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Abstract 

Concentrations of 23 trace elements (TEs; essential: Co, Cu, Fe, Mn, Mo, Se, V, Zn; non-

essential: Ag, Al, As, Ba, Cd, Cr, Cs, Li, Ni, Pb, Rb, Sr, Ti, Tl, U) in whole soft tissues of 

Noah’s Ark shell (Arca noae) were determined monthly during one year (March 2013 - 

February 2014) at two sampling sites in the central part of the Eastern Adriatic Sea. Our aim 

was to detect the influence of reproductive cycle and changes in the environmental factors on 

the variabilities of TEs’ contents. Higher concentrations of Pb, Ba, V, Mo, Mn and Fe were 

found at potentially contaminated site in Pašman channel, whereas higher concentrations of 

Tl, Ni, Li, Cr, Cd, Ti and Se were found at reference site in Nature Park Telašćica. Since 

several bioaccumulated TEs were associated to mean gonadal index, in TEs monitoring in A. 

noae, animal gonadal status has to be considered. 

 

 

Keywords: Noah’s Ark shell, Arca noae; the Adriatic Sea; trace metals/metalloids; mean 

gonadal index; seasonal variability 
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Due to sedentary lifestyle, bivalves are suitable indicator species of coastal pollution because 

their body contaminant burdens can be attributed to local pollution sources or locally polluted 

water and sediment. Bivalves give time-integrated information on the bioavailability of 

chemicals in the water column and sediments (Regoli, 1998), and are known to accumulate 

high levels of metals in their tissues and yet survive in contaminated environments (Goldberg 

et al., 1978; Cantillo, 1998). A number of factors ranging from physico-chemical, 

environmental to biological, have been shown to affect the uptake and accumulation of trace 

elements by marine organisms. The accumulation of metals by marine organisms can vary 

through the year. Such seasonal changes can be caused by a combination of parameters 

including growth, reproduction and moulting cycles, food supply and environmental 

conditions (e.g. temperature, irradiance, nitrogen and phosphorus concentrations) acting 

directly on uptake or indirectly on growth rates (e.g. Beyer et al., 2017; Brown and Depledge, 

1998; Phillips and Rainbow, 1992). Fattorini et al. (2008) found that seasonal fluctuations in 

metal content of Mytilus galloprovincialis appeared mostly related to phytoplanktonic blooms 

and especially to reproductive cycle which exhibited a certain inter-annual shift of the 

gametogenesis period during their 5-year study. In another multi-annual study on M. 

galloprovincialis an inverse relationship of mussel condition index (CI) and temperature with 

trace metals levels and metallothionein was found, which indicated the influence of food 

abundance and mussel annual reproductive cycle (Ivanković et al., 2005). Temperature has 

been recognised as a key factor that affects physiology of mussels (e.g. Mytilus sp.), 

influencing specifically the kinetics of metal uptake and excretion in marine biota (Brown and 

Depledge, 1998). 

Noah’s Ark shell (Arca noae Linnaeus, 1758) lives attached by solid byssus on rocks on all 

types of bottom that contain hard substrate and occurs either as solitary individual or in 

clumps. It filters the seawater in order to perform respiration and feeding and consequently it 
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efficiently accumulates nutrients, but also various toxins from the environment. As a slow 

growing organism A. noae can obtain length between 70 and 90 mm and live up to 16 years 

(Peharda et al., 2002 and 2003), but in unexploited populations the largest specimens with 

120.3 mm in length and 24 years old were observed as well (Puljas et al., 2015). Therefore, A. 

noae could be a very efficient accumulator of various contaminants including trace 

metals/metalloids and it could be potentially a good bioindicator of a long term metal 

contamination in the coastal marine ecosystems. Unlike other bivalve species, for which there 

are a lot of data on concentrations of metals (Eisler, 2010), studies on metal concentrations in 

soft tissue of A. noae are generally lacking. According to our knowledge only four short 

reports on concentrations of several trace metals in tissues (Ozretić et al., 1990; Cuculić et al., 

2010; Ghribi et al., 2016; Papadopoulou, 1973) and one report on elemental concentrations in 

the shells of this bivalve species (Kobelja et al., 2016) have been published so far. 

The current study area includes one of the most important natural habitats of A. noae in 

central part of the Eastern Adriatic Sea, the area of the Pašman channel. This region is under 

considerable anthropogenic pressure of municipal and industrial wastewaters and native 

organisms could be exposed to contaminants originating from different sources. The presence 

of metals in the environment is a result of their natural origin on one hand and of the human 

activities on the other, and such anthropogenic pollution in particular affects coastal 

ecosystems. Main sources of anthropogenic impact in coastal areas are the residence in the 

coastal zone, fisheries and aquaculture, shipping, tourism and land-use practices (agriculture, 

industrial development). 

Total of 23 elements (TEs) were studied: essential – Co, Cu, Fe, Mn, Mo, Se, V, Zn and non-

essential – Ag, Al, As, Ba, Cd, Cr, Cs, Li, Ni, Pb, Rb, Sr, Ti, Tl, U. These specific elements 

were chosen due to their physiological importance for marine organisms (e.g. Cu, Co, Fe, Mn, 

Mo, Se, V and Zn), their possible toxicity (e.g. Ag, Al, Cd, Cr, Ni, Pb), as well as due to their 
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frequent occurrence in marine environment as a consequence of leaching from vessel parts 

and antifouling paints, leaching from agricultural lands, occurrence in communal wastewater 

discharge, in the industrial wastes and in the medical wastes. 

The intention of this work was to extend our knowledge on the natural variability of TEs in 

tissues of commercially important bivalve species A. noae, which is currently lacking, 

focusing on seasonal fluctuations. This study presented for the first time the observations on 

concentrations of TEs in A. noae during one year. Accordingly, the aim of this study was to 

detect if: i) the physiological changes (reproductive cycle) and changes in food availability 

(phytoplankton bloom) influenced the variability of TEs’ contents in the whole soft tissues of 

A. noae during one year; ii) the higher accumulation of TEs could be found at the sampling 

site more exposed to anthropogenic influence. 

 

The study area is located in the central part of the Eastern Adriatic Sea in the Republic of 

Croatia, where two sampling sites were selected, as shown in Fig. 1. First sampling site was 

selected within the Pašman channel (PC), that is spreading in the northwest–southeast 

direction between the coastline and the island Pašman and is the harvesting area of A. noae. 

The expected anthropogenic impact on PC sampling site (at the depth of 5 – 7 m) originated 

from several sources: 1) municipal wastewaters of the town Biograd (hospital and marina) in 

the southeast, which are released into the marine water without prior treatment; 2) municipal 

and industrial wastewaters of the city of Zadar (international harbour - passengers and 

transport of chemicals) in the northwest, which are released into the marine water after the 

treatment in the wastewater treatment plant by submarine outlet placed at the depth of 40 m 

and distance of approximately 400 m from the shore; 3) the sewerage of Pašman island 

settlements, which is released directly into the marine water, without any pre-treatment; 4) the 

vicinity of major marine transportation routes and nautical tourism (marina in Sukošan with 
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1400 berths as the largest Croatian marina). Second sampling site was selected in the Nature 

Park Telašćica (NP; at the depth of 10-14 m) located on the island Dugi otok as the site of 

expectedly lower anthropogenic impact. 

The A. noae from natural populations were sampled once per month during 12 months (from 

March 2013 to February 2014) by SCUBA diving and transported in dark and cool containers 

to the laboratory within 6 hours. Samples were immediately washed with seawater and the 

whole soft tissue dissected using stainless steel equipment. Nine individuals per station per 

sampling were randomly selected for metal analysis and their whole soft tissues were 

combined, without prior depuration, in three composite samples composed of whole soft 

tissues of three individuals. The length (mean±SD at NP site: 8.4±0.6 cm, n= 108 and at PC 

site: 8.1±0.6 cm, n=108) and the total weight (mean±SD at NP site: 58.8±12.5 g, n=108 and at 

PC site: 60.7±14.6 g, n=108) of 108 individuals selected at each sampling site for metal 

analysis were recorded during the study. The bivalve sampling was complemented by 

seawater temperature records measured near the sea bottom (at the same depth where bivalves 

were sampled). 

Previous analyses of chemical data in the Pašman channel have shown that there were neither 

abnormally high concentrations of the nutrients nor low concentrations of the dissolved 

oxygen, meaning that eutrophication was not in the progress in this area (Vilibić et al., 1999). 

On the basis of the primary production and benthos investigations, the ventilation of the 

region seemed to be optimal (Vilibić et al., 1999). 

 

Condition index was defined as the ratio between tissue dry weight and shell length: CI = (dry 

flesh weight, g / shell lenght, cm) × 100 (Lundebye et al., 1997). The whole soft tissues were 

dried using lyphilizer FreeZone


 2.5 L (Labconco, USA) for 72h (T = -45 – -49 °C; p = 12 – 

16 Pa). 



 7 

 

Total of 285 individuals collected from April 2013 to February 2014 at two sampling sites 

were processed for histological analysis. Gonad samples were fixed in 4% formaldehyde and 

stored for histological analysis. Each sample was dehydrated in ethanol, embedded in paraffin 

(Histowax, LeicaR), sectioned at 7 µm and stained using hematoxylin and counterstained with 

eosin. Histological sections were examined at 100 and 400× magnification, sexed and 

assigned to one of six qualitative categories of reproductive stages according to Walker and 

Power (2004) and adopted by Peharda et al. (2006) for A. noae. Since 95.3% of collected 

individuals were females and according to fact that accumulations of trace elements can vary 

between male and female individuals during gametogenesis (Fitzpatrick et al., 2008; 

Meistertzheim et al., 2009; Richir and Gobert, 2014, 2016), only female individuals were used 

in the analysis. In addition, a mean gonadal index (MGI) was calculated for each sampling 

month and site. This value was obtained by multiplying the number of individuals from each 

development stage by the numerical ranking of that stage, and dividing the result by the total 

number of individuals in each sampling month (Gosling, 2003). Qualitative categories of 

reproductive stages and corresponding numerical values used for calculation of mean gonadal 

index were following: inactive (0), early active (3), late active (4), mature (5), partially 

spawned (2) and spent (1). 

 

Wet digestions of A. noae soft tissues were performed in duplicate by weighing 

approximately 100 mg homogenized freeze-dried (the average water content in soft tissue was 

~80%) whole soft tissues of A. noae with a mixture of 5 mL HNO3 (65% Suprapur, Merck) 

and 1 mL H2O2 (30% Suprapur, Merck) in a tightly capped Teflon vials by heating at 80°C 

for 3h (mild digestion using single-step simulation of hot-plate method). Digested samples 

were quantitatively transferred into the volumetric flasks of 50 mL, filled to the mark with 
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deionised water (Milli-Q, 18.2 Mcm) and stored in polyethylene bottles until analyses. 

Procedural blank samples were also prepared and analysed. 

Analyses of metals in digested soft tissues of A. noae were performed using high resolution 

inductively coupled plasma mass spectrometer (HR ICP-MS, Element 2, Thermo Finnigan) 

using an autosampler (ASX 510, Cetac Technologies) and sample introduction kit consisting 

of SeaSpray nebulizer and cyclonic spray chamber Twister. Prior to measurements indium 

(Fluka) was added to all samples as internal standard (1 μg L
-1

). Measurements of 
7
Li, 

82
Se, 

85
Rb, 

98
Mo, 

109
Ag, 

111
Cd, 

133
Cs, 

205
Tl, 

208
Pb and 

238
U were operated in low-resolution mode, 

whereas 
27

Al, 
47

Ti, 
51

V, 
52

Cr, 
55

Mn, 
56

Fe, 
59

Co, 
60

Ni, 
63

Cu, 
66

Zn, 
86

Sr and 
138

Ba were measured 

in medium-resolution mode and 
75

As in high-resolution mode. External calibration was 

performed using standards prepared in 2% HNO3 (Suprapur, Merck) by appropriate dilutions 

of 100 mg L
-1 

multielement stock standard solution (Analytika). 

Standard reference materials IAEA-452 (scallop tissue, International Atomic Energy Agency 

Reference Materials), SRM 1566a (oyster tissue, standard reference material, distributed by 

U.S. Department of Commerce, National Bureau of Standards, Gaithersburg) and CRM 278R 

(mussel tissue reference material, Environment Institute, Ispra, Italy and Institute for 

Reference Materials and Measurements, Geel, Belgium) for trace elements were analysed for 

quality control check for the determination of metals in the A. noae tissues (Table 1). In this 

study the range of good agreement with the reference material was set at ±30% for the soft 

tissue of A. noae. All measured metal concentrations were within this range except Zn 

concentrations. Therefore, Zn concentrations were recalculated using the respective correction 

factor. 

 

Data analysis was carried out using the Statistica 8 (StatSoft Inc.) software package. The one-

way ANOVA was applied for testing the effect of sampling month on TEs concentrations and 
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CI of A. noae. Differences in concentrations of TEs between two sampling sites were tested 

using Mann-Whitney U test. Differences in CI between two sites were tested using t-test. 

Pearson’s correlations analysis was applied to the data to determine the degree of association 

between TEs concentrations and MGI, as well as associations between all measured TEs. The 

significance level for all applied tests and correlations was set at p < 0.05. 

 

Values of MGI, CI and seawater temperatures are presented in Fig. 2 and the results of 

histological analysis of gonads presented as relative frequencies of different development 

phases are shown in Fig. 3. It was evident that A. noae in this area of the Adriatic Sea had 

only one annual spawning peak, with minima in MGI occurring in September at NP site and 

in August-September at PC site, respectively (Fig. 2). There was almost no gonad inactivity 

period, and new female gametogenesis cycle began as early as September (Fig. 3). From 

February to April (spring) female gametes were predominantly in the stage of late 

development and maturity was reached already in May (late spring) and lasted till August (Fig. 

3). Spawning started in July and occurred during August and September at PC site, while it 

started later in August and occurred mainly in September at NP site. Gametogenic 

development started immediately after spawning. There was no correlation between MGI and 

temperature at both sampling sites (r = -0.0195, p = 0.914 at NP and r = -0.0248, p = 0.891 at 

PC). 

Condition index and MGI were significantly correlated at both sampling sites (r = 0.648, p = 

0.00005 at NP site and r = 0.575, p = 0.00047 at PC site). There was a significant effect of 

temporal variability on CI in A. noae over the sampling year at both sampling sites (NP site: F 

= 2.366, p = 0.0377; PC site: F = 2.308, p = 0.042). In the first six months of the study high 

similarity in CI and MGI patterns was observed. Later on, a small peak in CI that occurred in 

October coincided with slight increase in seawater temperature (Fig. 2). Even though the CI 
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values at two sampling sites showed similar patterns throughout the year (Fig. 2) the 

difference in CI between NP and PC sites was significant with higher CI values noted at NP 

site (p = 0.002).  

 

To get an overview of levels of 23 TEs studied in the soft tissue of A. noae, ranges of 

measured values and the median values of all measured samples from reference (NP) and 

contaminated (PC) site during one year are presented in Table 2. Concentrations measured in 

soft tissues increased in the following order: Tl < Cs < U < Co < Pb < Ni < Li < Cr < Ba < V 

< Cd < Ti < Mo < Ag < Cu < Rb < Se < Mn < Sr < As < Al < Zn < Fe covering the range 

from several ng/g(dry weight) to several hundred g/g(dry weight) (i.e. range of five orders of 

magnitude). Significant differences in yearly medians of TE concentrations between two 

sampling sites were observed for Tl, Pb, Ni, Li, Cr, Ba, V, Cd, Ti, Mo, Se, Mn, Fe (p < 0.05, 

Mann-Whitney U test; Table 2), with higher concentrations of Pb, Ba, V, Mo, Mn and Fe at 

potentially contaminated site in Pašman channel (PC) and with higher concentrations of Tl, Ni, 

Li, Cr, Cd, Ti and Se at reference site in Nature Park Telašćica (NP). 

The concentrations of majority of analysed TEs showed significant temporal variability at NP 

site, whereas the same was observed for only half of analysed TEs at PC site. The variability 

of TEs concentrations measured once per month during one year was significant (ANOVA, p 

< 0.05) at NP sampling site for all measured elements except Cu, Pb, Sr, Zn, As and Rb 

(Table 3). Similarly to NP, at PC site variability was also not significant for Cu, Pb, Zn and 

As, and additional seven TEs (Mn, Se, Ag, Cr, Ni, Li, Al) showed no significant variability as 

well (Table 3). 

 

Mean values and standard deviations of 23 analysed TEs during the reproductive cycle of A. 

noae at two sampling sites are presented in Figs. 4 – 6. Studied TEs could be classified in 
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three groups according to their correlation to MGI: i) negatively correlated TEs (Ba, Cd, Co, 

Fe, Li, Mn, Ni, Se and V; Fig. 4); ii) positively correlated TEs (As, Rb, Tl and Zn; Fig. 5); iii) 

non-correlated TEs (Ag, Al, Cr, Cu, Cs, Mo, Pb, Sr, Ti and U; Fig. 6). The results from our 

study showed that first group of 9 out of 23 TEs analysed in A. noae (Ba, Cd, Co, Fe, Li, Mn, 

Ni, Se and V; Fig. 4) followed the pattern with lower TEs levels in the late spring and early 

summer, and higher levels in the period after bivalve spawning. Second group of TEs in A. 

noae (As, Rb, Tl and Zn; Fig. 5) showed the opposite sinusoidal pattern, i.e. a higher level of 

metal during the period of intensive gonadal and somatic growth in late spring and early 

summer (the pre-spawning period) and lower in the late summer and autumn after bivalve 

spawning when soft tissue weight minimum occurred. Third group of TEs (Ag, Al, Cr, Cu, Cs, 

Mo, Pb, Sr, Ti and U; Fig. 6) either at one or at both sampling locations, partially followed or 

generally did not follow the aforementioned sinusoidal patterns of seasonal variations in metal 

levels. Another feature of TEs’ patterns in this group was presence of sharp peaks noticed for 

Al, Cs and Ti in September 2103, November 2013 and January 2014 (Fig. 6) and for Ag and 

Cu in November 2013 and January 2014 at NP site, but not at PC site (Fig. 6). 

 

In general, reproductive and condition indices observed in this study were in accordance with 

previous studies reported for A. noae in the Adriatic Sea. The pattern in development stages of 

A. noae recorded in this study (Fig. 3) was similar to the pattern already observed in the 

populations inhabiting Mali Ston Bay in the south Adriatic Sea which indicated that only one 

spawning peak occurred each year of that study (Peharda et al., 2006). Although MGI 

appeared to increase with rising temperature and decrease with falling temperature (Fig. 2) no 

correlation between MGI and temperature was found, which was in accordance with previous 

observations of Peharda et al. (2006) who found no correlation between MGI and 

environmental conditions in Mali Ston Bay. In this study a significant temporal variability in 
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CI was observed. Any increase or decrease in the condition index (Fig. 2) depends on the 

balance between the rates of food assimilation and of catabolism (metabolic breakdown of 

complex organic molecules with liberation of energy). The CI therefore responds to 

anthropogenic stress, but also to the use of metabolic reserves when accumulating gametes 

(Phillips and Rainbow, 1992). The pattern of CI observed in this study was in accordance with 

CIs of A. noae from Pašman channel recorded by Ţupan et al. (2014). In that study CI values 

were greatest from April to June 2008, which corresponded to the period preceding spawning, 

while minimal values of CI were recorded in November 2008 and December 2008, when low 

concentrations of chlorophyll a were also recorded (Ţupan et al., 2014). 

With regard to the differences in the yearly medians of TEs concentrations in A. noae between 

two sampling sites (Table 2), we can relate higher Ni concentration at NP site to a slightly 

increased Ni concentrations in sediments that were previously found at that site (Ivanković et 

al., 2016). It was probably related to the boating activities and leaching from the chromate 

coated parts of boats and yachts, as it was already observed by Mihelčić et al. (2010) at the 

anchorage points in NP aquatorium, which is visited by organised tourist boats as well as by 

individual nautical vessels. In the previous study significantly higher concentration of Ni was 

found in shells of A. noae sampled in Nature park Telašćica, while Mn concentration was 

higher in samples from Pašman (Kobelja et al., 2016), which is in agreement with our 

findings of Ni and Mn concentrations in soft tissues of A. noae (Table 2). Concentrations of 

TEs in the whole soft tissues of A. noae obtained in this work were generally in the same 

concentration ranges as those reported for the soft tissue of A. noae from relatively unpolluted 

areas of the Island Mljet in the southern Adriatic Sea (Cuculić et al., 2010) and the Island 

Susak in the northern Adriatic Sea (Ozretić et al., 1990) (Table 2). Metal concentrations 

reported for A. noae from Bizerta Lagoon (Tunisia) (Ghribi et al., 2016) were higher for Pb, 

Zn, Fe, similar for Cu and lower for Cd compared to A. noae from the Adriatic Sea (Table 2). 
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Exceptionally high concentration of Mo was reported by Papadopoulou (1973) for soft tissue 

of A. noae bivalves collected from coastal water of Greece which was 10 times higher than 

maximal value of Mo measured in this study (Table 2). 

Concerning the obtained values of tissue concentrations variable standard deviations observed 

in Figs. 4 – 6 were expected although the individuals analysed in this study were of 

comparable sizes/ages, because bivalve growth depends on food availability and energy used 

by an organism to survive. Differences in growth would lead to differences in weight/size and 

it would be expected that even animals of similar size/age would have a range of different 

weights and some variation in trace metal concentrations. The reason for using adult mature 

bivalves in this study was based on the findings of Robinson et al. (2005) who showed that 

younger animals generally have more variable trace metal concentrations, which is often 

attributed to highly variable metabolic rates in younger, non-mature animals. These results 

indicated that in order to reduce intrinsic variability in trace metal concentrations, older 

mature animals should be selected. However, with mature bivalves there are complications 

because of the effects of spawning, i.e. sudden loss of trace metals or body weight, and thus 

the reproductive cycle does contribute to the variation in trace metal concentrations. In this 

study we observed that Ba, Cd, Co, Fe, Li, Mn, Ni, Se and V (Fig. 4) were negatively 

correlated to MGI and they followed the sinusoidal curve pattern suggested by Borchardt et al. 

(1988), i.e. a lower level of metal in the late spring and early summer due to the rapid 

increases in biomass caused by growth of gonadal and somatic tissues (an effect of tissue 

dilution) and a higher level in the period after bivalve spawning. This pattern would imply 

that the incorporation of the aforementioned TEs in gametes was lower than in non-gonadal 

tissues. However, a small deviation from the sinusoidal pattern in TE concentration was 

observed for Cd, Co and Fe at PC site compared to NP site (Fig. 4). Although for both 

sampling sites the correlation was negative, several sharp peaks were noticed at PC site (e.g. 



 14 

September and December 2013 for Cd, December 2103 for Co, Fe and Mn; Fig. 4) indicating 

that some environmental or possibly anthropogenic factors were superimposed over the 

physiological variability. 

Second group of TEs positively correlated with MGI (As, Rb, Tl and Zn; Fig. 5) and they 

showed the opposite sinusoidal pattern. This pattern would imply that concentrations of these 

TEs were higher in gametes than in non-gonadal tissues, because after releasing gametes their 

concentrations in the whole soft tissue decreased. 

Third group of TEs (Ag, Al, Cr, Cu, Cs, Mo, Pb, Sr, Ti and U; Fig. 6) was not correlated to 

MGI and they expressed deviation from the sinusoidal pattern suggested by Borchardt et al. 

(1988). This deviation from the sinusoidal patterns may be due to different anthropogenic 

input in the water at certain location as well as changes in environmental parameters such as 

salinity, temperature, oxygen concentrations or increased dissolved organic carbon during the 

sampling period. At PC sampling site variations in salinity were reported, due to the presence 

of submarine freshwater springs that can be active in winter season with increased 

atmospheric precipitation typical for the Mediterranean climatological area (Ţupan et al., 

2014). Additionally, since the settlements at the island of Pašman are still not connected to the 

sewerage system, at PC site there was a possibility of outflow of sewage waters from the 

cesspits through the porous karst terrain to the nearby sea. Thus, for example, levels of Pb at 

the NP site almost completely followed the seasonal pattern (i.e. sinusoidal curve) suggested 

by Borchardt et al. (1988), while at the PC site its levels were similar in both reproductive 

periods. Thus, the absence of typical seasonal variations for Pb on PC location may be 

attributed to the higher anthropogenic availability of Pb on this location (Ivanković et al. 

2016). Additionally, the presence of sharp peaks noticed for some TEs (Al, Cs and Ti in 

September 2103, November 2013 and January 2014, Fig. 6; Ag and Cu in November 2013 
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and January 2014 at NP site, Fig. 6) imply that some environmental or anthropogenic factors 

could have influenced the bioaccumulation in that specific time and location. 

 

Since no reports on variability of TEs related to reproductive cycle in A. noae were available 

in the literature, we compared our results with some other bivalve species commonly 

investigated (e.g. mussels and oysters). Similar TEs behaviour was observed in the study of 

rope-grown M. galloprovincialis from the Diane pond (east Corsica), where TEs were 

analysed before and after the spawning and it was found that Al, Fe, Cr, Mn, Ni, Sn, Mo, Be 

and Bi were less concentrated prior to spawning (effect of a tissue dilution during the 

gametogenesis); V and Ag were more concentrated prior to spawning (they were sufficiently 

abundant to mask the dilution effect due to the gametogenesis); Se, Cd, Sb, As and Pb showed 

similar tissue concentrations during both reproductive stages but with contents a little higher 

in one occasion prior to spawning (they were more accumulated prior to spawning and 

displayed similar concentrations with mussels having spawned, although they were also 

diluted during gametogenesis); Co, Cu and Zn displayed lower concentrations prior to 

spawning and similar contents during both physiological stages (Richir and Gobert, 2014). In 

oyster Saccostrea glomerata Cd and Se were significantly higher in the gonadal tissues, but 

Zn was found in significantly higher concentrations in the non-gonadal tissues, while Pb and 

Cu concentrations were not different between tissue types (Robinson et al., 2005). Studies of 

Cu, Zn, Cd and Ni concentrations in Mytilus edulis found higher concentrations in the non-

gonadal tissues than gonadal tissues (LaTouche and Mix, 1982; Lobel and Wright, 1982). It 

was concluded that seasonal dynamics of Zn in M. edulis can be explained in terms of somatic 

growth rather than growth of germinal tissue (Lobel and Wright, 1982). Contrary, Martinčić 

et al. (1984) found higher trace metal concentrations of Zn in gonadal tissues compared to 

total and soft edible part of Mediterranean mussel (M. galloprovincialis) and oysters (Ostrea 
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edulis) from the same location with the same physicochemical conditions. Increased 

concentrations of Cu and Cd in gonads of oysters and Pb in gonads of mussels were found as 

well (Martinčić et al., 1984). 

Since uptake and loss of TEs in marine bivalves are greatly affected by changing body 

weights related to reproduction cycle and condition, they have to be closely considered when 

reporting on levels of trace elements in bivalves, especially in terms of concentration. 

 

Pearson’s correlation analysis between each and every measured TEs concentration was 

performed in order to detect possible coaccumulation pattern of TEs in A. noae. Similar study 

was made by Robinson et al. (2005) who found a positive correlation between Cu, Zn and Se 

in the whole animal body, which indicated that the coaccumulation of some trace elements 

may be a natural accumulation strategy of oysters S. glomerata. In the current study we found 

significant (all p < 0.05) positive correlations between Co, Fe, Mn, Ni and Pb at NP sampling 

site (rCo:Fe = 0.755, rCo:Mn = 0.691, rCo:Ni = 0.679, rCo:Pb = 0.641, rFe:Mn = 0.616, rFe:Ni = 0.672, 

rFe:Pb = 0.799, rMn:Ni = 0.887, rMn:Pb = 0.656, rNi:Pb = 0.837). According to their chemical 

properties Fe, Mn, Co and Ni are transition metal elements. They could be found jointly in the 

marine sediments where Co
2+

, Ni
2+

 and Pb
2+

 cations are adsorbed on Fe- and Mn-oxides and 

oxyhydroxides (Ansari et al., 2004). These elements can become biologically available under 

certain environmental conditions (e.g. intensified reductive conditions in the sediments) when 

dissolution of oxides commences causing subsequent release of adsorbed metals and results in 

concentration increase of their dissolved forms (remobilization). Thus, in such occasions 

increased bioavailablity of TEs (Co, Fe, Mn, Ni and Pb) could lead to their increased 

bioaccumulation in A. noae. Since such association was observed only at NP site and not at 

PC site, we could assume that sediment characteristics, geochemical fractions and/or 

conditions in the sediments differed between two sampling sites. However, we cannot be 
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certain of this because bioavailability is influenced by both physico-chemical properties of 

metals and sediments and by biological strategies of the organisms involved (Ansari et al., 

2004). Contrary, a rather strong association between TEs was found at both sampling sites 

between Al, Fe and Ti (NP: rAl:Fe = 0.793, rAl:Ti = 0.967, rFe:Ti = 0.848; PC: rAl:Fe = 0.685, rAl:Ti 

= 0.780, rFe:Ti = 0.715). These associations were interesting because the coaccumulation of Fe, 

Al and Ti in A. noae reflected the fact that Al, Ti and Fe often occur together as the major 

lithogeneous contributors to the marine sediment (Dolenec et al., 1998). Such lithogeneous 

components of the sediments at NP and PC sites were apparently present in relatively shallow 

coastal habitat where bivalves were sampled. Also, cross-correlation coefficients computed 

for all metal pairs in sediment cores from bottom sediments in Southern Baltic showed highly 

significant association of Ni, Ti, Co, Th, K and partly Mg with Al and Fe (Szefer, 1990), 

which corresponded to strong significant associations between Ti, Al and Fe in tissues of A. 

noae found in our study. Lead and Cs also showed strong association at both sites (NP: rPb:Cs 

= 0.750; PC: rPb:Cs = 0.747) and in this case coaccumulation reflected their similar entry 

pathway to the marine environment from atmospheric deposition (aeolian source). The 

strongest association was observed between Ba and V concentrations, also at both sites (NP: 

rBa:V = 0.929, PC: rBa:V = 0.936, both p < 0.001), and based on their concentrations patterns 

(Fig. 4) we can assume that similar physiological and/or environmental factors affected 

bioaccumulation of both elements. Observed high increase in their concentrations in 

September after the spawning could be the consequence of extremely low concentrations of V 

and Ba in gonadal tissues. This is in agreement with previous findings in scallops (Pecten 

maxiumus) exposed to V as a consequence of the “Erika” oil spill, when this element was 

stored in new growth bands of the bivalve shell, i.e. non-metabolically active tissue 

(Chiffoleau et al., 2004). Barium is also deposited in shells and it has been verified in both the 

field and laboratory, that background Ba/Ca ratios in M. edulis shells were directly related to 



 18 

the Ba/Ca ratios of the water in which they grew, and that the nearly ubiquitous Ba/Ca peaks 

found in bivalve shells were related to phytoplankton blooms in a complex manner (Gillikin 

et al., 2006). Besides Ba:Ca ratios also Mo:Ca ratios have been investigated in shells of the 

tropical scallop Comptopallium radula and the synchronism of Ba:Ca and Mo:Ca peaks 

discovered in their shells suggested that the process or processes responsible for their 

temporal variations might share, to some extent, a common origin. For the formation of Ba:Ca 

peaks the most plausible hypothesis was the ingestion of diatom cells enriched in Ba 

(adsorbed on iron oxyhydroxides associated with the frustules), while Mo:Ca peaks would 

probably come from the ingestion of phytoplankton cells containing nitrate reductase 

requiring high levels of Mo for the enzyme activity (Thébault et al., 2009). In our study the 

pattern of Mo concentrations (Fig. 6) determined in soft tissues of A. noae was closely related 

to the pattern of Ba and V concentrations (Fig. 4), especially in the period from July to 

December 2013, which corroborated the aforementioned behaviour of Ba, Mo and V in shells 

of bivalves. 

Comparing the correlations between all TEs at both sampling sites, it became obvious that As 

was only associated with Rb (NP: rAs:Rb = 0.694; PC: rAs:Rb = 0.717). Fattorini et al. (2008) 

already observed in their multi-annual study that As was not correlated with gonadic 

development, neither with other elements. Arsenic had different seasonal cycle compared to 

other studied elements. The same authors found that arsenobetaine and arsenocholine (organic 

forms of As) were always the predominant forms (up to 85% of total As), while a significant 

increase of dimethylarsine and trimethylarsine oxide in spring (24% of total arsenic) might 

reflect the effect of phytoplanktonic bloom on both geochemistry and trophic transfer of this 

element (Fattorini et al., 2008). 

These findings would imply that bioaccumulation in A. noae was influenced by biological 

factors, as well as by inherent chemical properties of TEs and their physico-chemical forms in 
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different environmental compartments (i.e. controlled by biogeochemical processes in marine 

systems). 

 

This study showed that phases of reproduction cycle and condition of Noah’s Ark shell A. 

noae have to be closely considered when reporting on the concentrations of TEs in this 

organism. Gametogenesis diluted concentrations of several TEs due to the important tissue 

production prior to spawning. However, in the same period the concentrations of several other 

TEs were increased. Based on these observations, in case of monitoring of TEs in A. noae, the 

gonadal status of animals should be taken into account.  
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Figure captions 

Figure 1. Study areas in the central Adriatic Sea in Croatia with indicated sampling locations 

(PC sampling site in the Pašman channel and NP sampling site in the Telašćica Nature Park) 

 

Figure 2. Values of mean gonadal index (MGI), condition index (CI; mean values and 

standard deviations are presented, n = 9) and seawater temperatures at two studied sampling 

sites NP – Nature Park Telašćica and PC – Pašman channel. 

 

Figure 3. Relative frequency of each development phase of A. noae females recorded during 

12 moths from April 2013 to February 2014 at two sampling sites NP – Nature Park Telašćica 

and PC – Pašman channel. 

 

Figure 4. Mean values and standard deviations (n = 3) of concentrations of the TEs measured 

in the soft tissues of A. noae from March 2013 to February 2014, that are negatively 

correlated with MGI at both sampling sites (NP and PC) with negative Pearson’s correlation 

coefficient higher than 0.3 (significant correlations are marked in bold with asterisk, p < 0.05). 

Sampling sites: NP – black circles and solid line, PC – grey circles and dashed line. 

 

Figure 5. Mean values and standard deviations (n = 3) of concentrations of the TEs measured 

in the soft tissues of A. noae from March 2013 till February 2014, that are positively 

correlated with MGI (Pearson’s correlation coefficients are indicated at each graph for both 

sampling sites; significant correlations are marked in bold with asterisk, p < 0.05). Sampling 

sites: NP – black circles and solid line, PC – grey circles and dashed line. 
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Figure 6. Mean values and standard deviations (n = 3) of concentrations of the TEs measured 

in the soft tissues of A. noae from March 2013 till February 2014, that are not correlated with 

MGI at both sampling sites. Sampling sites: NP – black circles and solid line, PC – grey 

circles and dashed line. 

 



 

 

Figure 1. Study areas in the central Adriatic Sea in Croatia with indicated sampling locations (PC 

sampling site in the Pašman channel and NP sampling site in the Telašćica Nature Park) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Values of mean gonadal index (MGI), condition index (CI; mean values and standard 

deviations are presented, n=9) and seawater temperatures at two studied sampling sites NP -Nature 

Park Telašćica and PC – Pašman channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Relative frequency of each development phase of A. noae females recorded during 12 

months from April 2013 to February 2014 at two sampling sites NP -Nature Park Telašćica and PC – 

Pašman channel. 
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Fig. X. Mean values (N=3) and standard deviations of concentrations of the trace elements that are 

negatively correlated with MGI at both sampling locations with Pearson’s correlation coefficient 

higher than -0.3 (significant correlations are marked in bold with asterisk). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mean values and standard deviations (N=3) of concentrations of the TEs measured in the 

soft tissues of A. noae from March 2013 to February 2014, that are negatively correlated with MGI at 

both sampling sites (NP and PC) with Pearson’s correlation coefficient higher than -0.3 (significant 

correlations are marked in bold with asterisk, p < 0.05). Sampling sites: NP – black circles and solid 

line, PC – grey circles and dashed line. 
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Figure 5. Mean values and standard deviations (N=3) of concentrations of the TEs measured in the 

soft tissues of A. noae from March 2013 till February 2014, that are positively correlated with MGI 

(Pearson’s correlation coefficients are indicated at each graph for both sampling sites; significant 

correlations are marked in bold with asterisk, p < 0.05). Sampling sites: NP – black circles and solid 

line, PC – grey circles and dashed line. 
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Figure 6. Mean values and standard deviations (N=3) of concentrations of the TEs measured in the 

soft tissues of A. noae from March 2013 till February 2014, that have weak positive or negative 

correlations with MGI (correlations are not significant at both sampling sites NP and PC). Sampling 

sites: NP – black circles and solid line, PC – grey circles and dashed line. 
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Table 1. Quality control for metal determination in shellfish tissue was based on following 

reference materials: IAEA-452 (trace elements in scallop tissue, standard reference material, 

distributed by International Atomic Energy Agency Reference Materials, certified values and 

the standard deviations (SD) are presented), SRM 1566a (oyster tissue, standard reference 

material, distributed by U.S. Department of Commerce, National Bureau of Standards, Gaithersburg; 

the uncertainty is obtained from 95% prediction interval) and CRM 278R (mussel tissue reference 

material, prepared by Environment Institute, Ispra, Italy and Institute for Reference Materials and 

Measurements, Geel, Belgium, certified values and half-width of the 95% confidence interval are 

presented). Measured values for IAEA-452 (n = 6), for SRM 1566a (n = 9) and for CRM 278R (n 

= 6) are presented as means and SD. 

 

 Metal concentrations (mg/kg d.w.) 

 Reference values Measured values 

Ag
a
 1.68 ± 0.15 1.94 ± 0.23 

As
b
 17.5 ± 2.2 14.5 ± 0.7 

Cd
b
 29.6 ± 3.7 25.3 ± 0.8 

Co
b
 1.62 ± 0.20 1.62 ± 0.06 

Cr
c
 0.78 ± 0.06 0.63 ± 0.08 

Cu
b
 10.8 ± 1.3 8.94 ± 0.34 

Fe
b
 1020 ± 130 798 ± 21 

Li
b
 2.01 ± 0.25 2.02 ± 0.12 

Mn
b
 273 ± 34 268 ± 15 

Ni
a
 2.25 ± 0.44 1.93 ± 1.35 

Pb
a
 0.371 ± 0.014 0.340 ± 0.045 

Rb
b
 7.85 ± 0.98 5.47 ± 0.15 

Sb
b
 0.100 ± 0.013 0.093 ± 0.011 

Se
a
 2.21 ± 0.24 2.64 ± 0.56 

Sr
b
 82.9 ± 10.3 85.6 ± 4.0 

V
b
 6.36 ± 0.79 6.75 ± 0.19 

Zn
b
 166 ± 21 113 ± 5 

Reference material: 
a
 SRM 1566a; 

b
 IAEA-452; 

c
 CRM 278R 

 

 

  



Table 2. Median values and min-max ranges (in parentheses) of concentrations of 23 TEs 

(metals and metalloids) in the soft tissue of A. noae sampled over 12 months from reference 

(NP) and contaminated (PC) location. Significant differences between locations (p < 0.05, 

Mann-Whitney U test) are indicated with an asterisk next to the higher value. Literature 

values are presented as well. 

 

TE concentrations 

 (µg/g d.w.) 

NP 

(n = 36) 

PC 

(n = 36) 

a
Mljet, 

Croatia 

b
Susak, 

Croatia 

c
Bizerte 

lagoon, 

Tunisia 

Tl 0.005 (0.003-0.007)* 0.004 (0.003-0.007)    

Cs 0.027 (0.019-0.041) 0.026 (0.022-0.036)    

U 0.103 (0.067-0.181) 0.093 (0.046-0.199)    

Co 0.343 (0.205-0.565) 0.293 (0.196-0.448)    

Pb 0.521 (0.318-0.821) 0.601 (0.380-0.822)* 0.59-0.69 0.55 0.65-2.00 

Ni 0.856 (0.585-1.349)* 0.717 (0.447-1.018)    

Li 0.985 (0.674-1.276)* 0.793 (0.580-1.043)    

Cr 1.14 (0.79-1.70)* 0.97 (0.66-1.60)    

Ba 1.49 (0.62-19.44) 1.99 (0.98-6.79)*    

V 1.76 (1.10-5.36) 2.52 (1.20-6.85)*    

Cd 2.02 (1.12-3.32)* 1.67 (0.89-3.47) 1.52-2.84 3.35 0.70-1.55 

Ti 2.49 (1.03-4.64)* 1.99 (0.86-2.91)    

d
Mo 2.67 (1.38-5.06) 3.77 (1.28-8.89)*    

Ag 3.33 (2.04-5.50) 3.09 (1.27-4.83)    

Cu 4.47 (3.29-5.77) 4.41 (3.08-6.26) 2.85-13.23  4.85-7.80 

Rb 4.66 (4.34-5.46) 4.76 (4.20-5.93)    

Se 7.38 (5.31-9.81)* 6.25 (4.50-9.79)    

Mn 8.84 (6.12-15.44) 10.15 (6.93-16.76)*    

Sr 64 (40-130) 58 (36-124)    

As 65 (43-111) 70 (33-111)  95.05  

Al 97 (39-196) 95 (47-179)    

Zn 113 (68-157) 124 (77-179) 89.7-167.6  187.2-375.1 

Fe 235 (160-361) 261 (151-438)*   150.3-234.7 
a
Cuculić et al., 2010 (Mljet Island is located in the southern Adriatic Sea; for comparison 

purposes metal concentrations were multiplied by 5 to obtain dry weight values.) 
b
Ozretić et al. (1990) (Susak Island is located in the northern Adriatic Sea; for comparison 

purposes metal concentrations were multiplied by 5 to obtain dry weight values.) 
c
Ghribi et al., 2016 (For comparison purposes metal concentrations were multiplied by 5 to 

obtain dry weight values.) 
d
Papadopoulou, 1973 in Eisler, 2010. Concentration of Mo in soft parts of A. noae: 88.0 µg/g 

d.w.  



 

Table 3. Probabilities of analysis of variance of TEs concentrations at two sampling sites 

during one year (significant variations are marked bold) 

 
Variable 

(TE concentrations) 
p (NP) p (PC) 

Tl 0.0020 0.0016 

Cs 0.0166 0.0015 

U 0.0101 0.0117 

Co 0.0016 0.0415 

Pb 0.0948 0.4559 

Ni 0.0006 0.1445 

Li 0.0031 0.3019 

Cr 0.0486 0.1583 

Ba 0.0000 0.0000 

V 0.0000 0.0000 

Cd 0.0483 0.0031 

Ti 0.0001 0.0091 

Mo 0.0000 0.0000 

Ag 0.0000 0.2166 

Cu 0.0573 0.8051 

Rb 0.0642 0.0119 

Se 0.0077 0.1292 

Mn 0.0083 0.0666 

Sr 0.1238 0.0179 

As 0.8210 0.2424 

Al 0.0031 0.0823 

Zn 0.1375 0.1857 

Fe 0.0005 0.0101 
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