1 *Classification:* BIOLOGICAL SCIENCES, Microbiology.

2 *Title:* Polysialic acid is a cellular receptor for human adenovirus 52

3

Author affiliation: Annasara Lenman^{a,1,2}, A. Manuel Liaci^{b,1}, Yan Liu^c, Lars Frängsmyr^a,
Martin Frank^d, Bärbel S. Blaum^b, Wengang Chai^c, Iva I. Podgorski^{e,f}, Balázs Harrach^e, Mária
Benkő^e, Ten Feizi^c, Thilo Stehle ^{b,g,2} and Niklas Arnberg^a

7

8 ^aDivision of Virology, Department of Clinical Microbiology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-90185 Umeå, Sweden, ^bInterfaculty Institute 9 10 of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany, ^cGlycosciences Laboratory, Department of Medicine, Imperial College London, W12 0NN, UK, ^dBiognos AB, 11 PO Box 8963, SE-40274 Gothenburg, Sweden, eInstitute for Veterinary Medical Research, 12 Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143 Budapest, 13 Hungary, ^fDivision of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia. 14 ^gVanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. 15

¹These authors contributed equally.

17

Corresponding author: ²Correspondence and requests for materials should be addressed to
 Annasara Lenman (email: <u>annasara.lenman@umu.se</u>, for virology) and to Thilo Stehle (email:
 <u>thilo.stehle@uni-tuebingen.de</u>, for structural biology).

21

22 *Keywords:* human adenovirus, polysialic acid, short fiber, adenoviral vector, glycan receptor,

23 glycan microarray

1 ABSTRACT

Human adenovirus 52 (HAdV-52) is one of only three known HAdVs equipped with both a 2 long and a short fiber protein. While the long fiber binds to the coxsackie- and adenovirus 3 4 receptor, the function of the short fiber in the virus life cycle is poorly understood. Here, we show that the short fiber knob (SFK) specifically recognizes long chains of α -2,8-linked sialic 5 6 acids (polySia), an unusual posttranslational modification of selected carrier proteins, and 7 that HAdV-52 can use polySia as a receptor on target cells. Structural analyses and structureguided mutagenesis of the SFK reveal that the non-reducing terminal sialic acid of polySia 8 9 engages the protein with direct contacts, and that specificity for polySia is achieved through 10 subtle, transient electrostatic interactions with additional sialic acid residues. To the best of our knowledge, this is the first time polySia has been shown to function as a cellular receptor 11 for a human viral pathogen. Our detailed analysis of the determinants of specificity for this 12 interaction has general implications for protein-carbohydrate interactions, particularly 13 concerning highly charged glycan structures, and provides interesting new dimensions on the 14 15 biology and evolution of species G adenoviruses.

1 SIGNIFICANCE STATEMENT

We present here that adenovirus type 52 (HAdV-52) attaches to target cells through a 2 mechanism not previously observed by other human pathogenic viruses. The interaction 3 4 involves unusual, transient, electrostatic interactions between the short fiber capsid protein 5 and polysialic acid (polySia)-containing receptors on target cells. Not much is known about 6 the binding interactions between polySia and natural ligands and our results therefore provide novel insight to not only adenovirus biology but also the structural basis of polySia function. 7 Since polySia can be found in high expression levels in brain and lung cancers where its 8 presence is associated with poor prognosis, we suggest that this polySia-binding adenovirus 9 10 could be useful for design of vectors for gene therapy of these cancers.

1 INTRODUCTION

2 Human adenoviruses (HAdVs) are common human pathogens associated with gastrointestinal, ocular and respiratory infections. To date, 79 different HAdV types have 3 4 been identified, and they are grouped into seven species (Human mastadenovirus A to G) (1). HAdVs are non-enveloped viruses whose icosahedral capsid is composed of three major 5 proteins, the fiber, the penton base and the hexon, all of which are known to mediate binding 6 7 to host cells. The fiber protein, with a terminal knob domain, binds to cellular receptors such as the coxsackie and adenovirus receptor (CAR) (2-4), desmoglein-2 (5), CD46 (6-8) or sialic 8 9 acid (Sia)-containing glycans (9-11). The penton base interacts with cellular integrins, thereby 10 facilitating endocytosis (12, 13) and endosomal release (14, 15). The hexon protein is the main component of the viral capsid and binds with high affinity to coagulation factors IX and 11 X, resulting in liver tropism through indirect binding to heparan sulfate on hepatocytes (16-12 18) and, shields the virion from neutralizing antibodies and complement-mediated destruction 13 (19). 14

15

HAdV-52 was isolated in 2003 from a small outbreak of gastroenteritis (20). The virus 16 17 diverged from other HAdVs and was classified into the new species Human mastadenovirus 18 G (HAdV-G), which otherwise exclusively contains Old World monkey AdVs. HAdVs are normally equipped with only one fiber protein, but HAdV-52, along with species HAdV-F 19 types HAdV-40 and -41, differ from all other known HAdVs by having two different fiber 20 proteins, one short (coded by gene fiber-1) and one long (fiber-2) (20-22). We showed 21 recently that the knob domain of HAdV-52 long fiber (52LFK) binds to CAR and that the 22 23 knob domain of the short fiber (52SFK) binds Sia-containing glycoproteins on target cells (23). However, the identity and structure of the cellular Sia-containing glycans have remained 24 unknown. 25

Sia-containing glycans serve as receptors for a large number of viral pathogens, including 1 2 influenza A virus, coronavirus, rotavirus, polyomavirus and many others (24). Variations in Sia specificity determine host and tissue tropism, pathogenicity and transmission of multiple 3 viruses. Here we show by employing an extensive glycan microarray analysis that the 52SFK 4 recognizes longer chains of sialic acid residues, known as polysialic acid (polySia), with 5 higher affinity than any other tested glycan. PolySia is a rare posttranslational modification 6 7 of only nine identified carrier proteins, among them the cell adhesion molecules NCAM (25) and SynCAM-1 (26) as well as Neuropilin-2 (27) and the dendritic cell chemokine receptor 8 CCR7 (28). Polysialylation is most well-known as a modulator of developmental plasticity in 9 10 the nervous system, but more recently, additional roles in the development of a number of organs such as the liver, kidney, heart, and testes have been unraveled (reviewed in (29)). In 11 the adult brain, polySia expression is drastically downregulated and only retained in few areas 12 13 that retain plasticity such as the hippocampus, olfactory bulb and hypothalamus (reviewed in (30-32)). However, polySia is not exclusively found in the brain. Newer studies demonstrate 14 15 additional regulatory roles in innate immune responses (28, 33-36), and in regenerative or 16 anti-inflammatory processes (37-42). Further, polySia is found in high expression levels on several types of cancer including glioma (43-45), neuroblastoma (46, 47), and lung cancer 17 (48, 49). By means of X-ray crystallography, NMR, molecular dynamics simulation and 18 19 cellular analyses we reveal here a novel function for polySia as a cellular receptor for the short fiber knob of HAdV-52. The 52SFK possesses a unique polySia-binding mode featuring 20 21 transient polar interactions and electrostatic contributions that extend beyond a fixed 22 anchoring epitope engaging the non-reducing end of the polySia chain. We further provide an evolutionary analysis of the newly found polySia binding pocket within Human 23 mastadenovirus G. 24

1 **RESULTS**

2 HAdV-52 short fiber knob binds to polysialic acid

We showed previously that the binding of HAdV-52 to human epithelial cells is sialic acid-3 4 dependent and occurs via the short fiber knob (23). To date, the precise composition and structure of glycans that can be optimally engaged by 52SFK remains unknown. We 5 6 performed a glycan microarray analysis of 52SFK binding to 128 different sialylated glycans 7 in an attempt to characterize the glycan receptor of HAdV-52. In the array, 52SFK showed relatively weak binding to α -2,3- and α -2,6-linked sialic acids. However, very strong signals 8 9 were observed for a group of linear α -2,8-linked oligoSia that represent fragments of naturally 10 occurring polySia (Fig. 1 & Table S1). A markedly enhanced binding signal was observed at a degree of polymerization (DP) of 3 or more monosaccharides, with a maximal response at 11 five or more Sia moieties. To confirm the ability of 52SFK to interact with polySia and 12 evaluate the specificity of this interaction, we developed an ELISA with immobilized, E. coli-13 derived polySia (colominic acid; DP~80-100) and analyzed the attachment of recombinant 14 15 knob domains from HAdV-52 short fiber, the Sia-binding HAdV-37 fiber (37FK), and the CAR-binding HAdV-5 (5FK) and HAdV-52 long fiber (52LFK). 52SFK bound efficiently to 16 polySia, while the two CAR-binding FKs did not show any binding to this compound (Fig. 17 18 2A). 37FK, which binds with relatively high affinity to the branched, disialylated GD1a glycan using a different binding site (11, 23), bound less strongly to polySia than 52SFK. We 19 therefore conclude that HAdV-52 is able to interact preferentially with polySia via the knob 20 domain of its short fiber while having low affinities for a number of monosialylated glycans. 21

22

23

24

1 HAdV-52 binds to polysialic acid on human polySia-expressing cells

2 To test the relevance of polySia recognition by HAdV-52 in a cellular context, we used human polySia-expressing neuroblastoma cells SH-SY5Y, and their polySia-lacking parental cell 3 4 line SK-N-SH as models for virus binding and infection (50). The levels of polySia on these cells were confirmed by flow cytometry using the anti-polySia antibody mAb735 (Fig. S1). 5 52SFK bound five times more strongly to polySia-expressing SH-SY5Y cells compared to 6 7 the control cell line, whereas none of the control knobs, including 37FK, showed a comparable interaction pattern (Fig. 2B). Next, we used monosialic acid-binding lectins to 8 determine the relative levels of glycans with terminal sialic acids on both cell lines to exclude 9 10 the possibility that the higher 52SFK binding to SH-SY5Y was due to a higher level of glycans with terminal monosialic acids on these cells rather than a specific binding to polySia. 11 In fact, the lectins MAL-I & -II (bind to α -2,3-linked Sia), SNA (binds to α -2,6-linked Sia), 12 13 and WGA (binds to terminal sialic acid as well as to N-Acetyl-D-glucosamine) all bound better to SK-N-SH cells than to SH-SY5Y cells (Fig. S1), indicating that the parental, 14 15 polySia-negative SK-N-SH cells have a higher total density of terminal sialic acids. 16 Furthermore, pre-incubation of 52SFK with soluble oligoSia (DP5) reduced 52SFK binding to SH-SY5Y cells with up to 75%, while no effect was observed on 37FK binding (Fig. 2C). 17 18 Pre-incubating the whole HAdV-52 virions with oligoSia (DP5) also efficiently reduced binding to and infection of SH-SY5Y cells, whereas sialic acid monosaccharide (DP1) did 19 not have as much of an effect (Fig. 3A & C). Neither of the two glycans tested reduced HAdV-20 5 binding to or infection of SH-SY5Y cells (Fig. 3B & D). Based on these results we conclude 21 that HAdV-52 virions show a clear preference for polySia-expressing cells over cells lacking 22 polySia, that this feature is not shared by sialic acid- or CAR-binding HAdVs, and that the 23 interactions with polySia are mediated by the 52SFK. 24

PolySia is engaged at the non-reducing end, similarly to mono- and di-sialylated glycans 1 2 Using 2-O-methyl-sialic acid as a ligand, we previously identified a sialic acid-binding site on the lateral side of 52SFK (23). This binding site includes a stretch of three adjacent 3 residues that together form a prominent RGN motif (R316-G317-N318). This site is located 4 on a different part of the knob than the binding site of 37FK, which engages sialic acid near 5 6 its three-fold axis. The features responsible for the increased affinity for polySia are unknown, 7 and it seems possible that additional contacts or an additional epitope that went undetected in earlier studies are formed between 52SFK and polySia. Consequently, we solved the complex 8 crystal structures of 52SFK with three oligoSia glycans (DP3, -4 or -5) as well as the GD3 9 glycan (Neu5NAca2,8Neu5NAca2,3Gal
ß1,4Glc, representing a disialic acid motif). All 10 complex structures produced similar results, as shown exemplary for DP3 in Fig. 4. 11 Surprisingly, well-defined electron density was only found for a single sialic acid moiety in 12 13 the canonical binding pocket in all cases. The electron density around O8 and its direction relative to the protein clearly indicate that it is the non-reducing end of the glycan chain that 14 15 is engaged, and the observed binding mode is identical to the one observed for monosialic 16 acid. In all cases except for GD3, we observed additional electron density for a second sialic acid moiety projecting from the pocket towards the solvent. The overall density for this 17 18 moiety is weaker, deteriorating from the glycerol group to the pyranose ring and indicating increased flexibility. All structures showed similar angles for the α -2,8-glycosidic linkage 19 (Fig. S2). Interestingly, the second sialic acid moiety does not seem to contribute any directed 20 21 contacts to the overall interaction, except for a van-der-Waals contact between its N-acetyl group and E328. This contact seems to cause a local decrease of electron density and a slight 22 rotation of the N-acetyl group. The third (and all following) sialic acids could not be 23 unambiguously traced in any of the structures. In order to verify our observations in solution, 24 we employed saturation transfer difference (STD) NMR spectroscopy to screen for glycan 25

protons of DP3 and DP5 that are placed within 5-6 Å of the protein (shown exemplary for 1 DP3 in Fig. 4B & C). The spectrum of the glycans alone compared well to the literature (51, 2 52). Since all of the sialic acid repeats were in a highly similar chemical environment in 3 solution, the respective peaks overlap - with the exception of the non-reducing end, which 4 experiences an upfield shift. The experiment showed saturation transfer occurring almost 5 6 exclusively at the non-reducing end, while the other moieties only received a very moderate 7 spin saturation occurring exclusively in the N-acetyl group region, which is very much 8 consistent with the contacts observed in the crystal structures. In the case of the R316A mutant, which disrupts the canonical RGN motif and prevents 52SFK attachment to sialic 9 10 acid on A549 cells (23), saturation transfer was completely abrogated. Together, these results demonstrate that 52SFK engages polySia exclusively via its canonical sialic acid binding site, 11 12 without any additional epitopes present on the protein.

13

Transient hydrogen bonds and electrostatic effects are major determinants of 52SFK:polySia interactions

16 A length of more than three sialic acid residues is required for a strong interaction with 52SFK, as seen in our glycan array data (Fig. 1). According to a cell attachment inhibition 17 18 experiment, which does not underlie the steric constraints of chip-bound probes, a DP of three was sufficient to substantially decrease 52SFK binding at low concentration in solution. A 19 decrease could also be observed with DP2, but only at higher concentrations (Fig. 5A). 20 Similar results were acquired from surface plasmon resonance experiments with immobilized 21 22 fiber knobs and oligoSia in solution, where the biggest increase in affinity was shown between DP2 and DP3 (Fig. 5B). In combination with the structural data, these findings suggest that 23 effects other than classical directed short-range contacts may account for the increased 24 binding affinity of higher-order polySia compounds of DP3 or more. Given the poly-anionic 25

character of polySia, we hypothesized that these effects might be caused by electrostatic 1 2 interactions, which are non-directed and can occur over longer distances than direct interactions such as hydrogen bonds or van-der-Waals contacts. Indeed, an inspection of the 3 electrostatic potential of the 52SFK revealed a positively charged rim located around the sialic 4 acid binding site, which we termed the 'steering rim'. The rim is mainly formed by residues 5 Q320, R321, R316, and K349 (Fig. 6A-D). According to in-solution NMR studies, the poly-6 7 anionic polySia seems to at least transiently adopt a left-handed helical conformation (53). However, polySia is expected to be rather flexible in solution due to its linear, non-branched 8 structure and the conformationally less restricted α -2,8-glycosidic linkage (42). In the DP3 9 10 complex structure, the second sialic acid moiety is situated above the ε-amino group of K349. We reasoned that if the polySia glycan roughly followed the left-handed helical arrangement 11 proposed by the literature with energy-minimal glycosidic torsion angles similar to those 12 13 observed between the first two moieties (Fig. S2A-B), the carbohydrate chain would protrude away from the protein surface into the bulk solvent (indicated in Fig. 6E). Since such an 14 15 arrangement would unlikely be in agreement with an increased affinity for DP3, we performed molecular dynamics simulation of the complex between 52SFK and DP5 on the 16 microsecond timescale in explicit solvent. Throughout this simulation, DP5 shows a flexible 17 18 structure with dynamic partial helical features (Video S1). Consistent with the results from our STD-NMR experiments, only the non-reducing end is stably associated with the protein 19 (Fig. 7A-B & 6E). However, the simulation shows that the other sialic acid residues 20 21 transiently approach the protein surface and form favorable contacts with a variety of amino 22 acids, most of which are located in the 'steering rim' and the closely adjacent R347 (Fig. 7A-D). While the sialic acid moieties adjacent to the non-reducing end mainly interact with a 23 subset of residues located in the canonical pocket and 'steering rim', the moieties towards the 24 reducing end show a much more variable interaction pattern with low occupancies for 25

individual contacts. In total however, the large majority of contacts are being formed with the 1 2 canonical pocket or 'steering rim', respectively. The dimensions of DP5 are similar to the combined radius of the binding pocket and 'steering rim' (Fig. 7A-B). In particular, the fifth 3 sialic acid engages in a large number of low-intensity interactions with residues outside the 4 rim according to our simulations (Fig. 7 C-D), which might explain why the enhancing effect 5 of additional Sia moieties is fading beyond DP5 (Fig. 1) and why colominic acid is only 6 7 moderately more potent than DP5 given the size difference (Fig. 5B). Over the time course of the simulation, the sialic acids display an alternating pattern of transient interactions, and 8 there are most of the time at least two pyranoses that directly interact with the protein (Fig. 9 10 7E). This avidity effect is only possible if there are at least three Sia moieties. The average number of favorable interactions found in the canonical pocket and the 'steering rim' per 11 residue are shown in Fig. 7F. Overall, the data agree remarkably well with the other 12 13 experiments and strongly suggest that transient contact interactions of the third to fifth sialic acid moiety are responsible for the increased binding affinity, while the non-reducing sialic 14 15 acid is a necessary feature and engaged in a shape-complementary binding site. The 16 involvement of additional non-contact electrostatic interactions could further contribute to binding affinity, as suggested by the opposite charges between the polySia chain and the 17 18 'steering rim'.

19

To provide additional experimental support for this hypothesis, we produced fiber knobs with mutations in the 'steering rim', and analyzed knob binding to polySia-expressing SH-SY5Y cells. The K349A mutant almost completely lost its cell binding capacity, and similar effects were observed for the R321Q and analogous mutants (Fig. 7G). When mutated, residue R321 can no longer counterbalance the charge of the proximal side chain of E348, which then likely repelled the polyanionic polySia and might thus contribute to an unexpectedly strong loss in binding. Indeed, if E348 is also mutated to a non-charged residue, the effect of the R321Q
mutation is largely reversed (Fig. 7G). This implies that R321 interacts more weakly with
polySia than R316 and K349 do, which fits well with the assumption of a flexible 'pseudohelical' arrangement.

5

The polySia binding site and the 'steering rim' are conserved in closely related simian adenoviruses

The polySia-binding RGN motif is conserved in the short fibers of other closely related 8 members of species HAdV-G: SAdV-1, -2, -7 and -11, as well as SAdV-19 (SAdV-C, which 9 obtained its short fiber from an unknown type/species) (54), but it is not found in any other 10 known non-human or human AdV, including the short fiber knobs of HAdV-40 and -41 11 (HAdV-F) (Fig. S3A). Interestingly, the three positively charged residues forming the 'steering 12 13 rim' are also functionally conserved in these SAdV types, but in different permutations (RRK, RKK, RRR) (Fig. S3A). Another functionally important residue is Q320, which aids in the 14 15 production of an electropositive field in the 'steering rim' and is functionally conserved in all 16 of the SAdV types of HAdV-G (but not in SAdV-19). No other HAdV fiber knob with known structures exhibits a comparable 'steering rim' (Fig. S3B). In fact, the lateral part of the knob 17 is typically used for protein interfaces, e.g. for CAR or CD46 (55). However, since the two 18 fibers of HAdV-52 display a clear division of labor, the 52SFK likely serves as a purely Sia-19 binding fiber knob and thus can accommodate Sia-containing glycans at a more prominently 20 21 exposed lateral binding site than e.g. HAdV-37. In the HAdV-41 SFK, which is the only other 22 structurally characterized short fiber knob, the disordered G strand is thought to obstruct the electropositive patch on the side (56) making a Sia interaction unlikely. HAdV-5 possesses an 23 electropositive patch, but lacks a shape-complementary Sia-binding site and has never been 24 reported to use sialic acid as attachment receptor. Instead, it has been used as a negative control 25

in many studies (Fig. 2 & 3). This further supports our hypothesis that polySia binding is a 1 specific ability limited to a small subset of AdVs. We assayed the polySia specificity and 2 binding capacity of fiber knobs belonging to this subset in a cell attachment assay with cells 3 expressing or lacking polySia. All of the examined short knobs except that of SAdV-2 SFK 4 5 bound better to polySia-expressing cells than the control cell line (Fig. 8). One possible 6 explanation for the inability of SAdV-2 SFK to bind polySia, despite a conserved 'steering rim', could be that this knob harbors a sequence more distantly related to the other knobs (Fig. S3C), 7 8 which might result in a different overall arrangement of the residues. Nonetheless, 52SFK still displayed the strongest discrepancy between SH-SY5Y and SK-N-SH cells, indicating a more 9 specific interaction of 52SFK with polySia rather than a general high binding to both cell lines 10 as seen for SAdV-7SFK (Fig. 8). 11

1 **DISCUSSION**

We show here that HAdV-52 specifically engages cell surface-expressed polySia via its SFK, 2 3 employing direct protein-carbohydrate contacts as well as longer-range electrostatic steering 4 forces. As to the best of our knowledge, this is the first time polySia is shown to function as a cellular receptor for a human pathogenic virus. Although a growing number of polySia-5 6 binding proteins has been identified (57-63), there are few in-depth structural analyses on the 7 determinants of specificity for polySia, and so far no other polySia-binding protein has been reported to use the unusual binding mode presented here. We therefore believe that our 8 9 analysis provides a useful framework for a better understanding of general aspects of the 10 interactions of polySia with its binding partners and it remains to be seen whether polySia reacts with its other binding partners similar to that predicted for human adenovirus. 11

12

PolySia was identified as a potential receptor for 52SFK in our glycan microarray screen (Fig. 13 1). In that same array, 52SFK also showed weaker binding to a number of glycans with single 14 15 capping α -2,3-linked sialic acids, which we also observed in our previous study using a smaller array (23). In a cellular context however, blocking or removing α -2,3-linked sialic 16 acids from the cell surface only had a minor effect on HAdV-52 attachment (23). In 17 18 comparison, polySia is a more effective ligand. The polySia binding site of HAdV-52 accomplishes the challenging task of maintaining a large pool of ligands while developing 19 increased affinity for a specific subset of surface molecules using just a single binding site. 20 21 52SFK can engage α -2,3 and α -2,8 linked sialylated glycans, which bind with their terminal, non-reducing sialic acid moieties to the same epitope using identical direct contacts. The 22 23 much higher specificity for α -2,8 linked compounds, including polySia, is generated through a multitude of transient contacts between residues surrounding the binding site and sialic acid 24 residues that are distal to the non-reducing end of the polySia chain. These transient contacts 25

ensure that most of the time at least two Sia moieties are simultaneously associated with the 1 2 protein, providing an avidity effect. In this manner, mono- and disialylated glycans are still able to interact with the knob with lower affinities, but long-range electrostatic and transient 3 polar interactions enable higher-affinity binding of oligosialic acids with a higher degree of 4 polymerization (DP≥3). In a physiological context, this might reflect the ability of HAdV-52 5 6 to adapt to different surface glycan landscapes presented by different cells, hosts, or even 7 commensal bacteria. In humans, it is unknown in which contexts HAdV-52 might encounter polySia for cell attachment. The two most efficient attachment factors of HAdV-52, polySia 8 and CAR, have different expression profiles in the human body and are recognized by the 9 10 two separate HAdV-52 fiber proteins. In light of its limited genome size, the virus likely draws an evolutionary advantage from being able to interact with two attachment factors. The 11 close evolutionary relationship between HAdV-52 and simian AdVs, and the polySia-binding 12 13 capacity of these AdVs (Fig. 8), also indicate that polySia might play a role as a cellular attachment factor for viruses that infect other mammals. Sialic acid-containing glycans are 14 15 known to serve as attachment factors for a number of animal AdVs such as turkey and canine AdV (64, 65). The observed interaction between HAdV-52 and polySia therefore provides an 16 interesting new angle to the known rules that govern virus:glycan receptor interactions, which 17 18 may be translated to other glycan-binding pathogens.

19

PolySia can be found in high expression levels on many tumors and its expression is frequently associated with high tumor aggressiveness and invasiveness, resulting in poor clinical prognosis (43, 66, 67). Cancers expressing polySia are also often recurrent and nonresponsive to conventional treatments (43), and therefore attention has been drawn to novel therapeutic approaches, including AdV vectors for gene delivery and the use of modified oncolytic AdVs. In a recent approach, the fiber knob of HAdV-5 was substituted with

endosialidaseNF, a tail spike protein from the bacteriophage K1F to generate an efficient
polySia-targeting oncolytic vector (68). HAdV-52, a naturally-occurring, unmodified HAdV
that already binds polySia, could form the basis for a viable alternative strategy for developing
oncolytic vectors, especially in light of its low seroprevalence rates and reduced liver tropism
(23, 69). The specificity for polySia can also be increased further by mutating K349 to an
arginine (Fig. 7G). With this is mind, we suggest that HAdV-52 based vectors could have a
potential for treatment of cancers characterized by elevated polySia-expression.

1 MATERIALS AND METHODS

2 Cells and viruses

Human neuroblastoma SK-N-SH cells (purchased from LGC Promochem) were grown in 3 4 Dulbecco's modified Eagle medium (DMEM) supplemented with 10% FBS, 20 mM HEPES, 20 U/ml penicillin, 20 µg/ml streptomycin. Human neuroblastoma SH-SY5Y cells (LGC 5 Promochem) were grown in DMEM:Ham's-F12 (Sigma-Aldrich) 1:1, with the same 6 7 supplements as the parental SK-N-SH cell line. HAdV-52 (HAdV-G, strain TB3-2243) (20) and HAdV-5 (HAdV-C, strain Ad75; source ATCC) virions were produced with or without 8 ³⁵S-labeling in A549 cells as described previously (70), with the exception that the virions 9 10 were eluted in sterile phosphate buffered saline (PBS) when desalting on a NAP column (GE Healthcare). 11

12

13 Production of fiber knobs for cell-based assays and ELISA

52SFK and 52LFK were produced as described previously (23). HAdV-37 FK (amino acids 14 15 172-365) and HAdV-5 FK (387-581) were produced in the same manner. Simian adenovirus 1 (SAdV-1, HAdV-G) SFK (183-363), SAdV-2 (HAdV-G) SFK (132-312), SAdV-7 (HAdV-16 G) SFK (167-347), SAdV-11 (HAdV-G) SFK (183-364) and SAdV-19 (Simian 17 18 mastadenovirus C) SFK (101-286) were all cloned with the same RGS-hexa-histidine tag as the fiber knobs described above. SAdV fiber knobs were expressed in *E. coli* (strain Rosetta) 19 and purified with Ni-NTA agarose beads followed by anion exchange (Q-Sepharose). Fiber 20 knob mutants of 52SFK were generated using a QuikChange mutagenesis kit (Agilent 21 Technologies). The following mutants were produced: 1) K349A, 2) R321Q, 3) 22 R321Q/E348Q, 4) R321I, 5) R321V, 6) R321L, 7) K349A/R321Q and 8) K349R. All mutants 23 were produced as 52SFK, described above, and all fiber knobs were analysed by denaturing 24

gel electrophoresis (NuPAGE Bis-Tris, LifeTechnologies) and Western blots with
 monoclonal antibodies directed against the His-tag (Qiagen).

3

4 Glycan microarray

Microarray analyses were carried out using the neoglycolipid (NGL)-based microarray 5 system (71). Details of the glycan probe library, the generation of the microarrays, imaging 6 and data analysis are in Supplementary Glycan Microarray Document (Table S2) in 7 accordance with the MIRAGE (Minimum Information Required for A Glycomics 8 Experiment) guidelines for reporting glycan microarray-based data (72). In brief, the 9 microarrays were composed of lipid-linked oligosaccharide probes robotically printed at 2 10 and 5 fmol per spot in duplicate. The microarray binding assay of the recombinant His-tagged 11 52SFK was performed at 20°C, essentially as described previously (73). In brief, the arrayed 12 13 slide was blocked for 1 h with 5 mM HEPES pH 7.4, 150 mM NaCl, 5 mM CaCl₂, 0.3% (v/v) Blocker Casein (Pierce), 0.3% (w/v) bovine serum albumin (Sigma) (0.3% casein/0.3% 14 15 BSA). 52SFK was pre-complexed with mouse monoclonal anti-poly-histidine (Ab1) and 16 biotinylated anti-mouse IgG antibodies (Ab2) (both from Sigma) in a ratio of 4:2:1 (by weight). The 52SFK-antibody pre-complexes were prepared by pre-incubating Ab1 with Ab2 17 18 for 15 min at ambient temperature, followed by addition of 52SFK and incubation for an additional 15 min on ice. The VP1-antibody complexes were diluted in 0.3% casein/0.3% 19 BSA, to give a final 52SFK concentration of 150 µg/ml, and overlaid onto the arrays at 20°C 20 21 for 2 h. Binding was detected with Alexa Fluor-647-labelled streptavidin (Molecular Probes). 22 Binding signals were probe-dose dependent. The results of 128 glycan probes at 5 fmol per spot are presented as histogram chart (Fig. 1) and table (Table S1) which includes the list 23 glycan probes present in the array (in house designation 'Sialyl Glycan Array Sets 40,41'), 24

binding intensities and errors (difference of signal intensities of duplicate spots of each glycan
 probe).

3

4 ELISA

Ninetysix-well plates (Nunc MaxiSorp, Thermo Scientific) were coated with 1 µg/ml of 5 colominic acid (Sigma-Aldrich) for 2 h at room temperature (RT) in coating buffer (100 mM 6 7 bicarbonate/carbonate, pH 9.6). The plate was blocked with asialofetuin type II (Sigma-Aldrich) 1 mg/ml in PBS-T (phosphate-buffered saline, 140 mM NaCl, 2.7 mM KCl, 10 mM 8 phosphate buffer pH 7.4, supplemented with 0.05% Tween-20) for 1 h at RT and then washed 9 10 three times with PBS-T. Meanwhile, fiber knobs (10 µg/ml) were incubated with monoclonal anti RGS-His antibodies (Qiagen; dilution 1:1000 in PBS-T) for 1 h at RT. The wells were 11 then washed three times with PBS-T and incubated with fiber knob:antibody mixtures for 1 12 13 h at RT. After washing, the plate was incubated with a HRP-conjugated rabbit anti-mouse IgG antibody (Dako Cytomation; diluted 1:2000 in PBS-T) for 1 h at RT. The wells were 14 15 washed again and incubated with 100 µl enhanced K-Blue TMB substrate (Neogen Europe) 16 for 15 min and the reaction was then stopped by addition of 100 µl 1 M H₂SO₄. The absorbance was measured at 450 nm using Tecan infinite F2000 Pro (Tecan Nordic AB). 17

18

19 Flow cytometry

Cells were detached with PBS-EDTA (PBS supplemented with 0.05% EDTA), reactivated in growth medium for 1h at 37°C, pelleted in 96-well plates ($2x10^5$ cells/well) and washed once with binding buffer (BB: DMEM supplemented with 20 mM HEPES, 20 U/ml penicillin + 20 µg/ml streptomycin and 1% BSA). Fiber knobs were added (10 µg/ml in BB) to the cells and incubated for 1 h on ice. Unbound fiber knobs were washed away with PF buffer (PBS supplemented with 2% FBS) and the cells were then incubated with an anti RGS-His mouse monoclonal antibody (Qiagen; diluted 1:200 in PF) for 30 min. Followed by one wash with
PF, the cells were incubated with an Alexa Fluor 488-conjugated secondary antibody (Life
Technologies, donkey-anti mouse A488, dilution 1:1000 in PF) for 30 min on ice. Thereafter
the cells were washed once with PF and analysed with flow cytometry using FACSLSRII
instrument (Becton Dickinson). Results were analysed using FACSDiva software (Becton
Dickinson).

7 The experiment was performed with the following variations: i) fiber knobs were preincubated with different concentrations of $[\alpha-2,8]$ -linked oligoSia (N-acetyl neuraminic acid 8 DP2-5, Gerbu/Nakalai) for 1 h on ice before addition to cells; ii) cells were incubated on ice 9 10 for 30 min with 4 µg/ml of biotinylated a) *M. amurensis* type I or II (MAL I or II) lectins, b) S. nigra (SNA) lectins, c) wheat germ agglutinin (WGA; all from Vector Laboratories), or d) 11 monoclonal mouse-anti polySia antibody (mab735, kind gift from Rita Gerardy-Schahn, 12 13 1:500) diluted in PF-buffer. Following a-c, the cells were incubated for 30 min on ice with a 1:100 diluted streptavidin-FITC for MAL I & II, SNA and WGA, or (following d), incubated 14 15 for 30 min on ice with an Alexa Fluor 488-conjugated secondary antibody (donkey-anti mouse A488, dilution 1:1000 in PBS). 16

17

18 Virion binding experiments

19 Cells were detached with PBS-EDTA, reactivated in growth medium for 1 h at 37°C (in 20 solution), pelleted in 96 well plates ($2x10^5$ cells/well) and washed with BB. Meanwhile ³⁵S-21 labeled virions ($0.5x10^9$ virions) were preincubated with different concentrations of [α -2,8]-22 linked oligoSia diluted in BB for 1 h on ice. 50 µl/well of virion:oligoSia mixtures were then 23 added to cells and incubated for an additional 1 h on ice. Unbound virions were washed away 24 with BB and the cell associated radioactivity was measured in a Wallac 1409 liquid 25 scintillation counter (Perkin-Elmer).

1 Infection experiments

HAdV-52 and HAdV-5 virions were preincubated with different concentrations of [a-2,8]-2 linked oligoSia diluted in DMEM supplemented with 20 mM HEPES, 20 U/ml penicillin and 3 4 20 µg/ml streptomycin for 1 h on ice. Meanwhile SH-SY5Y cells, grown as a monolayer in black 96-well plate with transparent bottom, were washed three times with serum-free medium. 5 50 µl/well of virion:oligoSia mixtures were then added to the cells and incubated for an 6 additional 1 h on ice. After incubation, the wells were washed three times with serum-free 7 medium in order to remove unbound virions. Cell culture medium containing 2% FBS was 8 added and the plate was incubated at 37°C. After 44 h the cells were washed once with PBS, 9 10 fixed with methanol and stained for AdV hexon (Millipore, mab8052, diluted 1:200 in PBS) for 30 min at RT. After washing twice with PBS an Alexa Fluor 488-conjugated secondary 11 antibody (Life Technologies, donkey-anti mouse A488, dilution 1:1000 in PBS) was added and 12 13 incubated for 30 min at RT. Following two washes the stained plates were imaged using a Trophos system (Luminy Biotech Enterprises). 14

15

16 Saturation transfer difference NMR

NMR spectra were recorded at 285 K using 3 mm tubes (200 µL sample volume) and a Bruker 17 18 AVIII-600 spectrometer equipped with a room temperature probe head and processed with 19 TOPSPIN 3.0 (Bruker). Samples contained 1 mM of $[\alpha-2,8]$ -linked oligoSia (DP3 or DP5) and 20 µM of 52SFK WT or R316A mutant protein (monomeric concentration). The proteins 20 were buffer-exchanged prior to NMR experiments to 20 mM potassium phosphate pH 7.4, 21 22 150 mM NaCl in D₂O and the glycans were subsequently added from concentrated stock solutions in D₂O. Off- and on-resonance irradiation frequencies were set to -30.0 ppm and 23 7.0 ppm, respectively. The irradiation power of the selective pulses was 57 Hz, the saturation 24 time was 2 s, and the total relaxation delay was 3 s. A 50 ms continuous-wave spin-lock pulse 25

with a strength of 3.2 kHz was employed to suppress residual protein signals. A total number
of 512 scans and 10,000 points were collected, and spectra were multiplied with a Gaussian
window function prior to Fourier transformation.

4

5 Crystallization, data collection, and refinement of complex structures

Crystals of 52SFK were prepared as described previously (23). PolySia complex crystals were 6 7 generated by soaking in 17.5% (w/v) PEG 1000, 12.5% (v/v) PEG 3350, 12.5% MPD, 100 mM Bicine/Tris pH 8.5 supplemented with 50 mM [α -2,8]-linked oligoSia (DP3, -4, or -5) 8 for 18 to 36 h. The GD3 complex structure was prepared by soaking with 20 mM GD3 9 10 (Elicityl) for 1.5 h. No cryoprotection was necessary for crystal freezing. Data collection was done at the X06DA beamline of the Swiss Light Source (Villigen) at a wavelength of 1 or 11 0.92 Å using a Pilatus 2M detector. Structures were indexed with XDS (74) and initial phases 12 13 were obtained by molecular replacement with Molrep (75) using a published 52SFK structure (PDB-ID: 4XL8) as a template. The structures were refined using phenix.refine (76) and 14 Refmac5 (77) from the PHENIX and CCP4 software suites, respectively, using threefold NCS 15 16 restraints. Figures were prepared with PyMOL (The PyMOL Molecular Graphics System, Version 1.8, Schrödinger, LLC). Data collection and refinement statistics can be found in 17 18 Tables S3 and S4. Poisson-Boltzmann electrostatic distributions were calculated using the 19 PDB2PQR and APBS plugins in PyMOL (78, 79).

20

21 Surface plasmon resonance

52SFK was diluted in running buffer (HBS-EP+; GE Healthcare) to a concentration of around
0.03 μM (0.022-0.035 μM) and captured on the Ni-NTA sensor chip (GE Healthcare)
according to the manufacturer's instructions, resulting in an immobilization density between
700-900 RU. In short: an automated program cycle of the following sequence: (1) activation

of the sensor chip with Ni (II), (2) capture of 52SFK, (3) analyte injection, (4) regeneration 1 2 of the surface with 0.35 M EDTA, and (5) rinse with HBS-EP+ without EDTA. All steps were performed at a flow rate of 30 µl/min. All binding assays were carried out at 25°C, and 3 4 HBS-EP+ buffer was used as running buffer. The analytes ($[\alpha-2,8]$ -linked oligoSia DP3, -4, -5 and colominic acid) were serially diluted in running buffer to prepare a two-fold 5 concentration series ranging from 0.1 to 8 mM (with small variations depending on the 6 7 analyte), and then injected in series over the reference and experimental biosensor surfaces for 120 s and a dissociation time of 120 s. Blank samples containing only running buffer were 8 also injected under the same conditions to allow for double referencing. 9

10

11 Molecular dynamics simulation

The complex of 52SFK with three polySia (DP5) glycans was prepared using PDB entry 12 13 4XL8 as a starting structure. Two polySia glycans were positioned into their binding sites by superimposing the terminal Neu5Ac residues with the two Neu5Ac residues present in the 14 15 crystal structure. The remaining polySia glycan was positioned into the third site (unoccupied in 4XL8) by taking into account the threefold symmetry of 52SFK. The complex was solvated 16 in 0.1% NaCl solution and two independent 1 µs trajectories were sampled at 310 K using 17 YASARA (80). AMBER14 (81) was chosen as the force field, which includes Glycam-06 18 (82) parameters for carbohydrates. The terminal Neu5Ac residues were kept in their binding 19 20 site by the application of distance restraints. Snapshots were stored every 25 ps. The interactions of polySia with its 52SFK receptor were analysed based on accumulated 6 µs 21 trajectory data (three polySias, 2 µs each) using Conformational Analysis Tools (www.md-22 simulations.de/CAT/). 23

1 Statistical analysis of cell based assays

ELISA and all cell based experiments were performed three times with duplicate samples in
each experiment. The results are expressed as means ± standard deviations and t-test or was
performed using GraphPad Prism version 7.00 for Windows, GraphPad Software, San Diego
California USA. P-values < 0.05 were considered statistically significant.

6

7 ACKNOWLEDGEMENTS

This investigation was supported by grants from the Swedish Cancer Society grant nr. CAN 8 9 2015/695, Cancer Research Foundation in Northern Sweden grant nr. AMP 16-794, Knut & 10 Alice Wallenberg foundation grant nr. KAW 2013.0019, the German Research Foundation (DFG-SFB685), the Marie-Curie Initial Training Network "ADVance" FP7-290002, the 11 Glycobiology/Glycobiotechnology program of the Baden-Württemberg Foundation and 12 Welcome Trust grants WT093378MA/Z/10/Z/ and WT099197/Z/12/Z. The neoglycolipid-13 based glycan microarrays contain several saccharides provided by collaborators whom we 14 15 thank as well as members of the Glycosciences Laboratory for their collaboration in the establishment of the microarray system. 16

17

18 AUTHOR CONTRIBUTIONS

A.L., A.M.L. and Y.L. designed and carried out experiments, analyzed results, and wrote the
manuscript. L.F. and M.F. designed and carried out experiments, analyzed results and
reviewed manuscript. B.B., W.C. and I.P. performed experiments. I.P., B.H. and M.B.
provided useful ideas and reviewed the manuscript. T.F., T.S. and N.A. designed the study,
interpreted results and wrote the manuscript.

1 **REFERENCES**

- Yoshitomi H, Sera N, Gonzalez G, Hanaoka N, & Fujimoto T (2016) First isolation of
 a new type of human adenovirus (genotype 79), species Human mastadenovirus B
 (B2) from sewage water in Japan. *J Med Virol*.
- 5 2. Bergelson JM, *et al.* (1997) Isolation of a common receptor for Coxsackie B viruses
 and adenoviruses 2 and 5. *Science* 275(5304):1320-1323.
- 7 3. Tomko RP, Xu R, & Philipson L (1997) HCAR and MCAR: the human and mouse
 8 cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. *Proc.*9 *Natl. Acad. Sci. U S A* 94(7):3352-3356.
- Roelvink PW, *et al.* (1998) The coxsackievirus-adenovirus receptor protein can
 function as a cellular attachment protein for adenovirus serotypes from subgroups A,
 C, D, E, and F. *J Virol.* 72(10):7909-7915.
- 13 5. Wang H, et al. (2011) Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and
 14 14. Nat Med 17(1):96-104.
- Gaggar A, Shayakhmetov DM, & Lieber A (2003) CD46 is a cellular receptor for
 group B adenoviruses. *Nat. Med.* 9:1408-1412.
- Segerman A, *et al.* (2003) Adenovirus type 11 uses CD46 as a cellular receptor. J
 Virol 77:9183-9191.
- Marttila M, *et al.* (2005) CD46 is a cellular receptor for all species B adenoviruses
 except types 3 and 7. *J. Virol.* 79:14429-14436.
- 9. Arnberg N, Edlund K, Kidd AH, & Wadell G (2000) Adenovirus type 37 uses sialic
 acid as a cellular receptor. *J Virol* 74:42-48.
- Arnberg N, Kidd AH, Edlund K, Olfat F, & Wadell G (2000) Initial interactions of
 subgenus D adenoviruses with A549 cellular receptors: sialic acid versus alpha(v)
 integrins. J. Virol. 74:7691-7693.
- Nilsson EC, *et al.* (2011) The GD1a glycan is a cellular receptor for adenoviruses
 causing epidemic keratoconjunctivitis. *Nat Med* 17(1):105-109.
- Belin MT & Boulanger P (1993) Involvement of cellular adhesion sequences in the
 attachment of adenovirus to the HeLa cell surface. *J. Gen. Virol.* 74(Pt 8):1485-1497.
- Wickham TJ, Mathias P, Cheresh DA, & Nemerow GR (1993) Integrins alpha v beta 3
 and alpha v beta 5 promote adenovirus internalization but not virus attachment. *Cell* 73(2):309-319.
- Wickham TJ, Filardo EJ, Cheresh DA, & Nemerow GR (1994) Integrin alpha v beta 5
 selectively promotes adenovirus mediated cell membrane permeabilization. *J Cell Biol* 127(1):257-264.
- Wang K, Guan T, Cheresh DA, & Nemerow GR (2000) Regulation of adenovirus
 membrane penetration by the cytoplasmic tail of integrin beta5. *J Virol* 74(6):27312739.
- Parker AL, *et al.* (2006) Multiple vitamin K-dependent coagulation zymogens
 promote adenovirus-mediated gene delivery to hepatocytes. *Blood* 108(8):2554-2561.
- 41 17. Waddington SN, *et al.* (2008) Adenovirus serotype 5 hexon mediates liver gene transfer. *Cell* 132(3):397-409.
- 43 18. Lenman A, *et al.* (2011) Coagulation factor IX mediates serotype-specific binding of
 44 species A adenoviruses to host cells. *J Virol* 85(24):13420-13431.
- 45 19. Xu Z, *et al.* (2013) Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. *Nat Med* 19(4):452-457.
- 47 20. Jones MS, 2nd, *et al.* (2007) New adenovirus species found in a patient presenting
 48 with gastroenteritis. *J Virol* 81(11):5978-5984.

1	21.	Kidd AH, Chroboczek J, Cusack S, & Ruigrok RW (1993) Adenovirus type 40 virions
2	$\gamma\gamma$	Voh HV, Dioniozok N, Dioniozok D, Colderblom H, & Luftig DD (1004) Human
3 ⊿	22.	i eli h I, Pleillazek N, Pleillazek D, Gelderbiolii H, & Luitig KD (1994) Hulliali adapavirus turo 41 contains tuvo fibero. Virus Pag 22(2):170-108
4	22	adenovirus type 41 contains two fibers. $virus Res 55(2):179-198$.
5	23.	Lenman A, <i>et al.</i> (2015) Human adenovirus 52 uses static acid-containing
6		grycoproteins and the coxsackle and adenovirus receptor for binding to target cells.
/	24	PLos Pathog 11(2):e1004657.
8	24.	Matrosovich M, Herrier G, & Klenk HD (2015) Stalic Acid Receptors of Viruses. Top
9	25	Curr Chem 30/:1-28.
10	25.	Finne J, Finne U, Deagostini-Bazin H, & Goridis C (1983) Occurrence of alpha 2-8
11		linked polysialosyl units in a neural cell adhesion molecule. <i>Biochem Biophys Res</i>
12	26	Commun 112(2):482-487.
13	26.	Galuska SP, et al. (2010) Synaptic cell adhesion molecule SynCAM 1 is a target for
14 15		polysialylation in postnatal mouse brain. <i>Proc Natl Acad Sci U S A</i> 107(22):10250-10255.
16	27.	Werneburg S, Muhlenhoff M, Stangel M, & Hildebrandt H (2015) Polysialic acid on
17		SynCAM 1 in NG2 cells and on neuropilin-2 in microglia is confined to intracellular
18		pools that are rapidly depleted upon stimulation. <i>Glia</i> 63(7):1240-1255.
19	28.	Kiermaier E. <i>et al.</i> (2016) Polysialylation controls dendritic cell trafficking by
20	201	regulating chemokine recognition. <i>Science</i> 351(6269):186-190.
21	29	Galuska CE, Lutteke T, & Galuska SP (2017) Is Polysialylated NCAM Not Only a
22	_>.	Regulator during Brain Development But also during the Formation of Other Organs?
23		Biology (Basel) 6(2)
24	30	Schnaar RL, Gerardy-Schahn R & Hildebrandt H (2014) Sialic acids in the brain:
25	201	gangliosides and polysialic acid in nervous system development, stability, disease, and
26		regeneration <i>Physiol Rev</i> 94(2):461-518
27	31	Colley KI, Kitajima K, & Sato C (2014) Polysialic acid: biosynthesis, novel functions
28	011	and applications Crit Rev Biochem Mol Biol 49(6):498-532
29	32	Rutishauser II (2008) Polysialic acid in the plasticity of the developing and adult
30	52.	vertebrate nervous system <i>Nat Rev Neurosci</i> 9(1):26-35
31	33	Rev-Gallardo A <i>et al.</i> (2010) Polysialvlated neuropilin-2 enhances human dendritic
32	55.	cell migration through the basic C-terminal region of CCI 21 <i>Glycobiology</i>
32		20(9)·1139-1146
34	34	Rev-Gallardo A Delgado-Martin C Gerardy-Schahn R Rodriguez-Fernandez II. &
25	51.	Vega MA (2011) Polysialic acid is required for neuronilin-2a/h-mediated control of
36		CCL 21-driven chemotaxis of mature dendritic cells and for their migration in vivo
30		Glycobiology 21(5):655-662
38	35	Curreli S Arany Z Gerardy-Schahn R Mann D & Stamatos NM (2007)
20	55.	Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and
<u>40</u>		modulates dendritic cell T lymphocyte interactions I Biol Cham 282(42):30346
40 11		30356
41 12	36	Stamatos NM <i>at al.</i> (2014) Changes in polysialic acid expression on myeloid cells
42 12	50.	during differentiation and recruitment to sites of inflammation; role in phagocytosis
45		Chechiclew $24(0)$:864,870
44 15	37	Tsuchive $\Lambda_{at al}$ (2014) Polysialic acid/neural cell adhesion molecule modulates the
45 16	57.	formation of ductular reactions in liver injury. Hangtalam 60(5):1727-1740
40 17	38	FI Magrouf A Detridis AK & Butishouser II (2006) Use of polysislic acid in repair of
47 10	50.	the central nervous system <i>Proc Natl Acad Sci U S A</i> 102(45).16080 16004
40 10	30	Thang V at al. (2007) Induced expression of polysialic acid in the spinal cord
43 50	57.	promotos regeneration of sonsory avons Mol Call Naurosci 25(1):100-110
50		promotes regeneration of sensory axons. Mol Cen Neurosci 55(1):109-119.

1	40.	Zhang Y, et al. (2007) Lentiviral-mediated expression of polysialic acid in spinal cord
2		and conditioning lesion promote regeneration of sensory axons into spinal cord. <i>Mol</i>
3		<i>Ther</i> 15(10):1796-1804.
4	41.	Werneburg S, et al. (2016) Polysialylation and lipopolysaccharide-induced shedding
5		of E-selectin ligand-1 and neuropilin-2 by microglia and THP-1 macrophages. <i>Glia</i>
6		64(8):1314-1330.
7	42.	Ulm C. <i>et al.</i> (2013) Soluble polysialylated NCAM: a novel player of the innate
8		immune system in the lung. <i>Cell Mol Life Sci</i> 70(19):3695-3708.
9	43.	Suzuki M. <i>et al.</i> (2005) Polysialic acid facilitates tumor invasion by glioma cells.
10		<i>Glycobiology</i> 15(9):887-894.
11	44	Petridis AK, Wedderkopp H, Hugo HH, & Maximilian Mehdorn H (2009) Polysialic
12		acid overexpression in malignant astrocytomas <i>Acta Neurochir (Wien)</i> 151(6):601-
13		603: discussion 603-604
14	45	Amoureux MC <i>et al.</i> (2010) Polysialic acid neural cell adhesion molecule (PSA-
15	ч	NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression
16		in glioma cell lines <i>BMC Cancer</i> 10:91
17	16	Figurally Branger DE Durbec PL & Bougon GN (1000) Differential spectrum of
10	40.	avpression of neural call adhesion molecule isoforms and L1 adhesion molecules on
10		human neurosetodormal tumors. Canaar Pag 50(10):6364 6370
19	17	Chuer S. Scholn C. Corordy Schohn P. & yon Schweinitz D (1008) Delysielyleted
20	47.	oluei S, Scheip C, Geraldy-Schalli K, & von Schweinitz D (1998) Polysialylated
21		neural cell adhesion molecule as a marker for differential diagnosis in pediatric type D_{2} dirty Super 22(10):1516-1520
22	10	lumors. J Pealair Surg 55(10):1510-1520.
23	48.	Lantuejoui S, Moro D, Michaldes RJ, Brambilla C, & Brambilla E (1998) Neural cell
24		adhesion molecules (NCAM) and NCAM-PSA expression in neuroendocrine lung tensors $A = LS = -D_{cl} + 122(10) + 12(7 + 127)$
25	40	tumors. Am J Surg Pathol 22(10):1267-1276.
26	49.	Tanaka F, et al. (2000) Expression of polysianc acid and STX, a numan
27		polysialyltransferase, is correlated with tumor progression in non-small cell lung
28	50	cancer. Cancer Res $60(11):30/2-3080$.
29	50.	Valentiner U, Muhlenhoff M, Lehmann U, Hildebrandt H, & Schumacher U (2011)
30		Expression of the neural cell adhesion molecule and polysialic acid in human
31		neuroblastoma cell lines. Int J Oncol 39(2):417-424.
32	51.	Brisson JR, Baumann H, Imberty A, Perez S, & Jennings HJ (1992) Helical epitope of
33		the group B meningococcal alpha(2-8)-linked sialic acid polysaccharide. <i>Biochemistry</i>
34		31(21):4996-5004.
35	52.	Ray GJ, et al. (2014) Complete structural elucidation of an oxidized polysialic acid
36		drug intermediate by nuclear magnetic resonance spectroscopy. <i>Bioconjug Chem</i>
37		25(4):665-676.
38	53.	Battistel MD, Shangold M, Trinh L, Shiloach J, & Freedberg DI (2012) Evidence for
39		helical structure in a tetramer of alpha2-8 sialic acid: unveiling a structural antigen. J
40		Am Chem Soc 134(26):10717-10720.
41	54.	Podgorski, II, Panto L, Papp T, Harrach B, & Benko M (2016) Genome analysis of
42		four Old World monkey adenoviruses supports the proposed species classification of
43		primate adenoviruses and reveals signs of possible homologous recombination. J Gen
44		<i>Virol</i> 97(7):1604-1614.
45	55.	Cupelli K & Stehle T (2011) Viral attachment strategies: the many faces of
46		adenoviruses. Curr Opin Virol 1(2):84-91.
47	56.	Seiradake E & Cusack S (2005) Crystal structure of enteric adenovirus serotype 41
48		short fiber head. J Virol 79(22):14088-14094.

1	57.	Kanato Y, Kitajima K, & Sato C (2008) Direct binding of polysialic acid to a brain-
2		derived neurotrophic factor depends on the degree of polymerization. <i>Glycobiology</i>
3		18(12):1044-1053.
4	58.	Sato C, Yamakawa N, & Kitajima K (2010) Measurement of glycan-based interactions
5		by frontal affinity chromatography and surface plasmon resonance. <i>Methods Enzymol</i>
6		478:219-232.
7	59.	Ono S, Hane M, Kitajima K, & Sato C (2012) Novel regulation of fibroblast growth
8		factor 2 (FGF2)-mediated cell growth by polysialic acid. J Biol Chem 287(6):3710-
9		3722.
10	60.	Isomura R, Kitajima K, & Sato C (2011) Structural and functional impairments of
11		polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem
12		286(24):21535-21545.
13	61.	Mishra B, et al. (2010) Functional role of the interaction between polysialic acid and
14		extracellular histone H1. J Neurosci 30(37):12400-12413.
15	62.	Nagae M, et al. (2013) Crystal structure of anti-polysialic acid antibody single chain
16		Fv fragment complexed with octasialic acid: insight into the binding preference for
17		polysialic acid. J Biol Chem 288(47):33784-33796.
18	63.	Haselhorst T, et al. (2006) Endosialidase NF appears to bind polySia DP5 in a helical
19		conformation. <i>Chembiochem</i> 7(12):1875-1877.
20	64.	Seiradake E, et al. (2009) The cell adhesion molecule "CAR" and sialic acid on human
21		erythrocytes influence adenovirus in vivo biodistribution. PLoS Pathog
22		5(1):e1000277.
23	65.	Singh AK, et al. (2015) Structure and Sialyllactose Binding of the Carboxy-Terminal
24		Head Domain of the Fibre from a Siadenovirus, Turkey Adenovirus 3. <i>PLoS One</i>
25		10(9):e0139339.
26	66.	Tanaka F, <i>et al.</i> (2001) Prognostic significance of polysialic acid expression in
27		resected non-small cell lung cancer. Cancer Res 61(4):1666-1670.
28	67.	Falconer RA, Errington RJ, Snnyder SD, Smith PJ, & Patterson LH (2012)
29		Polysialyltransferase: A New Target in Metastatic Cancer. Current Cancer Drug
30	<u> </u>	Targets 12(8):925-959. Mortin NT at al. (2018) Torracting polycialia acid abundant concern using analytic
31 22	08.	Martin N 1, <i>et al.</i> (2018) Targeting porystanc acid-abundant cancers using oncorytic
52 22		Riomaterials 158.86 94
21	60	Banyai K at al. (2000) Searching for $HAdV_52$ the putative gastroenteritis-associated
25	0).	human adenovirus serotype in Southern Hungary New Microbiol 32(2):185-188
36	70	Indinan adenovirus serotype in Southern Hungary. <i>New Interobiol</i> $52(2)$. 105-100. Johansson SM <i>et al.</i> (2007) Multivalent sialic acid conjugates inhibit adenovirus type
37	70.	37 from binding to and infecting human corneal enithelial cells. <i>Antiviral Res</i> 73:92-
38		100
39	71	Liu Y <i>et al.</i> (2012) Neoglycolipid-based oligosaccharide microarray system:
40	/ 11	preparation of NGLs and their noncovalent immobilization on nitrocellulose-coated
41		glass slides for microarray analyses. <i>Methods Mol Biol.</i> 808:117-136
42	72.	Liu Y. <i>et al.</i> (2016) The minimum information required for a glycomics experiment
43		(MIRAGE) project: improving the standards for reporting glycan microarray-based
44		data. <i>Glycobiology</i> .
45	73.	Neu U, <i>et al.</i> (2013) Structures of B-Lymphotropic Polyomavirus VP1 in complex
46		with oligosaccharide ligands. <i>PLoS Pathog.</i> 9:e1003714.
47	74.	Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66(Pt 2):125-132.
48	75.	Vagin A & Teplyakov A (1997) MOLREP: an automated program for molecular
49		replacement. J Appl Crystallogr 30:1022-1025.

Adams PD, et al. (2010) PHENIX: a comprehensive Python-based system for 1 76. macromolecular structure solution. Acta Crystallogr D 66:213-221. 2 Murshudov GN, Vagin AA, & Dodson EJ (1997) Refinement of macromolecular 3 77. 4 structures by the maximum-likelihood method. Acta Crystallogr D 53:240-255. 5 Baker NA, Sept D, Joseph S, Holst MJ, & McCammon JA (2001) Electrostatics of 78. 6 nanosystems: Application to microtubules and the ribosome. P Natl Acad Sci USA 7 98(18):10037-10041. Dolinsky TJ, Nielsen JE, McCammon JA, & Baker NA (2004) PDB2PQR: an 79. 8 9 automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 32:W665-W667. 10 80. Krieger E & Vriend G (2015) New ways to boost molecular dynamics simulations. J 11 Comput Chem 36(13):996-1007. 12 Hornak V, et al. (2006) Comparison of multiple Amber force fields and development 13 81. of improved protein backbone parameters. Proteins 65(3):712-725. 14 15 82. Kirschner KN, et al. (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29(4):622-655. 16 Vasudevan SV & Balaji PV (2002) Molecular dynamics simulations of alpha2 --> 8-17 83. linked disialoside: conformational analysis and implications for binding to proteins. 18 *Biopolymers* 63(3):168-180. 19

1 FIGURES

2

4 Fig. 1. Glycan array analysis of HAdV-52 short fiber knob interactions with sialylated glycans. The microarray consists of lipid-linked oligosaccharide probes, the sequences are 5 listed in Table S1. The probes are arranged according to terminal sialic acid linkage, 6 oligosaccharide backbone chain length, and sequence. The various types of terminal sialic 7 acid linkages are indicated by the colored panels as defined at the bottom of the figure. 8 9 Numerical scores for the binding intensity are shown as means of fluorescence intensities of duplicate spots at 5 fmol/spot. Error bars represent half of the difference between the two 10 values. DP3-DP9= $[\alpha-2,8]$ -linked sialic acids with a degree of polymerization (DP) between 11 12 3-9 (from left to right, in steps of two). Inlay: general structure of polySia, up to ~100 sialic acid moieties are linearly connected via an $[\alpha-2,8]$ -linkage. Blue: non-reducing end; Pink: 13 reducing end. 14

1

2 Fig. 2. HAdV-52 short fiber knob binds to polysialic acid. (A) HAdV-fiber knob binding to immobilized E.coli-derived polySia (colominic acid, DP~80-100). Relative absorbance is 3 shown. (B) Flow cytometry-based quantification of HAdV fiber knob binding to human 4 neuroblastoma cells expressing (SH-SY5Y) or lacking (SK-N-SH) polySia. (C) Flow 5 6 cytometry-based quantification of 52SFK and 37FK binding to SH-SY5Y cells after fiber 7 knob pre-incubation with increasing concentrations of pentasialic acid (DP5). SFK: short 8 fiber knob; LFK: long fiber knob; FK: fiber knob. All experiments were performed three times with duplicate samples in each experiment. Error bars represent mean \pm SD. **indicates 9 p<0.01 and *** indicates p<0.001. 10

Fig. 3. OligoSia efficiently reduces HAdV-52 virion binding to and infection of SH-SY5Y
cells. Binding of (A) ³⁵S-labeled HAdV-52 and (B) ³⁵S-labeled HAdV-5 virions to SH-SY5Y
cells after pre-incubation with soluble monosialic acid (DP1) or pentasialic acid (DP5).
Infection of SH-SY5Y with (C) HAdV-52 and (D) HAdV-5 after pre-incubation with DP1 or
DP5. The experiments were performed three times with duplicate samples in each
experiment. Error bars represent mean ± SD. *** indicates p<0.001.

2 Fig. 4. $[\alpha-2,8]$ -linked oligoSias are engaged in the canonical binding pocket of HAdV-52 short fiber knob via their non-reducing end. (A) Complex structure of 52SFK and trisialic 3 acid (DP3). Shown is a 2Fo-Fc map calculated at 1 σ (blue) and 1.5 σ (orange) after 4 5 refinement. The non-reducing sialic acid moiety is colored in yellow, the adjacent moiety in green. The third sialic acid moiety could not be resolved. (B) Schematic representation of 6 7 sialic acid in the α -conformation. The positions of distinctive protons for NMR are indicated. (C) STD-NMR of 52SFK and DP3. Green box: DP3 alone; blue box: Saturation transfer 8 difference spectrum of the 52SFK:DP3 complex; red box: Saturation transfer difference 9 10 spectrum of the R316A-52SFK:DP3 complex, nr = non-reducing end.

Fig. 5. A degree of polymerization of three, or more, strengthens the interactions with 52SFK.
(A) Flow cytometry-based quantification of 52SFK binding to SH-SY5Y cells after fiber
knob pre-incubation with increasing concentrations of oligoSia. The experiment was
performed three times with duplicate samples in each experiment. Error bars represent mean
± SD. *indicates p<0.05, **indicates p<0.01 and *** indicates p<0.001. (B) Surface plasmon
resonance analysis of 52SFK binding to disialic acid (DP2), trisialic acid (DP3), tetrasialic
acid (DP4), pentasialic acid (DP5) and E. coli-derived polySia (DP≈80-100).

1

Fig. 6. Representation of the HAdV-52 short fiber knob 'steering rim'. Poisson-Boltzmann 2 3 electrostatic potential isosurfaces and field lines for the protein were calculated at ± 1 ; ± 0.75 ; 4 ± 0.5 kT/e. The positively charged rim can be seen in blue. Bound trisialic acid (DP3) is shown 5 as green sticks. (A) Side view. (B) Top view including field lines. (C) Detailed view of the 6 binding pocket including field lines. (D) Detailed view of the binding pocket showing the 7 relative placement of glycan and 'steering rim' residues. Residues of the 'steering rim' are 8 highlighted as sticks. R321 and E348 are forming a salt bridge, as do R316 and the carboxyl group at the non-reducing end of DP3. The orientation is the same as in Panel A. (E) Side 9

1	view of the interaction site. The second sialic acid moiety is projection away from the protein
2	surface. The green arrow indicates the expected direction of the adjacent sialic acid moieties.
3	(D-E) The non-reducing sialic acid moiety is colored in yellow, the adjacent moiety in green.
4	
5	
6	

Fig. 7. Molecular dynamics simulation of the interactions between 52SFK and DP5. Three pentasialic acid (DP5) molecules interacting with the three identical binding pockets of 52SFK were simulated over a time of 2 μ s. (A-B) The interaction profile of DP5 with the protein is mapped onto 52SFK in a 'heat map' style. Non-interacting residues are colored in

gray, interacting residues are scored from white (few interactions) to brown (strongly 1 interacting). (A) All three pockets are shown from a top view. (B) One of the simulated 2 binding pockets is shown from a side view. (C-D) Detailed interactions contributed by the 3 additional sialic acid moieties in polySia. Amino acids of the canonical binding site are boxed 4 in pink, residues of the 'steering rim' in orange. (C) Residue-residue interaction matrix 5 showing the average number of favorable atom contacts between individual amino acids and 6 7 sialic acids (SIA 2-5, counted from the non-reducing end) over the whole simulation. (D) Analogous plot showing the average number of hydrogen bonds. (E) Time-resolved trajectory 8 plot of the number of atom contacts per sialic acid residue (numbered from the non-reducing 9 10 end) in the three binding sites (individual rows) averaged over 2.5 ns increments. Atom contacts are counted as favorable if one of the following conditions are satisfied: H-bond 11 donor/acceptor atom distance < 3.2 Å or C-C atom distance < 4.2 Å. The average number of 12 interactions is depicted according to the color legends on the right for each panel. (F) 13 Summary of the interactions of polySia with the 52SFK canonical pocket and 'steering rim'. 14 15 The number of favorable atom contacts and hydrogen bonds per residue is averaged over the 16 three binding sites. Boxing of the amino acid residues is analogous to panels C & D, sialic acids are boxed in grey. (G) Flow cytometry-based analysis of HAdV-52 short fiber knob 17 mutant binding to polysialic acid-expressing SH-SY5Y cells. The experiment was performed 18 three times with duplicate samples in each experiment. Error bars represent mean \pm SD. 19

Fig. 8. AdV short fiber knob binding to polysialic acid-expressing/-lacking cells. Flow
cytometry-based quantification of simian (S) and human AdV short fiber knob binding to
human neuroblastoma cells expressing (SH-SY5Y) or lacking (SK-N-SH) polySia. The
experiment was performed three times with duplicate samples in each experiment. SFK: short
fiber knob; FK: fiber knob. Error bars represent mean ± SD.

SUPPORTING INFORMATION

Fig. S1. Relative expression levels of sialic acid-containing glycans on SK-N-SH and SH-SY5Y cells. Sialic acid expression was determined using the sialic acid-binding lectins Sambucus Nigra (SNA, binds to $\alpha 2,6$ -linked sialic acid), Maackia Amurensis I and II (MAL I & MAL II, both binds to $\alpha 2,3$ -linked sialic acid) and wheat germ agglutinin (WGA binds to terminal sialic acid as well as to N-acetyl-D-glucosamine). PolySia expression was determined using an anti-polySia antibody (mab735). The experiment was performed three times with duplicate samples in each experiment. Error bars represent mean \pm SD.

Fig. S2. Observed glycosidic angles in 52SFK / polySia complex structures. (A) Torsion angles
 observed for polySia of different DP in the complex crystal structures. All angles adopt similar
 conformations. (B) Definition of the glycan torsion angles as in (83).

HAdV-52 SAdV-1 SAdV-2 SAdV-7 SAdV-11 SAdV-19 HAdV-41 HAdV-40	IQTLWTPPTSNPNCTVYTESDSLLSLCLTKCGAHVLGSVSLTGVAGTMTNMA-ETSLAIE IQTLWTAPTSTGNCTVYSEGDSLLSLCLTKCGAHVLGSVSLTGLTGTITQMT-DISVTIQ SQTLWTNPNETANCSVFQSLDSLLTLCLTKNGAHVLGSVSLTGLSGPLLKMT-TTSVTVQ IQSLWTFPTKTPNCTVFTESDSLLSLCLTKCGAHVLGSVSLSGVAGTMLKMT-HTSVTVQ IQSLCTTPTAASNCTVFTNGDSLLCLCLTKCGAHVLGSVSLTGMQGTITAMT-QNYISIQ PISLWTQPTTTANCTVYQTLDSQFLLCLTKNDAHIVGSVCLTGLQGTLNNLPTNTTVTVE LTTIWSI-SPTPNCSIYETQDANLFLCLTKNGAHVLGTITIKGLKGALREMH-DNALSLK LTTIWSI-SPTPNCSIYETQDANLFLCLTKNGAHVLGTITIKGLKGALREMN-DNALSVK ::::: **::: *:: *:::::::::::::::::::::
HAdV-52	FTFDDTGKLLHSPLVN-NTFSIROGDSPASNPTYNALAFMPNSTLYARGGSGEPRNNYYV
SAdV-1	FTFDNNGKLLSSPLIN-NAFSIRONDSTASNPTYNALAFMPNSTIYARGGGGEPRNNYYV
SAdV-2	LIFDSNGVLTTSQLNT-NSWGMRA-NTNLNAPVTNALPFMPNSTIYARGNAGEPRSNYYV
SAdV-7	FSFDDSGKLIFSPLAN-NTWGVRQSESPLPNPSFNALTFMPNSTIYSRGASNEPQNNYYV
SAdV-11	FLFDHNGALTSSPLLNNNTWGIRQSDTSSANPAYNALAFMPNSTVYVRGQSGEPRNNYYT
SAdV-19	LIFNSDGQLQSSPLVA-DSWGIREQNASTEVSNAIQFMPNSLIYTRGQAGDPKNNYYT
HAdV-41	LPFDNQGNLLNCALES-STWRYQETNAVASNALTFMPNSTVYPRNKTAHPGNMLI-
HAdV-40	LPFDNQGNLLNCALES-STWRYQETNAVASNALTFMPNSTVYPRNKTADPGNMLI-
	: *: * * . * .:: : :: **: **** :* ** .
HAdV-52	OTYL <mark>RCNUO</mark> PTTLTUTTNSAATCYSLSEKWT-AUUP EK FAAPATSECYTTEO
SAdV-1	OTYLECNVOKPIILTVTYNSVATGYSLSEKWT-ALAREKFATPTTSECYITEO
SAdV-2	OTYL <mark>RGNINKOITI.SISFNASSSGYSLTFKWS-AIATEK</mark> FATPTSSFCYIAEO
SAdV-7	OTYL <mark>RGNVRK</mark> PILLTVTYNSVNSGYSLTFKWD-AVAN <mark>EK</mark> FATPTSSFCYVAEO
SAdV-11	OTYL <mark>RGNVKK</mark> PIILTVTYNSAASGYSLTFKWD-AVVT <mark>EK</mark> FATPTSSFCYITEO
SAdV-19	TTYL <mark>RGN</mark> TGRPIILTVTLNGSSSIASTNOYSLTFRWRNTYANER FSTPFASFVYIAEO
HAdV-41	OISPNITFSVVYNEINSGYAFTFKWS-AEPGKPFHPPTAVFCYITEO
HAdV-40	OISPNITFSVVYNEINSGYAFTFKWS-AEPGKPFHPPTAVFCYITEO
	· · · · · · · · · · · · · · · · · · ·

Α

Fig. S3. AdV fiber knobs and polysialic acid. (A) Sequence alignment of AdV knobs closely related to HAdV-52. Residues of the 'steering rim' and their functional analogues are highlighted in cyan, the additional residues of the RGN motif in yellow, and the negatively charged E348 in orange. Sequences are ordered by name. (B) Poisson-Boltzmann electrostatic surface potentials of known HAdV fiber knobs across all species. Electrostatic surface potentials have been calculated at ±3 kT/e, electropositive batches are displayed in blue. (C) Phylogenetic cladogram of the short fiber knob sequences based on ClustalOmega alignment.

8

9 Movie S1. Molecular dynamics simulation of the complex between 52SFK and pentasialic acid
10 (DP5).

11

			Fluorescence	
Position	Probe ^a	Sequence	Intensity ^{b,c}	Error ^d
1	Lac-AO	Galβ-4Glc-AO	27	13
2	LacNAc-AO	Galβ-4GlcNAc-AO	-	93
3	LNT	Galβ-3GlcNAcβ-3Galβ-4Glc-DH	10	79
4	LNnT	Galβ-4GlcNAcβ-3Galβ-4Glc-DH	430	18
		Galβ-4GlcNAcβ-3Galβ-4Glc-DH		
5	LNFP-III	Fuca-3	154	224
		Galβ-4GlcNAcβ-2Manα-6		
		Manβ-4GlcNAcβ-4GlcNAc-DH		
6	NA2	Gal6-4GlcNAc6-2Manq-3	113	188
7	GM4	NeuAcq=3Galß=Cer	-	113
8	GM3	NeuAcq-3Gal8-4Glc8-Cer	-	106
9	GM3(Gc)	NeuGcα-3Galβ-4Glcβ-Cer	-	191
10	Haematoside	NeuAca-3Galβ-4Glcβ-Cer	-	36
11	NeuAcα-(3')Lac-AO	NeuAca-3Galβ-4Glc-AO	755	19
12	GSC-199	KDNα-3Galβ-4Glcβ-C30	-	71
13	NeuAcβ-(3')Lac-AO	NeuAcβ-3Galβ-4Glc-AO	832	52
14	Neuα-(3')Lac-AO	Neuα-3Galβ-4Glc-AO	667	118
	Neu4,5Ac-(3')Lac-			
15	AO	(4-OAc)NeuAcα-3Galβ-4Glc-AO	750	339
16	GSC-75	(4-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36	221	215
17	GSC-76	(7-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36	-	182
18	GSC-77	(8-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36	-	32
19	GSC-51	(9-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36	-	84
20	GSC-78	(4-OMe)NeuAcα-3Galβ-4Glcβ-Cer36	84	53
21	GSC-79	(9-OMe)NeuAcα-3Galβ-4Glcβ-Cer36	-	20
		NeuAca-3Galβ-4Glcβ-C30		
22	GSC-161	Fuca-3	-	195
	NeuAcα-(3')LN1-3-			
23	AO	NeuAca-3Galβ-3GlcNAc-AO	266	21

Table S1. List of sialylated glycans included in the microarray screening analysis.

24	NeuAcα-(3')LN	NeuAca-3Galβ-4GlcNAc-DH	326	13
25	NeuAca-(3')LN-AO	NeuAca-3Galβ-4GlcNAc-AO	55	103
		NeuAca-3Galβ-3GlcNAc-AO		
26	SA(3')-Lea-Tri-AO	Fuca-4	2	103
		NeuAca-3Galβ-4GlcNAc-AO		
27	SA(3')-Lex-Tri-AO	Γ Fucα-3	308	106
		NeuAcα-3Galβ-4GlcNAcβ-C30		
28	GSC-440	Γ Fucα-3	11	77
		(4-OAc)NeuAcα-3Galβ-4GlcNAcβ-C30		
29	GSC-512	Fuca-3	-	96
		(9-OAc)NeuAcα-3Galβ-3GlcNAcβ-C30		
30	GSC-513	Fuca-4	-	124
		(9-OAc)NeuAcα-3Galβ-4GlcNAcβ-C30		
31	GSC-511	Fuca-3	-	108
		NeuAcα-3Galβ-4GlcNAcβ-3Galβ-C30		
32	GSC-479	Fuca-3	577	287
		NeuAcα-3Galβ-4GlcNAcβ-3Galβ-Cer36		
33	GSC-105	Fuca-3	-	26
		NeuGcα-3Galβ-4GlcNAcβ-3Galβ-Cer36		
34	GSC-177	Fuca-3	129	67
		KDNα-3Galβ-4GlcNAcβ-3Galβ-C30		
35	GSC-341	Fuca-3	-	342
		NeuAcα-3(4,6-deoxy)Galβ-4GlcNAcβ-3Galβ-Cer36		
36	GSC-257	Fuca-3	201	114
		NeuAcα-3(4-deoxy)Galβ-4GlcNAcβ-3Galβ-Cer36		
37	GSC-175	Fuca-3	-	296
		NeuAcα-3(6-deoxy)Galβ-4GlcNAcβ-3Galβ-Cer36		
38	GSC-176	Fuca-3	326	3
39	LSTa	NeuAca-3Galβ-3GlcNAcβ-3Galβ-4Glc-DH	108	101
40	GSC-272	NeuAca-3Galβ-3GlcNAcβ-3Galβ-4Glcβ-C30	-	88
41	GSC-273	NeuAca-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-C30	8436	1162
42	GSC-396	NeuGca-3Galβ-3GlcNAcβ-3Galβ-4Glcβ-C30	106	184
43	Sialylparagloboside	NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer	-	53
44	GSC-31	NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36	79	53
		Neuα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36		
45	GSC-516B	SU-6	-	178
		NeuAca-3Galβ-4GlcNAcβ-3Galβ-3GlcNAc-DH		
46	C4U	SU-6 SU-6 SU-6	2732	655
		NeuAca-3Galb-3GlcNAcb-3Galb-4Glc-DH		
47	SA(3')-LNFP-II	Fuca-4	396	148
		NeuAca-3Galβ-4GlcNAcβ-3Galβ-4Glc-DH		
48	SA(3')-LNFP-III	Fucα-3	175	128
		NeuAca-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36		
49	GSC-64	Γ Fucα-3	-	167
		NeuAcα-3Galβ-4GlcNβ-3Galβ-4Glcβ-Cer36		
50	GSC-533	Γ Fucα-3	-	162
		KDNα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36		
51	GSC-149	Fuca-3	-	54
		Neuα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36		
52	GSC-472	Fuca-3	-	58
		SU-6		
		Ι NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36		
53	GSC-268	Fuce-3	1392	63
		SU-6	1002	
		Neuα-3Gal6-4GlcN8-3Gal6-4Glc8-Cer36		
51	GSC-268 doMAo		240	160
- 54	550-200 UEINAC	rucα-3 SU-6	249	100
		NeuAca-SGAIB-4GICNACB-3GAIB-4GICB-Cer36		
55	GSC-269	Fuca-3	447	98
		SU-6		
		Neuα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36		
56	GSC-406	I Fucα-3	419	57

		SU-6 SU-6		
57	GSC-270	NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36	3219	125
- 57	000-270	rucα-3 NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36	5219	125
58	GSC-220	Fuca -3 Fuca -3	24	257
59	GSC-221	NeuAcα-SGalp-4GICNACp-SGalp-4GICp-Cers6 Fuca-3	527	18
		Galβ-4GlcNAcβ-6		
		Fuca-3 Galβ-4Glc-DH		
60	MSMFLNH	NeuAca-3Galβ-3GlcNAcβ-3 NeuAca-3Galβ-4GlcNAcβ-2Mana-6 Fuca-6	1	22
		 Manβ-4GlcNAcβ-4GlcNAc-DH		
61	A2F(2-3)	NeuAca-3Galβ-4GlcNAcβ-2Mana-3	3575	256
		NeuAcα-3Galβ-4GlcNacβ-6		
		NeuAcα-SGalp-4GlCNAcp-2Manα-6 Fucα-6 MapR-4GlcNAcR-4GlcNAc-DH		
62	3N(2.3)-3A(2.6)+F)	NeuAcq-3GalB-4GlcNAcB-2Manq-3	211	15
		NeuRed Solip Holdmep Zhang S NeuReα-3Galβ-4GlcNAcβ-6		
		NeuAcα-3Galβ-4GlcNAcβ-2Manα-6 Fucα-6		
		Manβ-4GlcNAcβ-4GlcNAc-DH		
	P6-1 (GTP 4N(2,3)-	NeuAca-3Galβ-4GlcNAcβ-2Mana-3		
63	4A+F)	NeuAcα-3Galβ-4GlcNAcβ-4	139	115
		NeuAca-3Galß-4GlcNAcß-3Galß-4GlcNAcß-2Mana-6 Fuca-6		
		 Manβ-4GlcNAcβ-4GlcNAc-DH		
	P7-2 (GTP 4N(2 3)-	NeuAca-3Galβ-4GlcNAcβ-2Mana-3		
64	4A+1R+F)	 NeuAcα-3Galβ-4GlcNAcβ-4	137	137
		NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-6		
		NeuAca-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-2Mana-6 Fuca-6		
		Manβ-4GlcNAcβ-4GlcNAc-DH		
05	P8-1 (GTP 4N(2,3)-	NeuAca-3Galβ-4GlcNAcβ-2Mana-3	105	010
65	4A+2R+F)	$NeuAc\alpha-3Gal\beta-4GlcNAc\beta-4$ GalNAc\beta-4Gal\beta-4Glc\beta-Cer	185	216
66	GM2	NeuAca-3	-	507
67	CM1	Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer		167
07	Givi i	NeuAca-3 Galβ-3GalNAcβ-4Galβ-4Glc-DH	-	107
68	GM1-penta	NeuAca-3	-	18
69	GM1(Gc)	Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer	_	03
03		Galβ-3GalNAcβ-4Galβ-4Glc-DH		
70	GM1(Gc)-penta	NeuGcα-3	-	103
71	GSC-195	NDWQ-SG4IP-SG4INACP-4G4IP-4G4ICP-C0156	107	127
		NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer	107	121
72	GD1a	NeuAc α -3	-	107
73	GD1a-hexa	Neukou Starp-StarnAcp-46arp-46rc-DH	2356	223
10		SU-6	2000	
74	GSC-335	Ι NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36	547	398
75	GSC-488	NeuAcα-3Galβ-3GalNAcβ-C30 SU-6	50	50
76	GSC-489	 NeuAcα-3Galβ-3GalNAcβ-C30	963	7
	000.454	NeuAcα-3Galβ-4GlcNAcβ-6Galβ-4Glcβ-Cer36		0.00
// 78	GSC-154 GSC-441	$Fuca-\dot{S}$	- 1103	<u> </u>
		NeuAcα-3Galβ-4GlcNAcβ-4GalNAcβ-3Galβ-4Glcβ-C30	1100	211
79	GSC-384	 Fuca-3	478	29
80	GSC-284	GaiNACP-0041P-461CP-C0130	531	222
81	GSC-27	NeuAcα-6Galβ-Cer36	39	183
82	GSC-61	NeuAca-6Galβ-4Glcβ-Cer36	-	156

84 Neukopi (G)Lac-AO second is real water and its into 4476 92 85 Neukopi (G)Lac-AO week for (first into) 930 550 86 Neukoe (G)Lac-AO - 900 550 87 Neukoe (G)Lac-AO - 900 128 88 Neukoe (G)LNA (releasing the constraint) - 128 22 89 LSTC the constraint (first into) - 235 128 22 235 128 22 235 128 235 366 - 386 </th <th>83</th> <th>NeuAcα-(6')Lac-AO</th> <th>NeuAca-6Galβ-4Glc-AO</th> <th>335</th> <th>321</th>	83	NeuAcα-(6')Lac-AO	NeuAca-6Galβ-4Glc-AO	335	321
855 Neuc(q) [LincAO mem start status are balanced (g) LN 930 500 86 Neukock (g) LN-AO Exhapsed (a) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	84	NeuAcβ-(6')Lac-AO	NeuAcβ-6Galβ-4Glc-AO	476	92
866 Neukocc(GUN statuse fault for the status of - 90 71 Neukocc(GUN maxes fault for the status of - 159 88 Neukop 9Acc(GUN it=/ket/matestatus of the status of - 159 89 LSTb it=/ket/matestatus of the status of - 150 90 LSTc it=/ket/matestatus of the status o	85	Neuα-(6')Lac-AO	Neuα-6Galβ-4Glc-AO	390	500
87 Neukosci (GUN-AG) - 259 88 Neukosci (GUN-AG) - 159 89 LSTD - 159 90 LSTD Peakard-Science-Scie	86	NeuAcα-(6')LN	NeuAca-6Galß-4GlcNAc-DH	-	90
88 Nud5,9AC(G)LN 13 and transformed and a soft a s	87	NeuAcα-(6')LN-AO	NeuAca-6Galb-4GlcNAc-AO	-	259
By LSTD Chi Ling (2009) (2019) (88	Neu5.9Ac-(6')LN	(9-OAc)NeuAcα-6Gal8-4GlcNAc-DH	_	159
889 LSTb texture 1243 22 901 LSTc texture for the state			Galβ-3GlcNAcβ-3Galβ-4Glc-DH		
90 LST6 9000000000000000000000000000000000000	89	LSTb	NeuAco-6	1243	22
01 GSC-397 the development of the second se	90		Neuloco-6cal8-4CloNlo6-3Cal8-4Clo-DH		235
01 050 1000000000000000000000000000000000000	91	GSC-397		_	386
92 GSC-97 1000-1 55 93 SA(6)-LNFP-VI 1000-0 1000-0 32 94 MSLNH 0610-0000-0 32 32 95 MSLNH 0610-0000-0 230 229 95 MSLNH- 0610-0000-0 230 229 96 DSLNH- 1000-0000-0 138 411 96 DSLNH- 1000-0000-0 138 411 96 DSLNH 1000-0000-0 145 230 230 97 MFMSLNH- 1000-0000-0 145 230 230 230 231 2	51	000 001	NeuGcα-6Galβ-3G1CNACβ-3Galβ-4G1Cβ-CS0 NeuAcα-6Galβ-4G1cNAcβ-3Galβ-4G1cβ-Cer36		
32 33 54(6)-LNFP-VI 1000- 10	02	GSC-07		_	55
93 SA(6)-LNFP-VI Trans- trans- trans- (all-science) - 	52	000-91	FUCA-3 NeuAca-6GalB-4GlcNAcB-3GalB-4Glc-DH	-	
33 0K(0/EUVPV) basker foot 6 401 (stable) = foot - 20 1 32 94 MSLNH (at 8 M) (stable) = foot - 20 - 229 95 MSLNH-I (at 8 M) (stable) = foot - 20 - 229 95 MSLNH-I (at 8 M) (stable) = foot - 20 - 229 96 DSLNH (bt 10 M) - 601 - 611 (stable)	02				22
94 MSLNH util-bolined- bili-bolined- stil-boline- stil-boline- stil-bolined- stilbolined- stil-boline- stilboline	93	3A(0)-LINFF-VI	Fucα-3 NeuAcα-6Galβ-4GlcNAcβ-6	-	52
94 MSLNH (al.1) - sci (al.2) - sci (al.					
94 MSLNH cali-cleater-interpart - 229 95 MSLNH-I tali-cleater-interpart 138 41 96 DSLNH-I tali-cleater-interpart 138 41 96 DSLNH-I tali-cleater-interpart 138 41 96 DSLNH-I tali-cleater-interpart - 145 97 MFMSLNH-I tali-cleater-interpart - 23 98 A2(2-6) tali-cleater-interpart 66 291 98 A2(2-6) tali-cleater-interpart 66 291 99 AGP-Bi-Gc2 tali-cleater-interpart 700 166 100 AGP-Bi-Gc2 tali-cleater-interpart 700 166 100 AGP-Bi-Gc2 tali-cleater-interpart 70 147 102 GSC-442 tali-cleater-interpart 70 147 102 GSC-68 tali-cleater-interpart 704 32 104 GSC-107 tali-cleater-interpart 704 32			Galβ-4Glc-DH		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	94	MSLNH	Galβ-3GlcNAcβ-3	-	229
95 MSLNnH-I Heaton-66112-313 (1161) 138 41 96 DSLNnH Heaton-66112-431(161) - 138 41 96 DSLNnH Heaton-66112-431(161) - 145 - 145 97 MFMSLNNH Heaton-66112-431(161) - 23 - 23 98 A2(2-6) Heaton-66112-431(161) - 23 - 23 98 A2(2-6) Heaton-6612-461(161) - 23 - 23 99 AGP-Bi-Ac2 Heaton-6612-461(161) - 23 - 23 100 AGP-Bi-Ac2 Heaton-6612-461(161) - 166 291 101 GSC-442 Beaton-6612-461(161) - 1222 221 101 GSC-155 Heaton-6612-461(161) - 70 147 102 GSC-160 Heaton-6612-461(161) - 70 147 102 GSC-170 Heaton-6612-461(161) - 70 44 59 <td></td> <td></td> <td>Galβ-4GlcNAcβ-6</td> <td></td> <td></td>			Galβ-4GlcNAcβ-6		
95 MSLNnH-I Issuance-scall-scallscall			Galβ-4Glc-DH		
12 MCLANY Bookser-Gall-Science-J 132 132 96 DSLNNH Bookser-Gall-Science-J - 145 97 MFMSLNH Bookser-Gall-Science-J - 23 98 A2(2-6) Bookser-Gall-Science-J - 23 99 AGP-Bi-Ac2 Bookser-Gall-Science-J 66 291 99 AGP-Bi-Ac2 Bookser-Gall-Science-J 66 291 99 AGP-Bi-Ac2 Bookser-Gall-Science-J 700 166 100 AGP-Bi-Ac2 Bookser-Gall-Science-J 700 166 101 GSC-442 Bookser-Gall-Science-J 70 147 102 GSC-68 Masker-Gall-Science-J 70 147 102 GSC-107 Masker-Gall-Science-J 704 32 104 GSC-107 Masker-Gall-Science-J 704 32 105 GSC-70 Masker-Gall-Science-J 704 32 105 GSC-70 Masker Science-Sciene-Science-Sciene 704 32	95	MSL NnH-I	Neulaco-6cal8-3CloNlc8-3	138	41
96 DSLNnH Nukao-Gala-Gala-Gala-Gala-Gala-Gala-Gala-Ga			NeuAcα-6Galβ-4GlcNAcβ-6		
96 DSLNnH Heater-Gails-Global-3 - 145 97 MFMSLNHH Heater-Gails-Global-3 - 23 97 MFMSLNHH Heater-Gails-Global-3 - 23 98 A2(2-6) Heater-Gails-Global-3 66 291 98 A2(2-6) Heater-Gails-Global-3 66 291 99 AGP-Bi-Ac2 Heater-Gails-Global-3 700 166 99 AGP-Bi-Ac2 Heater-Gails-Global-3 1222 221 100 AGP-Bi-Gc2 Heater-Gails-Global-3 1222 221 101 GSC-442 Heater-Gails-Global-2 Heater-Gails-Global-3 1222 221 101 GSC-155 Heater-Gails-Global-3 652 155 103 GSC-107 Heater-Gails-Global-4 704 32 104 GSC-107 Heater-Gails-Gails-Global-3 1086 122 105 GSC-70 Heater-Gails-Gails-Global-3 3027 163 106 DST Heater-Gails-Gails-Global-3					
96 DSLNH INDACT-GRIP-GC1000-C - 145 97 MFMSLNH INDACT-GRIP-GC1000-C - 23 98 A2(2-6) INDACT-GRIP-GC1000-C - 23 98 A2(2-6) INDACT-GRIP-GC1000-C 66 291 99 AGP-Bi-Ac2 INDACT-GRIP-GC1000-C 66 291 99 AGP-Bi-Ac2 INDACT-GRIP-GC1000-C 66 291 100 AGP-Bi-Ac2 INDACT-GRIP-GC1000-C 66 291 101 GSC-442 INDACT-GRIP-GC1000-C INDACT-GRIP-GC1000-C 147 102 GSC-68 INDACT-GRIP-GC100-CC 652 155 103 GSC-107 INDACT-GRIP-GC100-CC 652 155 104 GSC-700 INDACT-GRIP-GC100-CC 652 155 105 GSC-700 INDACT-GRIP-GC100-CC 70 147 70 106 DST INDACT-GRIP-GRIP-GRIP-GRIP-GRIP-GRIP-GRIP-GRIP			Сатр-46тс-рн		
97 MFMSLNnH Neukor-66219-301000-23600-4 - 23 98 A2(2-6) Neukor-66219-301000-23600-4 - 23 98 A2(2-6) Neukor-66219-401000-23600-4 - 23 99 AGP-Bi-AC2 Neukor-66219-401000-23600-4 - 66 291 99 AGP-Bi-AC2 Neukor-66219-401000-23600-4 700 166 99 AGP-Bi-AC2 Neukor-66219-401000-23600-4 700 166 90 AGP-Bi-GC2 Neukor-66219-401000-53600-4 700 147 100 AGP-Bi-GC2 Neukor-6219-401000-5200-5 1222 221 101 GSC-442 Neukor-6219-401000-5200-5 700 147 102 GSC-68 Neukor-6219-4010-4010-4010-4010-4010-4010-4010-40	96	DSLNnH	NeuAcα-6Galβ-4GlcNAcβ-3	-	145
Process fpall=ColorBit Process fpall=ColorBit 23 97 MFMSLNnH Heubore (Gall= Actionated Heubore (Gall= Actionated Heub			Galβ-4GlCNAcβ-6		
97 MFMSLNnH stochton=fall=fall:stochton=fall - 23 98 A2(2-6) stochton=fall=fall:stochton=fall fall			Fuca-3 Galβ-4Glc-DH		
O INFINITION Deaders/ 66119-4610362-24800-6 Margh-4610386-46100386-46100000000000000000000000000000000000	97	MEMSI NnH	Neulaco-6cal8-3CloNlc8-3	_	23
98 A2(2-6) weuzer-66a18-4G10Nach-2Manar-3 66 291 99 AGP-Bi-Ac2 weuzer-66a18-4G10Nach-2Manar-3 700 166 99 AGP-Bi-Ac2 weuzer-66a18-4G10Nach-2Manar-3 700 166 100 AGP-Bi-Ac2 weuzer-66a18-4G10Nach-2Manar-3 700 166 100 AGP-Bi-Gc2 weuzer-66a18-4G10Nach-2Manar-3 1222 221 101 GSC-442 weuzer-66a18-4G10Nach-2ABanar-3 70 147 102 GSC-68 weuzer-66a18-4G10B	01		NeuAca-6Galβ-4GlcNAcβ-2Manα-6		20
Basis Masis Masis 98 A2(2-6) Weukor-66a18-4G1XNcp-2Mana-6 Manfs-4G1CNAcp-4GL0Nc-DB 66 291 99 AGP-Bi-Ac2 Weukor-66a18-4G10Ncp-2Mana-6 Manfs-4G1CNAcp-4GL0Nc-DB 700 166 100 AGP-Bi-Gc2 Weukor-66a18-4G10Ncp-2Mana-6 Manfs-4G1CNAcp-4G1CNAc-DB 701 147 101 GSC-442 Meukor-66a18-4G10Ncp-4Ga18-4G1cP-cer36 70 147 103 GSC-155 Meukor-66a18-4G1CP-cer36 652 155 103 GSC-107 Meukor-66a18-4G1cP-cer36 704 32 104 GSC-70 Weukor-6Ga18-4G1cP-Cer36 174 70 106 DST Meukor-6Ga18-4G1cP-Cer36 174 70 106 DST Meukor-6Ga18-4G1cP-Cer36 174 70 107 DST-AO Meukor-6Ga18-4G1cP-Cer36 3027 163 108 GSC-490 Meukor-6Ga18-4G1cP-Cer36 3027 163 108 GSC-490 Meukor-6Ga18-4G1cP-Cer36 3213 147 109 DSLNT Meukor-6Ga					
98 A2(2-6) Heukan-66.18-4G1.0H86.9-2Man-5 66 291 99 AGP-Bi-Ac2 Heukan-66.18-4G1.0H86.9-2Man-6 700 166 100 AGP-Bi-Ac2 Heukan-66.18-4G1.0H86.9-2Man-6 700 166 100 AGP-Bi-Gc2 Heukan-66.18-4G1.0H86.9-2Man-6 70 147 101 GSC-442 Heukan-66.18-4G1.0H86.9-2Man-5 70 147 102 GSC-68 Heukan-66.18-4G1.0H86.9-2Man-5 70 147 102 GSC-68 Heukan-66.18-4G1.0H86.9-4G1.0H10.9-Cer.36 652 155 103 GSC-155 Heukan-66.18-4G1.0H86.9-4G1.0H-0Cer.36 704 32 104 GSC-107 Heukan-66.18-4G1.0H6.0Cer.36 174 70 106 DST Heukan-36.18-4G1.0H6.0Cer.36 174 70 106 DST Heukan-36.18-4G1.0H6.0Cer.36 3027 163 107 DST-AO Heukan-36.19-3G1.1M6.9-3G1.0H6.0Cer.36 3213 147 108 GSC-490 Heukan-6 1086 122 108		/	Manp-4GICNACP-4GICNAC-DH		
Neukaci-Geally-46108Acg-24man-3 700 166 99 AGP-Bi-Ac2 Neukaci-Geally-46108Acg-24man-3 700 166 100 AGP-Bi-Gc2 Neukaci-Geally-46108Acg-24man-3 700 166 100 AGP-Bi-Gc2 Neukaci-Geally-46108Acg-24man-3 700 147 101 GSC-442 Neukaci-Geally-46108Acg-24man-3 700 147 102 GSC-68 Neukaci-Geally-46109-0er36 652 155 103 GSC-155 Neukaci-Geally-46109-0er36 444 59 104 GSC-107 Neukaci-Geally-46109-0er36 704 32 105 GSC-70 Neukaci-Geally-46109-0er36 704 32 106 DST Neukaci-Geally-3610-36109-0er36 174 70 106 DST Neukaci-Geally-36109-36109-0er36 174 70 107 DST-AO Neukaci-Geally-36109-36109 174 70 108 GSC-490 Neukaci-Gally-36109-36109 174 70 108 GSC-490 Neukaci-Gally-36109-36109	98	A2(2-6)	NeuAcα-6Galβ-4GlcNAcβ-2Manα-3	66	291
Margi-4G1cHAcg-2Marg-3 700 166 99 AGP-Bi-Ac2 NeuRoc-6Ga1g-4G1cHAcg-2Marg-3 700 166 100 AGP-Bi-Gc2 NeuRoc-6Ga1g-4G1cHAcg-2Marg-3 1222 221 101 GSC-442 NeuRoc-6Ga1g-4G1cHAcg-4G1g-AG1cHAcg-4G1cHAcg-4G1cHAcg-4G1cHAcg-4G1g-4G1cG-Cer36 70 147 102 GSC-482 NeuRoc-6Ga1g-4G1cHAcg-4Ga1g-4G1cg-Cer36 652 155 103 GSC-155 NeuRoc-6Ga1g-4G1cHAcg-4Ga1g-4G1cg-Cer36 704 32 104 GSC-107 NeuRoc-6Ga1g-4G1cg-Cer36 704 32 105 GSC-70 NeuRoc-6Ga1g-4G1cg-Cer36 704 32 106 DST NeuRoc-6Ga1g-4G1cg-Cer36 174 70 106 DST NeuRoc-6Ga1g-4G1chCcg-Cer36 174 70 107 DST-AO NeuRoc-3Ga1g-3Ga1Macg-4Ga1g-4G1cg-Cer36 174 70 108 GSC-490 NeuRoc-3Ga1g-3Ga1Macg-4Ga1g-4G1cg-Cer36 3027 163 108 GSC-490 NeuRoc-3Ga1g-3Ga1Macg-4Ga1g-4G1cg-Cer36 3213 147			NeuAcα-6Galβ-4GlcNAcβ-2Manα-6		
99 AGP-Bi-Ac2 Neukoo-66a1p-401cNAcp-2Namo-1 700 166 Neucoo-66a1p-401cNAcp-2Namo-3 1222 221 100 AGP-Bi-Gc2 Neucoo-66a1p-401cNAcp-2Namo-3 1222 221 101 GSC-442 Neucoo-66a1p-401cP-cer36 70 147 102 GSC-68 Neucoo-66a1p-401cP-cer36 652 155 103 GSC-155 Neukoo-6a1p-30a1NAcp-40a1p-401cP-cer36 704 32 104 GSC-107 Neukoo-6a1p-30a1NAcp-40a1p-401cP-cer36 704 32 105 GSC-70 Neukoo-6a1p-30a1NAcp-40a1p-401cP-cer36 174 70 106 DST Neukoo-6a1p-30a1NAcp-40a1p-401cP-cer36 174 70 106 DST Neukoo-3a1p-30a1NAcp-40a1p-401cP-cer36 174 70 107 DST-AO Neukoo-3a1p-30a1NAcp-40a1p-401cP-cer36 3027 163 108 GSC-490 Neukoo-3a1p-30a1NAcp-20a - 74 109 DSLNT Neukoo-3a1p-401cNAcp-20a - 74 Neukoo-3a1p-401cNAcp-20a -			Manβ-4GlcNAcβ-4GlcNAc-DH		
10 Neußes-66alβ-461cNAcβ-2Mang-6 Manß-461cNAcβ-46alβ-461cNAcβ-2Mang-3 1222 221 100 AGP-Bi-Gc2 Neußes-66alβ-461cNAcβ-2Mang-3 1222 221 101 GSC-442 Neußes-66alβ-461cP-0er36 70 147 102 GSC-683 Neußes-66alβ-461cP-0er36 652 155 103 GSC-155 Neußes-66alβ-461cP-0er36 652 155 104 GSC-107 Neußes-66alβ-46alβ	99	AGP-Bi-Ac2	NeulAco-6GalB-4GlcNAcB-2Mano-3	700	166
Mang-4GlcNAcp-4GlcNAc-DH 100 AGP-Bi-Gc2 NeuRocs-6Glg-4GlcNAcp-4			NeuGcα-6Galβ-4GlcNAcβ-2Manα-6		
100 AGP-Bi-Gc2 NeuGos-Gall-4Gichach-2Gall-4Gichach-2Gall-4Gichach-3Ga			Mang-4Clowage-4Clowage-DH		
100 AGP-BI-GC2 NeuCo-Galla-4GLAGE-Zano-3 1222 221 101 GSC-442 NeuAco-6 70 147 102 GSC-68 NeuAco-6 70 147 102 GSC-68 NeuAco-6 652 155 103 GSC-155 NeuAco-6 652 155 104 GSC-107 NeuAco-6 704 32 105 GSC-70 NeuAco-6 704 32 106 DST NeuAco-6 1086 122 107 DST-AO NeuAco-6 3027 163 108 GSC-490 NeuAco-6 3027 163 108 GSC-490 NeuAco-6 3213 147 109 DSLNT NeuAco-6 3213 147 110 A3 NeuAco-6 3213 147 110 A3 NeuAco-6 3213 147 111 GSC-118 NeuAco-6 3213 147 110 A3	400			1000	004
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	AGP-BI-Gc2	NeuGcα-6Galβ-4GlcNAcβ-2Manα-3	1222	221
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Gainacp-4Gaip-4Gicp-Cer36		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	101	GSC-442	NeuAca-6	70	147
103 GSC-155 NeuAca-6 444 59 104 GSC-155 NeuAca-6Galp-3GalNACp-4Galp-4Glcp-Cer36 704 32 105 GSC-70 NeuAca-6Galp-3GalNACp-4Galp-4Glcp-Cer36 704 32 105 GSC-70 NeuAca-6Galp-3GalNACp-4Galp-4Glcp-Cer36 174 70 106 DST NeuAca-6Galp-3GalNAC-DH 1086 122 107 DST-AO NeuAca-6 3027 163 108 GSC-490 NeuAca-6Galp-3GalPACp-C30 3027 163 108 GSC-490 NeuAca-6 3213 147 109 DSLNT NeuAca-6 3213 147 109 DSLNT NeuAca-6Galp-4GlcNACp-4GlcAGc-DH 3473 391 110 A3 NeuAca-3Galp-4GlcNACp-4Galp-4Glcp-Cer36 195 198 111 GSC-118 NeuAca-8NeuAca-6Galp-Cer36 223 93 111 GSC-230 NeuAca-8NeuAca-6Galp-Cer36 58 122 114 GSC-230 NeuAca-8NeuAca-6Galp-Cer36 58 </td <td>102</td> <td>GSC-68</td> <td>NeuAcα-6Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36</td> <td>652</td> <td>155</td>	102	GSC-68	NeuAcα-6Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36	652	155
103 GSC-155 Neukace-6 444 59 104 GSC-107 Neukace-6 704 32 105 GSC-70 Neukace-6 704 32 106 DST Neukace-6 174 70 106 DST Neukace-3Galβ-3GalNac-DH 1086 122 107 DST-AO Neukace-3Galβ-3GalNac-AO 3027 163 108 GSC-490 Neukace-6 3027 163 109 DSLNT Neukace-6 - 74 109 DSLNT Neukace-6 3213 147 110 A3 Neukace-6 3213 147 Neukace-6 Neukace-6 3473 391 110 A3 Neukace-6 195 198 111 GSC-118 Neukace-6 195 198 1112 GSC-230 Neukace-8alβ-4Galβ-2cer36 223 93 113 GSC-439 Neukace-8neukace-6 195 198 1			Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	103	GSC-155	NeuAca-6	444	59
104 GSC-107 NeuAca ⁻⁶ 704 32 105 GSC-70 NeuAca ⁻⁶ Galβ-4Galβ-4Glcβ-Cer36 174 70 106 DST NeuAca ⁻³ Galβ-3GalNac-DH 1086 122 107 DST-AO NeuAca ⁻³ Galβ-3GalNac-AO 3027 163 107 DST-AO NeuAca ⁻⁶ 3027 163 108 GSC-490 NeuAca ⁻⁶ 3027 163 109 DSLNT NeuAca ⁻³ Galβ-3GalNacβ-C30 - 74 109 DSLNT NeuAca ⁻³ Galβ-3GalNacβ-Galβ-4Glc-DH - 74 109 DSLNT NeuAca ⁻³ Galβ-4GlcNacβ-2Mana ⁻⁶ 3213 147 NeuAca ⁻³ Galβ-4GlcNacβ-2Mana ⁻⁶ - 3473 391 110 A3 NeuAca ⁻³ Galβ-4GlcNacβ-4Galβ-4GlcNacβ-4Galβ-4GlcNacβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4GlcAlβ-4Glcβ-4Glcβ-4GlcAlβ-4Glcβ-4Glcβ-4Glcβ-4GlcAlβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4G			NeuAcα-6Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36		
105 GSC-70 NeuAcα-Gealp-GGalNAcp-4Galp-4Glcp-Cer36 174 70 106 DST NeuAcα-3Galp-3GalNAc-DH NeuAcα-6 1086 122 107 DST-AO NeuAcα-6 3027 163 108 GSC-490 NeuAcα-3Galp-3GalNAcβ-C30 NeuAcα-6 3027 163 108 GSC-490 NeuAcα-6 3027 163 109 DSLNT NeuAcα-3Galp-3GalNAcβ-C30 NeuAcα-6 - 74 109 DSLNT NeuAcα-6 3213 147 109 DSLNT NeuAcα-3Galp-4GlcNAcβ-2Manα-6 NeuAcα-3Galβ-4GlcNAcβ-2Manα-6 3473 391 110 A3 NeuAcα-3Galβ-4GlcNAcβ-2 3473 391 111 GSC-118 NeuAcα-3Galβ-4GlcNAcβ-2 3473 391 111 GSC-230 NeuAcα-8Galβ-4GlcPCer36 195 198 112 GSC-230 NeuAcα-8NeuAcα-8Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 391 77 115 GD3 NeuAcα-8NeuAcα-3Galβ-4GlcPc	104	GSC-107	NeuAca-6	704	32
100 DOD 10 Neukaco-3Galp-3GalNAc-DH Neukaco-3Galp-3GalNAc-AO 1086 122 107 DST-AO Neukaco-3Galp-3GalNAc-AO 3027 163 108 GSC-490 Neukaco-6 3027 163 109 DSLNT Neukaco-6 - 74 109 DSLNT Neukaco-6 3213 147 Neukaco-3Galp-3GalP-4GlcNAcβ-3Galp-4Glc-DH 3213 147 109 DSLNT Neukaco-6 3213 147 Neukaco-3Galp-4GlcNAcβ-2 3473 391 110 A3 Neukaco-6 195 198 111 GSC-118 Neukaco-3Galp-4GlcNAcβ-2 3473 391 111 GSC-230 Neukaco-3Galp-4GlcP-2 3473 391 112 GSC-230 Neukaco-3Galp-Cer36 223 93 113 GSC-231 Neukaco-8Neukaco-6Galp-Cer36 58 122 114 GSC-439 Neukaco-8Neukaco-6Galp-Cer36 391 77 116 GD3 Neukaco-8Neukaco-6Galp-Cer36	105	GSC-70	Neulaco-6Gall-6GallNac6-4Gall-4Glc6-Cer36	174	70
106 DST Νευλαα-6 1086 122 107 DST-AO Νευλαα-3Galβ-3GalNAc-AO 3027 163 108 GSC-490 Νευλαα-3Galβ-3GalNAcβ-C30 - 74 109 DSLNT Νευλαα-3Galβ-3GalNAcβ-3Galβ-4Glc-DH - 74 109 DSLNT Νευλαα-6 3213 147 109 DSLNT Νευλαα-3Galβ-4GlcNAcβ-4GlcADH 3213 147 109 DSLNT Νευλαα-3Galβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-DH 3473 391 110 A3 Νευλαα-6 195 198 111 GSC-118 Νευλαα-6 195 198 112 GSC-230 Νευλαα-6 223 933 113 GSC-231 Νευλαα-3Galβ-Cer36 223 933 113 GSC-439 Νευλαα-6Galβ-Cer36 3454 122 114 GSC-439 Νευλαα-8Νευλαα-3Galβ-4Glc-AO 391 77 116 GD3-tetra-AO Νευλαα-8Neuλαα-3Galβ-4Glc-AO 873 5 117			NeuAcα-3Galβ-3GalNAc-DH		
Note Note <t< td=""><td>106</td><td>DST</td><td>Neulaco-6</td><td>1086</td><td>122</td></t<>	106	DST	Neulaco-6	1086	122
107 DST-AO NeuAcα-6 3027 163 108 GSC-490 NeuAcα-3Galβ-3GalNaCβ-C30 NeuAcα-6 - 74 109 DSLNT NeuAcα-3Galβ-3GalNaCβ-3Galβ-4Glc-DH NeuAcα-6 3213 147 109 DSLNT NeuAcα-3Galβ-4GlcNaCβ-2Manα-6 Manβ-4GlcNaCβ-4GlcNacβ-4GlcNac-DH NeuAcα-3Galβ-4GlcNacβ-4Galβ-4GlcNacβ-4Galβ-4GlcNac-DH 3213 147 110 A3 NeuAcα-3Galβ-4GlcNacβ-2 3473 391 111 GSC-118 NeuAcα-3Galβ-4GlcPers6 195 198 112 GSC-230 NeuAcα-8NeuAcα-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-6Galβ-Cer36 391 77 116 GD3-tetra-AO NeuAcα-3Galβ-4GlcP-Cer36 391 77 116 GD3-tetra-AO NeuAcα-3Galβ-4GlcP-Cer36 319 18			NeuAcα-3Galβ-3GalNAc-AO		
107 Def FRO NeuAcca ⁻³ Galβ-3GalNAcβ-C30 3027 103 108 GSC-490 NeuAca ⁻³ Galβ-3GalNAcβ-C30 - 74 109 DSLNT NeuAca ⁻³ Galβ-3Galβ-4Glc-DH 3213 147 109 DSLNT NeuAca ⁻³ Galβ-4GlcNAcβ-2Mana ⁻⁶ 3213 147 109 DSLNT NeuAca ⁻³ Galβ-4GlcNAcβ-2Mana ⁻⁶ 3213 147 110 A3 NeuAca ⁻³ Galβ-4GlcNAcβ-4Mana ⁻³ 3473 391 110 A3 NeuAca ⁻³ Galβ-4GlcNAcβ-4Galβ-4GlcNAcβ-4GlcNAcβ-4 3473 391 111 GSC-118 NeuAca ⁻³ Galβ-3GalNacβ-4Galβ-4Glcβ-Cer36 195 198 1112 GSC-230 NeuAca ⁻⁶ Galβ-Cer36 223 93 113 GSC-231 NeuAca ⁻⁸ BieuAca ⁻⁶ Galβ-Cer36 58 122 114 GSC-439 NeuAca ⁻⁸ BieuAca ⁻⁶ Galβ-Cer36 454 122 115 GD3 NeuAca ⁻⁸ BieuAca ⁻⁶ Galβ-Cer36 391 77 116 GD3-tetra-AO NeuAca ⁻⁸ BieuAca ⁻³ Galβ-4Glc-AO 873 5	107		Noulog 6	2027	162
108 GSC-490 NeuAcα-6 - 74 109 DSLNT NeuAcα-3Galβ-3GlcNAcβ-3Galβ-4Glc-DH NeuAcα-6 3213 147 109 DSLNT NeuAcα-6 3213 147 109 DSLNT NeuAcα-6 3213 147 109 DSLNT NeuAcα-3Galβ-4GlcNAcβ-2Manα-6 Manβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-DH 3213 147 110 A3 NeuAcα-3Galβ-4GlcNAcβ-2Manα-3 NeuAcα-6Galβ-4GlcNAcβ-4Galβ-4GlcAcβ-4 3473 391 110 A3 NeuAcα-6Galβ-4GlcNAcβ-4 3473 391 111 GSC-118 NeuAcα-6Galβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAcα-8NeuAcα-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-3Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-Glcβ-Cer36 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18 117 GSC-229<	107		NeuAcα-3Galβ-3GalNAcβ-C30	3027	103
Νευλαα-6 Νευλαα-6 74 109 DSLNT Νευλαα-3Galβ-3Galβ-4Glc-DH Neuλαα-6 3213 147 109 DSLNT Νευλαα-6 3213 147 109 DSLNT Νευλαα-6 3213 147 109 DSLNT Νευλαα-6 3213 147 100 A3 Νευλαα-3Galβ-4GlcNacβ-2Manα-6 3473 391 110 A3 Νευλαα-3Galβ-4GlcNacβ-4Manα-3 3473 391 111 GSC-118 Νευλαα-3Galβ-4GlcNacβ-2 3473 391 111 GSC-230 Νευλαα-6 195 198 112 GSC-231 Νευλαα-8Nευλαα-6Galβ-Cer36 223 93 113 GSC-231 Νευλαα-8Nευλαα-6Galβ-Cer36 58 122 114 GSC-439 Νευλαα-8Nευλαα-6Galβ-Cer36 454 122 115 GD3 Νευλαα-8Nευλαα-6Galβ-Cer36 391 77 116 GD3-tetra-AO Νευλαα-8Nευλαα-3Galβ-4Glcβ-Cer36 319 18	100	CSC 400			74
109 DSLNT NeuAca-6 3213 147 NeuAca-3Galβ-4GlcNAcβ-2Manα-6 NeuAca-3Galβ-4GlcNAcβ-2Manα-6 3213 147 NeuAca-3Galβ-4GlcNAcβ-2Manα-6 Manβ-4GlcNAcβ-4GlcNAc-DH NeuAca-3Galβ-4GlcNAcβ-4Manα-3 3473 391 110 A3 NeuAca-6Galβ-4GlcNAcβ-4Galβ-4Glcβ-Cer36 3473 391 111 GSC-118 NeuAca-6Galβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAca-8NeuAca-6Galβ-Cer36 223 93 113 GSC-231 NeuAca-8NeuAca-6Galβ-Cer36 58 122 114 GSC-439 NeuAca-8NeuAca-6Galβ-Cer36 454 122 115 GD3 NeuAca-8NeuAca-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAca-8NeuAca-3Galβ-4Glcβ-Cer36 319 18	106	GSC-490	NeuAca-6		/4
109 DSLN1 NeuAcα-6 3213 147 NeuAcα-3Galβ-4GlcNAcβ-2Manα-6 NeuAcα-3Galβ-4GlcNAcβ-2Manα-6 Manβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-DH Manβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-DH NeuAcα-3Galβ-4GlcNAcβ-4GlcNAcβ-2 3473 391 110 A3 NeuAcα-3Galβ-4GlcNAcβ-2 3473 391 110 A3 NeuAcα-3Galβ-4GlcNAcβ-2 3473 391 111 GSC-118 NeuAcα-3Galβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAcα-8NeuAcα-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glc-AO 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	400	DOLNT		0010	
NeuAca-Stalp-4GlcNAcβ-2Manα-0 Manβ-4GlcNAcβ-4GlcNAc-DH Manβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-DH NeuAcα-3Galβ-4GlcNAcβ-2 3473 391 110 A3 NeuAcα-3Galβ-4GlcNAcβ-2 3473 391 111 GSC-118 NeuAcα-3Galβ-4Glcβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAcα-6 195 198 113 GSC-231 NeuAcα-8NeuAcα-3Galβ-Cer36 223 93 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	109	DSLNI	NeuAca-6	3213	147
Manβ-4GlcNAcβ-4GlcNAc-DH Manβ-4GlcNAc-DH NeuAcα-3Galβ-4GlcNAcβ-4Manα-3 3473 391 110 A3 NeuAcα-3Galβ-4GlcNAcβ-4Galβ-4Glcβ-Cer36 3473 391 111 GSC-118 NeuAcα-3Galβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAcα-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-6Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-3Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-Ger6Cer36 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18			Neunou Seaip-Aeionveb-zmanu-o		
Neuλcα-3Galβ-4GlcNAcβ-4Manα-3 3473 391 110 A3 NeuAcα-3Galβ-4GlcNAcβ-4Galβ-4Glcβ-Cer36 3473 391 111 GSC-118 NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAcα-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-8Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18			Manβ-4GlcNAcβ-4GlcNAc-DH		1
110 A3 NeuAcα-6Galβ-4GlcNacβ-2 3473 391 111 GSC-118 NeuAcα-3Galβ-3GalNacβ-4Galβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAcα-6 223 93 113 GSC-231 NeuAcα-6Galβ-4Glcβ-Cer36 223 93 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18			NeuAca-3Galβ-4GlcNAcβ-4Mana-3		1
NeuAcα-bGalβ-4GLCNAcβ-2 3473 391 111 GSC-118 NeuAcα-3Galβ-4Glcβ-4Galβ-4Glcβ-Cer36 195 198 112 GSC-230 NeuAcα-3Galβ-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-8NeuAcα-3Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	110	۵3		2472	201
111 GSC-118 NeuAca-6 195 198 112 GSC-230 NeuAca-8NeuAca-3Galβ-Cer36 223 93 113 GSC-231 NeuAca-8NeuAca-6Galβ-Cer36 58 122 114 GSC-439 NeuAca-8NeuAca-6Galβ-Cer36 454 122 115 GD3 NeuAca-8NeuAca-3Galβ-Ger 391 77 116 GD3-tetra-AO NeuAca-8NeuAca-3Galβ-Ger36 873 5 117 GSC-229 NeuAca-8NeuAca-3Galβ-4Glcβ-Cer36 319 18	110		NeuAcα-bGalβ-4GlcNAcβ-2 NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36	3473	391
ΠΠ GSC-118 NeuAcα-6 195 198 112 GSC-230 NeuAcα-8NeuAcα-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-Ger6Cer36 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glc-AO 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18		000 110		405	400
112 GSC-230 NeuAcα-8NeuAcα-3Galβ-Cer36 223 93 113 GSC-231 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-Ger6Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glc-AO 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	111	000 000	NeuAca-6	195	198
113 GSC-231 NeuAcα-8NeuAcα-6Galβ-Cer36 58 122 114 GSC-439 NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	112	680-230	NeuAca-8NeuAca-3Galβ-Cer36	223	93
114 GSC-439 NeuAcα-8NeuAcα-8NeuAcα-6Galβ-Cer36 454 122 115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	113	GSC-231	NeuAca-8NeuAca-6Galβ-Cer36	58	122
115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 391 77 116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	114	GSC-439	NeuAca-8NeuAca-6Galβ-Cer36	454	122
116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glc-AO 873 5 117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	115	GD3	NeuAca-8NeuAca-3Galβ-4Glcβ-Cer	391	77
117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 319 18	116	GD3-tetra-AO	NeuAca-8NeuAca-3Galβ-4Glc-AO	873	5
	117	GSC-229	NeuAca-8NeuAca-3Galβ-4Glcβ-Cer36	319	18

118	GSC-437	NeuAca-8NeuAca-8NeuAca-3Galβ-4Glcβ-Cer36	-	191
119	GD2	GalNAcβ-4Galβ-4Glcβ-Cer NeuAcα-8NeuAcα-3	228	14
120	GD1b	Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer NeuAcα-8NeuAcα-3	800	74
121	GQ1b	NeuAca-8NeuAca-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer NeuAca-8NeuAca-3	673	47
122	SA3(α8)	NeuAca-8NeuAca-8NeuAc-DH	4026	303
123	SA5(α8)*	NeuAca-8NeuAca-8NeuAca-8NeuAca-8NeuAc-DH	31735	167
124	SA7(α8)*	NeuAca-8NeuAca-8NeuAca-8NeuAca-8NeuAca-8NeuAca-8NeuAc-DH	28224	86
125	SA9(α8)*	NeuAca-8NeuAca-8NeuAca-8NeuAca-8NeuAca-8NeuAc-8NeuAca-8NeuAc- 8NeuAca-DH	32320	954
126	GT1a	NeuAca-8NeuAca-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer	781	272
		NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer		
127	GT1b	l NeuAca-8NeuAca-3	2104	79
128	GSC-96	NeuAca-9NeuAca-3Galβ-4Glcβ-Cer36	-	152

- 1 2
- ^a The glycan probes are all lipid-linked, neoglycolipids (NGLs) or glycosylceramides and are

3 from the collection assembled in the course of research in the Glycosciences Laboratory. For

- 4 definition of the lipid moieties of the probes, please see
- 5 <u>https://glycosciences.med.ic.ac.uk/docs/lipids.pdf</u>.

⁶ ^b Numerical scores for the binding signals are shown as means of duplicate spots at 5 fmol per

- 7 spot.
- 8 ^c -, signal less than 1.
- 9 ^d Difference of signal intensities of duplicated spots of each glycan probe.

Table S2. Supplementary Glycan Microarray Document based on <u>MIRAGE guidelines</u> (doi:10.3762/mirage.3)

Classification	Guidelines
1. Sample: Glycan Bindi	ng Sample
	Sample name: HAdV-52 fiber-1 or HAdV52 SFK (abbreviated as 52SFK in the main text)
	Previous reference:
	Lenman et al. PLoS pathogens (2015). PMID: 25674795.
	Public database IDs:
	DQ923122.2 in the Genbank
	https://www.ncbi.nlm.nih.gov/nuccore/124375632/
	ABK35058.1 in the Protein sequence database
	https://www.ncbi.nlm.nih.gov/protein/ABK35058.1
Description of Sample	4XL8 in PDB as well as the PDB entry of the construct used in this publication (ID 4XL8).
	http://www.rcsb.org/pdb/explore/explore.do?structureId=4XL8
	Origin: recombinant.
	Method of preparation:
	DNA fragment encoding the knob domain of the short fiber (SFK) was isolated from virions of Species G HAdV-52 (strain TB3-2243) and cloned into a pQE30Xa expression vector encoding an N-terminal Histag. The protein HAdV52 SFK was expressed in Escherichia coli (strain M15) and purified with Ni-NTA agarose beads. Proteins were analyzed by denaturing gel (NuPAGE Bis-Tris, Invitrogen, Life Technologies) and western blot with monoclonal antibodies directed against the Histag (Qiagen).
Sample modifications	Not relevant.
Assay protocol	Please see method section in the main text.
2. Glycan Library	
Glycan description for defined glycans	The microarray (in house designation 'Sialyl Glycan Array Sets 40,41') contained 128 lipid-linked glycan probes, neoglycolipids (NGLs) or glycosylceramides, which are from the collection assembled in the course of research in the Glycosciences Laboratory (<u>https://glycosciences.med.ic.ac.uk/glycanLibraryList.html</u>). The probe names and structures are in Supplementary Table S3 .
Glycan description for undefined glycans	Not relevant.

Glycan modifications	Unless otherwise specified the NGLs were prepared from reducing oligosaccharides by reductive amination with the amino lipid, 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine [(DHPE) (Chai et al., Methods Enzymol. 2003)]; AO, NGLs prepared from reducing oligosaccharides by oxime ligation with an aminooxy functionalized DHPE [(AOPE) (Liu et al., Chem. Biol. 2007)]. For full description on the definition of the lipid moieties of the glycan probes, please see <u>https://glycosciences.med.ic.ac.uk/docs/lipids.pdf</u> .			
3. Printing Surface; e.g.,	Microarray Slide			
Description of surface	Nitrocellulose-coated glass microarray slides.			
Manufacturer	Whatman® FAST 16-pad Slides			
Custom preparation of surface	Not relevant.			
Non-covalent Immobilization	The lipid-linked glycan probes were formulated as liposomes by adding carrier lipids, phosphatidylcholine and cholesterol (<u>Liu et al., Methods</u> <u>Mol. Biol. 2012</u>) for robotically arraying and non-covalent immobilization on nitrocellulose-coated glass slides.			
4. Arrayer (Printer)				
Description of Arrayer	Piezorray (PerkinElmer LAS, Beaconsfield, UK)			
Dispensing mechanism	Non-contact liquid delivery with four dispensing tips.			
Glycan deposition	Approximate 0.33 nl was printed for each spot. Each glycan probe was printed at two levels (2 and 5 fmol per spot) in duplicate.			
Printing conditions	The printing solutions contained 100 pmol/ μ l of phosphatidylcholine and cholesterol (both from SIGMA) as lipid carriers in addition to the lipid-linked glycan probes in water (HPLC grade). The concentrations of the lipid-linked glycan probes were 5 and 15 pmol/ μ l for the 2 and 5 fmol per spot levels, respectively. The printing solutions also contained Cy3 NHS ester (GE Healthcare) at 20 ng/ml (26 fmol/ μ l) as a marker to monitor the printing process.			
5. Glycan Microarray wi	th "Map"			
Array layout	Each array slide contained 16-pad subarrays. Each subarray contained 64 glycan probes printed at two levels in duplicate (four spots for one probe in a row); 256 spots (16x16) in total for 64 probes. There are 128 glycan probes (in 2 subarrays) present in the arrays of 'Sialyl Glycan Array Sets 40,41'.			
Glycan identification and quality control	The 128 glycan probes printed are defined in Supplementary Table S3 . The quality control of the glycan probes on the arrays was carried out by analyses with biotinylated plant lectins including wheat germ agglutinin (WGA), <i>Sambucus nigra</i> lectin (SNL) and <i>Maackia</i>			

	<i>amurensis</i> Lectin I (MAL I) (Vector Labs) as well as a number of influenza viruses (<u>Crusat et al</u> , <u>Virology</u> . 2013). These data are not included in the present paper but available on request.					
6. Detector and Data Processing						
Scanning hardware	ProScanArray microarray scanner (PerkinElmer LAS, Beaconsfield, UK)					
	Scanning resolution: 10 μm / pixel (this resolution is adequate for the sizes of sample spots)					
Scanner settings	Laser channel: Red (scan wavelength 633 nm)					
	PMT Voltages: 35					
	Scan power: 85%					
Image analysis software	ScanArray Express software (PerkinElmer LAS, Beaconsfield, UK).					
Data processing	The gpr file was entered into an in-house microarray database using software (designed by Dr Mark Stoll, <u>http://www.beilstein-institut.de/en/publications/proceedings/glyco-2009</u>) for data processing. No particular normalization method or statistical analysis was used.					
7. Glycan Microarray Data Presentation						
Data presentation	The microarray binding results are in Figure 1 and Supplementary Table S3 . The table includes the list of glycan probes present in the array, binding intensities at the 5 fmol per spot level and errors (difference of signal intensities of duplicate spots of each glycan probe).					
8. Interpretation and Conclusion from Microarray Data						
Data interpretation	No software or algorithms were used to interpret processed data.					
Conclusions	52SFK bound strongly to [α -2,8]-linked (poly) sialic acid sequences (DP>3), and weakly to a number of α 2,3-sialylated probes.					

	GD3	PSia DP3	PSia DP4	Psia DP5
Beamline	X06DA (PXIII)	X06DA (PXIII)	X06DA (PXIII)	X06DA (PXIII)
Detector	Pilatus 2M	Pilatus 2M	Pilatus 2M	Pilatus 2M
Angle increment [°]	0.1	0.1	0.1	0.1
Total rotation angle [°]	360	360	360	360
Wavelength [Å]	1.00	1.00	0.92	0.92
Data collection				
Resolution [Å]	50.0 - 1.17 (1.25 - 1.17)	50 - 1.50 (1.59 - 1.50)	50 - 1.35 (1.43 - 1.35)	50 - 1.48 (1.57 - 1.48)
Completeness [%]	99.0 (88.0)	97.7 (94.7)	99.5 (97.0)	99.5 (97.1)
Observed	2,103,614 (289,758)	1,041,202 (150,022)	1,412,870(216,260)	1,078,654(154,372)
Redundancy	13.3 (12.3)	13.2 (12.3)	13.1 (12.9)	13.1 (12.1)
CC1/2* [%]	100.0 (75.3)	100.0 (66.8)	100.0 (72.3)	100.0 (70.1)
Ι/σΙ	22.7 (2.4)	21.3 (2.0)	23.6 (2.2)	23.5 (2.2)
Wilson B-Factor [Ų]	17.0	16.9	14.8	15.8
FreeR [% of reflections]	5	5	5	5
Crystal properties				
Space group	P212121	P212121	P212121	P212121
Unit cell axes [Å]	a=63.88	a=64.80	a=63.89	a=63.92
	b=82.03	b=81.80	b=93.16	b=81.70
	c=93.31	c=93.40	c=81.77	c=93.39
Unit cell angles [°]	α=β=γ=90	α=β=γ=90	α=β=γ=90	α=β=γ=90

Table S3. Data collection statistics of 52SFK complex structures.

		603	DSia DD2	PSia DD/	Deia DD5
		903	F3Id DF3	FSId DF4	FSIG DF3
Rwork [%]		11.95	16.56	16.65	15.06
Rfree [%]		14.06	18.25	18.81	17.76
Rmsd bond [Å]		0.016	0.009	0.011	0.015
Rmsd angles [°]	1.729	1.353	1.426	1.624
B-Factor [Å ²]	overall	16.87	20.8	17.8	21.2
	protein	15.47	19.9	18.8	17.8
	solvent	29.80	26.0	24.6	30.3
	ligand	25.31	38.3	31.4	34.8
No of atoms					
proteir	ı	4077	3811	3817	3927
ligand		21	41	41	40
solvent	t	511	237	263	324
Ramachandrar	n favored (%)	98.1	98.1	98.1	97.7
Ramachandran allowed (%)		1.9	1.9	1.9	2.1
Ramachandrar	outliers (%)	0	0	0	0.2

Table S4. Refinement statistics of 52SFK complex structures.