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ABSTRACT 1 

Human adenovirus 52 (HAdV-52) is one of only three known HAdVs equipped with both a 2 

long and a short fiber protein. While the long fiber binds to the coxsackie- and adenovirus 3 

receptor, the function of the short fiber in the virus life cycle is poorly understood. Here, we 4 

show, by glycan microarray analysis and cellular studies, that the short fiber knob (SFK) of 5 

HAdV-52 recognizes long chains of α-2,8-linked polysialic acid (polySia), a large 6 

posttranslational modification of selected carrier proteins, and that HAdV-52 can use 7 

polySia as a receptor on target cells. X-ray crystallography, NMR, molecular dynamics 8 

simulation and structure-guided mutagenesis of the SFK reveal that the non-reducing, 9 

terminal sialic acid of polySia engages the protein with direct contacts, and that specificity 10 

for polySia is achieved through subtle, transient electrostatic interactions with additional 11 

sialic acid residues. To the best of our knowledge, this is the first time polySia has been 12 

shown to function as a cellular receptor for a human viral pathogen. Our detailed analysis of 13 

the determinants of specificity for this interaction has general implications for protein-14 

carbohydrate interactions, particularly concerning highly charged glycan structures, and 15 

provides interesting new dimensions on the biology and evolution of members of Human 16 

mastadenovirus G. 17 
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SIGNIFICANCE STATEMENT 1 

We present here that adenovirus type 52 (HAdV-52) attaches to target cells through a 2 

mechanism not previously observed by other human pathogenic viruses. The interaction 3 

involves unusual, transient, electrostatic interactions between the short fiber capsid protein 4 

and polysialic acid (polySia)-containing receptors on target cells. Knowledge about the 5 

binding interactions between polySia and its natural ligands is relatively limited and our 6 

results therefore provide novel insight not only to adenovirus biology but also to the 7 

structural basis of polySia function. Since polySia can be found in high expression levels in 8 

brain and lung cancers where its presence is associated with poor prognosis, we suggest that 9 

this polySia-binding adenovirus could be useful for design of vectors for gene therapy of 10 

these cancers. 11 

\body 12 
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INTRODUCTION 1 

Human adenoviruses (HAdVs) are common human pathogens associated with 2 

gastrointestinal, ocular and respiratory infections. To date, 84 different HAdV types have 3 

been identified, and they are grouped into seven species (Human mastadenovirus A to G) 4 

(1). HAdVs are non-enveloped viruses whose icosahedral capsid is composed of three 5 

major proteins, the fiber, the penton base and the hexon, all of which are known to mediate 6 

binding to host cells. The fiber protein, with a terminal knob domain, binds to cellular 7 

receptors such as the coxsackie and adenovirus receptor (CAR) (2-4), desmoglein-2 (5), 8 

CD46 (6-8) or sialic acid (Sia)-containing glycans (9-11). The penton base interacts with 9 

cellular integrins, thereby facilitating endocytosis (12, 13) and endosomal release (14, 15). 10 

The hexon protein is the main component of the viral capsid and binds with high affinity to 11 

coagulation factors IX and X, resulting in liver tropism through indirect binding to heparan 12 

sulfate on hepatocytes (16-18), and shields the virion from neutralizing antibodies and 13 

complement-mediated destruction (19).  14 

 15 

HAdV-52 was isolated in 2003 from a small outbreak of gastroenteritis (20). The virus 16 

diverged from other HAdVs and was classified into the new species Human mastadenovirus 17 

G (HAdV-G), which otherwise exclusively contains Old World monkey AdVs. HAdVs are 18 

normally equipped with only one fiber protein, but HAdV-52, along with species HAdV-F 19 

types HAdV-40 and -41, differ from all other known HAdVs by having two different fiber 20 

proteins, one short (coded by gene fiber-1) and one long (fiber-2) (20-22). We showed 21 

recently that the knob domain of HAdV-52 long fiber (52LFK) binds to CAR and that the 22 

knob domain of the short fiber (52SFK) binds to Sia-containing glycoproteins on target 23 

cells (23). However, the identity and structure of the cellular Sia-containing glycans have 24 

remained unknown.  25 
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Sia-containing glycans serve as receptors for a large number of viral pathogens, including 1 

influenza A virus, coronavirus, rotavirus, polyomavirus and many others (24). Variations in 2 

Sia specificity determine host and tissue tropism, pathogenicity and transmission of multiple 3 

viruses. Here we show by glycan microarray analysis that the 52SFK recognizes longer 4 

chains of sialic acid residues, known as polysialic acid (polySia), with higher affinity than 5 

any other tested glycan. PolySia is a rare posttranslational modification of only nine 6 

identified carrier proteins to our knowledge, among them are the cell adhesion molecules 7 

NCAM (25) and SynCAM-1 (26) as well as Neuropilin-2 (27) and the dendritic cell 8 

chemokine receptor CCR7 (28). Polysialylation is best known as a modulator of 9 

developmental plasticity in the nervous system, but more recently, additional roles in the 10 

development of a number of organs such as the liver, kidney, heart, and testes have been 11 

unraveled (reviewed in  (29)). In the adult brain, polySia expression is markedly 12 

downregulated and only retained in few areas that maintain plasticity such as the 13 

hippocampus, olfactory bulb and hypothalamus (reviewed in (30-32)). However, polySia is 14 

not exclusively associated with the brain. Newer studies demonstrate additional regulatory 15 

roles in innate immune responses (28, 33-36), and in regenerative or anti-inflammatory 16 

processes (37-42). Further, polySia is found at high expression levels on several types of 17 

cancer including glioma (43-45), neuroblastoma (46, 47), and lung cancer (48, 49). By 18 

means of X-ray crystallography, NMR, molecular dynamics simulation and cellular 19 

analyses we reveal here a novel function for polySia as a cellular receptor for the short fiber 20 

knob of HAdV-52. The 52SFK possesses a unique polySia-binding mode featuring transient 21 

polar interactions and electrostatic contributions that extend beyond a fixed anchoring 22 

epitope engaging the non-reducing end of the polySia chain. We further provide an 23 

evolutionary analysis of the newly found polySia binding pocket within Human 24 

mastadenovirus G.  25 
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RESULTS  1 

HAdV-52 short fiber knob binds to polysialic acid  2 

We showed previously that the binding of HAdV-52 to human epithelial cells is sialic acid-3 

dependent and occurs via the short fiber knob (23). To date, the precise compositions and 4 

structures of glycans that can be optimally engaged by 52SFK remain unknown. We 5 

performed a glycan microarray analysis of 52SFK with 128 different sialylated glycans, in 6 

an attempt to characterize the glycan receptor of HAdV-52. Very strong binding signals 7 

were observed with 52SFK for a group of linear α-2,8-linked oligoSia that represent 8 

fragments of naturally occurring polySia (Fig. 1 & Table S1). This binding was much 9 

greater than for α-2,3- and α-2,6-linked sialic acids in the array. A markedly enhanced 10 

binding signal was observed at a degree of polymerization (DP) of 3 or more 11 

monosaccharides, with a maximal response at five or more Sia moieties. To confirm the 12 

ability of 52SFK to interact with polySia and to evaluate the specificity of this interaction, 13 

we developed an ELISA with immobilized, E. coli-derived polySia (colominic acid; 14 

DP≈80-100) and analyzed the binding of recombinant knob domains from HAdV-52 short 15 

fiber, the Sia-binding HAdV-37 fiber (37FK), and the CAR-binding HAdV-5 (5FK) and 16 

HAdV-52 long fiber (52LFK). The 52SFK bound efficiently to polySia, while the two 17 

CAR-binding FKs did not show any binding to this compound (Fig. 2A). 37FK, which 18 

binds with relatively high affinity to the branched, disialylated GD1a glycan using a 19 

different binding site (11, 23), bound less strongly to polySia than 52SFK. We therefore 20 

conclude that HAdV-52 is able to interact preferentially with polySia via the knob domain 21 

of its short fiber while having low affinities for a number of monosialylated glycans.  22 

 23 

 24 

 25 



7 
 

HAdV-52 binds to polysialic acid on human polySia-expressing cells  1 

To test the relevance of polySia recognition by HAdV-52 in a cellular context, we used the 2 

human polySia-expressing neuroblastoma cell line SH-SY5Y and its polySia-lacking 3 

parental cell line SK-N-SH as models for virus binding and infection (50). The levels of 4 

polySia on these cells were confirmed by flow cytometry using the anti-polySia antibody 5 

mAb735 (Fig. S1). 52SFK gave five times higher binding signals with polySia-expressing 6 

SH-SY5Y cells compared with the control cell line, whereas none of the control knobs, 7 

including 37FK, showed a comparable interaction pattern (Fig. 2B). Next, we used 8 

monosialic acid-binding lectins to evaluate the relative levels of glycans with terminal sialic 9 

acids on the two cell lines to exclude the possibility that the higher 52SFK binding to SH-10 

SY5Y was due to a higher level of glycans with terminal monosialic acids on these cells 11 

rather than preferential binding to polySia. All three lectins tested, MAL-I & -II (binds to α-12 

2,3-linked Sia), SNA (binds to α-2,6-linked Sia), and WGA (binds to terminal sialic acid as 13 

well as to N-Acetyl-D-glucosamine) bound stronger to SK-N-SH cells than to SH-SY5Y 14 

cells (Fig. S1), indicating that the parental, polySia-negative SK-N-SH cells have a higher 15 

total density of terminal sialic acids. Furthermore, pre-incubation of 52SFK with soluble 16 

oligoSia (DP5) reduced 52SFK binding to SH-SY5Y cells up to 75%, while no effect was 17 

observed on 37FK binding (Fig. 2C). Pre-incubating the whole HAdV-52 virions with 18 

oligoSia (DP5) also efficiently reduced binding to and infection of SH-SY5Y cells, whereas 19 

sialic acid monosaccharide (DP1) did not have as much of an effect (Fig. 3A & C). Neither 20 

of the two glycans tested reduced HAdV-5 binding to or infection of SH-SY5Y cells (Fig. 21 

3B & D). Based on these results we conclude that HAdV-52 virions show a clear preference 22 

for polySia-expressing cells over cells lacking polySia, that this feature is not shared by 23 

mono-sialic acid- or CAR-binding HAdVs, and that the interactions with polySia are 24 

mediated by the 52SFK.  25 
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 1 

PolySia is engaged at the non-reducing end, similarly to mono- and di-sialylated 2 

glycans 3 

Using 2-O-methyl-sialic acid as a ligand, we previously identified a sialic acid-binding site 4 

on the lateral side of 52SFK (23). This binding site includes a stretch of three adjacent 5 

residues that together form a prominent RGN motif (R316-G317-N318). This site is located 6 

on a different part of the knob from the binding site of 37FK, which engages sialic acid near 7 

its three-fold axis. The features responsible for the increased affinity for polySia are 8 

unknown, and it seems possible that additional contacts or an additional epitope that went 9 

undetected in earlier studies are formed between 52SFK and polySia. Consequently, we 10 

solved the complex crystal structures of 52SFK with three oligoSia glycans (DP3, -4 or -5) 11 

as well as the GD3 glycan (Neu5NAcα2,8Neu5NAcα2,3Galβ1,4Glc, representing a disialic 12 

acid motif). All complex structures produced similar results, as shown exemplary for DP3 13 

in Fig. 4. Surprisingly, well-defined electron density was found only for a single sialic acid 14 

moiety in the canonical binding pocket in all cases. The electron density around O8 and its 15 

direction relative to the protein clearly indicate that it is the non-reducing end of the glycan 16 

chain that is engaged, and the observed binding mode is identical to the one observed for 17 

monosialic acid. In all cases except for GD3, we observed additional electron density for a 18 

second sialic acid moiety projecting from the pocket towards the solvent. The overall 19 

density for this moiety is weaker, deteriorating from the glycerol group to the pyranose ring 20 

and indicating increased flexibility. All structures showed similar angles for the α-2,8-21 

glycosidic linkage (Fig. S2). Interestingly, the second sialic acid moiety does not seem to 22 

contribute any direct contacts in the overall interaction, except for a van-der-Waals contact 23 

between its N-acetyl group and E328. This contact seems to cause a local decrease of 24 

electron density and a slight rotation of the N-acetyl group. The third (and all following) 25 



9 
 

sialic acids could not be unambiguously traced in any of the structures. In order to verify 1 

our observations in solution, we performed saturation transfer difference (STD) NMR 2 

spectroscopy to screen for glycan protons of DP3 and DP5 that are consistently placed 3 

within 5-6 Å of the protein (shown exemplary for DP3 in Fig. 4B & C). The spectrum of the 4 

glycans alone compared well with the literature (51, 52). Since all of the sialic acid repeats 5 

were in a highly similar chemical environment in solution, the respective peaks overlap - 6 

with the exception of the non-reducing end, which experiences an upfield shift. The 7 

experiment showed saturation transfer occurring almost exclusively at the non-reducing 8 

end, while the other moieties received only a very moderate spin saturation occurring 9 

exclusively in the N-acetyl group region, which is consistent with the contacts observed in 10 

the crystal structures. In the case of the R316A mutant, which disrupts the canonical RGN 11 

motif and prevents 52SFK attachment to sialic acid on A549 cells (23), saturation transfer 12 

was completely abrogated. Together, these results demonstrate that 52SFK engages polySia 13 

exclusively via its canonical sialic acid binding site, without any additional binding sites on 14 

the knob domain. 15 

 16 

Transient hydrogen bonds and electrostatic effects are major determinants of 17 

52SFK:polySia interactions  18 

A length of more than three sialic acid residues is required for a strong interaction with 19 

52SFK, as seen in our glycan array data (Fig. 1). According to a cell attachment inhibition 20 

experiment, which does not underlie the steric constraints of chip-bound probes, a DP of 21 

three was sufficient to substantially decrease 52SFK binding at low concentration in 22 

solution. A decrease was also observed with DP2, but only at higher concentrations (Fig. 23 

5A). Similar results were acquired from surface plasmon resonance experiments with 24 

immobilized fiber knobs and oligoSia in solution, where the biggest increase in affinity was 25 
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shown between DP2 and DP3 (Fig. 5B). In combination with the structural data, these 1 

findings suggest that effects other than classical directed short-range contacts may account 2 

for the increased binding affinity of higher-order polySia compounds of DP3 or more. 3 

Given the poly-anionic character of polySia, we hypothesized that these effects might be 4 

caused by electrostatic interactions, which are non-directed and can occur over longer 5 

distances than direct interactions such as hydrogen bonds or van-der-Waals contacts. 6 

Indeed, an inspection of the electrostatic potential of the 52SFK revealed a positively 7 

charged rim located around the sialic acid binding site, which we termed the ‘steering rim’. 8 

The rim is mainly formed by residues Q320, R321, R316, and K349 (Fig. 6A-D). 9 

According to in-solution NMR studies, the poly-anionic polySia seems to at least transiently 10 

adopt a left-handed helical conformation (53). However, polySia is expected to be rather 11 

flexible in solution due to its linear, non-branched structure and the conformationally less 12 

restricted α-2,8-glycosidic linkage (42). In the DP3 complex structure, the second sialic acid 13 

moiety is situated above the ε-amino group of K349. We reasoned that if the polySia glycan 14 

roughly followed the left-handed helical arrangement proposed in the literature with energy-15 

minimal glycosidic torsion angles similar to those observed between the first two moieties 16 

(Fig. S2A-B), the carbohydrate chain would protrude away from the protein surface into the 17 

bulk solvent (indicated in Fig. 6E). Since such an arrangement is unlikely to enhance the 18 

affinity for DP3, we performed a molecular dynamics (MD) simulation of the complex 19 

between 52SFK and DP5 on the microsecond timescale in explicit solvent. Throughout this 20 

simulation, DP5 shows a flexible structure with dynamic partial helical features (Video S1). 21 

Consistent with the results from our STD-NMR experiments, only the non-reducing end is 22 

stably associated with the protein (Fig. 7A-B & 6E). However, the simulation shows that 23 

the other sialic acid residues transiently approach the protein surface and form favorable 24 

contacts with a variety of amino acids, most of which are located in the ‘steering rim’ and 25 
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the closely adjacent R347 (Fig. 7A-D). While the sialic acid moieties adjacent to the non-1 

reducing end mainly interact with a subset of residues located in the canonical pocket and 2 

‘steering rim’, the moieties towards the reducing end show a much more variable interaction 3 

pattern with low occupancies for individual contacts. In total however, the large majority of 4 

contacts are being formed with the canonical pocket or ‘steering rim’, respectively. The 5 

dimensions of DP5 are similar to the combined radius of the binding pocket and ‘steering 6 

rim’ (Fig. 7A-B). In particular, the fifth sialic acid engages in a large number of low-7 

intensity interactions with residues outside the rim according to our simulations (Fig. 7 C-8 

D), which might explain why the enhancing effect of additional Sia moieties is fading 9 

beyond DP5 (Fig. 1) and why colominic acid is only moderately more potent than DP5 10 

given the size difference (Fig. 5B). Over the time course of the simulation, the sialic acids 11 

display an alternating pattern of transient interactions, and there are most of the time at least 12 

two pyranoses that directly interact with the protein (Fig. 7E). This avidity effect is only 13 

possible if there are at least three Sia moieties. The average number of favorable 14 

interactions found in the canonical pocket and the ‘steering rim’ per residue are shown in 15 

Fig. 7F. Overall, the data agree remarkably well with the other experiments and strongly 16 

suggest that transient contact interactions of the third to fifth sialic acid moiety are 17 

responsible for the increased binding affinity, while the non-reducing sialic acid is a 18 

necessary feature and engaged in a shape-complementary binding site. The involvement of 19 

additional non-contact electrostatic interactions could further contribute to binding affinity 20 

(Fig. S3). Despite the excellent agreement between the experiments and the results derived 21 

from MD simulations, it should be noted that even sampling of conformational space on the 22 

microsecond timescale might not be long enough to sample all possible interactions 23 

between the HAdV-52 short fiber knob and oligoSia. Therefore the results from MD 24 

simulations should be taken with some caution. 25 
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 1 

To provide additional experimental support for our hypothesis, we produced fiber knobs 2 

with mutations in the ‘steering rim’, and analyzed knob binding to polySia-expressing SH-3 

SY5Y cells. The K349A mutant almost completely lost its cell binding capacity, and similar 4 

effects were observed for the R321Q and analogous mutants (Fig. 7G). When mutated, the 5 

residue R321 can no longer counterbalance the charge of the proximal side chain of E348, 6 

which then likely repels the polyanionic polySia and might thus contribute to an 7 

unexpectedly strong loss in binding. Indeed, if E348 is also mutated to a non-charged 8 

residue, the effect of the R321Q mutation is largely reversed (Fig. 7G). This implies that 9 

R321 interacts more weakly with polySia than R316 and K349 do, which fits well with the 10 

assumption of a flexible ‘pseudo-helical’ arrangement.  11 

 12 

The polySia binding site and the ‘steering rim’ are conserved in closely related simian 13 

adenoviruses 14 

The polySia-binding RGN motif is conserved in the short fibers of other closely related 15 

members of species HAdV-G: SAdV-1, -2, -7 and -11, as well as SAdV-19 (SAdV-C, which 16 

acquired its short fiber from an unknown type/species) (54); but it is not found in any other 17 

known non-human or human AdV, including the short fiber knobs of HAdV-40 and -41 18 

(HAdV-F) (Fig. S4A). Interestingly, the three positively charged residues forming the 19 

‘steering rim’ are also functionally conserved in these SAdV types, but in different 20 

permutations (RRK, RKK, RRR) (Fig. S4A). Another functionally important residue is Q320, 21 

which aids in the production of an electropositive field in the ‘steering rim’ and is functionally 22 

conserved in all of the SAdV types of HAdV-G (but not in SAdV-19). No other HAdV fiber 23 

knob with known structure exhibits a comparable ‘steering rim’ (Fig. S4B). In fact, the lateral 24 

part of the knob is typically used for protein interfaces, e.g. for CAR or CD46 (55). However, 25 
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since the two fibers of HAdV-52 display a clear division of labor, the 52SFK likely serves as 1 

a purely Sia-binding fiber knob and thus can accommodate Sia-containing glycans at a more 2 

prominently exposed lateral binding site than for example on HAdV-37. In the HAdV-41 3 

SFK, which is the only other structurally characterized short fiber knob, the disordered G 4 

strand is thought to obstruct the electropositive patch on the side (56) making a Sia interaction 5 

unlikely. HAdV-5 possesses an electropositive patch, but lacks a shape-complementary Sia-6 

binding site and has not been reported to use sialic acid as attachment receptor. Instead, it has 7 

been used as a negative control in many studies (Fig. 2 & 3). This further supports our 8 

hypothesis that polySia binding is a specific ability limited to a small subset of AdVs. We 9 

assayed the polySia specificity and binding capacity of fiber knobs belonging to this subset in 10 

a cell attachment assay with cells expressing or lacking polySia. All of the examined short 11 

knobs except that of SAdV-2 SFK bound better to polySia-expressing cells than to the control 12 

cell line (Fig. 8). One possible explanation for the inability of SAdV-2 SFK to bind polySia, 13 

despite a conserved ‘steering rim’, could be that this knob harbors a sequence more distantly 14 

related to the other knobs (Fig. S4C), which might result in a different overall arrangement of 15 

the residues. Nonetheless, 52SFK displayed the strongest discrepancy between SH-SY5Y and 16 

SK-N-SH cells, indicating a more specific interaction of 52SFK with polySia rather than a 17 

general high binding to both cell lines as seen for SAdV-7SFK (Fig. 8). 18 
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DISCUSSION 1 

We show here that HAdV-52 specifically engages cell surface-expressed polySia via its 2 

SFK, employing long-lived direct protein-carbohydrate contacts as well as transient longer-3 

range electrostatic steering forces. To the best of our knowledge, this is the first time 4 

polySia is shown to function as a cellular receptor for a human pathogenic virus. Although a 5 

growing number of polySia-binding proteins has been identified (57-63), there are relatively 6 

few in-depth structural analyses on the determinants of specificity for polySia, and to date 7 

no other polySia-binding protein has been reported to use the unusual binding mode 8 

presented here. We therefore believe that our analysis provides a useful framework for a 9 

better understanding of general aspects of the interactions of polySia with its binding 10 

partners, and it remains to be seen whether polySia reacts with other binding partners in a 11 

manner similar to that predicted for human adenovirus. 12 

 13 

PolySia was identified as a potential receptor for 52SFK by glycan microarray screening 14 

(Fig. 1). In that same array, 52SFK showed weaker binding to a number of glycans with 15 

single capping sialic acids, mainly α-2,3-linked, as we described in our previous study (23). 16 

In a cellular context however, blocking or removing α-2,3-linked sialic acids from the cell 17 

surface only had a minor effect on HAdV-52 attachment (23). Thus, in comparison, polySia 18 

is a more effective ligand. The topology of the polySia binding site of HAdV-52 allows it to 19 

maintain a large pool of glycan ligands while developing increased affinity for a specific 20 

subset of surface molecules using just a single binding site. 52SFK can engage differently 21 

linked sialylated glycans, which bind with their terminal, non-reducing sialic acid moieties 22 

to the same epitope using identical direct contacts. The strong preference for α-2,8-linked 23 

polySia compounds is generated through a multitude of transient contacts between residues 24 

surrounding the binding site and sialic acid residues that are distal to the non-reducing end 25 
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of the polySia chain. These transient contacts ensure that most of the time at least two Sia 1 

moieties are simultaneously associated with the protein, providing an avidity effect. In this 2 

manner, mono- and disialylated glycans are still able to interact with the knob with lower 3 

affinities, but long-range electrostatic and transient polar interactions enable higher-affinity 4 

binding of oligosialic acids with a higher degree of polymerization (DP≥3). In a 5 

physiological context, this might reflect the ability of HAdV-52 to adapt to different surface 6 

glycan landscapes presented by different cells, hosts, or even commensal bacteria. In 7 

humans, it is unknown in which contexts HAdV-52 might encounter polySia for cell 8 

attachment. The two most efficient attachment factors of HAdV-52, polySia and CAR, have 9 

different expression profiles in the human body and are recognized by the two separate 10 

HAdV-52 fiber proteins. In light of its limited genome size, the virus likely draws an 11 

evolutionary advantage from being able to interact with two attachment factors. The close 12 

evolutionary relationship between HAdV-52 and simian AdVs, and the polySia-binding 13 

capacity of these AdVs (Fig. 8), also indicate that polySia might play a role as a cellular 14 

attachment factor for viruses that infect other mammals. Sialic acid-containing glycans are 15 

known to serve as attachment factors for a number of animal AdVs such as turkey and 16 

canine AdV (64, 65). The observed interaction between HAdV-52 and polySia therefore 17 

provides an interesting new angle to the known rules that govern virus:glycan receptor 18 

interactions, which may be translated to other glycan-binding pathogens.  19 

  20 

PolySia has been detected in a number of cancer tissues by immunohistochemical staining 21 

and its expression is frequently associated with high tumor aggressiveness and invasiveness, 22 

resulting in poor clinical prognosis (43, 66, 67). Cancers expressing polySia are also often 23 

recurrent and non-responsive to conventional treatments (43), and therefore attention has 24 

been drawn to novel therapeutic approaches, including AdV vectors for gene delivery and 25 
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the use of modified oncolytic AdVs. In a recent approach, the fiber knob of HAdV-5 was 1 

substituted with endosialidase NF, a tail spike protein from the bacteriophage K1F to 2 

generate an efficient polySia-targeting oncolytic vector (68). HAdV-52, a naturally-3 

occurring, unmodified HAdV that already binds polySia, could form the basis for a viable 4 

alternative strategy for developing oncolytic vectors, especially in the light of its low 5 

seroprevalence rates and reduced liver tropism (23, 69). The specificity for polySia can also 6 

be increased further by mutating K349 to an arginine (Fig. 7G). With this in mind, we 7 

suggest that HAdV-52 based vectors could have a potential for treatment of cancers 8 

characterized by elevated polySia-expression.  9 
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MATERIALS AND METHODS 1 

Please see SI Materials and methods for information regarding cells, viruses and glycans used 2 

in the study, and for detailed descriptions of production of fiber-knobs, glycan microarray, 3 

ELISA, flow cytometry, virus binding and infection experiments,  saturation transfer 4 

difference NMR, crystallization, surface plasmon resonance, molecular dynamics simulations, 5 

and statistical analysis. 6 
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FIGURE LEGENDS 1 

 2 

Fig. 1. Glycan array analysis of HAdV-52 short fiber knob interactions with sialylated 3 

glycans. The microarray consists of lipid-linked oligosaccharide probes, the sequences are 4 

listed in Table S1. The probes are arranged according to terminal sialic acid linkage, 5 

oligosaccharide backbone chain length, and sequence. The various types of terminal sialic 6 

acid linkages are indicated by the colored panels as defined at the bottom of the figure. 7 

Numerical scores for the binding intensity are shown as means of fluorescence intensities of 8 

duplicate spots at 5 fmol/spot. Error bars represent half of the difference between the two 9 

values. DP3-DP9= α-2,8-linked sialic acids with a degree of polymerization (DP) between 10 

3-9 (from left to right, in steps of two). Inlay: structure of polySia, depicted up to ~100 11 

sialic acid residues are linearly connected via an α-2,8-linkage. Blue: non-reducing end; 12 

Pink: reducing end.  13 

 14 

Fig. 2. HAdV-52 short fiber knob binds to polysialic acid. (A) HAdV-fiber knob binding to 15 

immobilized E.coli-derived polySia (colominic acid, DP≈80-100). Relative absorbance is 16 

shown. (B) Flow cytometry-based quantification of HAdV fiber knob binding to human 17 

neuroblastoma cells expressing (SH-SY5Y) or lacking (SK-N-SH) polySia. (C) Flow 18 

cytometry-based quantification of 52SFK and 37FK binding to SH-SY5Y cells after fiber 19 

knob pre-incubation with increasing concentrations of pentasialic acid (DP5). SFK: short 20 

fiber knob; LFK: long fiber knob; FK: fiber knob. All experiments were performed three 21 

times with duplicate samples in each experiment. Error bars represent mean ± SD. 22 

**indicates p<0.01 and *** indicates p<0.001.  23 

 24 
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Fig. 3. OligoSia efficiently reduces HAdV-52 virion binding to and infection of SH-SY5Y 1 

cells. Binding of (A) 
35

S-labeled HAdV-52 and (B) 
35

S-labeled HAdV-5 virions to SH-2 

SY5Y cells after pre-incubation with soluble monosialic acid (DP1) or pentasialic acid 3 

(DP5). Infection of SH-SY5Y with (C) HAdV-52 and (D) HAdV-5 after pre-incubation 4 

with DP1 or DP5. The experiments were performed three times with duplicate samples in 5 

each experiment. Error bars represent mean ± SD. * indicates p<0.05 and *** indicates 6 

p<0.001. 7 

 8 

Fig. 4. α-2,8-linked oligoSias are engaged in the canonical binding pocket of HAdV-52 9 

short fiber knob via their non-reducing end. (A) Complex structure of 52SFK and trisialic 10 

acid (DP3). Shown is a 2Fo-Fc map calculated at 1 σ (blue) and 1.5 σ (orange) after 11 

refinement. The non-reducing sialic acid moiety is colored in yellow, the adjacent moiety in 12 

green. The third sialic acid moiety could not be resolved. (B) Schematic representation of 13 

sialic acid in the α-conformation. The positions of distinctive protons for NMR are 14 

indicated. (C) STD-NMR of 52SFK and DP3. Green box: DP3 alone; blue box: Saturation 15 

transfer difference spectrum of the 52SFK:DP3 complex; red box: Saturation transfer 16 

difference spectrum of the R316A-52SFK:DP3 complex, nr = non-reducing end.  17 

 18 

Fig. 5. A degree of polymerization of three, or more, strengthens the interactions with 19 

52SFK. (A) Flow cytometry-based quantification of 52SFK binding to SH-SY5Y cells after 20 

fiber knob pre-incubation with increasing concentrations of oligoSia. The experiment was 21 

performed three times with duplicate samples in each experiment. Error bars represent mean 22 

± SD. *indicates p<0.05, **indicates p<0.01 and *** indicates p<0.001. (B) Surface 23 

plasmon resonance analysis of 52SFK binding to disialic acid (DP2), trisialic acid (DP3), 24 

tetrasialic acid (DP4), pentasialic acid (DP5) and E. coli-derived polySia (DP≈80-100). 25 
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 1 

Fig. 6. Representation of the HAdV-52 short fiber knob ‘steering rim’. Poisson-Boltzmann 2 

electrostatic potential isosurfaces and field lines for the protein were calculated at ±1; 3 

±0.75; ±0.5 kT/e. The positively charged rim can be seen in blue. Bound trisialic acid (DP3) 4 

is shown as green sticks. (A) Side view. (B) Top view including field lines. (C) Detailed 5 

view of the binding pocket including field lines. (D) Detailed view of the binding pocket 6 

showing the relative placement of glycan and ‘steering rim’ residues. Residues of the 7 

‘steering rim’ are highlighted as sticks. R321 and E348 are forming a salt bridge, as do 8 

R316 and the carboxyl group at the non-reducing end of DP3. The orientation is the same as 9 

in Panel A. (E) Side view of the interaction site. The second sialic acid moiety is projecting 10 

away from the protein surface. The green arrow indicates the expected direction of the 11 

adjacent sialic acid moieties. (D-E) The non-reducing sialic acid moiety is colored in 12 

yellow, the adjacent moiety in green. 13 

 14 

Fig. 7. Molecular dynamics simulation of the interactions between 52SFK and DP5. Three 15 

pentasialic acid (DP5) molecules interacting with the three identical binding pockets of 16 

52SFK were simulated over a time of 2 μs. (A-B) The interaction profile of DP5 with the 17 

protein is mapped onto 52SFK in a ‘heat map’ style. Non-interacting residues are colored in 18 

gray, interacting residues are scored from white (few interactions) to brown (strongly 19 

interacting). (A) All three pockets are shown from a top view. (B) One of the simulated 20 

binding pockets is shown from a side view. (C-D) Detailed interactions contributed by the 21 

additional sialic acid moieties in polySia. Amino acids of the canonical binding site are 22 

boxed in pink, residues of the ‘steering rim’ in orange. (C) Residue-residue interaction 23 

matrix showing the average number of favorable atom contacts between individual amino 24 

acids and sialic acids (SIA 2-5, counted from the non-reducing end) over the whole 25 
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simulation. (D) Analogous plot showing the average number of hydrogen bonds. (E) Time-1 

resolved trajectory plot of the number of atom contacts per sialic acid residue (numbered 2 

from the non-reducing end) in the three binding sites (individual rows) averaged over 2.5 ns 3 

increments. Atom contacts are counted as favorable if one of the following conditions are 4 

satisfied: H-bond donor/acceptor atom distance < 3.2 Å or C-C atom distance < 4.2 Å. The 5 

average number of interactions is depicted according to the color legends on the right for 6 

each panel. (F) Summary of the interactions of polySia with the 52SFK canonical pocket 7 

and ‘steering rim’. The number of favorable atom contacts and hydrogen bonds per residue 8 

is averaged over the three binding sites. Boxing of the amino acid residues is analogous to 9 

panels C & D, sialic acids are boxed in grey. (G) Flow cytometry-based analysis of HAdV-10 

52 short fiber knob mutant binding to polysialic acid-expressing SH-SY5Y cells. The 11 

experiment was performed three times with duplicate samples in each experiment. Error 12 

bars represent mean ± SD.  13 

 14 

Fig. 8. AdV short fiber knob binding to polysialic acid-expressing/-lacking cells. Flow 15 

cytometry-based quantification of simian (S) and human AdV short fiber knob binding to 16 

human neuroblastoma cells expressing (SH-SY5Y) or lacking (SK-N-SH) polySia. The 17 

experiment was performed three times with duplicate samples in each experiment. SFK: 18 

short fiber knob; FK: fiber knob. Error bars represent mean ± SD. 19 


