag-of-words repre-
sentation. We use documents originally written in English as one
view and their translations to French, German, Spanish and Italian
as four other views. We randomly sampled 100 documents from
each class, resulting in a dataset of 600 documents.

3-sources dataset 2 is news articles dataset collected from
three online news sources: BBC, Reuters, and The Guardian. All ar-
ticles are in the bag-of-words representation. Of 948 articles, we

T http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
2 http://mlg.ucd.ie/datasets/3sources.html.
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used 169 that are available in all three sources. Each article in the
dataset is annotated with a dominant topic class.

Prokaryotic phyla dataset contains 551 prokaryotic species de-
scribed with heterogeneous multi-view data including textual data
and different genomic representations [53]. Textual data consists
of bag-of-words representation of documents describing prokary-
otic species and is considered as one view. In our experiments we
use two genomic representations: (i) the proteome composition,
encoded as relative frequencies of amino acids (ii) the gene reper-
toire, encoded as presence/absence indicators of gene families in
a genome. In order to reduce the dimensionality of the dataset,
we apply principal component analysis (PCA) on each of the three
views separately and retain principal components explaining 90%
of the variance. Each species in the dataset is labeled with the phy-
lum it belongs to. Unlike previous datasets, this dataset is unbal-
anced. The most frequently occurring cluster contains 313 species,
while the smallest cluster contains 35 species.

Synthetic dataset was generated in a way described in [42,54].
1000 points are generated from two views, where data points for
each view are generated from two-component Gaussian mixture
models. Cluster means and covariance matrices for view 1 are:
pP=a 1, 3P =01 05 05 15), =02 2), =

(03 0; 0 0.6), and for view 2 are: /ng):(Z 2), 21(2):

(03 0, 0 06), uP=(1 1, =P =01 05 05 1.5).

5.2. Compared methods and parameters

We compare pairwise MLRSSC, centroid-based MLRSSC and ker-
nel extensions of both algorithms (KMLRSSC) with the best per-
forming state-of-the-art multi-view subspace clustering algorithms,
including Co-regularized Multi-view Spectral Clustering (Co-Reg)
[42], Robust Multi-view Spectral Clustering (RMSC) [44] and Con-
vex Sparse Multi-view Spectral Clustering (CSMSC) [45]. Moreover,
we also compare MLRSSC algorithms with two LRSSC baselines:
(i) best single view Low-rank Sparse Subspace Clustering (LRRSC)
[32] that performs single view LRSSC on each view and takes the
individual view that achieves the best performance, and (ii) feature
concatenation LRRSC that concatenates features of each individual
view and performs single-view LRSSC on the joint view represen-
tation.

Co-regularized multi-view SC has a parameter « that we vary
from 0.01 to 0.05 with step 0.01 [42]. We choose A in RMSC from
the set of the values: {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, as
tested in [44]. Parameter o in CSMSC is chosen from {10!, 102}
and parameter 8 from {10~3,10~4, 10>} [45]. For all these algo-
rithms the standard deviation of Gaussian kernel used to build
similarity matrix is set to the median of the pairwise Euclidean
distances between the data points [42,44,45]. The number of it-
erations of the Co-Reg SC is set to 100, but it converged within
less than 10 iterations. The number of iterations of the CSMSC is
set to 200 [45] and of the RMSC to 300, as set in the available
source code provided by the authors. All other parameters of these
algorithms are set to values based on the respective source codes
provided by their authors.

For LRSSC and MLRSSC we first choose penalty parameter
from the set of values {10, 100, 1000, 10000} with fixed 8, B8, and
AV). We set the same value p for all constraints (u;,i=1,...,4),
but one can also optimize w for each of the constraints. In each
iteration we update & to be pu with fixed p of 1.5 and till the
maximal value of u (set to 106) is reached. For single-view LRSSC
p is set to 1. Low-rank parameter 8, is tuned from 0.1 to 0.9 with
step 0.2 and sparsity parameter 8, is set to (1 — f1). Consensus
parameter A is tuned from 0.3 to 0.9 with step 0.2. It is also possi-
ble to use different A(") for each view v, but since we did not have
any prior information about the importance of views, we use the

same A = A" for each view v. For all datasets we use the variant
adjusted for the corrupted data, except for the UCI digit dataset. In
the kernel extension of MLRSSC, we use Gaussian kernel and opti-
mize standard deviation for each view separately in range {0.5, 1,
5, 10, 50} times the median of the pairwise Euclidean distances be-
tween the data points, while holding other parameters fixed. Best
sigma for pairwise MLRSSC was also used for centroid MLRSSC
without further optimization. The maximum number of iterations
is set to 100 and the convergence error tolerance to € = 10~3 for
linear MLRSSC and € = 10~ for kernel MLRSSC. We tune the pa-
rameters of each algorithm and report the best performance.

All compared methods have k-means as the last step of the
algorithm. Since k-means depends on the initial cluster centroid
positions and can yield different solution with different initializa-
tions, we run k-means 20 times and report the means and stan-
dard deviations of the performance measures. We evaluate cluster-
ing performance using five different metrics: precision, recall, F-
score, normalized mutual information (NMI) and adjusted rand in-
dex (Adj-RI) [55]. For all these metrics, the higher value indicates
better performance.

5.3. Results

Table 3 compares the clustering performance of the MLRSSC
with other algorithms on four real-world datasets and one syn-
thetic dataset. Results indicate that MLRSSC consistently outper-
forms all other methods in terms of all tested measures. On all five
datasets, MLRSSC improves performance to a large extent which
demonstrates the importance of combined low-rank and sparsity
constraints. More specifically, the average NMI of the MLRSSC is
higher than the second best method by 7%, 9%, 4%, 12% and 2%
on the 3-sources, Reuters, UCI digit, Prokaryotic and synthetic
datasets, respectively. Similar improvements can also be observed
when using other metrics for measuring clustering performance.

Pairwise and centroid-based MLRSSC perform comparably, ex-
cept on Prokaryotic dataset where pairwise MLRSSC is significantly
better than the centroid-based MLRSSC, except in recall. When
comparing linear MLRSSC with the kernel MLRSSC, linear MLRSSC
performs better on 3-sources and Reuters datasets. Kernel MLRSSC
outperforms linear MLRSSC on UCI Digit, Prokaryotic and synthetic
datasets, although the difference on the UCI Digit dataset is not
significant. However, this comes with the cost of tuning more pa-
rameters for computing the kernel. Better performance of linear
MLRPPSC on 3-sources and Reuters datasets is not surprising, since
these datasets are very sparse (more than 95% values are zeros)
and have a large number of features, much higher than the num-
ber of data points. On the other hand, UCI Digit, Prokaryotic and
especially synthetic datasets have dense lower-dimensional feature
vectors and benefit from the projection to a high-dimensional fea-
ture space.

5.4. Parameter sensitivity

MLRSSC trades-off low-rank, sparsity and consensus parame-
ters: Bq, B2 and A(), respectively. In this section, we test the ef-
fect of these parameters on the performance of the MLRSSC. In all
experiments, we set the sparsity parameter 8, to 1 — 3, i.e. the
higher value of a low-rank parameter leads to the lower value of
a sparsity parameter and vice versa. This depends on whether the
problem being solved requires exploiting more global or the local
structure of the data.

Fig. 1 shows how the NMI metrics changes with different values
of low-rank parameter f; for both pairwise and centroid-based
MLRSSC, while keeping A(Y) parameter fixed. On the 3-sources,
Reuters and UCI Digit, MLRSSC algorithm outperforms the second
best algorithm regardless of the choice of B1. On the Prokaryotic
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Table 3
Performance of different algorithms on five multi-view datasets. The mean and standard deviation of 20 runs of k-means clustering
algorithm with different random initializations are reported.

Dataset Method F-score Precision Recall NMI Adj-RI
3-sources Best Single View LRSSC ~ 0.569 (0.039)  0.604 (0.015)  0.541 (0.058)  0.496 (0.024)  0.449 (0.042)
Feat Concat LRSSC 0.579 (0.048)  0.593 (0.031)  0.571 (0.078)  0.521 (0.015)  0.455 (0.054)
Co-Reg Pairwise 0.463 (0.020)  0.504 (0.049)  0.437 (0.033)  0.519 (0.036)  0.315 (0.033)
Co-reg Centroid 0.505 (0.032)  0.551 (0.052)  0.467 (0.025)  0.514 (0.026)  0.370 (0.045)
RMSC 0.477 (0.033) 0515 (0.034)  0.453 (0.036)  0.517 (0.024)  0.330 (0.045)
CSMSC 0.482 (0.026)  0.518 (0.056)  0.464 (0.027)  0.518 (0.026)  0.335 (0.039)
Pairwise MLRSSC 0.659 (0.049)  0.707 (0.051)  0.619 (0.056)  0.594 (0.025)  0.565 (0.060)
Centroid MLRSSC 0.654 (0.042)  0.696 (0.055)  0.619 (0.052)  0.595 (0.021)  0.557 (0.053)
Pairwise KMLRSSC 0.541 (0.025)  0.619 (0.032)  0.482 (0.033)  0.529 (0.020)  0.424 (0.029)
Centroid KMLRSSC 0.556 (0.045)  0.622 (0.049)  0.503 (0.044)  0.533 (0.031)  0.439 (0.056)
Reuters Best Single View LRSSC ~ 0.333 (0.003)  0.313 (0.007) 0357 (0.019)  0.245 (0.008)  0.191 (0.005)
Feat Concat LRSSC 0.347 (0.005)  0.319 (0.010)  0.384 (0.022)  0.283 (0.006)  0.204 (0.008)
Co-Reg Pairwise 0371 (0.009)  0.344 (0.016)  0.410 (0.023)  0.300 (0.014)  0.233 (0.017)
Co-reg Centroid 0362 (0.017)  0.331 (0.022)  0.409 (0.020)  0.291 (0.014)  0.221 (0.023)
RMSC 0361 (0.019)  0.325 (0.012)  0.412 (0.023)  0.297 (0.018)  0.217 (0.015)
CSMSC 0.365 (0.005)  0.327 (0.010)  0.420 (0.014)  0.295 (0.020)  0.220 (0.008)
Pairwise MLRSSC 0.428 (0.012)  0.389 (0.024)  0.486 (0.019)  0.390 (0.018)  0.300 (0.021)
Centroid MLRSSC 0432 (0.010) 0395 (0.023) 0482 (0.025)  0.394 (0.015)  0.306 (0.017)
Pairwise KMLRSSC 0.429 (0.013)  0.415 (0.018)  0.446 (0.016)  0.380 (0.018)  0.311 (0.017)
Centroid KMLRSSC 0.426 (0.013)  0.410 (0.018)  0.443 (0.015)  0.373 (0.016)  0.307 (0.017)
udal digit Best Single View LRSSC ~ 0.702 (0.033)  0.659 (0.033)  0.755 (0.027)  0.754 (0.020)  0.666 (0.038)
Feat Concat LRSSC 0.698 (0.038)  0.671 (0.046)  0.728 (0.032)  0.751 (0.021)  0.663 (0.043)
Co-Reg Pairwise 0.694 (0.057)  0.671 (0.068)  0.718 (0.047)  0.739 (0.036)  0.658 (0.065)
Co-reg Centroid 0.754 (0.067)  0.735 (0.082)  0.775 (0.050)  0.783 (0.033)  0.726 (0.075)
RMSC 0.742 (0.070)  0.728 (0.080)  0.757 (0.061)  0.778 (0.040)  0.713 (0.079)
CSMSC 0.775 (0.045)  0.725 (0.069)  0.836 (0.015)  0.819 (0.019)  0.748 (0.051)
Pairwise MLRSSC 0.830 (0.048)  0.809 (0.070)  0.854 (0.027)  0.851 (0.023)  0.810 (0.054)
Centroid MLRSSC 0.835 (0.047)  0.819 (0.066)  0.854 (0.027)  0.854 (0.023)  0.817 (0.053)
Pairwise KMLRSSC 0.827 (0.063)  0.800 (0.078)  0.861 (0.022)  0.855 (0.027)  0.807 (0.072)
Centroid KMLRSSC 0.840 (0.043)  0.820 (0.065) 0.862 (0.019)  0.858 (0.020)  0.822 (0.048)
Prokaryotic  Best Single View LRSSC ~ 0.579 (0.057)  0.551 (0.016)  0.634 (0.100)  0.233 (0.026)  0.280 (0.051)
Feat Concat LRSSC 0.584 (0.054)  0.542 (0.015)  0.644 (0.092)  0.218 (0.029)  0.275 (0.057)
Co-Reg Pairwise 0.468 (0.023)  0.568 (0.023)  0.398 (0.022)  0.286 (0.021)  0.213 (0.031)
Co-reg Centroid 0.459 (0.010)  0.567 (0.010)  0.386 (0.012)  0.296 (0.018)  0.206 (0.012)
RMSC 0.447 (0.027) 0567 (0.038)  0.369 (0.023)  0.315 (0.041)  0.198 (0.044)
CSMSC 0.462 (0.026)  0.565 (0.024)  0.391 (0.026)  0.269 (0.022)  0.206 (0.033)
Pairwise MLRSSC 0.591 (0.016)  0.624 (0.003)  0.566 (0.036)  0.322 (0.002)  0.345 (0.016)
Centroid MLRSSC 0.574 (0.028)  0.530 (0.014)  0.756 (0.124)  0.202 (0.018)  0.258 (0.032)
Pairwise KMLRSSC 0.591 (0.056)  0.725 (0.068)  0.499 (0.048)  0.437 (0.039)  0.398 (0.082)
Centroid KMLRSSC 0.582 (0.070)  0.712 (0.079)  0.492 (0.062)  0.424 (0.046)  0.384 (0.100)
Synthetic Best Single View LRSSC ~ 0.624 (0.000)  0.560 (0.000)  0.704 (0.000)  0.182 (0.000)  0.152 (0.000)
Feat Concat LRSSC 0.682 (0.000)  0.682 (0.000)  0.682 (0.000)  0.283 (0.000)  0.364 (0.000)
Co-Reg Pairwise 0.660 (0.000)  0.637 (0.000)  0.685 (0.000)  0.260 (0.000)  0.295 (0.000)
Co-reg Centroid 0.646 (0.000)  0.630 (0.000)  0.664 (0.000)  0.229 (0.000)  0.274 (0.000)
RMSC 0.715 (0.000)  0.715 (0.000)  0.715 (0.000)  0.338 (0.000)  0.430 (0.000)
CSMSC 0.730 (0.000)  0.729 (0.000)  0.731 (0.000)  0.366 (0.000)  0.459 (0.000)
Pairwise MLRSSC 0.689 (0.000)  0.689 (0.000)  0.689 (0.000)  0.294 (0.000)  0.379 (0.000)
Centroid MLRSSC 0.690 (0.002)  0.690 (0.002)  0.690 (0.002)  0.296 (0.003)  0.380 (0.004)
Pairwise KMLRSSC 0.742 (0.000)  0.742 (0.000)  0.742 (0.000)  0.385 (0.000)  0.484 (0.000)
Centroid KMLRSSC 0.743 (0.000)  0.743 (0.000)  0.805 (0.000)  0.388 (0.002)  0.487 (0.000)
3 sources Reuters UCI Digit Prokaryotic
—e— PMLRSSC
0.6 i ; e A~ 9 —o— CMLRSSC o3fe—=9—° °
—— Best other —6— PMLRSSC
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Fig. 1. The performance of the MLRSSC w.r.t. NMI measure when varying low-rank parameter 8; and keeping consensus parameter A(") fixed. Sparsity parameter B, is set
to 1 — By. Blue line shows the best performing algorithm besides MLRSSC, among the algorithms listed in Table 3. PMLRSSC stands for pairwise MLRSSC and CMLRSSC for
centroid-based MLRSSC.
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Fig. 2. The performance of the MLRSSC w.r.t. NMI measure when varying consensus parameter A(") and keeping low-rank parameter 8; and sparsity parameter 8, fixed.
Blue line shows the best performing algorithm besides MLRSSC, among the algorithms listed in Table 3.
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Fig. 3. Average computational time in seconds as a function of the number of data
points, measured on the UCI Digit dataset. For the Co-Reg and MLRSSC algorithm
times for pairwise regularization are shown, but they are similar for the centroid
regularization. The difference between Co-Reg and RMSC can not be seen on this
scale, so these two algorithms are shown together.

dataset, pairwise MLRSSC performs comparably to RMSC, but again
the algorithm is insensitive to the B; parameter. On the other
hand, centroid-based MLRSSC lags behind on this dataset with re-
spect to NMI measure, but consistently improves its performance
with the higher values of §;.

Next, we vary consensus parameter A(Y) and keep the low-rank
parameter B; and sparsity parameter B, fixed. Fig. 2 shows the
performance of the MLRSSC with respect to NMI measure for dif-
ferent values of A(). Similarly as when varying 8; parameter, the
MLRSSC performs consistently better than other algorithms regard-
less of the choice of A(*). Again, the only exception is the centroid-
based MLRSSC on the Prokaryotic dataset. These results prove that
MLRSSC is pretty stable regardless of the choice of its parameters
B1, B2 and A(V), as long as the parameters are chosen in an appro-
priate range.

5.5. Computational time and convergence

In order to check how computational time of the MLRSSC scales
with the increase of the number of data points, we perform experi-
ments on the UCI digit dataset and compare MLRSSC with other al-

gorithms. Computational time depends on the number of iterations
and convergence conditions. We use the same number of iterations
and error tolerance as when comparing performance of the algo-
rithms. Fig. 3 shows the computational time averaged over 10 runs
as a function of the number of data points. Figure 3 demonstrates
that MLRSSC is more efficient than CSMSC. Compared to Co-Reg SC
and RMSC, the better performance of MLRSSC comes with a higher
computational cost.

Fig. 4 demonstrates the behavior of convergence conditions for
pairwise MLRSSC. For ease of illustration, the errors are normal-
ized and summed across views. It can be seen that on all four
real-world datasets, the algorithm converges within 20 iterations.
Centroid MLRSSC exhibits very similar behavior. Fig. 5 shows ob-
jective function value for both pairwise and centroid MLRRSC with
the respect to number of iterations.

6. Concluding remarks

In this paper we proposed multi-view subspace clustering al-
gorithm, called Multi-view Low-rank Sparse Subspace Clustering
(MLRSSC), that learns a joint subspace representation across all
views. The main property of the algorithm is to jointly learn an
affinity matrix constrained by sparsity and low-rank. We defined
optimization problems and derived ADMM-based algorithms for
pairwise and centroid-based regularization schemes. In addition,
we extended the proposed MLRSSC algorithm to nonlinear sub-
spaces by solving the related optimization problem in reproducing
kernel Hilbert space. Experimental results on multi-view datasets
from various domains showed that proposed algorithms outper-
forms state-of-the-art multi-view subspace clustering algorithms.

High computational complexity presents serious drawback of
spectral clustering algorithms. In the future work, we plan to ex-
plore how to improve the efficiency of the proposed approach to
be applicable to large-scale multi-view problems. Moreover, we
may consider how to extend the MLRSSC algorithm to handle in-
complete data.
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Fig. 4. Sum of normalized errors across views for pairwise MLRSSC. Behavior is very similar for centroid MLRSSC.
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