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A B S T R A C T 

Primaquine (PQ) is a commonly used drug that can prevent the transmission of Plasmodium 

falciparum malaria, however its toxicity limits its use. We prepared five groups of PQ 

derivatives: amides 1a-k, ureas 2a-k, semicarbazides 3a,b, acylsemicarbazides 4a-k and bis-

ureas 5a-v, and evaluated them for antimalarial activity in vitro against the erythrocytic stage of 

P. falciparum NF54. Particular substituents, such as trityl (in 2j and 5r) and methoxybenzhydryl 

(in 3b and 5v) were associated with a favorable cytotoxicity-to-activity ratio. To systematically 

link structural features of PQ derivatives to antiplasmodial activity, we performed a quantitative-

structure activity relationship (QSAR) study using the Support Vector Machines machine 

learning method. This yielded a highly accurate statistical model (R2 = 0.776 in cross-validation), 

which was used to prioritize novel candidate compounds. Seven novel PQ-ureidoamides 10a-g 

were synthesized and evaluated for activity, highlighting the benzhydryl ureidoamides 10e and 

10f derived from p-chlorophenylglycine. Further experiments on human cell lines revealed that 

10e and 10f are an order of magnitude less toxic than PQ in vitro while having antimalarial 

activity indistinguishable from PQ. The toxicity profile of novel compounds 10 toward human 

cells was particularly favorable when the glucose-6-phosphate dehydrogenase (G6PD) was 

inhibited, while toxicity of PQ was exacerbated by G6PD inhibition. Our work therefore 

highlights promising lead compounds for the development of effective antimalarial drugs that 

may also be safer for G6PD-deficient patients. In addition, we provide computational inference 

of antimalarial activity and cytotoxicity for thousands of PQ-like molecular structures. 

Keywords: QSAR, Primaquine, Ureidoamide, Antimalarial activity, Plasmodium falciparum, 

Glucose-6-phosphate dehydrogenase 
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1. Introduction 

Malaria is an infectious disease affecting humans and animals, caused by parasitic protozoans 

belonging to the genus Plasmodium. Of the five species that cause malaria in humans, P. 

falciparum is responsible for most malaria-associated mortality worldwide and is the 

predominant species in tropical and subtropical countries. The World Health Organization tracks 

a decline in the global malaria burden due to more efficient drugs and better mosquito control. 

However, malaria is still a life-threatening disease: in 2015 alone, there were an estimated 212 

million new cases of malaria and 429 000 deaths [1]. 

Currently approved drugs include the artemisinins (artemisinin, dihydroartemisin, artemether, 

artesunate) and quinoline derivatives (chloroquine, amodiaquine, mefloquine, quinine and 

primaquine) [2]. Primaquine (PQ) is an 8-aminoquinoline antimalarial drug active against all 

species causing human malaria, including multi-resistant P. falciparum strains. PQ is the only 

clinically approved drug known to eliminate dormant liver forms of P. ovale and P. vivax [3]. In 

the case of P. falciparum malaria, PQ is uniquely effective in killing gametocytes produced 

during the sexual life stage of the parasite in the blood, disrupting the transmission of infection to 

mosquitoes and slowing the spread of the disease. This means that the biological activity profile 

of PQ (an 8-aminoquinoline) is different from standard 4-aminoquinoline antimalarial drugs such 

as chloroquine (CQ) or amodiaquine. In particular, CQ is active against the asexual blood stages 

(trophozoites) of P. falciparum, which feed on erythrocyte contents and therefore need to 

detoxify ingested heme, a process that CQ interferes with. In contrast, PQ is less effective against 

asexual blood stages of P. falciparum, but clears the sexual stage very efficiently. Therefore the 
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underlying molecular mechanism of action of PQ likely differs from CQ and related drugs, and is 

not currently well understood.  

Because of the unique biological activity profile, PQ is complementary to other antimalarials and 

is commonly added to drug regimens, with the primary goal of containing the spread of malaria 

(in P. falciparum) or preventing relapse (for species with dormant liver stages, P. ovale and P. 

vivax). However, toxicity of PQ is an important concern [4], particularly in patients with a 

deficiency in the glucose-6-phosphate dehydrogenase (G6PD) enzyme – a widespread genetic 

trait, particulary in disease-endemic regions. Globally 400 million people are estimated to be 

affected with G6PD deficiency [5]. The highest prevalence is found in tropical Africa and 

tropical/subtropical Asia: approx. 5-30%, depending on the country and the method used to 

estimate the deficiency, reviewed in [6]. This constitutes a serious limitation to the broad use of 

PQ as an antimalarial agent. In practice, either the PQ dosage must be reduced in order to 

ameliorate side effects [7] or G6PD deficiency has to be tested in each patient before applying 

the drug [8], presenting a substantial logistical challenge in broad application of PQ. Toxicity to 

G6PD-deficient patients is a drawback specific to 8-aminoquinolines such as PQ and is not 

known to be pertinent for other quinoline drugs. In order to overcome this drawback and improve 

efficacy, various PQ derivatives have been synthesized and evaluated. 

Recently published work bears witness that PQ derivatization and hybridization are interesting 

approaches in search of new antimalarials [9–22]. In particular, we have previously designed and 

prepared nearly a hundred primaquine derivatives of amide, urea, bis-urea, semicarbazide and 

acylsemicarbazide type, showing that they possess antiproliferative effects against human cell 

lines [23–29], however the antimalarial potential of these compounds has not been evaluated 

until now. Here we report the results of screening of selected PQ derivatives against P. 
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falciparum and a detailed QSAR study which guided the synthesis of seven new compounds of 

general formula 10. They were active against malaria while exhibiting a very favorable toxicity 

profile towards human cells in vitro, which was retained even when the G6PD enzyme was 

inhibited. 

2. Results and discussion 

2.1. Chemistry 

Six series of primaquine (PQ) derivatives were prepared and screened for antimalarial activity: 

amides 1, ureas 2, semicarbazides 3, acylsemicarbazides 4, bis-ureas 5 and ureidoamides 10. 

Their general structures are shown in Figure 1. 

 

Fig. 1. Structures of the primaquine derivatives: amides 1a-k, ureas 2a-k, semicarbazides 3a,b, 

acylsemicarbazides 4a-k, bis-ureas 5a-v and ureidoamides 10a-g. 

Syntheses of derivatives 1-5 were previously published [23–29], while ureidoamides 10 are 

novel compounds, described here for the first time. The synthetic pathway leading to compounds 

10 is outlined in Scheme 1. 
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Scheme 1. Synthesis of ureidoamides 10. 

 

Novel ureidoamides 10a-g with primaquine and amino acid moieties were prepared by 

aminolysis of N-(1-benzotriazolecarbonyl)-amino acid amides 9a-g with primaquine, while 

amides 9 were obtained from N-(1-benzotriazolecarbonyl)-amino acid chlorides 8a-c and the 

corresponding amines or hydrazones. Three amino acids (L-leucine, D-phenylglycine, DL-p-

chlorophenylglycine), four amines (p-bromoaniline, diphenylmethanamine, (4-

chlorophenyl)(phenyl)methanamine)), N-methyl-1,1,diphenylmethanamine and one hydrazone 

(4-methoxybenzophenone hydrazone) were used. Synthesis of similar ureidoamides with various 

amines and amino acids was previously described by our group [30,31], as well as the synthesis 

of the starting N-(1-benzotriazolecarbonyl)-amino acids 7 and their chlorides 8 [32]. 

The presence of the primaquine residue in compounds 10a-g was confirmed by NMR spectra: 

hydrogen atoms close to pyridine nitrogen occurred in 1H NMR spectra between 8.54 and 8.52, 

aromatic hydrogen in p-position from pyridine nitrogen atom at 8.09-8.06, hydrogen bound to 

nitrogen close to quinoline ring from 6.13 to 5.97, methoxy group at 3.82-3.81, CH of PQ chiral 
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carbon as a multiplet at 3.62-3.57, and finally methyl group between 1.21 and 1.19 ppm. All NH 

signals were D2O exchangeable. 

The presence of carbonyl groups in N-(1-benzotriazolecarbonyl)-amino acid amides 9a-g was 

indicated by the appearance of two strong stretching vibration bands in IR spectra, the first 

between 1750 and 1716 cm–1 and the second between 1682 and 1649 cm–1, while two carbonyl 

groups in products 10 were located at lower wavenumbers (between 1650 and 1509 cm–1). 

In 13C NMR spectra carbonyl groups close to benzotriazole in products 9 appeared between 

148.84 and 147.40 ppm and amide carbonyls between 172.20 and 167.39 ppm. Urea carbonyl 

groups in products 10 were shifted to lower ppm values (from 157.62 to 153.85), while amide 

carbonyl appeared between 172.46 and 169.45 ppm. C=N group in product 10g appeared at 

155.00 ppm. Phenyl moieties gave expected signals in aromatic region and appropriate carbon 

count. Structures of compounds 9f and 9g were confirmed indirectly, after chemical 

derivatization to products 10f and 10g, respectively. 

Mass spectroscopy gave molecular ion peaks which corresponded to expected molecular 

formulas for all prepared compounds from series 10. In series 9, molecular ion peaks were 

visible only in spectra of 9e and 9g. Other compounds of general formula 9 gave only 

benzotriazole fragment at m/z 120.1 or 117.9. Chemical structures of compounds 10a-g were also 

supported by CHN analyses. 

2.2. Antimalarial screening 

The compound series 1-5 were evaluated for their antimalarial activity against the erythrocytic 

stage of the Plasmodium falciparum NF54 strain, while an initial estimate of their cytotoxicity 

towards mammalian cells was obtained using the L6 cell line derived from rat skeletal 
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myoblasts. The IC50 values (the concentration of the tested compound necessary for 50% growth 

inhibition) and cytotoxicity data are given in Table 1. As a simple measure of a compound’s 

potential utility, we use a selectivity index (SI), here defined as ratio of the cytotoxicity (towards 

L6 cells) and the antimalarial activity IC50 values. For reference, the SI of primaquine in our 

experimental system (see Materials and Methods) was 39.6. 

While the majority of tested compounds exhibited a certain level of antimalarial activity, some 

series appeared more promising than others. For instance, all PQ-cinnamic acid derivatives of the 

amide type (1a-k) showed modest antimalarial activity, with IC50 roughly an order of magnitude 

higher than PQ, ranging between 8 and 25 µM; we note a somewhat more favorable profile in 

the trimethoxy derivative 1e. Similarly, the PQ-cinnamic acid acylsemicarbazides 4a-k showed 

modest activity overall, with one potential exception being the trimethoxy derivative 4e with SI 

= 30 (antimalarial IC50 4.5 µM and cytotoxicity 138.2 µM), thereby approximately matching the 

parent compound (PQ). Therefore, series 1 and 4 do not overall appear promising, with certain 

exceptions. 

In contrast, other PQ derivative series had multiple members with favorable activity and 

cytotoxicity, which were dependant on the substituents. In particular, the urea series 2a-2k 

contained lowly active hydroxyalkyl and cycloalkyl derivatives, however the chlorobenzhydryl 

urea 2i, a compound with two PQ moieties 2k and especially the trityl urea 2j were active and 

moreover had a high SI (33, 28 and 113, respectively). Concerning the large series of bis-urea 

derivatives 5a-v, hydroxyalkyl and cycloalkyl derivatives were again lowly active. Halogenated 

aryl and biaryl derivatives had modest activity (IC50 from 7.5 to 17.8 µM) and exhibited some 

cytotoxicity. The most interesting compound was again the trityl derivative 5r, which exhibited 

SI > 80 (IC50 1.2 µM and cytotoxicity >100 µM). Furthermore, compound 5v bearing a 
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dimethoxybenzhydryl substituent was highly active (at PQ-like levels, 2.2 µM). The two 

semicarbazides in series 3 (3a and 3b), which also bear methoxybenzhydryl groups, showed high 

activity and low cytotoxicity as well. 

In summary, the trityl compounds 2j and 5r represent active PQ derivatives with apparently 

improved selectivity over the parent compound, PQ (SI 113 and 80, respectively, compared to SI 

of primaquine 39.6), as estimated in our experimental system. The dimethoxybenzhydryl 

compounds 3b and 5v also appear highly promising, with SI 78.3 and 61.8, respectively. 

Motivated by these examples where favorable biological properties appear linked to certain 

substituents, we further developed a QSAR model to direct the synthesis of a novel series of 

antimalarial lead compounds based on PQ. 

Table 1 

In vitro screening of primaquine derivatives against erythrocytic stage of P. falciparum and 

cytotoxicity towards L6 rat cells. 

Compd. Structural formula 

Antimalarial 

activity a 

IC50, µM 

Cytotox- 

icity a 

IC50, µM 

SI b 
Synth. 

Ref. c 

QSAR 

train/test set 

1a 

 

15.1 18.5 1.2 [29] Test 

1b 

 

>24.8 >250 10.1 [29] Test 

1c 

 

12.4 >240 19.4 [29] Test 

1d 

 

11.9 >220 18.5 [29] Test 



 10 

1e 

 

8.1 >210 25.9 [29] Test 

1f 

 

22.1 29 1.3 [29] Test 

1g 

 

13.7 16.8 1.2 [29] Test 

1h 

 

13.2 3.5 0.3 [29] Test 

1i 

 

15.6 16.2 1.0 [29] Test 

1j 

 

12.9 160 12.4 [29] Test 

1k 

 

11.3 158.1 14.0 [29] Test 

2a 

 

27.4 n.d.d n.d. [24] Train 

2b 

 

52.4 n.d. n.d. [24] Train 

2c 

 

65.9 n.d. n.d. [23] Train 

2d 

 

42.1 n.d. n.d. [23] Train 

2e 

 

8.1 n.d. n.d. [23] Train 

2f 

 

47.3 n.d. n.d. [23] Train 

2g 

 

17.1 n.d. n.d. [26] Train 
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2h 

 

11.9 14.9 1.3 [28] Test 

2i 

 

4.3 140 32.6 [26,27] – 

2j 

 

1.5 >171 114.0 [26] Train 

2k 

 

6.4 >180 28.1 [26] Train 

3a 

 

4.1 >195 47.6 [26] Train 

3b 

 

2.3 >180 78.3 [26] Train 

4a 

 

17.2 13.9 0.8 [29] Test 

4b 

 

22.9 36.5 1.6 [29] Test 

4c 

 

22.2 3.6 0.2 [29] Test 

4d 

 

>19.7 37 1.9 [29] Test 

4e 

 

4.5 138.2 30.7 [29] Test 

4f 

 

20.4 15.5 0.8 [29] Test 

4g 

 

24.2 7.3 0.3 [29] Test 

4h 

 

>21.4 25.1 1.2 [29] Test 
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4i 

 

>19.4 10.6 0.5 [29] Test 

4j 

 

>19.4 28.3 1.5 [29] Test 

4k 

 

>17.1 >170 9.9 [29] Test 

5a 

 

58.8 n.d. n.d. [26] Train 

5b 

 

43.7 n.d. n.d. [26] Train 

5c 

 

41.4 178.1 4.3 
[26,27] 

 
– 

5d 

 

66.7 n.d. n.d. [26] Train 

5e 

 

75.4 n.d. n.d. [25] Train 

5f 

 

46.3 n.d. n.d. [25] Train 

5g 

 

>111.0 n.d. n.d. [25] Train 

5h 

 

27.1 n.d. n.d. [25] Train 

5i 

 

14.9 58.6 3.9 [28] Test 

5j 

 

17.8 91.9 5.2 [28] Test 

5k 

 

17.8 38.7 2.2 [28] Test 

5l 

 

11.8 32.1 2.7 [28] Test 
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5m 

 

10.3 14.9 1.4 [28] Test 

5n 

 

15.2 n.d. n.d. [26] Train 

5o 

 

10.3 n.d. n.d. [25] Train 

5p 

 

10.0 10.4 1.0 [26] Test 

5q 

 

7.5 8.4 1.1 [26,27] – 

5r 

 

1.2 >100 83.3 [26] Test 

5s 

 

3.7 76.6 20.7 [26,27] – 

5t 

 

20.8 n.d. n.d. [25] Train 

5u 

 

5.6 16.0 2.9 [26] Train 

5v 

 

2.2 136.1 61.9 [26] Train 

10a 

 

3.4 >170 50.0 this work Test 

10b 

 

6.5 >140 21.5 this work Test 

10c 

 

3.0 >160 53.3 this work Test 

10d 

 

3.2 54.0 16.9 this work Test 
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10e 

 

1.4 >160 114.3 this work Test 

10f 

 

1.8 >150 83.3 this work Test 

10g 

 

2.7 >120 44.4 this work Test 

PQ 

diphosphate 
 1.5 59.5 39.7   

a IC50 – the concentration of the compound necessary for 50% growth inhibition of  P. 

falciparum or L6 rat myoblast cells; the displayed numbers are averages of two or three 

independent experiments. b SI - selectivity index, defined as a ratio of the cytotoxicity and the 

antimalarial activity. c Reference for synthesis. d n.d. – not determined. 

 

2.3. Quantitative structure-activity relationship modeling 

The QSAR model for prediction of antimalarial activity (log IC50 against the P. falciparum NF54 

strain) was trained using the Support Vector Machines (SVM) algorithm. SVMs are a machine 

learning method known to have a high predictive accuracy and to generalize well to novel data 

sets and are therefore increasingly used also for QSAR studies [33], including our previous work 

for modeling biological activity of peptides, ionophores, and substrate specificity of a human 

protein [34–36]. Here, the SVM regression model was trained on a set of 56 compounds 

(structures provided in Supporting Information), which consisted of 23 PQ derivatives from this 

study (series 1-5; Table 1) and additional 33 compounds from published data by Kaur et al. [37–

39] that were sufficiently similar in structure to the original 23 compounds; see Materials and 

Methods for how the QSAR applicability domain was defined. The SVM model had a high 

accuracy in predicting activity against P. falciparum when tested in cross-validation: R2 = 0.776; 

root-mean-square error (RMSE) = 0.294 when predicting log10 IC50 units (Figure 2a). In other 
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words, we estimate that our SVM model can predict the IC50 of a PQ derivative within a 1.97-

fold range of the actual value (100.294). Moreover, the model retained much of the predictive 

accuracy when tested on an independent test set of 37 PQ derivatives that are within the model’s 

applicability domain (see Materials and Methods), yielding a RMSE = 0.403 log10 units of IC50 

(Figure 2b), implying a good qualitative agreement of the model to observed data. If the 

compounds are classed into two groups, lowly active (above-median IC50 ≥ 8.9 µM) and highly 

active (below-median IC50 < 8.9 µM) compounds, our predictions would be 91% accurate on the 

training set, and 95% accurate on the independent test set (measuring the fraction compounds 

assigned to the correct class; Figure 2d).  Therefore, this appears to be a useful statistical model 

to prioritize the synthesis of further PQ derivatives with antiplasmodial activity. 
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Fig. 2. Measured and predicted activity of 56 training set compounds (A) and 37 testing 

compounds (B); Predicted activities of an in house library of 522 compounds, sorted from the 

most active to the least active compound (C); Qualitative agreements of the model’s predictions 

with the observed data (D). Novel ureidoamides 10a-g are marked with red dots. Predicted 

activities for the training compounds were obtained in ten-fold cross-validation. 

 

Next, the SVM model was applied to infer the antimalarial activity of an in-house virtual library 

of 522 molecules; the structures and activity predictions are supplied in Supporting Information. 

Based on their high predicted antimalarial activity (Figure 2c) and further considerations related 

to chemical synthesis, seven PQ ureidoamides 10a-g bearing an amino acid residue were selected 

for synthesis and evaluation against P. falciparum and for an initial cytotoxicity screen using the 

L6 mammalian cell line.  

2.4. Antimalarial activity and cytotoxicity of novel PQ ureidoamides 

Indeed, four out of seven compounds from the series 10 showed a favorable 

cytotoxicity/antimalarial activity ratio, with SI > 50 (PQ has SI = 39.6). The benzhydryl 

ureidoamide derived from p-chlorophenylglycine 10e was the most promising of all 64 tested 

compounds, with SI > 114, followed by chlorobenzhydryl derivative 10f with SI > 83. While the 

compounds 10e and 10f have very similar antiplasmodial activity as the parent compound, PQ 

(Table 1), they are at least 2.7 and 2.5-fold less cytotoxic relative to PQ in this particular in vitro 

model using L6 rat skeletal myoblasts. Of note, these are conservative estimates, given that the 

L6 experimental assay reached the boundary of its detection range; in other words, the actual 

toxicity of 10e and 10f may be even lower. 
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To follow up on the initial observation of reduced cytotoxicity in rat L6 cells, we performed 

growth inhibition screens on four human tumor cell lines from diverse tissues: H460 (lung), 

MCF-7 (breast), SW620 (colon) and A2780 (ovary); Table 2. For the novel compounds in series 

10, human cell lines suggest at least an order of magnitude reduced cytotoxicity compared to PQ 

(Tables 2 and S1). Compound 10e in particular did not reach IC50 up to the maximum tested 

concentration of 100 μM in three of the four cell lines, and similarly so for 10f. Therefore, 10e 

and 10f are at least 13-fold less toxic than PQ, which has median IC50 across cell lines 7.5 μM 

(range 5 to 14 μM) in this model system (Table 2). Compound 10c also exhibits a favorable 

toxicity profile (non-toxic up to 100 μM in all four human cell lines; Table 2) and retains much 

of the activity (P. falciparum IC50 = 3.0 μM). In this respect, the novel compounds 10 appear to 

be a large improvement over other PQ derivative series tested here: while the above-reported 

compounds 3b, 5r and 5v exhibited PQ-like antimalarial activity (Table 1), they are also 

similarly cytotoxic to human cells as PQ (Table 2), in stark contrast to 10c, 10e and 10f which 

are substantially less cytotoxic than PQ. Of note, our data for 10c, 10e and 10f were measured 

across five independent experiments (biological replicates) for the H460 and MCF-7 cell lines 

and at least two experiments in SW620 and A2780 cells (Table 2), suggesting robust results. To 

further examine effects on a broader panel of human tissues, we also tested against the tumor-

derived cell lines HCT 116 (colon), HL-60 and K562 (blood/myeloid lineage) and Capan-1 

(pancreatic). All compounds from series 10 had very low cytotoxicity also on all these additional 

cell lines (IC50 >100 μM; single biological replicate), unlike PQ (Table S1). 

Table 2 

IC50 valuesa (in µM; mean ± standard deviation) for human cell lines 
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Compd. 

Cell lines 

H460 MCF-7 SW620 A2780 

3b 
> 100 

(n = 3)b 

3 ± 0.4 

(n = 2) 

>100c 

(n = 2) 

1 ± 0.1 

(n = 3) 

5r 
3 ± 0.3 

(n = 2) 

3 ± 2 

(n = 2) 

7 ± 4c 

(n = 2) 

1 ± 0.2 

(n = 2) 

5v 
5 ± 0.3 

(n = 2) 

1 ± 0.5 

(n = 2) 

> 100c 

(n = 2) 

0.06 ± 0.01 

(n = 3) 

10a 
> 100 

(n = 5) 

> 100 

(n = 4) 

>100 

(n = 3) 

36±29 

(n = 3) 

10b 
64 ± 32 

(n = 2) 

> 100 

(n = 2) 

>100  

(n = 3) 
n. t.d 

10c 
> 100 

(n = 5) 

> 100 

(n = 5) 

>100 

(n = 3) 

> 100 

(n = 2) 

10d 
52 ± 31 

(n = 2) 

16 ± 0.2 

(n = 2) 

32 ± 8 

(n = 3) 
n. t. 

10e 
> 100 

(n = 5) 

> 100 

(n = 5) 

6 ± 1 

(n = 3) 

> 100 

(n = 2) 

10f 
> 100 

(n = 5) 

> 100 

(n = 5) 

> 100 

(n = 3) 

14 ± 4 

(n = 2) 

10g 
> 100 

(n = 2) 

> 100 

(n = 2) 

> 100 

(n = 3) 
n. t. 

PQ 
10 ± 5 

(n = 3) 

5 ± 2 

(n = 6) 

14 ± 2 

(n = 3) 

5 ± 0.2 

(n = 2) 
a IC50 – the concentration that causes 50% growth inhibition. b Number of independent experiments (biological 

replicates) given in parentheses. c Values previously reported by Pavić et al. [23]. d n. t. – not tested. 

 

2.5. Cytotoxicity in G6PD-deficient cells 

One important mechanism of PQ toxicity in patients is related to the G6PD enzyme, wherein the 

persons with an inherited deficiency of G6PD may suffer severe side effects, in particular 

hemolytic anemia [40,41]. We therefore asked whether the favorable cytotoxicity profile of 

novel compounds 10 is retained or abolished in G6PD-deficient cells, in comparison to PQ and 

the most promising previous PQ derivatives from series 3 and 5. To investigate, we applied a 
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G6PD inhibitor 6-aminonicotinamide (6-AN) to the human cell lines H460 and MCF-7, thereby 

reducing G6PD activity in the cells. We observed that in highly active PQ derivatives 3b, 5r and 

5v, the cytotoxicity is aggravated upon G6PD inhibition (Figures 3c and 3d), similarly as for PQ 

itself (Figures 3a and 3b).  

In particular, applying 10 µM of PQ by itself lowers the MCF-7 cell growth rate to 25% of the 

untreated cells (meaning, growth is reduced by three-quarters, but there is still a net increase in 

number of cells; Figures 3a and 3b). However, the same PQ concentration in combination with 

6-AN (at 10 µM) results in a negative growth rate of approx. –45%, meaning there is much cell 

death occurring caused by PQ in the G6PD-inhibited cells. In other words, there is a synergistic 

effect on cytotoxicity by PQ and G6PD inhibition (Figures 3a and 3b). In contrast, a highly 

cytotoxic cancer drug not known to act in a G6PD-dependent manner, paclitaxel, does not show 

synergies with 6-AN (Figures 3a and 3b). The toxicity of 6-AN itself – always applied at 10 µM 

– for the H460 and MCF-7 cell lines is modest and thus unlikely to confound results (82% 

growth rate for MCF-7 and 87% for H460 for 6-AN only).  

We next turned to examine the effects of G6PD inhibition on the cytotoxicity of the novel 

compounds 10a, 10c, 10e and 10f in human cell lines (Figures 3e and 3f). There was little 

difference in growth inhibition of the H460 and MCF-7 cells regardless of if the G6PD inhibitor 

was simultaneously applied or not. In particular, at 10 µM, compound 10e results in >50% MCF-

7 cell growth with or without 6-AN (80% vs. 65%) and equally so with the compound 10f (93% 

vs. 76%). The observable difference is in line with the effect size due to applying 6-AN itself 

(approx. 15%) and therefore there does not appear to be a synergistic effect of 10e and 10f with 

G6PD inhibition, unlike PQ (25% vs. –45%, which amounts to a 70% difference) and unlike the 

previous compounds 3b, 5r and 5v (Figure 3c and 3d). The compounds 10a and 10c show a 
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similar pattern, indicating that G6PD inhibition does not substantially aggravate their toxicity 

(Figures 3e and 3f). H460 cells broadly uphold these results for 10a, 10c and 10f. Overall, our 

data suggest that the novel PQ derivatives synthetized herein are promising lead compounds for 

antimalarial drugs with an improved safety profile for G6PD-deficient patients. Testing of 

compounds 10 and their derivatives in other cell types and in model animals is therefore 

warranted to further establish the medicinal potential of these novel PQ derivatives. 

 

Fig. 3. The effects of G6PD inhibition on the cytotoxicity of the compounds to MCF-7 and H460 

cell lines; controls (A and B), PQ-derivatives (C and D) and newly synthetized ureidoamides (E 

and F). 

2.6. A comprehensive resource of predicted antimalarial activity and cytotoxicity of PQ-like 

compounds 
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Our efforts to computationally model the structure-activity relationship of PQ derivatives 

resulted in a highly accurate predictor based on the SVM algoritm. We were thus further 

motivated to employ computational modeling to provide a library of predictions for a broad set 

of 13,401 PQ-like molecular structures extracted from PubChem; see Supporting Text S1 for a 

description of the modeling, and see Supporting Information for the inferred biological activities. 

In brief, we predicted 199 compounds to be simultaneously more active and less cytotoxic than 

PQ itself (predictions listed in Supporting Information). While we took precautions to ensure that 

the molecular structures of the >13,000 tested compounds are reasonably consistent with the 

training set of PQ derivatives (see section 4.3.3), we advise caution in interpreting the 

predictions, given that QSAR models tend to become less reliable as structures diverge. We 

recovered individual examples of correct predictions in this data set, as suggested by a literature 

search (see Supporting Text S1 and Figure S1). If further validated by independent data, this 

database of predicted activities could serve as a useful resource to inspire future research on 

antimalarial PQ derivatives. 

3. Conclusions 

PQ and its derivatives are important drugs for treatment of various types of malaria, where in 

particular PQ has a unique ability to prevent P. falciparum transmission by killing the 

gametocytes of the parasite in the bloodstream. However, applying PQ at a broad scale is 

complicated by severe toxicity towards a subset of patients with an inherited G6PD deficiency. 

Therefore, there is a need for novel derivatives of PQ which would retain or improve its efficacy, 

while presenting a more favorable toxicity profile. Here, we evaluated the activity of 64 diverse 

PQ derivatives against the erythrocytic stage of the P. falciparum NF54 strain. PQ-cinnamic acid 

amides 1d and 1e, chlorobenzhydryl 2i, trityl 2j and 2k urea with two PQ residues, PQ-cinnamic 
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acid semicarbazide 4e, the trityl bis-urea 5r and the methoxybenzhydryl compounds 3b and 5v 

showed high activities. Based on these experimental measurements, a QSAR model prioritized a 

novel series of PQ ureidoamides 10a-g that we designed, prepared and evaluated against P. 

falciparum and mammalian cells. The results confirmed high activity and low cytotoxicity of 

ureidoamides 10, especially of benzhydryl and chlorobenzhydryl compounds 10e and 10f 

derived from p-chlorophenylglycine. These showed antimalarial activity comparable with PQ, 

but at least an order of magnitude lower cytotoxicity to various human cell types and in 

particular their toxic effects were not notably aggravated in G6PD-inhibited cells, in contrast to 

PQ. We suggest that 10a-g constitute promising lead compounds for development of more 

effective and safer drugs for malaria treatment, particularly for G6PD-deficient patients. 

Furthermore, our computational models predict hundreds of additional PQ-related compounds 

with favorable antimalarial activity and cytotoxicity profiles, highlighting new avenues for future 

research efforts. 

 

4. Materials and methods 

4.1. Synthesis 

4.1.1. General information 

Melting points were measured on a Stuart Melting Point (SMP3) apparatus (Barloworld 

Scientific, UK) in open capillaries with uncorrected values. IR spectra were recorded on FTIR 

Perkin Elmer Spectrum One and UV-Vis spectra on Lambda 20 double beam spectrophotometer 

(Perkin-Elmer, UK). All NMR (1H and 13C) were recorded at 25 C on NMR Avance 600 

spectrometer (Bruker, Germany) at 300 and 150 MHz for 1H and 13C nuclei, respectively. 
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Chemical shifts (δ) are reported in parts per million (ppm) using tetramethylsilane as reference in 

the 1H and the DMSO residual peak as reference in the 13C spectra (39.51 ppm). Coupling 

constants (J) are reported in Hertz (Hz). Mass spectra were recorded on HPLC-MS/MS (HPLC, 

Agilent Technologies 1200 Series; MS, Agilent Technologies 6410 Triple Quad). Mass 

determination was realized using electron spray ionization (ESI) in positive or negative mode. 

CEM Discover microwave reactor was used for microwave reactions (P = 150 W, t = 70 °C). 

Elemental analyses were performed on a CHNS LECO analyzer (LECO Corporation, USA). 

Found values for carbon, hydrogen and nitrogen were within ± 0.4% of the theoretical values. 

All compounds were routinely checked by TLC with Merck silica gel 60F-254 glass plates using 

the following solvent systems: petrolether/ethyl acetate/methanol 30:10:5, cyclohexane/ethyl 

acetate 1:1, cyclohexane/ dichloromethane/methanol 10:18:2, 

dichloromethane/dichloromethane/methanol 97:3 and 95:5. Spots were visualized by short-wave 

UV light and iodine vapour. Column chromatography was performed on silica gel 0.063–0.200 

mm (Kemika, Croatia) and 0.040–0.063 mm (Merck, Germany), with the same eluents used in 

TLC. 

1H-benzo[d][1,2,3]triazole (BtH), triphosgene, triethylamine (TEA), hydrazine hydrate, L-

leucine, D-phenylglycine, DL-p-chlorophenylglycine, p-bromoaniline and N-methyl-1,1-

diphenylmethanamine were purchased from Sigma-Aldrich. Primaquine, diphenylmethanamine 

and (4-chlorophenyl)(phenyl)methanamine were prepared from commercially available salts 

(Sigma-Aldrich) prior the use. All reactions with primaquine were run light protected. 1-

Benzotriazole carboxylic acid chloride (BtcCl, 6) was prepared according to our procedures 

published earlier [42,43]. 4-Methoxybenzophenone hydrazone was prepared from 4-
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methoxybenzophenone and hydrazine hydrate [44]. Primaquine derivatives 1-5 were prepared 

according to the previously published procedures [23–29]. 

4.1.2. Btc-amino acids (7a-c): general procedure 

To a suspension of 20 mmol of amino acid in dry dioxane (40 ml) a solution of 1.81 g (10 mmol) 

BtcCl (6) in dry dioxane (10 ml) was added dropwise. The reaction mixture was stirred overnight 

at room temperature. Amino acid hydrochloride was filtered off, washed with dioxane and the 

mother liquor was evaporated under reduced pressure. The crude products were triturated several 

times with hot toluene. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-4-methylpentanoic acid 

(Btc-L-leucine, 7a) and 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-2-phenylacetic acid (Btc-

D-phenylglycine, 7b) were described in our previous paper [32], while 2-[(1H-1,2,3-

benzotriazole-1-carbonyl)amino]-2-(4-chlorophenyl)acetic acid (Btc-DL-p-chlorophenylglycine, 

7c) is a new compound. 

4.1.2.1. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-2-(4-chlorophenyl)acetic acid 

(Btc-DL-p-chlorophenylglycine (7c) 

From the reaction of 3.712 g p-chlorophenylglycine and 1.81 g chloride 6, 3.274 g (99%) of 7c 

was obtained; mp 127 oC (decomp.); IR (KBr): max 3360, 2924, 2540, 1750, 1712, 1494, 1450, 

1380, 1290, 1184, 1136, 1064, 1018, 976, 932, 822, 786, 754, 732, 680, 662, 642, 624, 600, 558, 

538, 516, 466 cm–1; 1H NMR (DMSO-d6) δ 9.63-9.62 (d, J = 7.21 Hz, 1H), 8.24-8.22 (d, J = 

8.35 Hz, 1H), 8.16-8.14 (d, J = 8.30 Hz, 1H), 7.75-7.71 (t, J = 7.56 Hz, 1H), 7.63-7.61 (d, J = 

8.46 Hz, 2H), 7.59-7.55 (t, J = 7.72 Hz, 1H), 7.49-7.47 (d, J = 8.45 Hz, 2H), 7.18-7.17 (d, J = 

7.24 Hz, 1H), 5.71-5.69 (d, J = 7.20 Hz, 1H); 13C NMR (DMSO-d6) δ 170.66, 148.50, 145.48, 

135.76, 132.81, 131.25, 130.22, 130.14, 128.41, 125.76, 119.94, 113.38, 56.69; ESI-MS; m/z 
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calculated for C15H11ClN4O3: 330.05, found: 353.2 (M+23)+; calculated for C6H9N3: 119.12, 

found: 120.1 (BtH+1)+. 

4.1.3. Btc-amino acid chlorides (8a-c): general procedure 

A solution of 4 mmol Btc-amino acid in 20 ml thionyl chloride was stirred overnight at room 

temperature. Thionyl chloride was evaporated under reduced pressure and the residue was 

dissolved in dry toluene and evaporated again (several times). Crude products 8a-c were used 

immediately in further reactions. 

4.1.4. Btc-amino acid amides (9a-g): general procedure 

A solution of 3.4 mmol corresponding amine or hydrazone and 4 mmol TEA in dry toluene (20 

ml) was added dropwise to a solution of 4 mmol chloride 8 in dry toluene (30 ml). The reaction 

mixture was stirred 30 min at room temperature. TEA × HCl was filtered off and mother liquor 

was evaporated. The residue was dissolved in ethyl acetate/1% HCl mixture (1:1). The organic 

layer was extracted three times with HCl solution (w = 1%), washed two times with water, dried 

over anhydrous sodium sulfate, filtered and evaporated under reduced pressure. 

4.1.4.1. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-N-(diphenylmethyl)-4-

methylpentanamide (9a) 

From the reaction of 0.623 g diphenylmethanamine, 1.179 g chloride 8a and 0.404 g TEA, and 

after trituration with ether, 1.081 g (72%) of 9a was obtained; mp 155–158 °C; IR (KBr): max 

3328, 3261, 3068, 2958, 2929, 1716, 1650, 1557, 1522, 1450, 1378, 1287, 1230, 1152, 1079, 

1050, 1013, 925, 855, 836, 753, 699, 633, 567, 521, 462 cm–1; 1H NMR (DMSO-d6) δ 9.12-9.09 

(2d, J = 3.95 Hz, 2H'), 8.23-8.18 (m, 2H), 7.76-7.72 (t, J = 7.71 Hz, 1H), 7.58-7.55 (t, J = 7.68 
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Hz, 1H), 7.37-7.24 (m, 10H), 6.18-6.16 (d, J = 8.37 Hz, 1H), 4.71-4.65 (m, 1H), 1.94-1.88 (m, 

1H), 1.73-1.62 (m, 2H), 0.95-0.89 (d, J = 6.48 Hz, 6H); 13C NMR (DMSO-d6) δ 170.58, 148.84, 

145.47, 142.19, 142.08, 131.32, 130.06, 128.40, 128.34, 127.49, 127.24, 127.05, 125.65, 119.84, 

113.54, 56.08, 52.97, 38.89, 24.46, 23.08, 21.38 [45]. 

4.1.4.2. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-N-(diphenylmethyl)-N-methyl-2-

phenylacetamide (9b) 

From the reaction of 0.671 g N-methyl-1,1-diphenylmethanamine, 1.259 g chloride 8b and 0.404 

g TEA, and after purification by column chromatography (mobile phase cyclohexane/ethyl 

acetate/methanol 30:10:5), 0.857 g (53%) of 9b was obtained; mp 82–83.5 oC; IR (KBr): max 

3377, 3032, 2939, 1735, 1649, 1490, 1405, 1294, 1231, 1081, 1033, 932, 867, 813, 753, 702, 

611, 569, 519 cm–1; 1H NMR (DMSO-d6) δ 9.16-9.14 (d, J = 5.97 Hz, 1H), 8.22-8.14 (m, 2H), 

7.75-7.70 (t, J = 8.27 Hz, 1H), 7.54 (m, 3H), 7.43-7.21 (m, 11H), 7.02-6.93 (m, 2H), 6.53 (s, 

1H), 6.16-6.14 (d, J = 6.23 Hz, 1H), 2.67 (s, 3H); 13C NMR (DMSO-d6) δ 169.24, 147.40, 

145.50, 138.47, 138.24, 135.92, 131.08, 130.26, 128.80, 128.60, 128.51, 128.48, 128.42, 128.28, 

127.51, 125.71, 119.97, 113.28, 61.00, 55.58, 31.69. 

4.1.4.3. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-N-[(4-

chlorophenyl)(phenyl)methyl]-2-phenylacetamide (9c) 

From the reaction of 0.740 g (4-chlorophenyl)(phenyl)methanamine, 1.259 g chloride 8b and 

0.404 g TEA, and after trituration with ether/petroleum ether and purification of mother liquid by 

column chromatography (mobile phase cyclohexane/ethyl acetate/methanol 30:10:5), 1.400 g 

(83%) of 9c was obtained; mp 116–118.5 oC; IR (KBr): max 3286, 3062, 3032, 1748, 1660, 

1502, 1499, 1448, 1380, 1232, 1182, 1126, 1094, 1036, 934, 852, 812, 752, 698, 612, 572, 554, 

518, 496 cm–1; 1H NMR (DMSO-d6) δ 9.41-9.39 (t, J = 7.41 Hz, 1H), 9.03-9.01 (d, J = 7.14 Hz, 
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1H), 8.23-8.21 (d, J = 8.29 Hz, 1H), 8.15-8.13 (dd, J = 2.6 Hz, 8.3 Hz, 1H), 7.74-7.71 (t, J = 7.60 

Hz, 1H), 7.61-7.60 (d, J = 7.81 Hz, 2H), 7.87-7.55 (t, J = 7.91 Hz, 1H), 7.43-7.35 (m, 6H), 7.32-

7.28 (m, 2H), 7.25-7.21 (m, 2H), 7.11-7.08 (t, J = 7.37 Hz, 2H), 6.19-6.17 (d, J = 8.10 Hz, 1H), 

5.84-5.81 (t, J = 6.46 Hz, 1H); 13C NMR (DMSO-d6) δ 172.20, 148.06, 145.50, 141.21, 140.76, 

135.60, 132.20, 131.15, 130.21, 129.40, 128.79, 128.51, 128.26, 128.19, 128.05, 128.00, 126.72, 

125.69, 119.91, 113.33, 59.56, 56.54. 

4.1.4.4. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-N-(4-bromophenyl)-2-(4-

chlorophenyl)acetamide (9d) 

From the reaction of 0.585 g p-bromoaniline, 1.397 g chloride 8c and 0.404 g TEA, and after 

purification by column chromatography (mobile phase cyclohexane/ethyl acetate/methanol 

30:10:5) and trituration with ether/petroleum ether and toluene/petroleum ether, 0.989 g (60%) of 

9d was obtained; 168.5–169.5 oC; IR (KBr): max 3406, 3232, 3062, 1732, 1656, 1600, 1498, 

1452, 1396, 1346, 1290, 1218, 1092, 1014, 930, 818, 778, 754, 724 ,656, 628, 594, 540, 502 cm–

1; 1H NMR (DMSO-d6) δ 10.63 (s, 1H), 9.48-9.47 (d, J = 7.14 Hz, 1H), 8.24-8.22 (d, J = 8.31 

Hz, 1H), 8.16-8.14 (d, J = 8.33 Hz, 1H), 7.75-7.71 (t, J = 7.55 Hz, 1H), 7.67-7.65 (d, J = 8.50 

Hz, 2H), 7.60-7.57 (t, J = 7.38 Hz, 3H), 7.55-7.48 (m, 4H), 5.83-5.82 (d, J = 7.18 Hz, 1H); 13C 

NMR (DMSO-d6) δ 167.39, 148.52, 145.48, 137.78, 135.92, 133.04, 131.72, 131.24, 130.22, 

129.80, 128.62, 125.77, 121.47, 119.95, 115.62, 113.39, 57.58. 

4.1.4.5. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-2-(4-chlorophenyl)-N-

(diphenylmethyl)acetamide (9e) 

From the reaction of 0.623 g diphenylmethanamine, 1.397 g chloride 8c and 0.404 g TEA, and 

after trituration several times with ether/petroleum ether, 0.640 g (38%) of 9e was obtained; mp 

164.5–166.5 oC; IR (KBr): max 3388, 3276, 3062, 1732, 1682, 1648, 1492, 1448, 1380, 1288, 
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1218, 1094, 1024, 930, 818, 750, 702, 648, 590, 566, 540 cm–1; 1H NMR (DMSO-d6) δ 9.41-

9.40 (d, J = 8.23 Hz, 1H), 9.10-9.09 (d, J = 7.29 Hz, 1H'), 8.23-8.21 (d, J = 8.36 Hz, 1H), 8.14-

8.12 (d, J = 8.31 Hz, 1H), 7.74-7.71 (t, J = 7.85 Hz, 1H), 7.64-7.62 (d, J = 8.52 Hz, 2H), 7.57-

7.54 (t, J = 8.59 Hz, 1H), 7.47-7.46 (d, J = 8.04 Hz, 2H), 7.37-7.35 (m, 2H), 7.32-7.31 (d, J = 

7.07 Hz, 2H), 7.29-7.28 (m, 1H), 7.27-7.20 (m, 3H), 7.10-7.08 (d, J = 7.01 Hz, 2H), 6.17-6.15 

(d, J = 8.20 Hz, 1H), 5.84-5.83 (d, J = 7.23 Hz, 1H); 13C NMR (DMSO-d6) δ 167.71, 148.10, 

145.47, 141.62, 141.60, 136.63, 132.79, 131.15, 130.18, 129.27, 128.44, 128.42, 128.29, 127.55, 

127.22, 127.04, 126.85, 125.69, 119.90, 113.31, 56.55, 56.34. 

4.1.4.6. 2-[(1H-1,2,3-benzotriazole-1-carbonyl)amino]-2-(4-chlorophenyl)-N-[(4-

chlorophenyl)(phenyl)methyl]acetamide (9f) 

From the reaction of 0.740 g (4-chlorophenyl)(phenyl)methanamine, 1.397 g chloride 8c and 

0.404 g TEA, and after purification by column chromatography (mobile phase cyclohexane/ethyl 

acetate/methanol 30:10:5) and trituration with ether/petroleum ether, 0.307 g (17%) of 9f was 

obtained; mp 158–159.5 oC; IR (KBr): max 3394, 3279, 3062, 1730, 1651, 1492, 1450, 1410, 

1381, 1321, 1290, 1219, 1184, 1150, 1093, 1017, 930, 828, 753, 702, 623, 563, 537 cm–1. The 

structure of product 9f was confirmed indirectly, by chemical derivatization to compound 10f. 

4.1.4.7. N-[(4-chlorophenyl)({N'-[(4-

methoxyphenyl)(phenyl)methylidene]hydrazinecarbonyl})methyl]-1H-1,2,3-benzotriazole-1-

carboxamide (9g) 

From the reaction of 0.769 g 4-methoxybenzophenone hydrazone, 1.397 g chloride 8c and 0.404 

g TEA, and after purification by column chromatography (mobile phase cyclohexane/ethyl 

acetate/methanol 30:10:5) and trituration with ether, 1.136 g (62%) of 9g was obtained; IR 

(KBr): max 3373, 3307, 3181, 3076, 3049, 2923, 2829, 1733, 1676, 1604, 1506, 1489, 1443, 
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1377, 1305, 1289, 1256, 1179, 1157, 1108, 1089, 1031, 960, 935, 836, 806, 779, 749, 696, 653, 

628, 603, 570, 532 cm–1. The structure of product 9g was confirmed indirectly, by chemical 

derivatization to compound 10g. 

4.1.5. PQ-ureidoamides (10a-g): general procedure 

Method A: NaOH solution (w = 5%) was added to a solution of 1 mmol PQ diphosphate in water 

until pH 9-10 was reached, and PQ base was extracted four times with dichloromethane and 

washed with water until pH 7. The organic layer was dried over anhydrous sodium sulfate, 

filtered and evaporated under reduced pressure. PQ base and 0.5 mmol Btc-amino acid amide 9 

were mixed in dioxane and stirred overnight at room temperature, light protected. The solvent 

was evaporated under reduced pressure. 

Method B: A suspension of 0.4 mmol PQ diphosphate, 0.4 mmol Btc-amino acid amide 9b and 

0.8 mmol TEA in dichloromethane (3 mL) was heated at 70 °C in microwave reactor for 45 min. 

The solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate/5% 

NaOH mixture (1:1). The organic layer was extracted with 5% NaOH three times, washed with 

water two times, dried over anhydrous sodium sulfate, filtered and evaporated. 

4.1.5.1. N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-

yl)amino]pentyl}carbamoyl)amino]-4-methylpentanamide (10a) 

Method A, from the reaction of 0.221 g Btc-amino acid amide 9a and 0.259 g PQ, and after 

purification by column chromatography (mobile phase cyclohexane/ethyl acetate/methanol 

30:10:5) and trituration with ether, 0.253 g (87%) of 10a was obtained; mp 184.5–185.5 °C; IR 

(KBr): max 3316, 2958, 1655, 1624, 1569, 1519, 1493, 1454, 1422, 1388, 1336, 1290, 1201, 

1167, 1155, 1052, 1028, 824, 791, 746, 697 cm1; 1H NMR (DMSO-d6) δ 8.89-8.87 (d, J = 8.53 
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Hz, 1H), 8.52 (s, 1H), 8.08-8.06 (d, J = 8.25 Hz, 1H), 7.43-7.40 (m, 1H), 7.28-7.20 (m, 10H), 

6.46 (s, 1H), 6.25 (s, 1H), 6.12-6.08 (m, 2H), 6.04-6.03 (m, 1H), 5.99-5.97 (d, J = 8.60 Hz, 1H), 

4.33-4.32 (q, J = 8.05 Hz, 14.91 Hz, 1H), 3.81 (s, 3H), 3.60 (m, 1H), 3.00 (m, 2H), 1.61-1.35 (m, 

7H), 1.18 (d, J = 3.31 Hz, 3H), 0.85-0.82 (m, 6H); 13C NMR (DMSO-d6) δ 172.46, 159.02, 

157.62, 144.64, 144.25, 142.45, 142.40, 134.82, 134.54, 129.60, 128.34, 128.29, 127.45, 127.10, 

126.93, 122.12, 96.12, 91.61, 55.73, 55.00, 51.44, 47.05, 42.22, 39.02, 33.53, 26.93, 24.27, 

23.03, 22.01, 20.24; ESI-MS: m/z calculated for C35H43N5O3: 581.34, found: 582.2 (M+1)+; 

Anal. Calcd. for (C35H43N5O3): C, 72.26; H, 7.45; N, 12.04. Found: C, 72.50; H, 7.47; N, 12.09. 

4.1.5.2. N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-

yl)amino]pentyl}carbamoyl)amino]-N-methyl-2-phenylacetamide (10b) 

Method B, from the reaction of 0.190 g Btc-amino acid amide 9b, 0.182 g PQ diphosphate and 

0.081 g TEA, and after purification by column chromatography (mobile phase cyclohexane/ethyl 

acetate/methanol 30:10:5) and trituration with ether, 0.084 g (34%) of 10b was obtained; mp 

146.5–148.5 °C; IR (KBr): max 3335, 3060, 3030, 2962, 2933, 2863, 1622, 1563, 1521, 1495, 

1479, 1457, 1406, 1388, 1337, 1308, 1221, 1201, 1163, 1116, 1082, 1052, 1031, 1003, 971, 921, 

869, 823, 791, 769, 735, 720, 701, 678, 624, 608, 566, 467 cm1; 1H NMR (DMSO-d6) δ 8.54-

8.53 (d, J = 3.06 Hz, 1H), 8.09-8.07 (d, J = 7.94 Hz, 1H, 7.42-7.30 (m, 9H), 7.25 (m, 2H), 7.19-

7.13 (m, 3H), 6.96 (s, 1H), 6.89 (m, 1H), 6.67-6.59 (m, 2H), 6.46 (s, 1H), 6.25-6.21 (2s, 2H), 

6.12-6.09 (d, J = 8.50 Hz, 1H), 5.77-5.75 (d, J = 8.11 Hz, 1H), 3.82 (s, 3H), 3.61 (m, 1H), 3.01 

(m, 2H), 2.65 (s, 3H), 1.61-1.48 (m, 4H), 1.19-1.18 (d, J = 5.83 Hz, 3H); 13C NMR (DMSO-d6) δ 

171.34, 159.00, 157.07, 144.63, 144.24, 138.81, 138.62, 134.80, 134.51, 129.58, 128.66, 128.56, 

128.49, 128.38, 128.22, 127.70, 127.36, 122.10, 96.11, 91.62, 60.33, 54.96, 54.26, 47.00, 39.02, 

33.52, 31.69, 26.87, 20.21; ESI-MS: m/z calculated for C38H41N5O3: 615.32, found: 616.5 
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(M+1)+, calculated for C13H10
•+: 166.08, found: 166.9 (C13H10

•+); Anal. Calcd. for (C38H41N5O3): 

C, 74.12; H, 6.71; N, 11.37. Found: C, 74.39; H, 6.72; N, 11.33. 

4.1.5.3. N-[(4-chlorophenyl)(phenyl)methyl]-2-[({4-[(6-methoxyquinolin-8-

yl)amino]pentyl}carbamoyl)amino]-2-phenylacetamide (10c) 

Method A, from the reaction of 0.322 g (0.65 mmol) Btc-amino acid amide 9c and 0.259 g PQ, 

and after purification by column chromatography (mobile phase cyclohexane/ethyl 

acetate/methanol 30:10:5) and trituration with ether, 0.351 g (85%) of 10c was obtained; mp 

129–131 °C; IR (KBr): max 3317, 3255, 1621, 1571, 1547, 1518, 1489, 1453, 1422, 1386, 1218, 

1157, 1090, 1051, 1029, 1014, 818, 790, 697 cm1; 1H NMR (DMSO-d6) δ 9.28-9.25 (dd, J = 

5.74 Hz, 8.25 Hz, 1H), 8.54-8.53 (d, J = 4.09 Hz, 1H), 8.09-8.06 (dd, J = 1.41 Hz, 8.27 Hz, 1H), 

7.44-7.38 (m, 4H), 7.36-7.16 (m, 9H), 7.13-7.09 (m, 2H), 6.69-6.65 (dd, J = 3.84 Hz, 8.57 Hz, 

1H), 6.48 (s, 1H), 6.26-6.24 (2s, 2H), 6.12-6.07 (m, 2H), 5.53-5.50 (dd, J = 5.50 Hz, 8.37 Hz, 

1H), 3.82 (s, 3H), 3.61 (m, 1H), 3.01 (m, 2H), 1.61-1.44 (m, 4H), 1.19-1.18 (d, J = 6.25 Hz, 3H); 

13C NMR (DMSO-d6) δ 170.08, 159.01, 157.09, 144.64, 144.26, 141.66, 141.09, 140.25, 134.82, 

134.53, 131.75, 129.60, 129.37, 128.75, 128.51, 128.35, 128.21, 127.52, 126.92, 126.58, 122.13, 

96.12, 91.63, 56.39, 55.26, 55.00, 47.03, 39.02, 33.52, 26.85, 20.23; ESI-MS: m/z calculated for 

C37H38ClN5O3: 635.27; found 636.2 (M+1)+; Anal. Calcd. for (C37H38ClN5O3): C, 69.85; H, 

6.02; N, 11.01. Found: C, 69.73; H, 6.00; N, 10.99. 

4.1.5.4. N-(4-bromophenyl)-2-(4-chlorophenyl)-2-[({4-[(6-methoxyquinolin-8-

yl)amino]pentyl}carbamoyl)amino]acetamide (10d) 

Method A, from the reaction of 0.242 g Btc-amino acid amide 9d and 0.259 g PQ, and after 

purification by column chromatography (mobile phase cyclohexane/dichloromethane/methanol 

10:18:2 and cyclohexane/ethyl acetate/methanol 30:10:5) and trituration with ether, 0.209 g 
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(67%) of 10d was obtained; mp 152–154.5 °C; IR (KBr): max 3335, 3285, 3093, 3049, 2961, 

2928, 2857, 1635, 1591, 1544, 1517, 1486, 1454, 1421, 1388, 1347, 1303, 1283, 1218, 1201, 

1157, 1091, 1072, 1050, 1028, 1009, 968, 935, 899, 817, 787, 760, 710, 674, 622, 551, 499 cm1; 

1H NMR (DMSO-d6) δ 8.96 (s, 1H), 8.54-8.53 (d, J = 3.87 Hz, 1H), 8.44 (s, 1H), 8.09-8.06 (d, J 

= 8.20 Hz, 1H), 7.53-7.46 (m, 1H), 7.44-7.36 (m, 6H), 7.33-7.30 (m, 2H), 7.12-7.09 (dd, J = 3.61 

Hz, 7.49 Hz, 1H), 6.47 (s, 1H), 6.25 (s, 1H), 6.09-6.06 (d, J = 8.75 Hz, 1H), 5.33-5.30 (d, J = 

7.71 Hz, 1H), 3.82 (s, 3H), 3.57 (m, 1H), 3.09 (m, 2H), 1.51-1.40 (m, 4H), 1.15-1.12 (d, J = 5.74 

Hz, 3H); 13C NMR (DMSO-d6) δ 169.47, 158.99, 153.85, 144.62, 144.24, 139.52, 139.15, 

134.80, 134.51, 131.42, 131.42, 128.30, 119.36, 129.57, 122.10, 112.52, 96.10, 91.61, 55.72, 

54.98, 46.87, 39.02, 33.27, 25.72, 20.16; ESI-MS: m/z calculated for C30H34BrClN5O3: 625.13, 

found: 626.3 (M+1)+; Anal. Calcd. for (C30H31BrClN5O3): C, 57.66; H, 5.00; N, 11.21. Found: C, 

57.81; H, 5.02; N, 11.23. 

4.1.5.5. 2-(4-Chlorophenyl)-N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-

yl)amino]pentyl}carbamoyl)amino]acetamide (10e) 

Method A, from the reaction of 0.230 g Btc-amino acid amide 9e and 0.259 g PQ, and after 

purification by column chromatography (mobile phase cyclohexane/ethyl acetate/methanol 

30:10:5) and trituration with ether, 0.114 g (36%) of 10e was obtained; mp 180–183 °C; IR 

(KBr): max 3321, 3254, 1621, 1572, 1547, 1519, 1491, 1455, 1422, 1388, 1348, 1218, 1197, 

1159, 1091, 1051, 1030, 1013, 819, 790, 744, 693 cm1; 1H NMR (DMSO-d6) δ 9.27-9.25 (d, J = 

8.53 Hz, 1H), 8.53-8.52 (d, J = 3.74 Hz, 1H), 8.08-8.06 (dd, J = 1.46 Hz, 8.24 Hz, 1H), 7.43-

7.41 (m, 1H), 7.39-7.31 (m, 5H), 7.28-7.21 (m, 5H), 7.18-7.17 (m, 2H), 7.10-7.09 (d, J = 7.51 

Hz, 2H), 6.70-6.69 (d, J = 8.53 Hz, 1H), 6.47 (s, 1H), 6.26-6.24 (2s, 2H), 6.11-6.10 (d, J = 8.70 

Hz, 1H), 6.06-6.05 (d, J = 8.49 Hz, 1H), 5.54-5.52 (dd, J = 2.55 Hz, 8.52 Hz, 1H), 3.81 (s, 3H), 
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3.62-3.60 (m, 1H), 3.02-2.97 (m, 2H), 1.64-1.41 (m, 4H), 1.19-1.18 (d, J = 5.54 Hz, 3H); 13C 

NMR (DMSO-d6) δ 169.49, 158.98, 156.92, 144.61, 144.21, 142.01, 141.86, 139.47, 134.77, 

134.49, 131.81, 129.55, 128.39, 128.34, 128.23, 128.09, 127.44, 127.09, 126.90, 126.80, 122.06, 

96.06, 91.62, 56.90, 55.70, 54.95, 47.00, 39.02, 33.47, 26.78, 20.18; ESI-MS: m/z calculated for 

C37H38ClN5O3: 635.27, found:  636.4 (M+1)+; Anal. Calcd. for (C37H38ClN5O3): C, 69.85; H, 

6.02; N, 11.01. Found: C, 69.79; H, 6.01; N, 11.00. 

4.1.5.6. 2-(4-Chlorophenyl)-N-[(4-chlorophenyl)(phenyl)methyl]-2-[({4-[(6-

methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]acetamide (10f) 

Method A, from the reaction of 0.265 g Btc-amino acid amide 9f and 0.259 g PQ, and after 

purification by column chromatography (mobile phase cyclohexane/ethyl acetate/methanol 

30:10:5) and trituration with ether, 0.127 g (38%) of 10f was obtained; mp 150–151.5 °C; IR 

(KBr): max 3317, 3252, 1623, 1519, 1489, 1454, 1387, 1218, 1158, 1091, 1051, 1013, 819, 790, 

757, 697 cm1; 1H NMR (DMSO-d6) δ 9.29-9.28 (d, J = 8.62 Hz, 1H), 8.53 (s, 1H), 8.08-8.07 (d, 

J = 7.19 Hz, 1H), 7.43-7.33 (m, 7H), 7.31-7.23 (m, 4H), 7.13-7.09 (m, 2H), 6.71-6.68 (dd, J = 

4.04 Hz, 8.40 Hz, 1H), 6.47 (s, 1H), 6.26-6.24 (2s, 2H), 6.11-6.10 (d, J = 8.66 Hz, 1H), 6.07-

6.06 (d, J = 8.28 Hz, 1H), 5.53-5.50 (dt, J = 2.30 Hz, 8.23 Hz, 1H), 3.81 (s, 3H), 3.61-3.60 (m, 

1H), 3.00 (m, 2H), 1.63-1.42 (m, 4H), 1.19-1.18 (d, J = 6.22 Hz, 3H); 13C NMR (DMSO-d6) δ 

169.59, 158.98, 156.94, 144.61, 144.21, 141.50, 140.92, 139.32, 134.76, 134.49, 131.81, 131.56, 

129.55, 129.27, 128.67, 128.48, 128.35, 128.21, 128.15, 127.42, 126.84, 122.06, 96.08, 91.62, 

55.77, 55.34, 54.95, 47.00, 39.02, 33.47, 26.76, 20.18; ESI-MS: m/z calculated for 

C37H37Cl2N5O3: 669.23, found: 670.4 (M+1)+; Anal. Calcd. for (C37H37Cl2N5O3): C, 66.27; H, 

5.56; N, 10.44. Found: C, 66.40; H, 5.58; N, 10.46. 
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4.1.5.7. 3-[(4-Chlorophenyl)({N'-[(4-

methoxyphenyl)(phenyl)methylidene]hydrazinecarbonyl})methyl]-1-{4-[(6-methoxyquinolin-8-

yl)amino]pentyl}urea (10g) 

Method A, from the reaction of 0.269 g Btc-amino acid amide 9g and 0.259 g PQ, and after 

purification by column chromatography (mobile phase dichloromethane/methanol 95:5 and 

cyclohexane/ethyl acetate 1:1) and trituration with ether, 0.068 g (20%) of oil product 10g was 

obtained; IR (film): max 3349, 2930, 1633, 1610, 1555, 1509, 1454, 1421, 1386, 1324, 1304, 

1250, 1220, 1201, 1164, 1090, 1029, 959, 819, 790, 772, 697 cm1; 1H NMR (DMSO-d6) δ 10.28 

(s, 1H), 8.54-8.53 (d, J = 4.08 Hz, 1H), 8.09-8.06 (d, J = 8.20 Hz, 1H), 7.58-7.52 (m, 2H), 7.44-

7.24 (m, 8H), 7.17-7.15 (m, 2H), 7.11 (m, 1H), 6.99-6.92 (m, 2H), 6.74-6.71 (d, J = 8.38 Hz, 

1H), 6.48 (s, 1H), 6.27-6.21 (m, 2H), 6.13-6.10 (d, J = 8.71 Hz, 1H), 5.54-5.51 (d, J = 7.95 Hz, 

0.63H), 5.37-5.35 (d, J = 7.81 Hz, 0.37H), 3.82 (s, 3H), 3.86-3.84 (d, J = 4.06 Hz, 1H), 3.78-3.76 

(d, J = 5.04 Hz, 2H), 3.61 (m, 1H), 3.0 (m, 2H), 1.65-1.48 (m, 4H), 1.21-1.19 (d, J = 6.05 Hz, 

3H); 13C NMR (DMSO-d6) δ 169.45, 167.10, 158.99, 157.00, 155.00, 144.62, 144.24, 138.90, 

134.79, 134.51, 132.50, 131.98, 130.17, 129.31, 129.15, 129.06, 128.47, 128.26, 127.65, 129.57, 

124.27, 122.09, 114.60, 113.77, 96.09, 91.62, 55.21, 54.97, 47.0, 39.02, 33.48, 26.78, 20.20; 

ESI-MS: m/z calculated for C38H39ClN6O4: 678.27, found: 679.3 (M+1)+; Anal. Calcd. for 

(C38H39ClN6O4): C, 67.20; H, 5.79; N, 12.37. Found: C, 67.39; H, 5.80; N, 12.40. 

4.2. Biological evaluation 

4.2.1. Activity against erythrocytic stage of P. falciparum 

In vitro activity against erythrocytic stages of drug sensitive P. falciparum NF54 strain was 

determined using a 3H-hypoxanthine incorporation assay [46–48]. Compounds were dissolved in 
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DMSO at 10 mg/ml and added to parasite cultures incubated in RPMI 1640 medium without 

hypoxanthine, supplemented with HEPES (5.94 g/l), NaHCO3 (2.1 g/l), neomycin (100 U/ml), 

Albumax® (5 g/l) and washed human red cells A+ at 2.5% hematocrit (0.3% parasitemia). Serial 

drug dilutions of eleven 3-fold dilution steps covering a range from 100 to 0.002 μg/ml were 

prepared. The 96-well plates were incubated in a humidified atmosphere at 37 °C; 4% CO2, 3% 

O2, 93% N2. After 48 h 50 μl of 3H-hypoxanthine (0.5 μCi) was added to each well of the plate. 

The plates were incubated for a further 24 h under the same conditions. The plates were then 

harvested with a Betaplate™ cell harvester (Wallac, Switzerland), and the red blood cells 

transferred onto a glass fiber filter then washed with distilled water. The dried filters were 

inserted into a plastic foil with 10 ml of scintillation fluid, and counted in a Betaplate™ liquid 

scintillation counter (Wallac). IC50 values were calculated from sigmoidal inhibition curves by 

linear interpolation between two neighboring points [49] using Microsoft Excel; see section 4.2.3 

below for details and Supplementary Figure S2 for example dose-response curves. 

4.2.2. In vitro cytotoxicity on rat L6 primary cells 

Assays were performed in 96-well microtiter plates, each well containing 100 l of RPMI 1640 

medium supplemented with 1% L-glutamine (200 mM) and 10% foetal bovine serum, and 4000 

L6 cells (a primary cell line derived from rat skeletal myoblasts) [50,51]. Serial drug dilutions of 

eleven 3-fold dilution steps covering a range from 100 to 0.002 μg/ml were prepared. After 70 

hours of incubation the plates were inspected under an inverted microscope to assure growth of 

the controls and sterile conditions. 10 l of Alamar Blue was then added to each well and the 

plates incubated for another 2 hours. Then the plates were read with a microplate fluorometer 

using an excitation wave length of 536 nm and an emission wave length of 588 nm. The IC50 
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values were calculated by linear interpolation from the sigmoid dose inhibition curves [49] using 

SoftmaxPro software (Molecular Devices Cooperation, USA); see section 4.2.3 below for 

details. 

4.2.3. Antiproliferative activity on human cell lines 

The experiments were carried out on eight human cell lines, derived from different tissues-of-

origin: H460 (lung carcinoma), SW620 (colon carcinoma), MCF-7 (breast adenocarcinoma), 

A2780 (ovarian endometroid adenocarcinoma), HCT 116 (colorectal carcinoma), HL-60 (acute 

promyelocytic leukemia), K562 (chronic myeloid leukemia) and Capan-1 (pancreatic 

adenocarcinoma). Cells were grown in DMEM or RPMI-1640 media with the addition of 10% 

fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin, 

and cultured as monolayers at 37 °C in a humidified atmosphere with 5% CO2. 

Cells were seeded at 2 ×104 to 4 × 104 cells/well (depending on the doubling time of a specific 

cell line) in a standard 96-well microtiter plates and left to attach for 24 h. Next day, test 

compounds were added in five serial 10-fold dilutions alone or in combination with 6-

aminonicotinamide (always at 10 µM). Working dilutions were freshly prepared on the day of 

testing. The final concentration of DMSO was <0.2% which was non-toxic to cells. The cell 

growth rate was evaluated after 72 hours of incubation, using the MTT assay. The percentage of 

growth (PG) of the cell lines was calculated as described previously [34]. 

The IC50 values for each compound were calculated from concentration-response curves using 

linear regression analysis by fitting to the two concentrations that give PG values above and 

below the respective reference value (i.e. 50% growth inhibition). In effect, this is a linear 

interpolation between the concentration points adjacent to the IC50. We examined to what extent 
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the IC50 values estimated thusly match those found by fitting a non-linear logistic (Hill) equation. 

This revealed a strong agreement, for instance, the average difference of IC50 calculated by the 

two methods for compounds 3b, 5v, 10e and 10f (considering antimalarial activity and 

antiproliferative activity over H460 and MCF-7 cell lines) is 0.06 µM units; the dose-response 

curves obtained with both methods of fitting are shown in Supporting Figure S2. This agreement 

is consistent with past recommendations to use the linear interpolation approach for finding IC50 

in sigmoidal drug response curves [49]. Each test point was performed in four technical 

replicates. The data reported for H460, MCF-7, SW620 and A2780 cells in Table 2 were 

measured in at least two separate experiments (biological replicates), while the data for an 

extended set of cell lines (HCT 116, HL-60, K562 and Capan-1) in Supporting Table S1 

represent measurements from a single experiment. 

4.3. QSAR modeling 

4.3.1. Collection and pre-processing of PQ derivatives and antimalarial activity 

The QSAR model for prediction of antimalarial activity (log IC50 against P. falciparum NF54 

strain) was trained using the Support Vector Machines (SVM) algorithm for regression 

(henceforth: support vector regression), as implemented in the LIBSVM software [52]. In this 

study, SVM models were trained on a set of 56 compounds (structures provided in Supporting 

Data) represented with 2D molecular descriptors calculated with Chemistry Development Kit 

(CDK) [53]. A set of 285 CDK descriptors were initially calculated, followed by the removal of 

descriptors with constant or missing values for all compounds, yielding 140 descriptors in total. 

Prior to calculation of the CDK molecular descriptors, structures were represented as SMILES 
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strings and preprocessed using the Instant JChem Standardizer (with Remove fragment, 

Neutralize, Remove explicit hydrogens, and Dearomatize options) [54]. 

Out of 56 compounds in the training set, synthesis of 23 compounds were reported in our 

previous work [23–26], while their antimalarial activity is reported in the current paper (Table 1). 

Of note, we required at least two independent experimental measurements of antimalarial 

activity to include the compound in our QSAR data series, therefore excluding four compounds 

at this stage (2i, 5c, 5q and 5s); all other compounds were measured in two or three experiments 

(three technical replicates each). 

An additional 33 compounds and the corresponding antimalarial activity measurements were 

collected from the studies of Kaur et al. [37–39]. Out of 88 reported compounds in total, we 

selected the ones occupying similar chemical space to our compounds, as determined by 

Principal Component Analysis (PCA); bounding box on principal components 1 and 2 is shown 

in Figure S3. Among the compounds of Kaur et al., there are several stereoisomers which cannot 

be differentiated with 2D CDK molecular descriptors we used, therefore, we collapsed such 

stereoisomers into a single molecule (without stereochemistry) whose antimalarial activity was 

set to the mean activity of the stereoisomers. The PCA bounding box filtering and unification of 

stereoisomers yielded total of 33 compounds. The antimalarial activity of our compounds was 

measured against the P. falciparum NF54 strain (as described in 2.2.1), while Kaur et al. 

reported antimalarial activity against two strains of P. falciparum (D6 and W2) and we used the 

mean activity (log IC50) across these two strains, which is very highly correlated between the 

strains (R2=0.931 across the Kaur et al. compounds). To ensure compatibility of log IC50 values, 

the activities of compounds reported by Kaur et al. were converted to molar concentrations; 
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following that, the salts were removed from compound molecular structures prior to calculating 

the molecular descriptors. 

4.3.2. Using support vector machines regression to prioritize candidate compounds 

As recommended by LIBSVM authors, the radial basis function (RBF, or Gaussian) kernel was 

used and the regularization parameters were optimized in a grid search procedure (C from 2-5, 2-

4, …, 220 and 𝛾 from 2-15, 2-14, …, 25) [55]. The models were evaluated by using 10-fold cross 

validation which was repeated 10 times with different random initialization. The model with the 

highest R2, having R2 = 0.785 and RMSE = 0.284 was obtained for C = 25 and 𝛾 = 2-9, however 

we retained the model with very similar predictive performance (R2 = 0.776, RMSE = 0.294; 

Figure 2a), but more favorable parameter settings (C = 21 and 𝛾 = 2-6) for further prediction. 

Namely, lower values of the SVM regularization parameters C and 𝛾 are known to result in 

simpler, more parsimonious models (typically evident in less non-linearity and in a smaller 

number of support vectors), which are less likely to overfit to training data, thus generalizing 

better to unseen compounds. To estimate the predictive ability on out-of-sample data, the 

predictions of the SVM model were evaluated against an independent set of 37 compounds 

whose antimalarial activity was experimentally determined in this work post-QSAR analysis 

(Tables 1 and S2, compounds 1a-k, 2h, 4a-k, 5i-m, 5p, 5r; compounds were originally reported 

in references [26,28,29], and additionally the novel compounds 10a-g reported here, see below), 

showing agreement with the measured activities (R2 = 0.423, RMSE = 0.403; Figure 2b). The 

model was applied to infer the antimalarial activity of an in-house virtual library of 522 

compounds (structures provided in Supporting Data) in order to prioritize chemical synthesis of 

novel PQ derivatives 10a-g. Given the strong predicted antimalarial activity (Figure 2c), 
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ureidoamides 10a-g were selected for synthesis and evaluation for activity against P. falciparum 

and toxicity to mammalian cell lines. 

4.3.3. Predicting antimalarial activity for a comprehensive set of PQ-like compounds 

Further, we aimed to create a comprehensive QSAR model, therefore supplementing the initial 

training set of 56 compounds with the 37 additional PQ-related compounds (see above). After 

repeating the same SVM training and parameter optimization procedure on these 93 compounds, 

we obtained an accurate regression model (cross-validation R2 = 0.729, RMSE = 0.312; while 

using parameters C = 25, 𝛾 = 2-7). The updated 93-compound SVM model was then applied to 

predict the antimalarial activity of a large set of compounds extracted from PubChem database 

[56] (Supporting Information) that were within the applicability domain of our model. We 

ensured this in the following manner: for each compound from the training set, we extracted 

compounds from PubChem similar to it (querying for Tanimoto score ≥ 0.85, via the PubChem 

API; duplicates were excluded). Furthermore, the compounds were projected to the same PC 

coordinates as reported in Figure S3 and filtered using the same PCA bounding box approach, 

yielding 13 401 compounds in total. In addition to predictions of antimalarial activity for these 

13 401 compounds, we also provide predictions of their cytotoxicity based on cell line screening 

data (Supporting Information; Figure S1); see below for details. 

To develop a model for prediction of cytotoxicity, the NCI-60 cancer cell line screening database 

was used [57]. As a measure of cytotoxicity, we used the median of compound’s activities 

(expressed as –log IC50) across the 60 cell lines. We considered only compounds with median > 

4 (i.e., a value assigned if no activity was detected with maximal concentration tested for a given 

compound). Furthermore, to ensure the applicability of the cytotoxicity model to our data, only 
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compounds from NCI-60 that are close in chemical space to our compounds were considered. To 

this end, for each molecule from our dataset, its 𝑘 nearest neighbors in NCI-60 were selected 

(excluding identical molecules), considering 𝑘 ∈{20,50,75,100}. For the final model, 𝑘 = 75 was 

used since it yielded the best cross-validation performance (R2 = 0.514), resulting in 9301 

compounds in total. Compounds were represented with 2D CDK molecular descriptors and SVM 

model was trained following the same procedure as described above. 

To select the most important molecular descriptors in prediction of antimalarial activity, we used 

a forward feature selection scheme employing an SVM. The full data set containing 140 CDK 

descriptors was divided into data sets containing single descriptors and evaluated according to 

the cross-validation scheme as described above. The Pearson correlation coefficient was a 

measure of relevance for the descriptor. Top 15 descriptors obtained in this way are reported in 

Figure S4, while the complete list is provided in Table S2. 

The schematic representation of the QSAR modeling pipeline of this study is reported in 

Supporting Figure S5. 

 

Supporting information. The Supporting Information and Supporting Data are available via the 

journal website. 

Supporting Information: A comprehensive QSAR model for antimalarial activity and 

cytotoxicity of PQ-like compounds; IC50 values for HCT 116, HL-60, K562 and Capan-1 human 

cell lines; Plot of the antimalarial activity and cytotoxicity for 13 401 compounds extracted from 

the PubChem database; Comparison of the growth inhibition curves fitted with non-linear 

logistic regression and linear interpolation; Plot of the first two principal component of PCA 

analysis performed on 2D CDK molecular descriptors of the compounds reported by our group 
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and compounds collected from the studies of Kaur et al; The 15 most informative single 

descriptors for antimalarial activity prediction in a SVM model; The cross-validation 

performance of individual CDK descriptors in a forward feature selection scheme employing 

SVM; The schematic representation of the QSAR modeling pipeline; Analytical and spectral 

data of the prepared compounds; 1H and 13C NMR spectra of the prepared compounds; Copies of 

IR, 1H and 13C NMR, and MS spectra of new compounds; Atom assignation of compounds 7c, 

9a-g and 10a-g (PDF). 

Supporting Data: SMILES codes for all compounds: SVM training set (56 compounds); In house 

library (522 compounds); Compounds from PubChem predicted to be more active and less toxic 

than primaquine (199 compounds); Complete list of primaquine-like compounds retrieved from 

PubChem (13 401 compounds) (XLSX). 
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