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ABSTRACT Information propagation in online social networks is facilitated by two types of influence
- endogenous (peer) influence that acts between users of the social network and exogenous (external) that
corresponds to various external mediators such as online news media. However, inference of these influences
from data remains a challenge, especially when data on the activation of users is scarce. In this paper we
propose a methodology that yields estimates of both endogenous and exogenous influence using only a social
network structure and a single activation cascade. Our method exploits the statistical differences between
the two types of influence - endogenous is dependent on the social network structure and current state of
each user while exogenous is independent of these. We evaluate our methodology on simulated activation
cascades as well as on cascades obtained from several large Facebook political survey applications. We show
that our methodology is able to provide estimates of endogenous and exogenous influence in online social
networks, characterize activation of each individual user as being endogenously or exogenously driven, and
identify most influential groups of users.

INDEX TERMS Data collection, information diffusion, maximum likelihood estimation, social network
services, online social networks, statistical learning.

I. INTRODUCTION
Popularity of online social networks allows us to investigate
dynamics of social interactions on a scale that was previously
unattainable [1]–[8], while at the same time raising ethical
concerns not previously encountered [9], [10]. One partic-
ular type of social interaction is an information cascade -
a spread of information between individuals in a social
network [11], [12]. Information cascades are instrumental
in investigating social influence, which can be defined as
the degree to which the behavior of individuals changes the
behavior of their peers [13]. Although mathematical mod-
eling of social influence and information cascades is an
active field of research in sociology for decades [11], [12],
it only recently became technologically feasible to apply
it to wide range of domains such as viral marketing [14],
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information diffusion [15], behavior adoption [16] and epi-
demic spreading [17].

Presence of exogenous factors is particularly problematic
in estimation of social influence as it confounds with the
endogenous factors, and can be hard to differentiate using
observational data alone [18]. Still, it is instrumental for
understanding the information spreading as information can
propagate throughmultiple channels simultaneously, many of
which are exogenous to the online social network itself - news
media websites, direct communication via email and instant
messengers, and even offline word-of-mouth transmission.
In addition, external events such as political unrest [1], [19]
and natural disasters [20] are often strong mediators of infor-
mation cascades. These exogenous influences are usually
not directly observable in the online social network itself,
although they can be inferred from the available data. Under-
standing how endogenous and exogenous forces influence the
information diffusion in online social networks could help us
estimate to what extent are these vulnerable to manipulation
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FIGURE 1. Collected Facebook friendship networks. Visualization of Facebook friendship networks of users who registered on three of our Facebook
online survey applications: referendum2013.hr (11538 registered users), sabor2015.hr (6909 registered users) and sabor2016.hr (3818 registered users).
Network nodes are colored according to the user’s votes, and node sizes correspond to the number of their Facebook friends that also registered on the
survey application. Clustering of users into communities based on votes shows a homophily effect - users are more likely to associate with other users
that share their political preferences. This suggests a potential for endogenous influence.

by various interest groups such as organized individuals, news
media and government agencies [21].

In this paper we present a new methodology for esti-
mation of endogenous and exogenous influence in online
social networks. Our current model is conceptually similar
to the unified model of social influence [22] which was
shown to be generalization of many popular influence mod-
els, including complex contagion model [4], independent
cascade model [23] and generalized threshold model [23].
In our previous work [24] we proposed a simpler method
for inference of endogenous and exogenous influence that
exploits statistical differences between the way the two types
of influence act on users. The underlying assumption is that
the endogenous influence is dependent on the current state
of the social network and which users are already active or
not, while the exogenous influence is independent on these.
By incorporating these assumptions in a statistical model we
can infer magnitude of endogenous and exogenous influence
from empirical data.

Here, we develop a likelihood-based approach which is
expressive enough to accommodate many different micro-
scopic models of influence, and propose a maximum like-
lihood inference method to estimate the parameters. The
inference problem is the following - given a single activation
cascade and a friendship network between users, and assum-
ing a particular form of endogenous influence, infer param-
eters of endogenous and exogenous influence and estimate
magnitudes of these influences in time and on a global and
user level.

We evaluate our methodology on activation cascades col-
lected via three online survey applications related to three
distinct political events in Croatia (Fig 1 and Fig 2, and
Table 1). First survey, which is related to the referendum on
the definition of marriage in 2013, we already used in our
previous work [24]. Other two surveys are related to Croatian

TABLE 1. Collected online survey data. Collected online survey data
include demographic information, friendships between users, and referral
links through which users visited our applications. Time period refers to
the period when surveys were active. Depending on whether these
referral links originated within Facebook or some external website they
could be used as indicators of endogenous and exogenous influence
respectively.

parliamentary elections in 2015 and 2016 and we collected
them exclusively for this research. In all of our surveys the
activation cascades are a series of user registrations through
time. Surveys were active one week prior to actual elections
and through them users were able to express their vote on the
upcoming elections, see summary statistics for all users as
well as for their online peers, and share the link to the survey
through Facebook. Besides votes, we also collected Facebook
friendship connections between all users that participated in
our survey. In 2013 survey we also collected demographic
data and in other twowe obtained referral links throughwhich
users visited our surveywebsite. These referral links originate
either from Facebook, which indicates endogenous influence,
or from some external website, which indicates exogenous
influence. This classification of referral links served as a
proxy for ground truth influence and allowed us to evaluate
our inference method. During data collection we followed
Facebook’s Platform Policy which provides guidelines and
regulations for the usage of Facebook Graph API in third-
party Facebook applications.

The main contributions of this paper are the following:

1) We collected data on social engagement of over
20 thousand Facebook users that participated on three
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FIGURE 2. Collected registration time series. Collected registration time
series of users that registered on our three online survey application.
Time series are annotated with times of major news events which
reported on our online survey application, and which are used as a proxy
for exogenous influence. Time series for sabor2015.hr and sabor2016.hr
datasets are additionally separated based on the type of the referral links.

distinct online political surveys. Datasets where users
have to provide an informed consent to collect their
data are usually much smaller, and so researchers have
to rely on simulated datasets in order to validate their
models.

2) We estimate magnitude of endogenous and exogenous
influence in social networks by using only a single
activation cascade of users and their friendship net-
work. Most previous research relies on the availability
of multiple information cascades and rarely tackles
exogenous influence directly by either leaving it as an
option [22], devising experiments where it is negligi-
ble [25] or simply treat it as a nuisance [26].

3) We show how can our methodology be used to estimate
collective influence of various groups of users and
characterize to what extent was their activation endoge-
nously or exogenously driven. These estimates agree
with both the simulated activation cascades and three
realistic use cases where user’s referral links served as
a proxy for the ground truth labels on whether users
were endogenously of exogenously activated.

II. RELATED WORK
The most commonly used information diffusion models were
inspired by epidemiology which model how a disease spreads
in a population [27]–[29]. However, their utility is sometimes
hindered by their use of latent states which are unobserv-
able in data. For this it is more appropriate to use Indepen-
dent Cascade (IC) model [30] and Linear Threshold (LT)
model [11], [23] which feature two observable states - active
and inactive that denote whether an user was already exposed
to the piece of information or not. These are popular for their
simplicity that facilitates theoretical analysis [31], statistical
inference from data [26], and can also be used as building
blocks for more complex applications such as influence max-
imization [32], [33]. In this work we use two variants of the
IC model (Eq 1 and 2).

However, there are several crucial differences between
epidemic spreading and information diffusion [34]. Epidemic
spreading is better modeled with simple contagion model
where endogenous factors play a dominant role, and the
activation probabilities are independent of the neighborhood
structure and the state of activated users in it. On the other
hand, information diffusion is better modeled with complex
contagion due to the common presence of exogenous fac-
tors [25] and more complex forms of endogenous influence
which include various social reinforcement mechanisms such
as reciprocity [35], social feedback [36] and homophily [37].
These additional factors are often neglected in modeling,
which is reasonable if there is enough evidence that some of
them, for example exogenous influence, is negligible [25].
When this is not possible the exogenous influence has to
be explicitly accounted for [38]–[40]. In our work we rely
on an explicit modeling of exogenous influence through a
likelihood-based approach.

Many likelihood-abased approaches for modeling influ-
ence exist in literature, including peer and authority
model [41] which, however, requires explicit modeling of
authorities responsible for exogenous influence, while in our
case this is not necessary. Many of the other approaches rely
on the availability of multiple activation cascades [39], while
we use only one. Also, we use the social network structure,
based on final state of activation cascade, directly in our
inference rather than using it implicitly [8] or relying on a
network statistic such as degree distribution [42].

III. METHODS
Crucial components of our methodology are explicit micro-
scopic models of endogenous and exogenous influence with
which we expand the Independent Cascade (IC) model.
We then use these models in a log-likelihood function which
gives us probability of observing particular activation cascade
as a function of the model’s parameters. Formulating our
inference problem in a probabilistic way allows us to optimize
for the maximum likelihood parameters and to estimate the
magnitude of endogenous and exogenous influence.We apply
our methodology on several simulated and empirical activa-
tion cascades in order to characterize the activation of users as
being more endogenously or exogenously driven. The simu-
lated case is easier because we know both the functional form
and the parameters of the model that generated simulated
information cascade, which allows us to perform evaluation
in a straightforward manner. For the empirical cases we use
three Facebook datasets obtained from an online political sur-
vey applications. In the end we estimate collective influence
of three groups of users - those who registered by following
link from within Facebook, those that registered by following
link from an external website, and those that followed a link
from a Facebook advertisement.

A. MODELS OF ENDOGENOUS AND EXOGENOUS
INFLUENCE
We assume that an activation of an user in an online social
network is mediated by two influences (Fig 3): (i) endoge-
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FIGURE 3. Endogenous and exogenous influence. Our assumption is that
information propagation in an online social network is mediated by two
types of influence - endogenous (peer) which acts between the users of
the social network and exogenous influence which is external to it. The
estimated endogenous influence on the newly activated user i = 1 should
be higher because more of his peers are already active, as compared to
user i = 2.

nous influence ppeer which depends on the network structure
and users that are already active or not, and (ii) exogenous
influence pext which is modeled as a time dependent ran-
dom variable and is constant across all users. An additional
assumption is that parameters of endogenous influence are
constant throughout the period of observation, while parame-
ters of exogenous influence may change in time. Both sets of
parameters are equal for all users. This allows us to use a very
simple model for the exogenous influence - a single proba-
bility of activation p(i)ext (t) which is equal for all inactive users
i at each specific time step, although it can change in time.
Instead of parameterizing p(i)ext (t) with a suitable closed form,
we chose to evaluate it at each time step independently [39].
The benefit of such nonparametric estimate of exogenous
influence is that it minimizes assumptions on the influence’s
functional form. For example, we do not have to explicitly
incorporate decay of exogenous influence into our model as
we will do with the endogenous influence later on (Eq 2), but
our model is still able to infer this decay if it is supported by
available data. An example of this is visible in the experiment
in Fig 6.
For the endogenous influence we choose two commonly

used Independent Cascade (IC) models: (i) Susceptible-
infected (SI) model p(i)SI (t) and (ii) Exponential decay (EXP)
model p(i)EXP(t). ICmodels are an example of simple contagion
- activation of users happens due to a direct influence of
one of their peers, independently of the rest of the system,
including the neighborhood structure and which other users
are active or not. EXP model has an added condition that
peers that activated recently carry more influence than the
ones that activated farther away in time, which is commonly
incorporated in endogenous influence models [43], [44].

Probability of endogenous activation for user i at time
interval [t −1t, t] under the SI model is defined as follows:

p(i)SI (t) = 1−
∏

j∈N (i)active at t

(1− p0) = 1− (1− p0)ai(t) (1)

where N (i) is a set of peers of user i, ai(t) designates how
many of them are active at time t , and p0 is a probability

of user i’s being activated by each of its peers. Assumption
of the SI model is that probability of activating one’s peers
does not change in time, so once user is activated, every
subsequent step he has the same probability p0 of activating
any of his peers. This assumption is more appropriate in epi-
demiological setting, fromwhere SI model originated, than in
information propagation setting where we would expect the
influence to decay in time. This could be achieved by adding
a parameter for influence decay, which leads us to the EXP
model:

p(i)EXP(t) = 1−
∏

j∈N (i)active at t

(1− p0e−λ(t−tj)) (2)

where tj is the time of activation of user j. p0 and λ are
parameters of endogenous influence which define the shape
of exponential decay of influence, with p0 being the prob-
ability of user j activating user i at time t = tj and λ
being the half-decay of influence. Both SI and EXP mod-
els feature independent cascades - each individual user can
independently activate any of his peers. However, in social
contagion it is more realistic to add a requirement of multiple
interactions for the activation. This effectively models social
reinforcement mechanism which is a known driving force for
product adoption [25]. One of the simplest examples of such
complex contagion models is the threshold model where the
probability of endogenous activation is related to the number
of already active peers N (i) of user i. We define one such
threshold model in the Eq S11 of the Supporting information
and show that it can also be effectively incorporated into our
inference methodology.

We now define a likelihood function L which gives us
probability of observing data D (network and activation
times) at a particular time t given some functional forms for
endogenous and exogenous influence ppeer and pext . Due to
typically small probabilities involved in these processes we
actually use log-likelihood for maximum likelihood estima-
tion of parameters, where product of probabilities is replaced
with the sum of log-probabilities:

logL(D; ppeer , pext , t)
=

∑
i∈activated at [t−1t,t]

log(1− (1− p(i)peer (t))(1− pext (t)))

+ c(t)
∑

i∈inactive at t

log((1− p(i)peer (t))(1− pext (t))) (3)

First term on the right-hand side quantifies the agreement
for the users that did activate in a given time period [t−1, t],
as this had to be due to either endogenous or exogenous
influence. Second term quantifies the agreement for the users
that did not activate up to time t , neither through endoge-
nous nor through exogenous influence. The time enters our
inference only through the activation time of users and is
used in two ways - i) to determine which users were active or
inactive in time window [t−1t, t] (Eq 3), and ii) to calculate
endogenous influence decay in EXP model (Eq 2). However,
in principle it is possible to use a temporal network where
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friendship connections between users change in time. This
can be encoded into the expression for endogenous influence
ppeer , for example in equations for the SI and EXP models
(Eq 1 and 2) by making N (i) - a set of peers of user i, a time-
changing quantity. We can remove explicit dependence on
time t from the Eq 3 by evaluating L nonparametricaly - at
each time increment 1t .
One issue still needs to be addressed - on which users

does the exogenous influence actually acts? We know that
our friendship network does not contain all possible users,
and so the true number of yet inactive users is probably much
larger than what we actually observe. This observer bias
could lead to the overestimation of the exogenous influence as
we approach the end of the activation cascade and the number
of eventually observed inactive users decreases towards zero,
while the true number of inactive users which could possibly
activate (but do not during our observation period) stays
large. We correct for this by artificially increasing the part
of our log-likelihood which is responsible for inactive users
by factor c(t) = 1 + α(Nall/Ninactive(t)), where Nall is the
number of all users in the social network, and Ninactive(t) the
number of all yet users inactive users at time t (more details
in Section S6 of Supporting information).

B. ALTERNATING METHOD FOR INFERENCE
Our two main assumptions during statistical inference are:
(i) both endogenous and exogenous influence are equal for
all users at any given time, and (ii) endogenous influence
does not vary in time while exogenous influence does. This
leads us to the inference algorithm where we seek a single
set of parameters for the endogenous influence ppeer and a
set of parameters for the exogenous influence {pext }t for each
time step t . This would make the dimensionality of our log-
likelihood proportional to the number of time steps we use
for inference, which would be hard to optimize numerically.
Instead, we use an alternating method [39] where we alter-
natively fix either ppeer or {pext }t and optimize for the other.
Algorithm 1 gives the pseudocode of the alternating proce-

dure for inference of endogenous ppeer and exogenous {pext }t
influence that we use in our experiments. In the first part
of the algorithm (steps 2-4) we optimize ppeer and pext for
every time window separately, which then serve as initial
values for the alternating procedure. Optimization procedure
is designated with a generic MAP (Maximum A Posteriori)
procedure which takes as arguments the parameters which are
held fixed and outputs values of the remaining parameters
so that the log-likelihood (Eq 3) is maximized. The actual
MAP optimization is performed with a truncated Newton
algorithm that is Hessian-free and uses conjugate gradients to
iteratively compute parameter updates [45], although in prin-
ciple any suitable optimization algorithm could be used. Sec-
ond part of the algorithm is the actual alternating procedure
(steps 5-11) where we first optimize for a single set of
endogenous parameters ppeer , conditioning on the exogenous
parameters {pext }t we obtained for each time window (step 6).
We then optimize exogenous parameters for each window

separately {pext }t , conditioning on a single set of endogenous
parameters ppeer we obtained in the previous step (step 7).
We then alternate between the step 6 and 7 until values for
ppeer and {pext }t converge. The difference between the values
for the current and previous iteration are calculated in steps 8
and 9 and the convergence itself is checked in step 5.

C. INFERENCE OF ACTIVATION TYPES
Because our model gives us probabilities for endogenous
and exogenous activation for each user individually, we can
use this information to estimate activation type for each of
the users. For this we define a single measure of exogenous
responsibility R(i) which quantifies to what degree is an acti-
vation of user i due to the exogenous (external) influence:

R(i)(t) =
pext(t)

pext(t)+ p
(i)
peer(t)

(4)

where t is the time of activation of user i. Values close to zero
indicate dominating endogenous influence, and values close
to one indicate dominating exogenous influence. An extreme
value of zero is achieved for users who activated during
time when there was no exogenous influence acting in the
network. An extreme value of one is achieved for users who,
at the time of their activation, did not have any active peers.
Note that it is not possible for both pext(t) and p(i)peer(t) to
be 0, and consequently that the value of responsibility is
undefined, because that wouldmean the activation of this user
is evaluated as impossible by our model in Eq 3. In principle,
we could also use pure activation probabilities p(i)peer or p

(i)
ext

as measures of influence, but experiments on simulated data
showed that exogenous responsibility is the most sensible
(more details in Supporting information).

D. INDIVIDUAL AND COLLECTIVE INFLUENCE OF USERS
Our assumption is that each user is, to some extent, responsi-
ble for endogenous activation of all of his peers that activated
after him. This influence extends beyond user’s immediate
peers. However, as we do not have a deterministic activation
path (we do not know who shared information with whom)
it is not straightforward to transitively incorporate influence
from far away users as it is usually done [46]. This is why
we express the influence I (i) of user i (Eq 5) as the extent to
which user i is responsible for activation of his peers j:

I (i) =
∑
j∈N (i)

I (i→j)∑
m∈N (j) I (m→j) p

(j)
peer (tj) (5)

where I (i→j) is the fraction of the endogenous influence that
user i can claim for user j. In our case we define it as
I (i→j)

= 1 if i and j are peers, and 0 otherwise. This means
that all user’s are credited equally for the activation of their
peers, regardless of how far away in time they themselves
activated. For an alternative formulation which involves time
see Eq S8 in the Supporting information. As shown on Fig 4,
each user can claim part of the peer activation probability
p(j)peer (tj) for each of his peers j that activated after him ti < tj.
Aswe do not have a deterministic activation path, this is really
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Algorithm 1 Alternating Method for Joint Inference of Influence
1: procedure AlternatingInference(T ,ε,ppeer (t),pext (t))
2: for t ∈ {1, . . . ,T } do
3: {ppeer }t , {pext }t ←MAP(ppeer (t), pext (t)) F Optimize for every time window.
4: end for
5: while 1(i−1)

peer ≥ ε & 1
(i−1)
ext ≥ ε do F Until ppeer and {pext }t converge.

6: p(i)peer ←MAP({p(i−1)ext }t ) F Fix {p(i−1)ext }t and optimize for single p(i)peer .
7: {pext }(i)←MAP(p(i)peer ) F Fix p(i)peer and optimize {p(i)ext }t for every window.
8: 1

(i)
peer ← p(i)peer − p

(i−1)
peer

9: 1
(i)
ext ←

∑T
t=1(p

(i)
ext (t)− p

(i−1)
ext (t))

10: i← i+ 1
11: end while
12: return p(i)peer , {p

(i)
ext }t F The parameters of endogenous and exogenous influence.

13: end procedure

FIGURE 4. Individual and collective influence. In this simple example we
estimate influence I1 of user i = 1 as the extent to which he is
responsible for endogenous activation p(j )

peer of all of his peers
j = {3,4,5,6,7} which activated after him. Only three of his peers
j = {4,5,7} activated due to endogenous influence, but he has to share
part of this claim with two users i = {0,2} which are their shared peers.
The total individual influence for user i = 1 in the above example is
I1 = 1/2 p(4)

peer + 1/3 p(5)
peer + p(7)

peer . Type of activation (endogenous or
exogenous) for each user can be estimated with our methodology or
taken from raw data by using referral links from which users visited our
application, in which case p(j )

peer simply takes values 0 or 1.

just a potential for responsibility and so the user has to share
part of his claim to I (i→j) with all otherm peers of j. For the SI
model we can set this to 1, meaning that we consider all peers
equally responsible regardless of the time of their activation.
Each user would then be assigned 1/m of the peer activation
probability p(j)peer for each of his peers that activated after him,
where m is the number of user’s j peers that activated before
him. For the EXP model we can weight this with the times
of activation - users can claim larger part of the influence
for peers that activated close in time to their own activation
(more details in Section S4 of the Supporting information).
The collective influence for a group of users G is just an
average influence of all users in the group 1/|G|

∑
i∈G I

(i).

E. EVALUATION
Instead of using a single threshold for the exogenous respon-
sibility to classify users into endogenously and exogenously

activated we calculate the entire receiver operating character-
istic (ROC) curve and associated area under the curve (AUC)
score. This allows us to compare different endogenous influ-
ence models regardless of the chosen threshold. In order to
calculate the ROC curve and AUC score we also need some
sort of a gold standard label for each user, for which we use
referral links available for sabor2015 and sabor2016 datasets.
Depending on the referral link we classify users in one of
the three categories: (i) strong endogenous influence for
users whose referral link originates from a Facebook share,
(ii) potential endogenous influence for users whose referral
link originates from Facebook and (iii) strong exogenous
influence for users whose referral link originates from an
external web site. Users who do not have a referral link are
considered as unknown. For the purpose of evaluation we
consider users from category (i) as endogenously activated
and users from category (iii) as exogenously activated.

F. DATA COLLECTION
Our online survey applications were actually web applica-
tions which used Facebook Graph API [47] for authentication
of users. Some sort of user authentication was necessary to
prevent multiple voting. Facebook Graph API allowed us to
collect Facebook friendship relationship between users regis-
tered on our application. In addition, with referendum2013.hr
we collected basic demographics information such as age
and gender. With other three applications we used our own
web server directly to collect referral links through which
users visited our web application. In all applications we also
collect exact registration times of all users. Users provided
informed consent on two levels. First, initial web page of
survey application displayed a disclaimer next to the regis-
tration button describing the type of data we collect and the
purpose we intend to use it. This was visible to both regis-
tered and unregistered users, before any data was actually
collected. Second, upon authorization with their Facebook
credentials, but before any data was collected, users were
presented with a link to both Facebook’s Platform Policy and
our own privacy policy, and were given an option to opt out
from the survey. In addition, we also provided detailed terms
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of use, Frequently Asked Questions (FAQ) and privacy policy
web pages which complied with the Facebook’s Platform
Policy [48], all of which were available to both registered and
unregistered users. More details on the data we collected and
the methodology of eliciting informed consent is available in
Section S2 of the Supporting information. Facebook’s Graphs
API assigns application-specific ID’s to each user, so it is not
possible to associate users from different datasets. After they
registered users were able to see summary voting statistics
of their friends as well as for all registered users. These
statistics were displayed after the user cast his vote in order
to minimize the influence on his choice. We also provided
an additional incentive to share the link to the application
through Facebook and other social media by displaying to
each user a number of users which registered to the appli-
cation after following the referral link from their share, and
comparing this to other users. Our data collection procedure
complies with the Facebook Platform Policy [48] and was
approved by the Ethics committee of the Faculty of Electrical
Engineering and Computing, University of Zagreb.

G. CODE AND DATA AVAILABILITY
Due to Facebook’s Platform Policy https://developers.
facebook.com/policy regarding user’s data privacy we are
not allowed to publicly release any Facebook-derived data,
including personal information and friendship relations
between our users. Friendship networks, registration times
and analysis code needed to reproduce the results of this paper
are available upon a request after signing the data access
agreement on https://goo.gl/forms/IxINFkeBSJpDuzRv2.
The agreement states that the requester: (i) Will only use
the dataset for the purpose of reproducing and validating the
results of our study; (ii) Will not attempt to deanonymize
the dataset or in any other way compromise the iden-
tity or privacy of users contained in it; and (iii) Will not
further share, distribute, publish, or otherwise disseminate
the dataset. This data access agreement complies with the
Facebook Platform Policy. Facebook online survey appli-
cations through which we collected referendum2013 and
sabor2015 datasets are available on public Github reposi-
tories: https://github.com/devArena/referendum2013.hr, and
https://bitbucket.org/marin/sabor2015.hr. More information
is available in Sections S1 and S2 of the Supporting
information.

IV. RESULTS AND DISCUSSION
A. MAXIMUM LIKELIHOOD INFERENCE FOR
ENDOGENOUS AND EXOGENOUS INFLUENCE
We want to compute a single set of endogenous influ-
ence parameters for the whole period and a separate set of
exogenous influence parameters for every time window. Our
assumption is that endogenous influence parameters do not
change over time, but that exogenous do. A direct way to
do this is to perform a joint optimization of a log-likelihood
that contains a single set of endogenous influence parame-
ters and a separate set of exogenous influence parameters

for each time window [t + 1t]. Our log-likelihood would
then be t + 1-dimensional in the case of SI model, and
t + 2-dimensional for the EXP model - t parameters of
exogenous influence for each time window we are consid-
ering in our inference plus the parameters of endogenous
influence (p0 for SI model and (p0, λ) for EXP model).
This makes the number of parameters proportional to the
number of time windows, which makes a joint optimization
of log-likelihood unfeasible. Instead, we use an alternating
method [39] described in Algorithm 1 where we alternatively
fix either endogenous influence parameters or exogenous
influence parameters and optimize the other until both values
converge. In addition, we never optimize all of the t parame-
ters of the exogenous influence jointly but do it one by one.
This yields a nonparametric estimate for exogenous influ-
ence, meaning that we have a separate estimate of exogenous
influence pext (t) at each time step t . Although the number
of parameters we have to infer is still proportional to the
number of time windows we are considering in our inference,
this strategy is much more efficient then joint inference and
provides reliable estimates even though there is no formal
guarantee that the estimates will actually converge. How-
ever, in our experiments we did not experience any problems
with the convergence. Fig 5 shows the initialization step of
the alternating procedure on a simple simulated activation
cascade, where parameters for endogenous and exogenous
influence are inferred separately for each time step t .

Using efficient optimization routines allows our method
to scale to networks of over 10000 users with resolution
of 100 time steps. In our experiments we use a truncated
Newton algorithm [45] for maximum likelihood estimation,
although in principle any suitable optimization algorithm
could be used (more details in Methods section). Total num-
ber of users activated due to endogenous and exogenous
influence is calculated through the exogenous responsibility
measure (Eq 4) which is derived from the inferred parameters
and quantifies the extent to which is each user’s activation is
due to endogenous or exogenous influence. This estimate is
normalizedwith the total number of user activations in a given
time interval, which is an observable quantity.

B. INFERENCE OF ENDOGENOUS AND EXOGENOUS
INFLUENCE ON SIMULATED DATA
Our simulations are designed to approximate, as well as pos-
sible, the conditions in which real data were collected. How-
ever, instead of using one of the empirical social networks
which we collected, we decided to simulate on a configu-
ration model of referendum2013 Facebook friendship net-
work so that our results are reproducible using only a degree
sequence. This technique is similar to generating a synthetic
representation of a Facebook social network [49] with respect
to compactness and anonymity. Configuration model of a
network preserves the number of connections each user has,
but these connections are permuted randomly across all users.
This destroys mesoscale structures such as communities,
but is still preferable to other permutation methods where
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FIGURE 5. Maximum likelihood inference of endogenous and exogenous influence. Plots of the normalized likelihood function (similar to Eq 3 which
shows log-likelihood) at two distinct time steps in the simulated activation cascade using SI model for endogenous influence. SI model features only
two parameters at each time step - parameter of endogenous influence ppeer (p0 in Eq 1) and a parameter of exogenous influence pext. Shape of the
likelihood function suggests that these two parameters are correlated as each provides part of the explanation for the observed data, and if one is
weaker the other most compensate. Also, when we have more data (time 21) the shape of the log-likelihood function is more concentrated than when
we have less (time 50), resulting in more confident estimates. In this simulation we are estimating parameters of endogenous and exogenous influence
at each time step separately, which corresponds to the initialization stage of our actual inference procedure which we use on simulated (Section IV-B)
and empirical (Section IV-C) data. In our full inference procedure we infer a single set of endogenous influence parameters for the whole observation
period instead of having a separate estimate for each time step like in this example (more details in Section III-B). Here we are using a truncated
Newton algorithm [45] for optimizing a log-likelihood function in order to obtain a maximum likelihood solution, although in practice any suitable
optimization method could be used.

either times of activation are permuted (destroying order of
activity) or connections themselves are permuted between
the users (destroying degree distribution by changing it to
binomial) [50]. The simulation starts with a small number of
active users and progresses in discrete steps following one
of the endogenous influence models (Eq 1 and Eq 2). Fig 6
shows the results using the EXPmodel (Eq 2) for endogenous
influence. At three distinct times we also simulate an expo-
nentially decaying exogenous influence which acts equally
on all inactive users. This resembles a typical situation when
a distinct exogenous information source activates some of
the users [51], which we also observe in our dataset (Fig 2).
However, our methodology works equally well for other
shapes of exogenous influence (Fig S8 and Fig S9 in the
Supporting information). Using just the activation times of
all users and their friendship network we are able to estimate
the parameters of the assumed endogenous and exogenous
influence models as well as the absolute number of users
activated predominantly due to the one or the other. In addi-
tion, using a measure of exogenous responsibility (Eq 4) we
are able to infer, for user, the extent to which endogenous or
exogenous influence was responsible for activation. Instead
of using a single threshold to classify users we calculated the
whole receiver operating characteristic (ROC) curve and the
corresponding area under the curve (AUC) score to evaluate
the performance (Fig 6). We compare our method to a simple
baseline commonly used in previous work [39], [52] where
an activation is considered exogenous if activated user had
no other active peers at the time of the activation. However,
as more and more users becomes active, it becomes increas-
ingly likely that a user is connected with at least one other
active user by pure chance. This underestimates the number
of users activated by exogenous influence and consequently
underestimates overall exogenous influence. We obtain
similar results (Fig S6 in the Supporting information) for the

SI endogenous influence model and an additional threshold
model we define in the Eq S11 of the Supporting information.
The inference itself is fast and scales well to networks of over
ten thousand users (Section S5 in the Supporting informa-
tion).

C. INFERENCE OF ENDOGENOUS AND EXOGENOUS
INFLUENCE ON EMPIRICAL DATASETS
In order to investigate social interactions between users of
a large online social network we developed three online
surveys that use Facebook API for collection of data. Sur-
veys were related to three distinct political events in Croatia:
1) referendum2013.hr for referendum on definition of
marriage, 2) sabor2015.hr for parliamentary elections
in 2015, and 3) sabor2016.hr for parliamentary elec-
tions in 2016. Fig 1 and Fig 2 show the collected friend-
ship networks between Facebook users and the number of
registrations in 30-minute intervals for each of the survey
applications during a week preceding the actual elections.
Table in Table 1 shows summary statistics for each of the
datasets. The referral links provide information whether each
user followed a link originating from a post on Facebook
which indicates endogenous influence, or some external web-
site reporting on our survey which indicates exogenous influ-
ence. We use this information to evaluate our estimates of
endogenous and exogenous influence acting on users. More
details on the datasets and the methodology of data collection
is available in Section III-B and Sections S1 and S2 of the
Supporting information.

Fig 7 shows the results of applying our inferencemethodol-
ogy to estimate the magnitude of endogenous and exogenous
influence during these three activation cascades. In this exper-
iment we use the EXP model as endogenous influence model
because it performed best on average over all three empirical
datasets, with and without correction for the observer bias.
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FIGURE 6. Inference on a simulated activation cascade. We use our
methodology to infer which users activated due to endogenous or
exogenous influence in a simulated activation cascade following
exponential decay (EXP) endogenous influence model. In real world
applications only total number of activated users (black line) is actually
observed, along with the friendship network between users (Fig 6).
We use a configuration model of referendum2013 social network to make
our results reproducible even without the whole empirical network.
We see that our measure is able to differentiate absolute numbers of
endogenously and exogenously activated users throughout the whole
cascade period and to correctly infer the parameters of endogenous
influence - ppeer and λ, and exogenous influence pext (t) for every time
period t . We also infer activation type for each user individually by using
the exogenous responsibility measure R(i )(t) (Eq 4) as shown on Fig 6
and achieve AUC of 0.93. We compare this with the baseline method
where, instead of exogenous responsibility, we use number of active
peers at the time of activation. A special case of this baseline is where we
consider users without any active peers as exogenously activated, which
is a baseline that we use in Fig 6. This baseline method underestimates
the exogenously activated users towards the end of the observation
period, which is due to the fact that more and more users are active and
it is increasingly likely that at least one of the peers is active by chance
alone. On Fig 6 we show a histogram of the number of active peers and
compare it with exogenous responsibility to demonstrate that no
reasonable threshold could not serve as a classification measure, which
is also confirmed with a relatively low AUC score of 0.86. The results for
SI endogenous influence model are similar and are available in Fig S6 in
the Supporting information.

The results for other models are included in Fig S12 and
Fig S13 of the Supporting information. As our methodology
operates in discrete time (Eq 3) we discretized the activation
times of users into 30 minutes time intervals to determine
which users were active or inactive during each specific inter-
val. Considering the duration of the data collection for each of
the surveys, this corresponds to 333 time intervals for refer-
endum2013 dataset, 327 intervals for sabor2015 dataset and
328 intervals for sabor2016 dataset. Each user that registered
on one of the online survey application using his Facebook
credentials is considered activated in the given time period.
The referral link from which we visited the website of the
survey application will be used as a proxy of endogenous
and exogenous influence - referral links from Facebook are
considered as endogenous and those from external websites
as exogenous. We later use this information for evaluation of
our methodology.

We estimate magnitudes of endogenous and exogenous
influence and characterize each user as being endoge-
nously or exogenously activated. We use the AUC score
to evaluate the predictive performance of our inferred
model on sabor2015 and sabor2016 datasets for which we
had data on referral links from which users visited our

survey application. This served as a proxy for ground truth
labels which we needed for calculating the AUC scores.
The purpose of the model is to estimate the magnitude of
endogenous and exogenous influence on each given user,
given available data and provided that underlying assump-
tions of our statistical methodology are satisfied. Similar
as in simulated experiments, we compare our methodology
with a baseline method that simply estimates the number of
exogenously activated users as all those who did not have
any active peers at the time of their own activation, and again
we observe that it underestimates the number of exogenously
activated users, especially near the end of the observation
period. Our estimates of endogenously activated users (Fig 7)
closely resemble the true number of users activated by fol-
lowing another user’s share, which is the strongest indica-
tion of endogenous influence we have. On the other hand,
it might seem that our method overestimates exogenously
activated users by declaring many of the users originating
from Facebook as exogenously activated. However, relying
on Facebook referrals alone is not a reliable proxy for endoge-
nous activation, as many users might be activated through
other means of indirect communication available through
Facebook - by following an advertisement, or by directly
visiting a Facebook page of the survey application.

We observe that the magnitude of exogenous influence
increases as we approach the end of the activation cascade
period. This effect is due to the fact that we only observe
the friendship network of users that eventually registered on
our application, which is only a small subset of the whole
Facebook network. However, one of our assumption is that
exogenous influence acts uniformly on all users in the friend-
ship network, not just the subset of them, and this manifests in
the increased exogenous influence as the activation cascade
approaches the size of the network. This observer bias can be
corrected by adding a correction factor c to our log-likelihood
function (Eq 3), which is regulated with parameter α. The
results of applying the correction term on the empirical data
are shown on Fig 7, while more detailed experiments are
available in Fig S5 of the Supporting information). However,
because less and less users got activated near the end of
the observation period this observer bias does not influence
our final estimates by much. However, we still believe that
correction is warranted and useful, especially for estimates
near the end of the observation period, and in other use cases
where observation period is shorter and observer bias might
be more pronounced.

For evaluation (Fig 7) we again calculate the corresponding
AUC score which uses exogenous responsibility measure
R(i)(t) (Eq 4) to classify users into endogenously and exoge-
nously activated. The achieved AUC scores for our method
(AUCour ) for sabor2015 and sabor2016 datasets are 0.76 and
0.82 respectively. This is higher than the baseline measure
which uses number of active peers at the time of activation
which achieves AUC scores (AUCbase) of 0.68 and 0.78 for
the sabor2015 and sabor2016 datasets respectively. Using
exponential decay model for endogenous influence allows us
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FIGURE 7. Inference on Facebook activation cascades with EXP model. Inference of endogenous and exogenous influence on activation cascades
derived from referendum2013, sabor2015 and sabor2016 online survey applications, with EXP model as assumed endogenous influence model. The
results for the SI endogenous influence model are in Fig S12 and Fig S13 of the Supporting information. On the bottom panels we see the effect of
correction for the observer bias (α = 0.1) as compared to no correction (α = 0) - it reduces the overestimate of exogenous influence near the end of the
observation period. AUC scores for using exogenous responsibility as a measure for classifying users into endogenously and exogenously activated
(AUCour ) for datasets where we have information on referral links for evaluation - sabor2015 and sabor2016, are 0.76 and 0.82 respectively. This is
higher then those achieved with a baseline measure of number of active friends, which are 0.68 and 0.78 for sabor2015 and sabor2016 datasets
respectively. A more direct comparison with the baseline is available in Fig S14 of the Supporting information. Facebook referrals alone are not
discriminating enough as there are multiple possible ways by which Facebook users might reach our application, including visiting the webpage of our
application directly or through an advertisement, both which are more similar to exogenous rather than endogenous influence.

FIGURE 8. Comparison of influence estimates. Comparison of influence
estimates obtained from our methodology and raw data for different
groups of users - those activated due to endogenous (peer) influence,
exogenous (external) influence and advertisements (ads). Ads are similar
to exogenous influence as they are targeting large number of users
independent of their friendship connections, but within the Facebook
social network itself.

to calculate the half-decay of endogenous influence which is
10.1 hours for the sabor2015 dataset. This value is consistent
with what we could expect, as it means that endogenous
influence diminishes to a fraction of a value in the span of
a day or two and requires influx of new users to keep it
sustained.

D. COLLECTIVE INFLUENCE
Once we characterized activation of each user as being
endogenously or exogenously driven, we can estimate the
extent to which each user contributed to the activation of its
peers by excluding the portion of the influence attributed to
exogenous factors. We do not have a deterministic propaga-
tion path for our activation cascade - we do not know who
influenced whom directly, so we cannot deterministically
incorporate influence of all users in a transitive manner [46].

Nevertheless, our measure of influence simply incorporates
all possible endogenous propagation paths to estimate an
influence for each user (Fig 4 and Eq 5). If we then average
this influence over a group of users we get their collective
influence. Instead of using our estimates of endogenous and
exogenous activation for each user we could also estimate
influence directly from data by using the referral links from
which users visited our application. Fig 8 shows the compari-
son of our methodology with estimates of influence obtained
from raw data for different groups of users that activated due
to: endogenous factors, exogenous factors, advertisements.
Our question was: Which channel of communication is the
most influential, that is, recruits users with higher collective
influence? The results of our experiments on two datasets for
which we had data on referral links, shows no clear pattern
of influence. Different groups of users are more influential
depending on the dataset. However, regardless of the model
of endogenous influence (SI or EXP) our estimates are robust
and are proportional to the ones obtained from raw data. It is
important to emphasize again that our methodology does not
use any information on referral links or external influence
whatsoever, but rather infers this from the dynamics of the
user activations. More details is available in Section S4 of the
Supporting information.

V. CONCLUSION
Unlike traditional survey methods where data is manually
entered either by a respondent or experimenter [53], online
social networks provide an opportunity to collect much larger
amounts of data on user activity. However, due to their
nature they provide challenges to experimental design [54].
Observational studies without explicit consent are regularly
performed within companies for marketing purposes, which
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is regulated by company’s privacy policy, and in some cases
this research can be used for academic purposes [36]. Still,
academic publication of such research could raise ethical
concerns [2], [55]. On the other hand, conducting a study
where explicit consent is mandatory heavily restricts the
amount of data that can be collected, even when researchers
have a direct access to the whole online social network and
are in position to present their experiment automatically to
the large number of users. For example, a study from Aral
and Walker [56] on a sample of 1.3 million Facebook users
managed to collect responses of only 7730 users. However,
major publicized events such as elections and referendums
can serve as catalyzers for mobilizing users. Users are usually
willing to participate in a study if through it they receive an
information or a service which they perceive as valuable and
which could not be easily obtained in some other way.

Despite inherent difficulties in collecting data, we decided
to conduct several online surveys using our own web applica-
tions and Facebook’s API, which allowed us to collect activa-
tion cascades and friendship connections of over 20 thousand
users in total. Although computational social science is in
its infancy, with standards and practices still taking shape,
we tried to keep the privacy of the users and follow current
recommended ethical practices [9], [10]. Conducting a survey
through an online social network means that the recruitment
happens organically from person to person as a form of snow-
ball sampling and not through some unbiased randomized
procedure, so it’s the most eager persons that are recruited
first. Number of mobilized users mostly depends on highly
connected and willing individuals, that mobilize less wiling
users. This effect might easily dominate the one from mass
media [57].

Using this data we demonstrate how to estimate exogenous
and endogenous influence using only information on the
friendship connections between users and a single activation
cascade which corresponds to the times of user registra-
tion. Our methodology exploits the different ways of how
exogenous and endogenous influence propagate - endoge-
nous influence propagates between users and as such is
dependent on the friendship structure, while exogenous influ-
ence acts uniformly on all users regardless of the social
network structure. Our method is not able to reconstruct
an exact propagation pathway, as these inevitably include
pathways external to the particular online social network as
well as pathways that are inherently unobservable such as
word-of-mouth communication. Still, our method is able to
give a probabilistic estimates of these two influences given
minimal assumptions. Any additional information on the
activation cascade or the social network could be included
in our methodology, most probably along the lines of the
unified model of social influence [22]. The advantage of
such likelihood-based approaches is that inference is per-
formed in a probabilistically-consistent manner, instead of
relying on aggregated statistics to choose among compet-
ing models of influence [58]. The availability of efficient
numerical solvers means our method can easily scale to large

networks of over 10000 users. Computational scalability was
already addressed for the unified model [59], however, only
for the modeling and not for inference. Our methodology
could be applied for characterizing the types of influence
in information spreading, for example the role of external
factors in the fake news spreading occurring over online
social networks such as Facebook or Twitter [60]. Also, there
might also be applications outside the domain of social net-
works as the paradigm of endogenous and exogenous effects
could be applied in the wider context of dynamical systems
modeling [38].

Our methodology suffers from several limitations, which
also indicate potential paths for future research. First, we do
not elucidate the mechanisms by which endogenous and
exogenous influence arise. The form of the endogenous
influence is predefined, and choosing between several pos-
sible candidates is possible. In our case, we evaluate dif-
ferent endogenous influence models by their prediction on
empirical data, but other methods are possible, including
information-theoretic approaches. Second, we assume exoge-
nous influence acts equally on all users, and that parameters
of endogenous influence are equal for all users. This was
necessary in our case because we only have one activation
cascade available for inference [40], and without imposing
additional constraints our statistical inference would be infea-
sible [61], [62]. In cases where multiple activation cascades
are available, it should be possible to relax these assumptions
and allow for different values of endogenous and exogenous
influence parameters for various groups of users. Third, we do
not try to correct for the confounding effect arising from
unobserved or observed characteristics of users. For example,
it is expected that users respond differently to influences,
both exogenous and endogenous, from entities that share their
political orientation as compared to those that do not. Again,
including additional parameters in our model would increase
the uncertainty of our estimates. Fourth, we assume friend-
ship connections do not change during the activation cascade.
In our case this is justified as the duration of our information
cascade is relatively short, only a week, during which we
do not expect many changes in friendship connections. For
longer observation periods it might be necessary to introduce
a possibility of changing friendship connections, which can
be incorporated into our model by introducing time-changing
quantity N (i)(t) - a set of peers of user i in a particular time
step t , in equations for endogenous influence (Eq 1 and 2).
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