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Abstract: The biotransformation of three prominent macrolide antibiotics 

(azithromycin, clarithromycin and erythromycin) by an activated sludge 

culture, which was adapted to high concentrations of azithromycin (10 

mg/L) was investigated. The study included determination of removal 

kinetics of the parent compounds, identification of their major 

biotransformation products (TPs) and assessment of ecotoxicological 

effects of biotransformation. The chemical analyses were performed by 

ultra-performance liquid chromatography/quadrupole-time-of-flight mass 

spectrometry, which enabled a tentative identification of TPs formed 

during the experiments. The ecotoxicological evaluation included two end-

points, residual antibiotic activity and toxicity to freshwater algae. 

The enriched activated sludge culture was capable to degrade all studied 

macrolide compounds with high removal efficiencies (>99%) of the parent 

compounds at elevated concentrations (10 mg/L). The elimination of all 

three macrolide antibiotics was associated with the formation of 

different TPs, including several novel compounds previously unreported in 

the literature. Some of the TPs were rather abundant and contributed 

significantly to the overall mass balance at the end of the 

biodegradation experiments. Biodegradation of all investigated macrolides 

was associated with a pronounced reduction of the residual antibiotic 

activity and algal toxicity, indicating rather positive ecotoxicological 

outcome of the biotransformation processes achieved by the enriched 

sludge culture. 
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Abstract 

The biotransformation of three prominent macrolide antibiotics (azithromycin, clarithromycin 

and erythromycin) by an activated sludge culture, which was adapted to high concentrations of 

azithromycin (10 mg/L) was investigated. The study included determination of removal kinetics 

of the parent compounds, identification of their major biotransformation products (TPs) and 

assessment of ecotoxicological effects of biotransformation. The chemical analyses were 

performed by ultra-performance liquid chromatography/quadrupole-time-of-flight mass 

spectrometry, which enabled a tentative identification of TPs formed during the experiments. The 

ecotoxicological evaluation included two end-points, residual antibiotic activity and toxicity to 

freshwater algae. The enriched activated sludge culture was capable to degrade all studied 

macrolide compounds with high removal efficiencies (>99%) of the parent compounds at 

elevated concentrations (10 mg/L). The elimination of all three macrolide antibiotics was 

associated with the formation of different TPs, including several novel compounds previously 

unreported in the literature. Some of the TPs were rather abundant and contributed significantly 

to the overall mass balance at the end of the biodegradation experiments. Biodegradation of all 

investigated macrolides was associated with a pronounced reduction of the residual antibiotic 

activity and algal toxicity, indicating rather positive ecotoxicological outcome of the 

biotransformation processes achieved by the enriched sludge culture. 

*Abstract
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 Biotransformation of macrolide antibiotics was studied using enrichment cultures 

 Novel transformation products were identified by UPLC/QTOF-MS 

 Main biotransformation routes of azithromycin were proposed  

 Biotransformation of macrolides reduced antibiotic activity and toxicity to algae  
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Novelty statment 

 

 

 

Biodegradation is an important strategy to reduce the environmental and health risks associated with 

widespread use of antimicrobial compounds.  There have been several reports in the literature on abiotic 

removal of antimicrobials using ozonation and photocatalytic degradation, while, in contrast,  lilttle is 

known about their biodegradability, in particular regarding formation of possible stable transformation 

products and biotransformation pathways. In the present study we demostrate the capability of 

activated sludge culture adapted to high concentration macrolide antibiotics (10 mg/L) typical of 

industrial wastewaters from pharmaceutical industry.  to degrade three prominent representatives of 

macrolide antibiotics (azithromycin, erythromycin and clarithromycin) at aerobic conditions. Moreover, 

the study provides for the first time identification of several novel transformation products as well as 

ecotoxicological evaluation of the transformation process using two different end-points. 
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Abstract 

The biotransformation of three prominent macrolide antibiotics (azithromycin, clarithromycin 

and erythromycin) by an activated sludge culture, which was adapted to high concentrations 

of azithromycin (10 mg/L) was investigated. The study included determination of removal 

kinetics of the parent compounds, identification of their major biotransformation products 

(TPs) and assessment of ecotoxicological effects of biotransformation. The chemical analyses 

were performed by ultra-performance liquid chromatography/quadrupole-time-of-flight mass 

spectrometry, which enabled a tentative identification of TPs formed during the experiments. 

The ecotoxicological evaluation included two end-points, residual antibiotic activity and 

toxicity to freshwater algae. The enriched activated sludge culture was capable to of degrade 

degrading all studied macrolide compounds with high removal efficiencies (>99%) of the 

parent compounds at elevated concentrations (10 mg/L). The elimination of all three 

macrolide antibiotics was associated with the formation of different TPs, including several 

novel compounds previously unreported in the literature. Some of the TPs were rather 

abundant and contributed significantly to the overall mass balance at the end of the 

biodegradation experiments. Biodegradation of all investigated macrolides was associated 

with a pronounced reduction of the residual antibiotic activity and algal toxicity, indicating a 

rather positive ecotoxicological outcome of the biotransformation processes achieved by the 

enriched sludge culture.  

 

Key words: macrolide antibiotics, biodegradation, biotransformation, transformation products, 

transformation pathway, ecotoxicological evaluation 
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1. Introduction 

 

Macrolide antibiotics are a numerous class of natural and semisynthetic antimicrobial 

compounds, which are widely used to treat respiratory tract and soft-tissue infections. The 

typical macrolide antibiotics are relatively large molecules, which consist of a macrocyclic 

lactone ring containing 14 to 16 atoms, substituted with hydroxyl, alkyl and ketone groups 

and with neutral or amino sugars bound to the ring by substitution of hydroxyl groups.  The 

most commonly used modern macrolide antibiotics are semisynthetic derivatives of 

erythromycin (ERY), which possess significantly improved clinical properties in terms of 

antimicrobial activity, stability, bioavailability and pharmacokinetics [1].  

After therapeutic use in human and veterinary medicine, a large percentage of the applied 

macrolide dose is released from the body unchanged [2], resulting in significant loads of the 

parent macrolides in municipal wastewaters and farm effluents. Consequently, a number of 

literature reports demonstrated their widespread occurrence in municipal and industrial 

wastewaters and ambient waters [3-5], raising concerns about the possible selection for and 

spread of antibiotic resistance in the aquatic environment [6]. Moreover, studies of the 

behavior of macrolide antibiotics in conventional activated sludge treatment indicated that 

their removal is incomplete, which may lead to comparatively high exposure concentrations in 

receiving ambient waters [7-9].  

One of the possible strategies to limit proliferation of resistant bacteria is to reduce the 

exposure to antimicrobials by improving their removal from wastewater [10]. The best way to 

achieve this goal would be through efficient biotransformation, preferably mineralization to 

carbon dioxide and inorganic salts, or through some alternative abiotic transformation process 

such as ozonation [11] and photocatalytic degradation [12].  Transformation processes, 

however, may often be ineffective or even ecotoxicologically questionable when the 
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transformation of the parent compounds leads to the formation of various stable products 

whose effects in the environment are largely unknown [13].  It was shown that photolytic 

removal of different types of macrolide antibiotics was accompanied by the formation of a 

large variety of transformation products [14,15]. In contrast, little is known about their 

biodegradability, possible biotransformation products and biotransformation pathways. 

Whereas some recent studies indicated that ERY was efficiently biotransformed both under 

aerobic and anaerobic conditions [16], available reports on the behaviour of macrolide 

antibiotics in conventional WWTPs and membrane bioreactors [5,17,18] suggested that their 

biodegradation was incomplete. Several biotransformation products of CLA and AZI have 

been identified in real municipal and industrial wastewater systems [9,19], however none of 

these studies investigated the transformation processes in more detail. Our earlier study on 

elimination of azithromycin and roxitromycin in a membrane bioreactor [20] showed that 

their biological removal was incomplete and indicated significant formation of the 

corresponding phosphorylated transformation products [21]. Since phosphorylation is a well-

known microbial strategy for the inactivation of macrolide antibiotics [22], this finding 

indicated that the existing enzymatic mechanisms of macrolide resistance might play an 

important role in the biotransformation pathways of macrolides. 

The aim of the present study was to investigate the ability of the activated sludge culture 

adapted to high concentration of AZI (10 mg/L) to degrade three prominent representatives of 

macrolide antibiotics (AZI, CLA and ERY) under aerobic conditions. These macrolides have 

been recently selected for inclusion in the EU Watch list [23], which warrants a 

comprehensive environmental assessment of these compounds, including the role of their TPs. 

This study included the production of an active enrichment culture, determination of the 

removal kinetics of the parent compounds at elevated concentrations typical of industrial 

wastewaters, identification of transformation products and ecotoxicological evaluation of 
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biotransformation using two different end-points. Based on identified TPs, tentative 

biotransformation routes involved in the elimination of AZI have been proposed.   

 

2.  Materials and methods 

 

2.1. Chemicals and reagents 

Azithromycin (AZI) (purity > 95%) was purchased from Fluka (Buchs, Switzerland). 

Erythromycin (ERY) (purity 98%) and clarithromycin (CLA) (purity > 95%) were obtained 

from Sigma-Aldrich (Steinheim, Germany). Phosphorylated macrolides (AZI TP (829), CLA 

TP (828) and ERY-TP (814)) and 14-OH-CLA (CLA TP (764a)) were prepared as described 

by Senta and coworkers [9]. All other reference materials used for the confirmation of 

identified TPs were supplied by Toronto Research Chemicals (Canada). The purity of the 

reference materials used for confirmatory purposes was ≥ 98%. Ammonium chloride (purity > 

99.5%) and ammonium nitrate (purity > 99.5%) were purchased from Gram-mol (Zagreb, 

Croatia). Formic acid (LC-MS grade) and ammonium formate (purity ≥ 99%) were purchased 

from Sigma-Aldrich. All other chemicals used for biodegradation media were of analytical 

grade purity and supplied by Kemika (Zagreb, Croatia). R2A broth (Lab M Limited, UK) 

supplemented with 1.5% agar (Biolife, Milan, Italy) was used to prepare R2A agar plates. LC-

MS grade solvents (acetonitrile and methanol) were products of J.T. Baker (Deventer, the 

Netherlands). Mueller-Hinton agar and Mueller-Hinton broth were supplied by Sigma-

Aldrich. Ultrapure water was produced using an Elix-Milli-Q system (Millipore, Bedford, 

MA, USA). 

Solid-phase extraction (SPE) cartridges Oasis HLB (60 mg/3 mL) were supplied by Waters 

(Milford, MA, USA). The individual stock solutions (10 mg/mL and 1 mg/mL) of macrolide 
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compounds were prepared in LC-MS grade methanol. The reference standards used for the 

qualitative and quantitative LC-MS analyses were prepared in 50 mM ammonium formate in 

the concentration range of 0.01 - 2.5 µg/mL.   

 

2.2.  Enrichment of azithromycin-degrading activated sludge culture 

Activated sludge was originally collected from the aeration tank of the Central wastewater 

treatment plant of the city of Zagreb, Croatia (MLSS concentration of 3.5 g/L). Ten milliliters 

of fresh activated sludge were transferred into a 300-mL Erlenmeyer flask containing 90 mL 

of modified mineral salt medium [24]. Modification was made by adding a high concentration 

of AZI (10 mg/L), 1 g/L of glucose, 50 mg/L of yeast extract (AMM) and either 100 mg/L 

NH4Cl or 75 mg/L NH4NO3 in the medium. AZI was added from the stock solution prepared 

in methanol (10 mg/mL). The flasks were incubated in the dark at 28°C on a rotary shaker 

operated at 9279 g 180 rpm. Every two weeks, 5% of enriched culture was transferred to a 

fresh medium (50 mL) and incubated under the same conditions. After 4 months of 

enrichment (total of 8 culture transfers), biomass was centrifuged (9279 g, 15 min), 

resuspended in physiological saline (0.85% NaCl) and stored at -20°C in glycerol (16% v/v as 

the final concentration).   

 

2.3.  Azithromycin biotransformation and culture growth 

2.3.1. Inoculum preparation 

In preliminary AZI biotransformation experiments the inocula were prepared by centrifuging 

(9279 g, 15 min, 4°C) the fresh cultures from the fourth and eighth transfer and suspending 

the cells in physiological saline (0.85% NaCl). Cell numbers were quantified by plating on 

R2A plates. For macrolide biotransformation experiments, frozen enrichment from the eighth 

transfer, initially cultured in NH4Cl-containing AMM, was grown in the mineral salt medium 
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(MM) supplemented with macrolide (10 mg/L) as the sole organic C source and NH4Cl (100 

mg/L) as the sole N source on a rotary shaker at 28°C for 1 week. The cells were harvested by 

centrifugation (9279 g, 15 min), washed twice and resuspended in physiological saline to give 

a density of approximately 10
9
 colony forming units (CFU)/mL  

 

2.3.2. Preliminary AZI biodegradation tests 

Preliminary biotransformation experiments were conducted to test the ability of enrichments 

to degrade AZI. These experiments were performed in shake-flasks in the dark at 28°C after 

an enrichment time of 2 and 4 months. Cells from enrichment cultures initially cultured in 

NH4Cl-containing AMM were used as inocula for 100-mL AMM with NH4Cl and/or 100 mL 

MM with AZI as the sole organic C source and NH4Cl as the sole N source. Fresh 

enrichments initially cultured in NH4NO3-containing AMM were used as inocula for 100-mL 

AMM supplemented with NH4NO3, either 75 or 200 mg/L. Liquid samples (1.5 mL) were 

collected periodically to monitor the change in AZI concentration and possible formation of 

transformation products. Uninoculated flasks were used as abiotic controls and flasks 

inoculated with autoclaved culture as adsorption controls.  

   

2.3.3. Macrolide antibiotic biodegradation tests 

Triplicate flasks (300 mL) containing MM (110 mL) with individual macrolide antibiotic 

(AZI, ERY or CLA, each 10 mg/L) as the sole organic C source and NH4Cl as the sole N 

source were inoculated with acclimated sludge to give an initial cell density of approx. 5 × 

10
8
 CFU/mL. The cultures were incubated at 28°C on a rotary shaker at 180 rpm for 12 days. 

Abiotic and adsorption controls were prepared as well. Aliquots (1.5 mL) for LC-MS analyses 

as well as for toxicity evaluation were withdrawn periodically, centrifuged immediately (9279 
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g, 10 min), and kept frozen (-20°C) in HDPP vials until analyses. Culture growth was 

monitored by plating appropriate dilutions on R2A plates.  

 

2.3.4.  Kinetics analysis 

The degradation kinetics was modelled by either first-order kinetics  or by a logistic model.  

Degradation rate constants for both models were estimated by performing a nonlinear least 

squares regression analysis. Goodness of fit was assessed using the fitting value R
2
. Analyses 

were performed using Statistica Version 10.0 (StatSoft Inc., Tulsa, USA) at a p < 0.05 

significance level. The details of the kinetic analysis are given in Electronic Supplementary 

Material. 

 

2.4.  Analyses of macrolide antibiotics and their transformation products 

Before LC-MS analyses the samples were diluted 5 times in 50 mM ammonium formate. The 

analysis of the macrolide antibiotics was performed using ultrahigh-performance liquid 

chromatography (UPLC) coupled to quadrupole-time-of-flight mass spectrometry 

(QTOFMS). UPLC separation was performed using a Waters Acquity UPLC system (Waters 

Corp., Milford, MA, USA) equipped with a binary solvent delivery system and autosampler. 

The chromatographic separations employed a column (50 mm x 2.1 mm) filled with a 1.7 µm 

BEH C18 stationary phase (Waters Corp., Milford, MA, USA). Binary gradients at a flow rate 

of 0.4 mL/min were applied for the elution.  In the positive ionization (PI) mode the eluents A 

and B were 0.1% HCOOH in water and 0.1% HCOOH in acetonitrile, respectively. The 

eluents used in the negative ionization (NI) mode consisted of (A) water and (B) acetonitrile 

without addition of formic acid. The analyses in both polarity modes were performed by 

applying the following gradient: the elution started at 5% B and after a 1 min of isocratic 

hold, the percentage of B was linearly increased to 50% in 8 min. 
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The mass spectrometry was performed on a QTOF Premier instrument (Waters Micromass, 

Manchester, UK) using an orthogonal Z-spray-electrospray interface. The drying gas and 

nebulizing gas was nitrogen, whereas argon was used as the collision gas in MS-MS 

experiments. The desolvation gas flow was set to 700 L/h at a temperature of 300°C. The 

cone gas flow was adjusted to 25 L/h, and the source temperature to 120°C. The capillary 

voltages in the PI and NI mode were 3500 V and 3000 V, respectively, whereas the cone 

voltage in both modes was set to 30 V. The MS data were collected between m/z 50–1000, 

applying a collision energy of 4 eV.  

All spectra were recorded using the extended dynamic range (DRE) option to correct for 

possible peak saturations, and the data were collected in the centroid mode with a scan time of 

0.08 s and interscan time of 0.02 s. To ensure maximum accuracy and reproducibility of the 

system, all acquisitions were performed using an independent reference spray via the lock 

spray interface. Leucine enkephaline was applied as a reference mass both in PI and NI  

mode.  

The data were processed using the MassLynx software incorporated in the instrument. The 

quantification of the parent compounds was performed by using the external calibration 

curves.  

 

2.5. Antibiotic activity evaluation 

An antibiotic activity test based on the inhibition of bacterial growth was performed according 

to Dodd et al. [11] with slight modifications (see Electronic Supplementary Material). Briefly, 

Bacillus subtilis Marburg, ATCC 6051 culture, was seeded on Mueller-Hinton agar plates, 

and the culture was grown in sterile conditions at 30°C. Starter broth culture was prepared by 

suspending B. subtilis colonies in Mueller-Hinton broth and growing over night at 30°C on an 

agitation plate with rotation at 250 rpm.  
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Antibiotic activity of the samples was determined by observing the growth inhibition of the 

bacterial culture by measuring absorbance at a wavelength of 625 nm as an equivalent of the 

bacterial cell density.  

 

2.6. Chronic toxicity 

2.6.1. Sample preparation 

To eliminate the salts contained in the medium used for biodegradation studies, the samples 

for the evaluation of algal toxicity were previously percolated through Oasis HLB columns. 

Half a milliliter of the sample was percolated through the extraction cartridges previously 

preconditioned with 3 mL of methanol, ultrapure water and spring water. After the sample 

enrichment, the residual salts were washed out from the cartridge with 3 mL of ultrapure 

water and discarded, while the adsorbed antibiotics were eluted with 2 mL of methanol by 

applying a gravity flow. The methanol was evaporated, and the dry residue was re-dissolved 

in 0.5 mL of the ISO/FDIS 8692 culture medium.      

 

2.6.2. Chronic toxicity evaluation 

Chronic toxicity of antibiotic samples was evaluated using the freshwater green algae 

Desmodesmus subspicatus (86.81 SAG) grown in ISO/FDIS 8692 culture medium, as 

described in detail in ISO [25]. The test was conducted in 96 microwell plates as described 

previously [26,27] with slight modifications (for details see Supplementary Material). The 

average specific growth rate was calculated and subsequently used to calculate the inhibition 

and then fitted to a three-parameter sigmoid dose–response equation. The dose–response 

curve of K2Cr2O7 was included as a reference standard in all experiments.  

 

3. Results and discussion 
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3.1. Adaptation of activated sludge to azithromycin 

The initial activated sludge culture, obtained from the WWTP of the city of Zagreb, was 

unable to degrade AZI at high concentrations (1-10 mg/L), which was in agreement with its 

relatively low removal in this WWTP [5]. During the adaptation period of 4 months, the 

performance of the microcosm enrichments was tested two times. After an adaptation time of 

2 months under cometabolic conditions with glucose, yeast extract and different inorganic 

nitrogen supplementation (NH4Cl or NH4NO3, equal amounts of N) AZI removal was 

generally slow and rather similar in the presence of both inorganic N sources, with t1/2 values 

of approximately 5 days (Table 1). By contrast, no removal was observed in the presence of a 

higher concentration of NH4NO3 (200 mg/L). Further adaptation of activated sludge to AZI 

under the same initial conditions during the next 2 months led to a faster AZI removal. The 

t1/2 values were approx. two times shorter in the presence of NH4Cl and approx. 1.4 times 

shorter in the presence of NH4NO3 as compared with cultures tested after 2 months of 

enrichment. NH4Cl was therefore selected to serve as the sole N source in further 

experiments. As evident from Table 1, removal of AZI, added as the sole organic C source, 

was slightly faster than that of AZI under cometabolic conditions with glucose, yeast extract 

and NH4Cl supplementation. Under both conditions, microbial cell growth was inhibited 

during the 10 days of incubation and observed only on the last day of the experiment (day 13). 

The maximum specific growth rate (µmax) on AZI as the sole organic C source was 1.53 times 

lower than that observed in the presence of glucose as an additional organic C source.  

3.2.  Biodegradation of macrolide antibiotics by enriched sludge culture 

The sludge culture enriched in the presence of AZI (10 mg/L) over a period of 4 months was 

used to study biodegradation efficiency and removal kinetics of three prominent macrolide 

antibiotics, AZI, ERY and CLA (Fig 1). The enriched microbial culture exhibited the ability 

to degrade all three macrolide antibiotics, added as a sole organic C sources at the initial 
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concentration of 10 mg/L. The removal curves of studied compounds as well as the abiotic 

control and microbial growth curves are presented in Fig. 2. No significant changes were 

observed in any of the abiotic controls, which confirmed that the observed removal can be 

attributed primarily to biological transformations. The possible impact of phototransformation 

[14] was excluded by performing the experiments in the dark. 

The final elimination efficiency achieved after prolonged exposure of 160 hours exceeded 

99% for all investigated compounds. However, the corresponding removal kinetics of 

individual macrolides was rather different. The removal curves of AZI, ERY and CLA (Fig. 

2) were fitted with the two mathematical kinetic models: the first-order kinetic model and the 

logistic model. The kinetic parameters for the model that provided a better fit for each of the 

investigated macrolide compounds are presented in Table 2. 

The degradation kinetics of AZI, which can be better described by logistic (R
2
=0.95) than the 

first-order kinetic model (R
2
=0.87), showed the t1/2 value of 3.4 days and degradation rate 

constant of 1.66 ± 0.22 day
-1

. Several publications have already demonstrated that the logistic 

model was applicable to describe degradation of some sulfonamide antibiotics [28, 29]. It is 

also interesting to note that AZI removal was not accompanied by concomitant cell growth 

(Fig 2). Moreover, at the beginning of the experiment an instant decrease of AZI 

concentration (about 20 %) was observed, which can be attributed to adsorption on the 

inoculated biomass. This is in accordance with the moderately high Kd value (about 500 L/kg) 

of AZI [5] However, at the end of the experiment, when practically all AZI was removed 

from the dissolved phase, the amount of AZI bound onto biomass was insignificant a minor 

fraction of for the overall AZI removal mass balance (less than 1%). 

By contrast, the removal of ERY and CLA followed first-order kinetics. The t1/2 values of 

CLA and ERY removal were 2.1 days and 0.57 days, respectively, which indicated faster 

biodegradation of these two macrolide antibiotics as compared to AZI. Since the Kd values of 
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ERY and CLA are lower than that for AZI [5], the amount of these macrolides bound to 

sludge can be considered negligible. It should also be stressed that the removal of the natural 

macrolide ERY was much faster than the removal of both semi-synthetic macrolides. 

Moreover, unlike for AZI, a significant and immediate cell growth was observed during ERY 

biodegradation, whereas during CLA degradation the cell growth started after a lag time of 

approximately 5 days (Fig 2).  

 

3.3. Biotransformation products and tentative biotransformation routes 

Microbial elimination of all studied parent macrolide antibiotics was associated with the 

formation of a number of different transformation products (TPs). Figures S1-S3 in the 

Elecronic Supplementary Material show the corresponding total ion chromatograms of the 

biodegradation media at the beginning of the experiment and after the progressive degradation 

of the selected compounds, acquired in the PI and NI mode. The full list of TPs identified in 

the PI mode, including their retention times, elemental composition, m/z values, mass errors 

as well as their relative abundance, is presented in Table 3. The TP names listed in Table 3 

were derived from the m/z values of their corresponding [M+H]
+
 ions and these assignments 

were also used in Table S1, which lists the TPs detectable in the NI mode.  It should be noted 

that all TPs detected in the NI mode were also detectable in the PI mode, so the Table 3 

contains a full list of TPs identified in this work. The structural identification of the detected 

TPs was performed based on the elucidation of the accurate mass-spectrometric data and MS2 

experiments, and the reporting of identification confidence followed the five-level system 

proposed by Schymanskiy et al. [30]. Results obtained in the NI mode were used for 

confirmation, in particular to reveal the presence of the carboxylic acid moiety in some TPs 

formed after opening of the macrolide ring. It should be stressed that, for the previously 

known TPs, the identifications were performed based on recent literature data on macrolide 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 
 

TPs identified in municipal wastewaters and/or during transformation studies [9,21,31-33] 

and, if available, using authentic reference standards. The tentative structural elucidation of 

the novel TPs was performed using the line of evidence approach based on expert 

interpretation of accurate mass spectra, including isotopic pattern analysis, MS/MS 

experiments and assuming some of the known mechanisms of oxidative transformation, 

which in most cases allowed identification of a probable structure (confidence level 2a). The 

known inactivation mechanisms of macrolide antibiotics such as phosphorylation, 

glycosylation and the hydrolysis of the macrolactone ring [22] were also considered and were 

an essential guidance during the structural elucidations. A Similar similar methodological 

approach, making use of the common enzymatic reactions involved in the metabolism of 

xenobiotics, was applied to study biotransformation pathway of some biocides and 

pharmaceuticals [34]. 

 

3.3.1. Azithromycin 

The biotransformation of AZI in our experiments resulted in the formation of a rather high 

number of different TPs (Table 3, Fig. 3), some of which were rather abundant and previously 

unreported in the literature. The confidence levels of the proposed identifications are 

presented in Table S2 (Electronic Supplementary Material). The total number of the detected 

AZI TPs included 20 different compounds whose total concentration gradually increased 

during the first 100 h and remained rather stable until the end of the experiment (266 h). 

Moreover, the semi-quantitative estimates, which were made by assuming the same molar 

responses of TPs and their parent compounds, indicated that the total concentration of all AZI 

TPs (obtained by summing up the concentrations of all identified TPs expressed in µmol/L)  

at the end of the experiment (266 h) represented almost 80% of the initial AZI concentration 

(Fig S4). These findings represent a strong indication that some of AZI TPs identified in our 
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experiments might play a rather important role in the overall mass balance of AZI-related 

compounds in WWTPs. Our preliminary study in the WWTP of the city of Zagreb [9], indeed 

confirmed the importance of some TPs identified in this study.  

A couple of the detected compounds belonged to the group of AZI TPs with an intact 

macrolactone ring, which have previously been reported in the literature [e.g. 14, 21, 31, 32]. 

These include TPs which were formed either by the removal of one or both sugar units (AZI 

TP (434); AZI TP (592)) or by some modification of desosamine sugar moiety such as N-

demethylation (AZI TP (735)), N-oxidation (AZI TP (765b)) and phosphorylation (AZI TP 

(829)). However, it should be stressed that these TPs represented only a minor fraction of the 

total AZI TPs detected in the media after the removal of the parent compound.  

By contrast, the most prominent AZI TPs formed in our biotransformation experiments 

primarily included previously unreported TPs (e.g., AZI TP (610), AZI TP (452), AZI TP 

(394), (AZI TP (376a-b) and AZI TP (374a, c)). These TPs represented 80-94% of the of the 

total (summed up) concentration of all AZI TPs determined throughout the experiment. These 

TPs were chromatographically shifted to the left (Fig. S1, Table 3), indicating that they 

possessed more polar or less lipophilic character than AZI, which is in accordance with 

expected oxidative changes. Additionally, their even m/z values indicated that, unlike AZI, 

these compounds contained only one nitrogen atom, most probably due to the loss of 

desosamine. Furthermore, some of these prominent TPs were characterized by m/z values 

lower than 434, which suggested that the biotransformation must have included opening and 

further modifications of the macrolactone ring. Therefore, based on the obtained 

chromatographic and mass-spectrometric data, including accurate mass spectra and MS/MS 

experiments (Table 3, Fig. S5-1-10) as well as on the existing knowledge on the main 

inactivation mechanisms of macolide antibiotics [22], we proposed a tentative 
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biotransformation pathway of AZI which includes several crosslinked biotransformation 

routes (Fig. 4).  

One of the key initial steps in AZI transformation is enzymatic hydrolytic opening of the 

macrolactone ring, most probably mediated by the enzyme macrolide esterase Ere [22], which 

resulted in the formation of AZI TP (767). Its further degradation included the subsequent 

enzymatic cleavage of the desosamine (-C8H15NO2; -157.1103 Da) and cladinose (-C8H14O3; -

158.0943 Da) moieties, leading to the formation of AZI TP (610) and AZI TP (452), 

respectively. Further transformation of AZI TP (452) to AZI TP (394) was probably achieved 

by β–oxidation, which resulted in a net loss of C3H6O (58.0419 Da) at the head of the 

linearized molecule. The next two biotransformation steps included two subsequent water 

losses, which could have occurred at two different positions, producing therefore two isobaric 

TPs (AZI TP (s (376a and b and b))) and AZI TP (358).  All these TPs contained a free 

carboxylic moiety which allowed their confirmation in the NI mode (Table S1). 

AZI TP (610) and AZI TP (452) could have also been formed by hydrolytic linearization of 

the corresponding precursors AZI TP (592) and AZI TP (434), both having the intact 

macrolactone ring. The latter two TPs were produced by a subsequent enzymatic removal of 

desososamine and cladinose moieties from AZI itself and/or from the TPs previously formed 

by modifications of desosamine unit (AZI TP (735); AZI TP (765b); AZI TP (829)).  

An additional AZI degradation route included the production of AZI TP (765a), most 

probably by the oxidation of the hydroxy group of AZI TP (767) at position 13, whereas its 

further degradation probably followed the steps proposed for the degradation of AZI TP 

(767), leading to the formation of AZI TP (608), AZI TP (450), AZI TP (392) and, AZI TP 

(374), respectively. However, the latter 4 AZI TPs could have also been formed by the 

oxidation of one of the OH groups of AZI TP (610), AZI TP (452), AZI TP (394) and, AZI 

TP (376), in most of the cases at the position 13.   The identity of the major TPs, AZI TP 
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(450), AZI TP (392) and, AZI TP (374),, was also confirmed in the NI ionization mode, 

whereas the trace TPs AZI TP (765) and AZI TP (608) were not detectable due to the low 

sensitivity in the NI mode. 

The corresponding MS/MS spectra with a more detailed description of their structural 

elucidation are given in the Electronic Supplementary Material (Fig. S5-1 to Fig. S5-10).  

  

3.3.2. Erythromycin and Clarithromycin 

The number of TPs detected in ERY and CLA biotransformation experiments (Table 3, Fig. 

S2, S3, S6 and S7) as well as their abundance in terms of percentage of the initial parent 

compound concentration were much lower than for AZI. The semi-quantitative estimates of 

the concentrations of CLA and ERY TPs were made by assuming the same molar responses 

of individual TPs and their parent compounds (Fig. 3). The total concentrations of CLA and 

ERY TPs were in the range of 0.2-2.1 µmol/L and 0.2-1.7 µmol/L (Fig. S4), respectively. The 

highest levels represented 11% and 17% of the initial concentration of the corresponding 

parent compounds, respectively. There is a possibility that some highly polar TPs could have 

been eluted with the dead volume and remained undetected. Nevertheless, such a low 

percentage of TPs in the overall mass balance and absence of additional peaks in the LC-MS 

traces acquired in the PI and NI mode may suggest that a significant part of CLA and ERY 

could have been removed by ultimate degradation to carbon dioxide. By contrast, this was not 

the case during the degradation of AZI. The reason is very probablylikely the structure of the 

macrolide ring, which in case offor AZI includes an additional N-atom in at the 9a position. 

This probably brings about an enhanced persistence of AZI-derived structures. 

The mass spectral evidence showed that TPs of ERY and CLA were formed by the same 

general mechanisms as described above for AZI. The most prominent ERY TPs, ERY TP 

(576) and ERY TP (419), were formed by the consecutive enzymatic cleavage of the 
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cladinose and desosamine units. These two TPs represented over 95% of the total TP 

concentration throughout the experiment. The maximal concentration of ERY TP (419) 

coincided with the complete removal of ERY (about 30 hours) and remained rather stable 

until the end of the experiment (266 h) (Fig 3). Several minor ERY TPs were produced by 

modification of desosamine moiety, which included phosphorylation (ERY-TP (814), N-

oxidation (ERY TP (750)) and N-demethylation (ERY TP 720)). Another minor TP (ERY-TP 

(750a)) was formed by an enzymatic hydrolysis of the macrolactone ring [22] with subsequent 

oxidation of one OH group. The TPs reported in the study by Kwon [16], including 

anhydroerythromycin and erythromycin enol ether, were not found to be products of 

biotransformation in our experiments.  

The most prominent CLA TPs, which represented 70-100% of all detected TPs, were CLA TP 

(828) and CLA TP (766). These two TPs were formed by phosphorylation of desosamine and 

by enzymatic hydrolysis of the macrolactone ring, respectively. The highest concentrations of 

the main CLA TPs were found in the time-frame between 72 to 216 h, whereas the later phase 

of the experiment was characterized by their pronounced decrease. Other CLA TPs were 

present only at trace levels and included CLA TP (764a), CLA TP (764b) and CLA TP (734), 

which were identified as 14-OH CLA, CLA-N oxide and N-demethyl CLA, respectively. The 

presence of 14-OH CLA and N-demethyl CLA in municipal WWTPs have been recently 

reported in the literature [9,19]. 

    

3.4.  Toxicity evaluation 

The biotransformation of all 3 investigated macrolide antibiotics was associated with a 

decreasing residual antibiotic activity (Fig. 5) and algal toxicity (Fig. 6). However, some 

differences were observed between AZI, whose elimination was associated with the formation 

of rather numerous and stable TPs, and the remaining two macrolides. Namely, after 100 
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hours of degradation the residual antibiotic activity of CLA and ERY dropped to almost zero, 

whereas the residual activity in AZI degradation experiment remained clearly detectable and 

even increased towards the end of experiment (15-30%). It is interesting to note that tThe 

increase of antibiotic activity was concomitant with the emergence of the stable TPs, such as 

AZI TP 374b, AZI TP 374c, AZI TP 392, AZI TP 376a and AZI TP 450 (Fig. S8 in 

Electronic Supplementary Materials). These compounds are structurally rather different from 

the parent compound; and it should be assumed that the underlying molecular mechanism of 

their antibiotic/bacteriostatic activity should also be different. Namely, the antimicrobial 

activity of the parent macrolides relays relies on the structural features, which include a 

macrocyclic lactone ring and the preserved dimethylamino group of the desosamine moiety 

[22]. All these features were lost in the first phase of the AZI biotransformation before the 

emergence of the TPs that coincided with the increase of antibiotic activity. Unfortunately, the 

novel TPs identified in this study were not available as reference materials to confirm this 

hypothesis. It should be stressed that CLA and ERY transformation did not result in the 

formation of compounds analogous to AZI TPs that were assumed responsible for the residual 

antibiotic activity. Removal of antimicrobial activity was also reported during the oxidation of 

macrolide antibiotics by ozone and hydroxyl radical [11]. In contrast to our findings, the 

decrease of antibacterial activity in that report was highly correlated with the elimination of 

macrolides with no residual activity at the end of the experiment. 

Algal toxicity is an important end-point to assess the ecotoxicological effects of the removal 

of macrolide antibiotics since algae are generally much more sensitive than bacteria [35, 36]. 

The EC50 values for chronic toxicity of AZI and CLA to freshwater alga Pseudokirchneriella 

subcapitata were 0.019 and 0.012 mg/L [37], respectively. The corresponding value for ERY 

was 0.020 mg/L [35].  In our experiments, a marked decrease of toxicity coincided with the 

removal of parent compounds. The residual toxicity in all experiments was lower than the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

20 
 

estimated percentage of stable degradation products (Fig S4), indicating that the formed TPs 

were less toxic to algae than the parent compounds. Such a situation revealed 

biotransformation as an ecotoxicologically favorable process. Baumann et al.  [38] indicated 

that some of the metabolites, notably 14-OH CLA, can be as toxic as the parent macrolides; 

however this metabolite was only a minor CLA TP in our experiments and therefore cannot 

explain the residual activity. Nevertheless, significant accumulation of stable TPs in the 

experiments with AZI, reaching 80% of the initial parent compound concentration, can 

probably be linked to slightly enhanced algal toxicity in that medium.  This issue, combined 

with the observed residual antibiotic activity, warrants further investigation. 

 

4. Conclusions 

Biotransformation is an attractive strategy to reduce the exposure to antimicrobials and 

proliferation of antibiotic resistance via the aquatic route. However, for macrolide antibiotics 

which are not easy to degrade, this goal can be achieved only by using enriched microbial 

cultures. Our study showed that a microbial culture enriched from the activated sludge of a 

municipal WWTP was capable of degrading high concentrations (10 mg/L) of three 

prominent macrolides, erythromycin, clarithromycin and azithromycin, which could be 

particularly important for the treatment of heavily polluted industrial wastewaters. It should 

be stressed that ERY and AZI have recently been proposed for inclusion into the EU Watch 

List as emerging contaminants of concern. Although the effect-driven evaluation of the 

biotransformation process, based on toxicity to algae and residual antibiotic activity, indicated 

a significant reduction of harmful effects, the formation of numerous stable metabolic 

products warrants further ecotoxicological assessment.  
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Figure Captions 

 

Figure 1. Chemical structures of azithromycin (AZI), clarithromycin (CLA) and 

erythromycin (ERY). 

Figure 2. Removal kinetics of azithromycin (AZI), clarithromycin (CLA) and erythromycin 

(ERY) and changes in number of colony forming units (CFU) in biodegradation experiments 

performed by the enriched sludge culture. 

Figure 3. Temporal changes in the concentration of the most prominent transformation 

products (TPs) of azithromycin (AZI), clarithromycin (CLA) and erythromycin (ERY) 

determined in biodegradation experiments.  

Figure 4. The proposed tentative biotransformation pathway of azithromycin (AZI).  

Figure 5. Ecotoxicological evaluation of biotransformation of azithromycin (AZI), 

clarithromycin (CLA) and erythromycin (ERY) as reflected by corresponding changes in 

antibiotic activity. Test organism: Bacillus subtilis Marburg, ATCC 6051 culture. 

Figure 6. Ecotoxicological evaluation of biotransformation of azithromycin (AZI), 

clarithromycin (CLA) and erythromycin (ERY) as reflected by corresponding changes in algal 

toxicity. Test organism: Desmodesmus subspicatus (86.81 SAG). 

 



Table 1. Kinetic parameters of azithromycin biodegradation after 2 and 4 months of enrichment 

under different testing conditions 

 

N - nitrogen; AZI – azithromycin; GLU – glucose; YE – yeast extract; k – kinetic degradation rate constant; t1/2 – 

degradation half-life; R
2
 – correlation coefficient; - no observed degradation; nd – not determined; AZI concentration 

10 mg/L; glucose concentration 1 g/L; kinetic parameters calculated using a logistic model 

 

Enrichment 

time 
Testing medium N (mg L

-1
) 

Kinetic parameters 

k (d
-1

) t1/2 (d) R
2 μmax 

(day
-1

) 

2 months 

AZI+GLU+YE+ 

NH4Cl 

22 
0.147 4.71 0.92 nd 

AZI+GLU+YE+ 

NH4NO3 

26 
0.148 4.68 0.80 nd 

 
AZI+GLU+YE+ 

NH4NO3 

70 - - - 
nd 

4 months 

AZI+GLU+YE+ 

NH4NO3 

26 
0.214 3.24 0.89 nd 

AZI+GLU+YE+ 

NH4Cl  

22 
0.243 2.85 0.95 0.446 

 AZI+NH4Cl 22 0.303 2.29 0.96 0.291 

Table 1



Table 2: Kinetic parameters of the degradation of macrolides added as the sole organic carbon 

source. 

k-degradation rate constant; t1/2 – degradation half-life; R
2
 – correlation coefficient 

Data are reported as mean ± standard deviation. The results were considered statistically significant at p <0.05. 

**- growth inhibition; *µmax –maximum specific growth rate, estimated by finite difference method. 

 

 

Macrolide Kinetic model  

Kinetic parameters 

k (d
-1

) t1/2 (d) R
2 

μmax (d
-1

)* 

Azithromycin Logistic 1.656 ± 0.216 3.42 ± 0.05 0.95 -** 

Erythromycin First-order  1.224 ± 0.6 0.57 ± 0.277 0.95 0.624 ± 0.168 

Clarithromycin First-order 0.323 ± 0.105 2.14 ± 0.7 0.96 0.525 ± 0.298  

Table 2



Table 3. List of biotransformation products (TPs) of azithromycin (AZI), erythromycin (ERY) and 

clarithromycin (CLA) identified by UPLC-QTOF/MS analyses in positive ionization mode (PI) during the 

degradation experiments performed by the enriched mixed microbial culture. 

RT (min) Compound 
m/z  
(experimental) 

ELEMENTAL 
COMPOSITION / [M+H] 

m/z 
(theoretical) 

difference (mDa) abundance 

AZITHROMYCIN  

4.5 AZI 749.5151 C38H73N2O12 749.5164 -1.3 NA 

BIOTRANSFORMATION PRODUCTS OF AZI 

2.5 AZI TP (394) 394.2791 C19H40NO7 394.2805 -1.4 ++ 

2.6 AZI TP (452) 452.3217 C22H46NO8 452.3223 -0.6 +++ 

2.6 AZI TP (376a) 376.2676 C19H38NO6 376.2699 -2.3 ++ 

2.7 AZI TP (376b) 376.2711 C19H38NO6 376.2699 1.2 +++ 

2.8 AZI TP (392) 392.2647 C19H38NO7 392.2648 -0.1 ++ 

2.8 AZI TP (374a) 374.2530 C19H36NO6 374.2543 -1.3 ++ 

2.9 AZI TP (374b) 374.2521 C19H36NO6 374.2543 -2.2 TRACE 

3.0 AZI TP (374c) 374.2527 C19H36NO6 374.2543 -1.6 +++ 

3.0 AZI TP (450) 450.3076 C22H44NO8 450.3067 0.9 ++ 

3.3 AZI TP (358) 358.2580 C19H36NO5 358.2593 -1.3 TRACE 

3.6 AZI TP (356) 356.2438 C19H34NO5 356.2434 0.4 TRACE 

3.7 AZI TP (434) 434.3143 C22H44NO7 434.3118 2.5 TRACE 

3.7 AZI TP (767) 767.5267 C38H75N2O13 767.5269 -0.2 TRACE 

4.0 AZI TP (765a) 765.5123 C38H73N2O13 765.5113 1.0  TRACE 

4.3 AZI TP (610) 610.4167 C30H60NO11 610.4166 0.1 +++ 

4.3 AZI TP (829) 829.4844 C38H74N2O15P 829.4827 1.7 TRACE 

4.4 AZI TP (735) 735.5044 C37H71N2O12 735.5009 3.5 TRACE 

4.6 AZI TP (608) 608.4003 C30H58NO11 608.4010 -0.7 TRACE 

4.8 AZI TP (765b) 765.5125 C38H73N2O13 765.5113 1.2 TRACE 

5.6 AZI TP (592) 592.4054 C30H58NO10 592.4061 -0.7 TRACE 

ERYTHROMYCIN 

5.6 ERY   734.4703 C37H68NO13 734.4691 1.2 NA 

BIOTRANSFORMATION PRODUCTS OF ERY 

4.2 ERY TP (750a) 750.4668 C37H68NO14 750.4640 2.8 TRACE 

4.9 ERY TP (814) 814.4375 C37H69NO16P 814.4354 2.1 TRACE 

5.1 ERY TP (576) 576.3757 C29H54NO10 576.3748 0.9 ++ 

5.5 ERY TP (720) 720.4555 C36H66NO13 720.4534 2.1 TRACE 

6.0 ERY TP (750b) 750.4653 C37H68NO14 750.4640 1.3 TRACE 

6.2 ERY TP (419) 419.2621 C21H39O8 419.2645 -2.4 +++ 

CLARITHROMYCIN 

6.6 CLA 748.4846 C38H70NO13 748.4847 -0.1 NA 

BIOTRANSFORMATION PRODUCT OF CLA 

3.8 CLA TP (590) 590.3908 C30H56NO10 590.3904 0,4 TRACE 

Table 3



4.9 CLA-TP (766) 766.4949 C38H72NO14 766.4953 -0.4 ++ 

5.2 CLA-TP (764a) 764.4816 C38H70NO14 764.4796 2 TRACE 

5.9 CLA TP (828) 828.4498 C38H71NO16P 828.4510 -1.2 +++ 

6.4 CLA TP (734) 734.4702 C37H68NO13 734.4691 2.9 TRACE 

6.9 CLA TP (764b) 764.4793 C38H70NO14 764.4796 -0.3 TRACE 

+++ high abundance; ++ low to medium abundance; NA-not applicable 

 



 

 

 

 

 

 

 

  AZI       CLA      ERY 

 

Fig. 1  

Figure 1
Click here to download Figure: Fig 1 MAC structures_f.docx

http://ees.elsevier.com/hazmat/download.aspx?id=2496765&guid=6669d8ab-88d3-45b5-a27e-0e13c7650780&scheme=1


 

Figure 2 (revised) 
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 Kinetics analysis 

 

The degradation kinetics was modelled by either first-order kinetics (equation 1) or by a logistic 

model (equation 2) as follows: 

   tkCtC  exp0            (1) 

 
 

 

exp11
f

0

0
0

tk
C

C

C
CtC











                               (2)  

Where C0 is the initial concentration of the macrolide at time zero, C(t) is the concentration of the 

antibiotic at time t, Cf is the final concentration of the antibiotic at the end of experiment, k is the 

degradation rate constant (d
-1

) and t is the degradation period in days. 

Degradation rate constants for both models were estimated by performing nonlinear least squares 

regression analysis. Goodness of fit was assessed using the fitting value R
2
. Analyses were 

performed using Statistica Version 10.0 (StatSoft Inc., Tulsa, USA) at a p < 0.05 significance 

level. 

The biodegradation half-life (t1/2) of macrolides for the first-order kinetics was calculatedusing 

equation 3: 

t1/2= ln 2/k           (3) 

           

Whereas for the logistic model, the t1/2 was calculated according to equation 4: 

k

C

C

t












1ln
f

0

1/2            (4) 
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The specific growth rate (μ/d
-1

) was calculated based on experimental results using a finite 

difference method (eq. 5): 

 
 

21

12

12

CFUCFU

CFUCFU2








tt

          (5) 

Where CFU1 represents colony forming units in t1 (CFU/mL), CFU2 represents colony forming 

units in t2 (CFU/mL), t1 and t2 represent time difference between two points (days). 

 

Methodology for ecotoxicological evaluation 

Antibiotic activity evaluation 

An antibiotic activity test based on the inhibition of bacterial growth was performed according to 

Dodd et al. [11] with slight modifications. Bacillus subtilis Marburg, ATCC 6051 culture, was 

seeded on Mueller-Hinton agar plates and the culture was grown in sterile conditions at 30°C. 

Starter broth culture was prepared by suspending B. subtilis colonies in Mueller-Hinton broth and 

growing over night at 30°C on an agitation plate with rotation at 250 rpm.  

To determine biodegradation of antibiotics in investigated samples, we performed initial dose 

response experiments on pure macrolide antibiotics to determine the lowest concentration which 

causes 100% growth inhibition (IC100). All samples were diluted in PAS medium to adjust the 

antibiotic concentration of the initial (t0) sample with the determined IC100 concentration. 

Consequently, AZI, CLA, and ERY samples were diluted to match concentrations of 1, 0.2 and 

0.3 mg/L in the respective t0 samples. 

Antibiotic activity of the samples was determined by observing the growth inhibition of bacterial 

culture by measuring absorbance at 625 nm wavelength as equivalent of the bacterial cell density. 

B. subtilis growth inhibition test was performed in transparent 96 well plates. To minimize 
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evaporation, microplates were sealed with paraffin sealing tape and peripheral wells were filled 

with 200 µL of distilled water. The remaining wells were filled with 100 µL of the samples and 

inoculated with 100 µL of the B. subtilis starter culture (1 x 10
6
 CFU/mL) in Mueller-Hinton 

broth and incubated at 30°C for 8 h with rotational shaking at 200 rpm. Positive growth control 

consisted of two wells filled with 100 µL of PAS medium and inoculated with B. subtilis culture, 

whereas negative growth control was without B. subtilis culture. Absorbance at λ = 625 nm was 

measured with microplate reader (Infinite M200, Tecan, Salzburg, Austria), and the obtained raw 

absorbance (A) was used to calculate the percentage of B. subtilis growth inhibition (I) using 

equation (6): 

 

(6) I (%) = (Amax – A / Amax – Amin) x 100 

 

where Amax is absorbance obtained from positive control and corresponds to 0% growth 

inhibition, and Amin is absorbance obtained from negative control and corresponds to 100% 

growth inhibition. 

 

Chronic toxicity 

Sample preparation 

To eliminate the salts contained in the medium used for biodegradation studies, the samples for 

the evaluation of algal toxicity were previously percolated through Oasis HLB columns. Half a 

milliliter of the sample was percolated through the extraction cartridges previously 

preconditioned with 3 mL of methanol, ultrapure water and spring water. After the sample 

enrichment, the residual salts were washed out from the cartridge with 3 mL of ultrapure water 

and discarded, while the adsorbed antibiotics were eluted with 2 mL of methanol by applying a 
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gravity flow. The methanol was evaporated, and the dry residue was dissolved in 0.5 mL of the 

ISO/FDIS 8692 culture medium.      

 

Chronic toxicity evaluation 

Chronic toxicity of antibiotic samples was evaluated using the freshwater green algae 

Desmodesmus subspicatus (86.81 SAG) grown in ISO/FDIS 8692 culture medium, as described 

in detail in ISO [25]. Test was conducted in 96 microwell plates as described previously [26,27] 

with slight modifications. Initial algae cell density of 0.5 x 10
^4

 cells/mL (1000 cells per well) 

was used as recommended in OECD guideline for D. subspicatus. Microplates with algae were 

cultured for 96 hours at 24 + 2°C under continuous white light with an intensity of 6000 + 500 lx. 

Final volume of each well was 200 µL (100 µL of algae suspension and 100 µL of diluted 

sample) and concentration of solvent never exceeded 0.1%. Dose-response curves with macrolide 

antibiotic standards were constructed to determine the lowest concentration which causes 100% 

growth inhibition (IC100). Antibiotic biodegradation samples were diluted to match the IC100 of 

antibiotic standards. Algae cell density was calculated from the algae fluorescence that was 

measured every 24 h at 440 nm excitation and 680 nm emission wavelengths. Average specific 

growth rate was calculated, subsequently used for calculation of inhibition, and then fitted to 

three parameters sigmoid dose–response equation. Dose–response curve of K2Cr2O7 as a 

reference standard was included in all experiments. All data analyses were done in GraphPad 

Prism 5.0 software. 
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Figure S1-1. Total ion chromatograms (50-1000 mDa) obtained in positive polarity ionization mode at the beginning (A) and at the end (B) of 

azithromycin (AZI) biodegradation experiment, which was performed by using the enriched sludge culture 
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Figure S1-2. Total ion chromatograms (50-1000 mDa) obtained in negative polarity ionization mode at the beginning (A) and at the end (B) of 

azithromycin (AZI) biodegradation experiment, which was performed by using the enriched sludge culture 
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Figure S2-1. Total ion chromatograms (50-1000 mDa) obtained in positive polarity ionization mode at different stages of 

clarithromycin (CLA) biodegradation experiment, which was performed by using the enriched sludge culture. 
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Figure S2-2. Total ion chromatograms (50-1000 mDa) obtained in negative polarity ionization mode at different stages of 

clarithromycin (CLA) biodegradation experiment, which was performed by using the enriched sludge culture. 
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Figure S3-1. Total ion chromatograms (50-1000 mDa) obtained in positive polarity ionization mode at different stages of erithromycin 

(ERY) biodegradation experiment, which was performed by using the enriched sludge culture 
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Figure S3-2. Total ion chromatograms (50-1000 mDa) obtained in negative polarity ionization mode at different stages of 

erithromycin (ERY) biotransformation experiment, which was performed by using the enriched sludge culture. 
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Fig. S4. Temporal changes in concentration of azithromycin (AZI), clarithromycin (CLA) and 

eryhromycin (ERY) and concentration of all transformation products (TPs) obtained by summing 

up the concentrations of all identified TPs expressed in µmol/L. 
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Table S1. List of transformation products (TPs) of azithromycin (AZI), erythromycin (ERY) and 

clarithromycin (CLA) which were confirmed by applying a negative polarity ionization mode. 

 

RT (min) TP 
[M-H]

-
 

(experimental) 
ELEMENTAL 
COMPOSITION / [M-H] 

m/z 
(theoretical) 

difference (mDa) 

1.3 AZI TP (394) 392.2617 C19H38NO7 392.2647 -3.0 

1.6 AZI TP (452) 450.3054 C22H44NO8 450.3065 -1.1 

1.3 AZI TP (376) 372.2576 C19H36NO6 374.2541 -2.0 

1.3 AZI TP (392) 390.2498 C19H36NO7 390.2490 +0.8 

1.3 AZI TP (374) 372.2376 C19H34NO6 372.2385 -0.9 

2.0 AZI TP (450) 448.2892 C22H42NO8 448.2909 -1.7 

3.2 AZI TP (358) 356.2437 C19H34NO5 356.2435 +0.2 

3.8 AZI TP (610) 608.4022 C30H58NO11 608.4008 -1.4 

4.1 AZI TP (829) 827.4655 C38H72N2O15P 827.4670 +2.0 

4.6 ERY TP (814) 812.4169 C37H67NO16P 812.4197 -2.8 

4.9 CLA-TP (766) 764.4770 C38H70NO14 764.4795 -2.5 

5.7 CLA TP (828) 826.4374 C38H69NO16P 826.4354 +2.0 
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Table S2. Levels of confidence [1] of transformation products (TPs) of azithromycin (AZI), erythromycin (ERY) and 

clarithromycin (CLA) identified during the biotransformation experiments performed by the mixed microbial culture 

enriched from the activated sludge 

 

1 
Confirmed 
structure 

(MS, MS
2
, RT, 

Reference std) 

2a 
Probable 

structure by 
library specrum 

match 
(MS, MS

2
, 

Library MS2) 

2b 
Probable 

structure by 
diagnostic 
evidence 

(MS, MS
2
, Exp. 

data) 

3 
Tentative 

candidate(s)* 
(MS, MS

2
, Exp. 

data) 

4 
Unequivocal 

molecular 
formula  

(MS isotope, 
MS

2 
spectra) 

5 
Exact mass of 

interest) 
(MS) 

AZI TP (394)       

AZI TP (452)       

AZI TP (376a)       

AZI TP (376b)       

AZI TP (392)       

AZI TP (374a)       

AZI TP (374b)       

AZI TP (374c)       

AZI TP (450)       

AZI TP (358)       

AZI TP (356)       

AZI TP (434)       

AZI TP (767)       

AZI TP (765a)       

AZI TP (610)       

AZI TP (829)       

AZI TP (735)       

AZI TP (608)       

AZI TP (765b)       

AZI TP (592)       

ERY TP (750a)       

ERY TP (814)       

ERY TP (576)       

ERY TP (720)       

ERY TP (750b)       

ERY TP (419)       

CLA TP (590)       

CLA-TP (766)       

CLA-TP (764a)       

CLA TP (828)       

CLA TP (734)       

CLA TP (764b)       



15 
 

Elucidation of the identified AZI TP structures with brief interpretation of MS2 spectra 

 

As described in the manuscript, structural elucidations were performed based on expert 

interpretation of accurate mass spectra, including isotopic pattern analysis, MS/MS experiments 

and assuming possible mechanisms of oxidative transformation of macrolide antibiotics. The 

reporting of identification confidence followed the five-level system proposed by Schymanski et 

al. (2014). The results of MS2 experiments of individual TPs with suggested fragmentations and 

confidence levels of structural elucidations can be found in Fig. S5 (1-10) and Table S2, 

respectively, of this Supplementary Material. For the TPs, for which reference standards were 

available (AZI TPs (829), AZI TP (735), AZI TP (765b); ERY TP (814); CLA TP (590), CLA 

TP (764b), CLA TP (828), and CLA TP (734)) a confidence level 1 (confirmed structure) was 

achieved. All these TPs possess an intact macrolide ring and their fragmentation pattern, which 

starts with the cleavage of one or both sugar units attached to the macrolide ring, has already 

been discussed in the literature (del Mar Gómez-Ramos et al. 2011; Hernadez et al 2011; Terzic 

and Ahel 2010, Terzic et al. 2011; Tong et al. 2011, Ibanez et al. 2017; D'Costa and Wright 

2009). Therefore, the MS2 experiments, associated with their structural elucidation, will not be 

discussed here in detail. 

The remaining identifications were performed based on in depth interpretation of mass 

spectrometric data. Moreover, accurate mass spectra of investigated macrolide TPs often exhibit 

a characteristic fragmentation pattern and can be used as a replacement for MS2 experiment, e.g. 

AZI TP 765 a and AZI TP 767. In such cases, it would be correct to report confidence level of 2b 

(probable structure by diagnostic evidence). Furthermore, for a number of TPs the tentative 

structure was confirmed by additional MS spectra acquired in the negative ionization mode (see 

Table S1), which was especially useful to corroborate the presence of a carboxylic group. It 

should also be stressed that the reliability of structural assignments based solely on accurate mass 

data of the protonated molecule, which fall into the category 5 (exact mass of interest), could be 

significantly strengthened in the context of their putative metabolic transformations [8]. 

The elemental composition of the protonated molecule of the trace transformation product AZI 

TP (767) was C38H75N2O13, showing a mass difference to protonated AZI that corresponded to 

addition of water. The accurate mass spectrum (Fig. 5S-1B) fully resembled fragmentation 

pattern of AZI (Fig. S5-1A), characterized by two major ions formed by loss of cladinose (m/z 

609.4418) and [M+2H]
2+

 fragment m/z 384.2638. Based on the putative transformation of AZI 
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by macrolide esterase [8], this TP was identified as linearized AZI formed by macrolide ring 

opening. Further support to this assignment is the possible link of this TP with AZI TP (610).  

The MS2 spectrum of AZI TP (610) (Fig. S5-2A) confirmed that, unlike AZI, this TP did not 

contain desosamine, which is in a good correspondence with its even m/z value. Small diagnostic 

fragment at m/z 292.2253 supports the assumption that the addition of water molecule must have 

occurred via hydrolysis of macrolactone ring. It is also important to note that this TP was 

detectable in NI mode which supports the existence of a free carboxylic group. Furthermore, the 

presence of the product ion m/z 452.3225 (C22H46NO8) can be explained by the loss of cladinose 

unit (-158. 0943). The difference between the AZI TP (610) and AZI TP (608) consists in an 

additional oxidation of the OH group attached to 13 C atom into a keto group. This assumption is 

in agreement with diagnostic fragments of AZI TP (608) m/z 348.2456 and m/z 292.1959 (Fig. 

S5-3A).  

The fragmentation pattern of other linearized AZI TPs, which do not possess any of the sugar 

units, was more complex. However, their MS2 spectra contained some characteristic ions which 

facilitated the structural assignments. For example, the MS2 spectra of AZI TP (452) and AZI TP 

(450) were characterized by several common product ions (e.g. m/z 292, m/z 274 and m/z 256), 

which were formed by the fragmentation of C-N bond at the position 9a-10 and two further 

consecutive water losses, respectively (Fig. S5-2B and Fig. S5-3B). Moreover, the C-N bond 

fragmentation of AZI TP (452) and AZI TP (450) was associated with the neutral mass losses of 

160.1099 Da (C8H16O3) and 158.0943 Da (C8H14O3), respectively, which confirmed that the 

oxidation of -OH group in AZI TP (450) occurred at the tail part of the molecule, most probably 

at the position 13. This is in agreement with the presence of the product ions m/z 204.1599 

(C10H22NO3; -0.1 mDa) and 202.1442 (C10H20NO3; -0.1 mDa), in the corresponding MS2 spectra 

of AZI TP (452) and AZI TP (450), which were formed by fragmentation of C-C bond at the 

position 8-9 (Fig. S5-2B and Fig. S5-3B).  

The observed characteristic neutral mass losses of 160 Da or 158 Da, which resulted from the C-

N bond fragmentation, were used to track the formation of AZI TP series, which were formed 

from AZI TP (452) and AZI TP (450). The loss of 160 Da was observed for AZI TP (394), AZI 

TP (376 a and b), AZI TP (374 a) and AZI TP (358), while the loss of 158 Da was determined for 

AZI TP (392), AZI TP (374 b and c) and AZI TP (356), which is in a good agreement with the 

proposed transformation routes.  

The AZI TP (394) shows diagnostic fragments m/z 234.1709 and m/z 260.1934 which revealed 

that β-oxidation of TP (452) occurred at the head of the molecule (Fig. S5-4). The structure of its 
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oxidized analogue AZI TP (392) was confirmed using diagnostic fragments at m/z 159.0987, m/z 

290.1783 and m/z 234.1721 (Fig. S5-5).  

The two TPs having a nominal mass m/y 376, which were supposed to be formed from AZI TP 

394, show the difference equivalent to loss of H2O. The location of the water loss was derived 

from their corresponding MS2 spectra (Fig. S5-6). The spectra of both AZI TPs (376), showing 

characteristic diagnostic ions m/z 242.1770 and m/z 216.1593, unequivocally showed that the 

water loss occurred at the head part of the molecule. The position of the double bond formed by 

the loss of water cannot be definitely assigned and therefore these identifications were considered 

to have a confidence level of 3. The two spectra are basically similar regarding the key diagnostic 

fragments, whereas the observed differences in the intensities of some ions (m/z 167.1088, m/z 

139.1133, m/z 121.1011), formed by the fragmentation of the head part of the molecule, are 

likely linked to the position of the double bond. The ions m/z 167.1088, m/z 139.1133, m/z 

121.1011 were formed from the product ion m/z 198.1497 by further fragmentation of C-N bond 

at the position 7-7a, and the subsequent loss of CO and H2O, respectively. 

Three different isobaric TPs having a nominal mass m/z 374 were detected and tentatively 

identified as oxidation products formed from AZI TPs (376). Based on characteristic fragments 

m/z 196.1374 and m/z 165.0860 (corresponding to equivalent product ions m/z 198.1497 and m/z 

167.1088 of AZI TP (376), AZI TP (374a) was unequivocally identified as a transformation 

product formed by oxidation of the remaining OH group in the head part of the AZI TP 376 (Fig 

S5-7). This assignment was additionally confirmed by characteristic fragmentation of the tail part 

of the molecule yielding fragments m/z 240.1575 and 214.1453, which corresponded to the 

fragments m/z 242.1770 and m/z 216.1593 of the AZI TP (376).   

By contrast, the MS2 spectra of AZI TPs (374b) and AZI TP (374c) indicated that the oxidation 

in these TPs must have occurred at the tail part of the molecule (position 11). This conclusion 

was supported by characteristic diagnostic fragments m/z 159.1035 and m/z 101.0612 (Fig. S5-

8). Furthermore, the neutral loss of C5H9O2 yielded diagnostic ion m/z 272.1906. This spectral 

feature is very similar to the one described for AZI TP (392) (Fig. S5-5), suggesting that AZI TP 

(392) was likely precursor of AZI TP (374b) and AZI TP (374c). 

The MS2 spectrum of AZI TP (358) (Fig. S5-9A) indicated that this TP was formed by the loss 

of water from the head part of the molecule AZI TP ( 376a) and/or AZI (376 b). This is supported 

by the diagnostic fragments m/z 224.1661, m/z 198.1507 and m/z 167.1116. The fragment m/z 

139.1103 was formed from the ion m/z 167.1116 by loss of CO. The minor transformation 

product AZI TP (356) (Fig S5-9B) was related to AZI TP (358), the difference of 2 amu 
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indicating oxidation. The MS2 spectrum shows diagnostic ions m/z 254.1883, m/z 198.1497, m/z 

159.0997 and m/z 101.0607, which clearly confirmed that the oxidation of OH group must have 

occurred at the tail part of the molecule at the position 11.  
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ERY TP (419) = 
decladinosyldedesosaminyl ERY 
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Fig. S6. Structures of the identified transformation products of erythromycin (ERY TPs). 
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CLA TP (590) = decladinosyl CLA 
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CLA TP (734) = desmethyl CLA 
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CLA TP (764b) = CLA-N-oxide 
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CLA TP (764a) = 14-OH-CLA 
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Fig. S7. Structures of the identified transformation products of clarithromycin (CLA TPs) 
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Fig S8. Temporal  concentration changes of quantifiable azithromycin transformation products 

(TPs) formed in the model biodegradation experiment, expressed in µmol/L. 


