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ABSTRACT: New neutral organic superbases with 1-azaazulene(s) as a
molecular backbone are computationally designed, employing two basic
substituents: dimethylaminocyclopropen-imines (CPI) and dimethylami-
nocyclopropeniminophosphazenes (CPI-P). Their proton affinities, gas
basicities, and pKa values in acetonitrile are obtained using density
functional theory. Azaazulenes substituted with CPI have a computed PA in
the gas phase ranging between 272.9 and 306.8 kcal mol−1, with pKa values
in acetonitrile between 28.8 and 36 units. The substitution with the CPI-P
group resulted in even stronger superbases, with a PA from 296.5 to 335.2
kcal mol−1 and corresponding pKa values from 33.9 to 50 units. This
exceptionally strong thermodynamic basicity is accompanied by very high
kinetic basicity as well; contrary to typical proton sponges, the release of a
proton from the conjugate superbase does not demand high activation
energy. Because synthetic routes for both substituents and azaazulenes are
already known, newly designed superbases represent suitable targets for synthesis and application.

1. INTRODUCTION

Neutral organic bases are compounds extensively used as
catalysts in synthetic organic chemistry, due to their ability to
initiate a reaction by spontaneous deprotonation of reagents.1

The important advantages of neutral organic bases over their
ionic inorganic counterparts are much better solubility in
organic solvents and milder reaction conditions. Organic
compounds that are more basic than the proton sponge 1,8-
bis(dimethylamino)naphthalene (DMAN), with a proton
affinity (PA) of 245.3 kcal mol−1 and a gas basicity (GB) of
239 kcal mol−1, are called superbases.2 From the structural
point of view, the general definition of superbases characterizes
them as bases composed of multiple basic units.3 A great
majority of neutral organic superbases known so far are
nitrogen bases, as pointed out in a recent comprehensive
review article by Raczynśka et al.4 where the gas phase basicity
of various nitrogen bases including organic compounds, but
also some biomolecules, is analyzed, based mostly on the
experimental data. However, there are some examples of
prepared superbases where carbon or phosphorus acts as a
basicity center5−7 and recently very strong silylene superbases
have been designed computationally.8 A theoretical design of
organic superbases along with computational elucidation of
effects responsible for their superbasic properties represent a
vital stage for synthesis and a range of application of these
compounds, as emphasized in an earlier review article by
Maksic ́ et al.9 Although the great number of neutral organic
superbases is already available, most of them are still not as
basic as inorganic bases such as lithium diisopropylamide
whose pKa in tetrahydrofuran is 35.7.10 For comparison, pKa of

the strongest commercially available superbase, phosphazene
tBu-P4, in tetrahydrofuran is 33.9.7b Moreover, theoretical
investigation of fundamental thermochemistry of neutral
organic superbases and exploration of basicity limits can offer
insights needed for the design of new reagents and new
chemical reactions in synthetic organic chemistry.
Depending on basic functional groups present in a molecule,

neutral organic (super)bases may be grouped into several
classes: amines,1,4 amidines,11 guanidines,12 phosphazenes,13

pyridines,14 phosphines,7b,15 and cyclopropenimines16

(Scheme 1). A combination of these functionalities enables
obtaining even more basic compounds, such as cyclo-
propeniminoguanidines,17 guanidinophosphazenes,18 and cy-
clopropeniminophosphazenes,17b,19 also shown in Scheme 1.
Superbase DMAN, synthesized by Alder fifty years ago,20

represents a special example of an amine with two
dimethylamino substituents at positions 1 and 8 of
naphthalene. Because of the repulsion of electron pairs on
nitrogen atoms, the neutral form of the molecule is
destabilized; however, in a protonated form this repulsive
interaction diminishes, which has a positive effect on basicity.
Protonation also induces the formation of an intramolecular H-
bond which additionally stabilizes the protonated form, thus
leading to further increase of basicity. On the other side, the
proximity of amino groups induces a proton shielding,21,22

which means that once the proton is captivated into the

Received: July 7, 2019
Accepted: August 20, 2019
Published: September 4, 2019

Article

http://pubs.acs.org/journal/acsodfCite This: ACS Omega 2019, 4, 15197−15207

© 2019 American Chemical Society 15197 DOI: 10.1021/acsomega.9b02087
ACS Omega 2019, 4, 15197−15207

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

R
U

D
JE

R
 B

O
SK

O
V

IC
 I

N
ST

 o
n 

O
ct

ob
er

 3
, 2

01
9 

at
 1

4:
03

:4
0 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

http://pubs.acs.org/journal/acsodf
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.9b02087
http://dx.doi.org/10.1021/acsomega.9b02087
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


molecule, it cannot be easily released. This behavior, which is
typical of bases similar to DMAN where the aromatic
backbone enables proximity of basic substituents, is the reason
why this type of superbases is called proton sponges.
Pozharskii et al. extensively investigated different naphtha-
lene-based proton sponges and its analogs, including those
with expanded N-alkyl groups and N-substituents other than
alkyl groups,23a chiral proton sponges,23b proton sponges with
different ortho-substituents (e.g., based on tertiary alcohols)23c

that interact with dimethylamino groups. It is interesting that
some naturally occurring compounds, like mycosporine-like
amino acid named porphyra-33424a and aplicyanines,24b also
act as proton sponges. The kinetic inertness of typical proton
sponges in some cases limits their use as basic catalysts in
organic synthesis.22c

The computational investigation of the basicity of super-
bases that contain substituents based on 1,2-(N,N-dimethyla-
mino)-cyclopropenimine (in further text CPI) predicted that
they should be more basic than guanidines1,2,9 and possibly
even phosphazenes.13 In 2010 a convenient two-step synthesis
of cyclopropenimines was reported by Alcarazo and co-
workers,25 which encouraged further research and develop-
ment of superbasic compounds with a cyclopropenimine motif.
The synthesis of the enantioselective Brønsted base organo-
catalyst 2,3-bis(di-isopropylamino)cyclopropenimine16c con-
firmed the theoretical predictions of its solution basicity with
a pKa measured in acetonitrile of 26.90, which is indeed more
basic than guanidines (pKa of analogous guanidine 23.56).
Subsequently, proton sponges with CPI as pincer ligands were
prepared too.26 Superbases containing cyclopropenimino
functionality owe their high basicity to the aromatic
stabilization of the cyclopropenium cation that is formed
upon protonation of the system, as shown in Scheme 2.27

The combination of CPI and phosphazene moieties results
in “higher-order cyclopropenimino superbases”,17b cyclo-
propeniminophosphazenes (CPI-P), compounds that are
more basic than each of its components taken separately.
One such superbase, consisting of phosphazene as a core and
three diisopropylaminocyclopropenimino substituents, was
synthesized,17b and its pKa in acetonitrile was found to be
42.1. The CPI-P functionality was also utilized in the
computational design of very strong proton sponges, with a
calculated gas phase PA above 323 kcal mol−1 and a pKa in
acetonitrile of 48 units,19 which represents the most basic
proton sponge designed so far. However, similar to other
proton sponges, this superbase is kinetically inert; the
calculated activation energy needed for the release of a proton
from the conjugate acid is very high.19

We wondered what alternative aromatic scaffold could be
used in combination with a CPI and CPI-P motif that would
result in a strong superbasicity and, at the same time, would
not suffer from kinetic inertness that occurs in proton sponges.
Azaazulenes are nitrogen-containing analogs of azulene, an
aromatic molecule which is an isomer of naphthalene. Among
azaazulenes, 1-azaazulene is known as a very stable and easily
synthesized compound, with several well-established synthetic
paths for its preparation and preparation of its derivatives.28−31

The experimental data on the basicity of 1-azaazulene are not
available, but the calculated GB of this compound is 231.9 kcal

Scheme 1. Main Classes of Neutral Organic (Super)bases

Scheme 2. Formation of a Cyclopropenium Cation
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mol−1 (PA = 239.5 kcal mol−1). So far, azaazulenes have never
been used in the design and preparation of organic superbases.
In this work, we present a novel, computationally designed

neutral organic superbases, obtained by utilizing two types of
substituents dimethylaminocyclopropenimines, CPI, and di-
methylaminocyclopropeniminophosphazenes, CPI-P which are
combined with 1-azaazulene as a core unit(s). Further, we have
investigated their kinetic basicity by calculation of free energy
barriers for a proton exchange reaction between the neutral
and protonated form of the same superbase.

2. COMPUTATIONAL METHODS
All calculations were obtained using the Gaussian09 program
package.32 The geometries of all structures were optimized at
the B3LYP/6-31G(d) level of theory, and the vibrational
analysis was performed to verify the minima or transition states
on the potential energy surface for all structures.
Calculations of PAs in the gas phase and GBs were carried

out at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level
of theory. The PA of the molecule B is expressed as a negative
change of enthalpy at 298 K for the reaction of protonation

B H BH+ →+ + (1)

Thus, the PA is calculated according to the equation

H H RT HPA (B) (5/2) (BH )r
298 298 298= −Δ = + − +

(2)

Terms H298(B) and H298(BH+) are the enthalpies at 298 K
of the neutral (B) and protonated (BH+) base, obtained as a
sum of total energy and thermal correction to the enthalpy
calculated at the level of theory mentioned above, whilst (5/2)
RT corresponds to the enthalpy of the proton.
GB represents a negative change of Gibbs energy for

reaction 1, that is, it is a difference between the sum of the
calculated Gibbs energy of the neutral base and the Gibbs
energy of the proton and the calculated Gibbs energy of the
protonated base

G G G GGB (B) (H ) (BH )298 298 298 298= −Δ = + −+ +

(3)

The Gibbs energy of the proton in the gas phase, G298(H+),
has a value of −6.29 kcal mol−1,33 whereas the Gibbs energy of
B and BH+, respectively, is obtained as a sum of the total
energy and thermal correction to Gibbs energy calculated at
the aforementioned level of theory.
pKa values in acetonitrile (MeCN) are estimated using two

theoretical approaches. The first one is a procedure developed
by Glasovac et al.,34 which is based on the correlation between
experimental pKa values and calculated basicities

K Gp 0.545 (BH ) 133.5a a,sol= Δ ′ −+
(4)

Term ΔGa,sol′ (BH+) represents the negative change of Gibbs
energy for the reaction of protonation of a base (eq 1) in
acetonitrile. The Gibbs energy (Ga,sol′ ) is obtained as a sum of
total electronic energy, the thermal correction to Gibbs energy
and the energy of solvation. The energies of solvation are
calculated using the isodensity polarizable continuum (IPCM)
method at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level
of theory.
The second approach used in this work for the estimation of

pKa values is based on a conductor-like polarizable continuum
model of solvation, CPCM.35 We utilized the thermodynamic
cycle presented in Scheme 3, where pyridine with the

experimental value of pKa of 12.5336 served as a reference
base Bref.

The pKa values of the investigated superbases were given as

K G RT Kp (B) / ln 10 p (B )a r sol a ref= Δ + (5)

The overall Gibbs energy reaction change in solution ΔrGsol,
is calculated as follows

G G G G
G G G

G G

( (B) (B) (B H )
(B H )) ( (BH ) (BH )

(B ) (B ))

r sol g sol g ref

sol ref g sol

g ref sol ref

Δ = + Δ +
+ Δ − + Δ
+ + Δ

+

+ + +

(6)

where the Gibbs energies in the gas phase (Gg) represent a
sum of total energy calculated at the B3LYP/6-311+G-
(3df,2p)//B3LYP/6-31G(d) level of theory and thermal
correction for Gibbs energy. The values of ΔGsol are calculated
using the (CPCM)/B3LYP/6-31G(d)//B3LYP/6-31G(d)
model.

3. RESULTS AND DISCUSSION
3.1. 1-Azaazulenes with Cyclopropenimino and

Cyclopropeniminophosphazeno Substituents. It is ex-
pected that the substitution of azaazulenes with strong
electron-donating groups such as cyclopropenimino (CPI)
and cyclopropeniminophosphazeno (CPI-P), would result in
an enhanced basicity of this aromatic compound. Calculations
predict that 1-azaazulene with the gas phase PA of 239.5 kcal
mol−1, is more basic than pyridine, whose PA is 223.8 kcal
mol−1 (computed at the same level of theory). Pyridine is an
example of nitrogen-containing aromatic molecule that has
been frequently used as a structural motif for design and
preparation of many superbases.4,14,37 We have investigated
herein whether 1-azaazulene could also serve as a core unit in
the design of novel superbases.
To investigate the positions of the substituent on the

azaazulene ring that are most favorable for basicity enhance-
ment, we calculated the PA and GB for 1-azaazulenes
substituted with one CPI group at each of the seven possible
positions of the molecule (Figure 1). Because the protonation
of CPI-monosubstituted azaazulenes (denoted as n-Ac) may
occur at the N atom of azaazulene (Nazaazulene) but also at the
imino nitrogen of the CPI substituent (NCPI), we compared
GB and PA values for protonation at both sites. It should be
mentioned that other potential protonation sites are amino
groups of the CPI substituent; however, their PAs are very low
in comparison to the nitrogen of the azaazulene ring and the
imino group of the CPI substituent.
Table 1 contains the gas phase PAs and GBs for a series of

seven monosubstituted cyclopropenimino-1-azaazulenes (sche-
matically presented in Figure 1), calculated for protonation of
Nazaazulene and NCPI, respectively.

Scheme 3. Thermodynamic Cycle Utilized for the
Calculation of pKa with the CPCM Approach
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A perusal of the data in Table 1 reveals that all investigated
CPI-azaazulenes possess PAs greater than 245 kcal mol−1 and
therefore, can be classified as superbases. Molecules 2-Ac and
3-Ac (azaazulenes substituted with the CPI group at positions
2 and 3, respectively) are the weakest bases in the series
regardless of the protonation site, with a PA value of ∼257, and
a GB of ∼250 kcal mol−1. However, in 1-azaazulenes where the
seven-membered ring is substituted at positions 4−8 (n = 4, 5,
6, 7, and 8), higher basicity is achieved. In these five molecules,
the preferred site of protonation is always the azaazulene
nitrogen (Nazaazulene) with PA values which are 11−17 kcal
mol−1 higher than those calculated for protonation of the CPI
substituent. The nature of interaction induced by protonation
differs for these two sites. As mentioned earlier, the
protonation at NCPI results in aromatic stabilization of the
three-membered ring (Scheme 2), while the basicity of
Nazaazulene in substituted azaazulenes depends on the electron-
donating effect of the substituents. Further, the protonation of
the azaazulene nitrogen leads to the more efficient π-electron
delocalization over the whole molecule, whereas in the case
when nitrogen at the CPI is protonated, the delocalization is
limited to the substituent.38 This assertion is corroborated by
the changes of the bond length between the NCPI and adjacent
carbon; in the Nazaazulene protonated systems, this bond length
shortens upon protonation (from ∼1.38 Å in a neutral
molecule to ∼1.34 Å, Table S1), while in NCPI protonated
systems this bond elongates to the value of 1.43 Å on average.
Moreover, the survey of atomic charges at Nazazulene and NCPI
before and after protonation, obtained by Hirshfeld population
analysis,39 shows that reduction of the negative charge of
nitrogen atom upon its protonation is different for these two
sites (Table S2). For molecules n-Ac, (n = 4, 5, 6, 7, and 8)
protonated at azaazulene nitrogen, the amount of reduction of
negative charge of Nazaazulene is bigger, compared to the
reduction of negative charge of the NCPI when protonation
occurs at the substituent. The most basic molecule is 8-Ac with
a PA = 272.9 kcal mol−1, followed by 4-Ac and 6-Ac with a PA

of 267.0 and 266.8 kcal mol−1, respectively, and 5-Ac and 7-Ac
compounds having a PA of 262.4 and 264.0 kcal mol−1,
respectively.
Among the molecules protonated at CPI, the highest PA and

GB are also achieved in 8-Ac. This is due to the additional
stabilizing effect caused by a weak intramolecular hydrogen
bond (IHB) established between the proton on the CPI and
the nitrogen atom of the azaazulene ring (the length of the H-
bond is 2.03 Å, Figure 2). Given the positions of the

substituent, this interaction with a nitrogen of the azaazulene is
not possible in other monosubtituted azaazulenes protonated
at the substituent. To assess the strength of this IHB in 8-Ac
protonated at the substituent, the AIM analysis40 was
performed using the AIMall suite.41 According to the work
of Afonin,42 the strength of IHB can roughly be estimated by
the calculation of electron density (ρ) at the bond critical point
(BCP) of the IHB bond, using the following equation that
represents improved Espinosa’s equation42,43

E ( ) 191.4 1.78 (in kcal mol )HB
BCP BCP 1ρ ρ= − −

(7)

The IHB strength in 8-Ac estimated by the AIM analysis
and eq 7 is 3.3 kcal mol−1.
The calculated basicity of monosubstituted azaazulenes

shows that substitution with one CPI group substantially
increases the basicity of azaazulene by pushing electrons
toward the nitrogen atom in the ring, thus making it more
susceptible for protonation. Differences in basicity between
azaazulenes substituted at different positions, although mild,
suggest that the electron-donating effect of CPI is more
pronounced when the substituent is placed at positions 4, 6,
and 8, than in the rest of the molecules. Because the inductive
effect of the CPI affects the aromaticity of azaazulene, we
explored how the position of the substituent influences the
change of the aromaticity before and after the protonation,
calculating nucleus-independent chemical shifts, NICS(1),44

for the five- and seven-membered ring for the neutral and
protonated forms of all monosubstituted 1-azaazulenes n-Ac (n
= 2, 3, 4, 5, 6, 7, and 8). The results, presented in Table S3,
reveal that for all molecules, the decrease in aromaticity upon
protonation is more pronounced in the five-membered ring.
Molecules 5-Ac and 7-Ac show the most noticeable loss of
aromaticity, with a ΔNICS(1) value of 5.6 ppm (from −13.9
to −8.3 and −14.0 to −8.4 ppm going from the neutral to
protonated form of the molecule), whereas for the other
studied molecules ΔNICS(1) is ∼4 ppm or smaller. However,
molecules 2-Ac and 3-Ac do not fit into this analysis; despite
the mild loss of aromaticity caused by the proton, their basicity
is significantly smaller when compared with other studied
monosubstituted systems. According to the data from Table
S2, the reduction of the negative charge of the protonation
center in 2-Ac and 3-Ac (Δq(Nazaazulen), Table S2) is

Figure 1. Monosubstituted cyclopropenimino-1-azaazulenes, n-Ac,
where n denotes the position of the substituent on the 1-azaazulene
rings (n = 2, 3, 4, 5, 6, 7, and 8).

Table 1. Gas Phase PAs and GBs of
Monocyclopropenimino-Azaazulenes (in kcal mol−1), for
Protonation at Azaazulene Nitrogen (Nazaazulene), and at the
Imino Group of the CPI Substituent (NCPI)

molecule PA (Nazaazulene) GB (Nazaazulene) PA (NCPI) GB (NCPI)

2-Ac 257.4 250.5 256.9 250.0
3-Ac 256.3 249.0 257.2 251.3
4-Ac 267.0 260.0 249.6 242.5
5-Ac 262.4 255.5 251.6 245.5
6-Ac 266.8 260.0 249.6 243.0
7-Ac 264.0 257.3 252.8 246.7
8-Ac 272.9 265.3 262.1 254.5

Figure 2. Optimized structure of the conjugate acid of molecule 8-Ac
protonated at the substituent, with an intramolecular H-bond.
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substantially smaller than that in the rest of the systems,
implying the less efficient charge delocalization that inversely
affects their basicity.
Double and triple substitution of 1-azaazulene with electron-

donating groups should lead to a further increase in basicity.
Because the placement of the electron-donating substituent at
position 8 results in the most basic CPI-substituted 1-
azaazulene, followed by substitutions at positions 6 and 4,
we have investigated two superbases containing two and three
CPI groups, respectively, 6,8-disubstituted and 4,6,8-trisub-
stituted 1-azaazulene, as shown in Figure 3.

The azaazulenes substituted with the cyclopropenimino
group reached a PA of 290.7 kcal mol−1 (4,6,8-Ac) and a pKa
in acetonitrile of 34.1 units, according to the CPCM model
(Table 2). The change in PA upon substitution by one CPI

going from mono to disubstituted molecule is 9.9 kcal mol−1,
whereas the increase in PA going from di to trisubstituted
azaazulene is 8.9 kcal mol−1. This is a very slight difference in
the enhancement of PA, but a certain reduction of basicity
increase (upon addition of one more substituent) is expected
because of a well-described phenomenon of saturation of
substituent effects.45 Namely, the capacity of a molecular
backbone to accept electron density brought by a substituent
that acts as a strong electron donor is limited by the size of the
backbone; therefore the increase in basicity is not linearly
related to the increase of the number of electron donor groups.

Another substituent at 1-azaazulene that we considered is
the cyclopropeniminophosphazeno group (designated here as
CPI-P), obtained by a combination of phosphazene and
dimethylaminocyclopropenimine and recently synthesized by
Lambert.17b Cyclopropeniminophosphazene is more basic than
dimethylaminocyclopropenimine (CPI), so we anticipated that
1-azaazulenes substituted with CPI-P could be substantially
more basic than CPI-substituted azaazulenes. The calculated
PA, GB, and pKa in acetonitrile of the most basic 1-azaazulenes
substituted with CPI-P, shown in Figure 3, are also presented
in Table 2. Because of a convergence problem in the IPCM
model for such types of molecules, pKa values are calculated
using the CPCM solvation model only,35 but results for
superbases with the CPI substituent show that the pKa values
obtained by CPCM are in acceptable agreement with those
obtained with IPCM.
The presence of CPI-P in 1-azaazulene results in extremely

strong superbases; the disubstituted azaazulene has a PA of
313.1 kcal mol−1, while the trisubstituted molecule exhibits
even higher basicity with a PA of 319.2 kcal mol−1 and a pKa in
acetonitrile of 47.5 units. Thus, for azaazulenes with CPI-P, the
overall increase of PA goes from 296.5 kcal mol−1 in the
monosubstituted molecule (8-Ap) to 319.2 kcal mol−1 in the
trisubstituted one (4,6,8-Ap). In comparison with CPI-
substituted azaazulenes, the saturation of the substituent effect
here is less gradual; the first increment of PA (from mono to
disubstituted) is 16.6 kcal mol−1, while the substitution by the
third CPI-P group enhances the PA for an additional 6.1 kcal
mol−1 only. Although substitution of azaazulene with CPI-P
results in very strong superbases, the bulkiness of CPI-P could
cause steric problems when three substituents are present. To
estimate a steric strain caused by the repulsions between the
substituents, we compared the total energy of the three CPI-P
groups (without the azaazulene unit) arranged identically as in
optimized geometry of the superbase 4,6,8-Ap, and the total
energy of the three molecules of cyclopropeniminophospha-
zenes at an infinite distance from each other (i.e., without any
mutual interaction). A prearranged structure containing three
CPI-P is by 17.3 kcal mol−1 less stable than three CPI-P groups
at an infinite distance, and this destabilization can be attributed
to the steric strain. Because the saturation of the substituent
effect occurs upon substitution by the third CPI-P, we
wondered whether the presence of the smaller, but less basic
functional group CPI as a third substituent would result in a
molecule of similar basicity as 4,6,8-Ap. It turns out that the 1-
azaazulene substituted by two CPI-P groups at positions 4 and
8, and by one CPI group placed at position 6 (molecule 6c-
4,8-Ap, Figure 4), has a PA of 320.2 kcal mol−1, GB of 313.9
kcal mol−1 and pKa in acetonitrile of 45.9, thus being equally
basic as 4,6,8-Ap.

3.2. Bis(1-azaazulen-2-yl)-methyl-amines and Tris(1-
azaazulen-2-yl)-amines with Cyclopropenimino and
Cyclopropeniminophosphazeno Substituents. While a
high steric strain does not directly influence the basicity
(because the destabilization due to the bulkiness of
substituents is roughly the same in a neutral and protonated
molecule), it could pose difficulty during the synthesis of this
type of superbases. To attenuate this problem, we decided to
utilize two and three 1-azaazulene units in one molecule to act
as a core unit in novel azaazulene superbases. Combining two
or three azaazulene units in one molecule enables substitution
with a larger number of electron-donating substituents per
molecule, without further increase in steric strain. The bis(1-

Figure 3. 1-Azaazulenes substituted with cyclopropenimino (CPI)
and cyclopropeniminophosphazeno (CPI-P) groups.

Table 2. Gas Phase PA, GBs of 1-Azaazulene and 1-
Azaazulenes Substituted with CPI and CPI-P Groups
(Figure 3) and Their pKa Values in MeCNa

superbase PA GB pKa
IPCM pKa

CPCM

1-azaazulene 239.5 231.9 18.3 17.6
8-Ac 272.9 265.3 26.6 28.8
6,8-Ac 282.8 276.1 30.0 32.1
4,6,8-Ac 290.7 284.1 32.4 34.1
8-Ap 296.5 291.2 b 38.1
6,8-Ap 313.1 308.7 b 45.5
4,6,8-Ap 319.2 316.9 b 47.5

aPA and GB values are given in kcal mol−1. bFor these molecules, it
was not possible to achieve convergence in IPCM calculation.
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azaazulen-2-yl)-methyl-amine and tris(1-azaazulen-2-yl)-amine
(in further text: bis-azaazulenyl and tris-azaazulenyl, respec-
tively) were employed as a molecular backbone for superbases
that contain two and three 1-azaazulenes, respectively. New
superbases with bis- and tris-azaazulenyl amines are substituted
with CPI and CPI-P, as schematically represented in Figure 5.
Calculated values of PAs, GBs, and pKa values in acetonitrile

for bis- and tris-azaazulenyl derivatives substituted with CPI
and CPIP-P are listed in Table 3. Superbases with two
azaazulene units (bis-azaazulenyls) containing cyclopropeni-
mino group (CPI) do not exhibit a significant increase in
basicity compared to superbases with one 1-azaazulene. For
example, isomers 4-Bc and 6-Bc with two CPI groups have
PAs of 284.9 and 282.3 kcal mol−1, respectively, similar to
disubstituted 1-azaazulene 6,8-Ac whose PA is 282.8 kcal
mol−1 (Table 2). However, the presence of two azaazulene
units in a molecule makes possible substitution with four CPI
groups (at positions 4 and 6 of each azaazulene) without steric
problems, which results in increased basicity for tetrasub-
stituted superbase 4,6-Bc, with a PA of 297 kcal mol−1 and pKa
in MeCN of 36.0 units.
Protonation of bis-azaazulenyl occurs at one of the two

present azaazulenes, each of them carrying its substituent(s).

In that arrangement, the electron-donating group(s) placed at
the second, not protonated azaazulene core, have a smaller
influence to the basicity of the system, compared to substituted
1-azaazulenes (Figure 3) where all the substituents are
attached to the same molecule of azaazulene, and the inductive
effect of substituents is more pronounced. Therefore, the
basicity of disubstituted bis-azaazulenyls, 4-Bc and 6-Bc, is
expected to be lower than that in disubstituted 1-azaazulene,
6,8-Ac. However, the reduction of an inductive effect that
adversely affects the basicity of bisazaazulenyls is compensated
by the presence of IHB in the protonated form of molecules 4-
Bc and 6-Bc. Although the most stable conformation of the
neutral form of bis-azaazulenyl derivatives corresponds to the
schematic presentation in Figure 5 (where repulsions between
lone electron pairs at nitrogen atoms in the five-membered
rings are avoided), the optimal conformer in the protonated
form possesses IHB that occurs after the rotation of one of the
azaazulenes around the C−N(sp3) bond, as shown in Scheme
4 for molecule 6-Bc.
The calculated enthalpy barrier for bond rotation shown in

Scheme 4 is low (2.0 kcal mol−1), implying that it occurs

Figure 4. Left: Schematic representation of superbase 6c-4,8-Ap (4,6-
dicyclopropenimine phosphazeno-6-cyclopropenimino-1-azaazulene).
Right: The optimized structure of the neutral form of the 6c-4,8-Ap.

Figure 5. Bis(1-azaazulen-2-yl)-methyl-amine and tris(1-azaazulen-2-yl)-amine substituted with cyclopropenimino (CPI) and cyclopropenimino
phosphazeno (CPI-P) group.

Table 3. Gas Phase PAs, GBs of Bis(1-azaazulen-2-yl)-
methyl-amines and Tris(1-azaazulen-2-yl)-amines
Substituted with Cyclopropenimino and
Cyclopropeniminophosphazeno Group, and Their pKa
Values in MeCNa

superbase PA GB pKa
CPCM

4-Bc 284.9 277.1 29.7
6-Bc 282.3 275.0 28.8
4,6-Bc 297.0 289.2 36.0
6-Tc 293.1 286.2 30.7
4,6-Tc 306.8 301.6 35.1
4-Bp 301.7 294.4 34.5
6-Bp 305.4 299.6 33.9
4,6-Bp 322.8 318.4 45.7
6-Tp 319.0 312.8 36.3
4,6-Tp 335.2 333.5 50.0

aPA and GB values given in kcal mol−1.
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spontaneously at 298 K. The difference in thermodynamic
stability between 6-BcH+(a) and 6-BcH+(b) is 7.5 kcal mol−1.
The conformer 6-BcH+(b) enables the formation of the
intramolecular H-bond between the hydrogen at N(1) and
nitrogen N(1′) of the neighboring azaazulenyl unit, which
stabilizes the protonated form of the superbase and has a
positive effect on its basicity. The length of this IHB in 6-
BcH+(b) is 1.82 Å, and its estimated strength is 6.3 kcal mol−1

(obtained utilizing AIM analysis and eq 7). The presence of
IHB represents the main contribution to the stability difference
between (a) and (b). In the less stable conformer 6-BcH+(a),
two hydrogen atoms, one at the N(1) and the other at the
C(3′), are placed at a distance of 2.17 Å, which is close to the
sum of van der Waals radii (2.4 Å), implying that the
interaction between them could be attractive. However, the
AIM analysis showed the absence of the BCP between these
two hydrogens. Tetrasubstituted bisazaazulenyl 4,6-BcH+

behaves similarly to 6-BcH+, with a stability difference between
conformers (a) and (b) of 7.4 kcal mol−1 and enthalpy barrier
for rotation of azaazulene of only 3.3 kcal mol−1. The length of
IHB in 4,6-BcH+(b) is 1.82 Å, and its strength is estimated to
be 6.0 kcal mol−1. In conformer 4,6-BcH+(a), the distance
between hydrogen atoms at N(1) and C(3′) is 2.12 Å, and
AIM analysis did not find a BCP between them.
For CPI-P substituted bis-azaazulenyls, the most stable

protonated conformers are those with an intramolecular H-
bond, analogous to CPI derivatives. The rotation of
azaazulenyl needed for the formation of this IHB occurs
spontaneously in protonated 4-Bp and 6-Bp because
calculations predict a negligible enthalpy barrier (1.8 kcal
mol−1 for 6-Bp). However, contrary to CPI-disubstituted bis-
azaazulenyls where the intramolecular H-bond in a protonated
form of the molecule compensates a less efficient inductive
effect of the substituent, disubstituted CPI-P bis-azaazulenyls
4-Bp and 6-Bp (PA = 301.7 and 305.9 kcal mol−1,

respectively) have lower basicity compared to analogous
disubstituted 1-azaazulene 6,8-Ap whose PA is 313.1 kcal
mol−1. Besides the less pronounced inductive effect of the
substituent placed at the second azaazulenyl unit, there is an
additional stabilization of the protonated 6,8-Apthe intra-
molecular H-bond between the proton and the nitrogen atom
of the substituentwhose strength is estimated to be 3.9 kcal
mol−1. Therefore, in protonated forms of 4-Bp and 6-Bp, the
stabilizing influence of IHB occurring in the more stable
rotamer is not high enough to overcome two stabilizing effects
that are present in protonated 6,8-Ap: the more efficient
inductive effect of two CPI-P placed at the same azaazulene
and intramolecular H-bond between the proton and the
nitrogen of the substituent. Finally, bisazaazulenyl substituted
with four CPI-P groups, 4,6-Bp, expectedly has very large
basicity, with a PA of over 322 kcal mol−1 and a pKa of 45.7.
Again, the rotation of one azaazulene unit is needed so that a
more stable conformer of the protonated superbase is achieved,
and the enthalpy barrier for this rotation is predicted to be only
1.2 kcal mol−1.
The trisazaazulenyl superbase, a molecule with three CPI

groups 6-Tc, whose PA is 293.1 kcal mol−1, is slightly more
basic than the analogous trisubstituted monoazaazulene 4,6,8-
Ac (PA = 290.7 kcal mol−1). Superbase 6-Tc in a protonated
state possesses one IHB; its calculated strength is estimated to
be 6.6 kcal mol−1. With a PA of 306.8 kcal mol−1 superbase
4,6-Tc containing six CPI groups (i.e., two substituents per
azaazulene unit) has the highest basicity among CPI-
substituted superbases studied in this work. In cyclo-
propeniminophosphazeno tris-azaazulenyls, trisubstituted
superbase, 6-Tp, is equally basic as its counterpart with one
azaazulene 4,6,8-Ap, whereas molecule 4,6-Tp containing six
CPI-P groups achieves an extremely high PA of even 335.2 kcal
mol−1. Similar to bis-azaazulenyls, in tris-azaazulenyls the most
stable conformation of a neutral molecule differs from the most
stable protonated conformer. We examined rotation barriers in
the conjugate acid, and it turns out that rotation occurs
spontaneously with activation enthalpies of 6.4 and 3.0 kcal
mol−1 for 6-Tc and 4,6-Tc, respectively. For CPI-P substituted
tris-azaazulenyls the values of energy barriers were estimated
from a scan, without exact localization of TS on PES, and their
approximate values are 1.0 and 4.0 kcal mol−1 for 6-Tp and
4,6-Tp, respectively.
Bis- and tris-azaazulenyls are systems where double

protonation is possible. Calculation of the second PAs in a
gas phase (PA(II)) for bis- and tris-azaazulenyls showed that
CPI-substituted systems studied here have a PA(II) lower than
245.3 kcal mol−1 (superbasicity criterion), except the molecule
4,6-Tc with a value of 249.6 kcal mol−1. For CPI-P substituted
systems, the criterion of superbasicity for the second
protonation is satisfied in molecules 4,6-Bp, 6-Tp, and 4,6-
Tp, and their PA(II) values are 262.3, 262.7, and 277.3 kcal
mol−1, respectively. For tris-azaazulenyls, even triple proto-
nation may occur. Calculated values of PA(III) for 6-Tp and
4,6-Tp are 213.0 and 247.7 kcal mol−1, respectively.
Finally, to evaluate the kinetic basicity of some of the novel

superbases presented in this work, we calculated the activation
free energy for the reaction of proton transfer between the
protonated and neutral form of the same superbase. Although
new superbases structurally do not correspond to typical
proton sponges, there are several possibilities for intra-
molecular H-bonds to be formed upon protonation; therefore,
it is of interest to explore how this feature affects the kinetics of

Scheme 4. Protonation of Bis-Azaazulenyl and Subsequent
Rotation of One Azaazulene Unit Around the C−N(sp3)
Bond, Enabling More Stable Conformation of the
Conjugate Acid
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proton release. For this analysis, we selected CPI-disubstituted
1-azaazulene and CPI-disubstituted bisazaazulenyl (superbases
6,8-Ac and 6-Bc). For the sake of comparison, the activation
free energy for the analogous reaction of the proton sponge
DMAN is also calculated. The activation free energy for the
proton exchange between the protonated and neutral form of
DMAN (Scheme 5) is 41.2 kcal mol−1. Such a high barrier
indicates that deprotonation of a conjugate acid is very slow,
which is in agreement with the observed slow kinetics of
proton sponges.21

Contrary to the proton sponge DMAN, the energy barrier
for the reaction of proton exchange between the protonated
and neutral superbase 6,8-Ac is very low, with calculated
activation free energy of 1.2 kcal mol−1. The analogous
reaction for molecule 6-Bc also occurs spontaneously, with a
calculated free energy barrier of 1.1 kcal mol−1. Figure 6 shows
optimized transition states for proton exchange between the
protonated and neutral form of the same molecule, for 6,8-Ac,
and 6-Bc.

For this reaction, the transition state that corresponds to
transfer of a proton from the protonated superbase to a neutral
one is localized at PES and connected with both the minima by
calculating the intrinsic reaction coordinate. The frequency of
imaginary vibration that corresponds to the proton transfer
between the protonated and neutral molecule is −1171.8 and
−1213.8 cm−1 for 6,8-Ac and 6-Bc, respectively (for
comparison, the frequency of the imaginary mode for proton
exchange in DMAN is −1169.4 cm−1). Such low activation
energy implies that the release of a proton in this type of
superbases occurs very easily.

4. CONCLUSIONS
Dimethylcyclopropenimino- and dimethylcyclopropenimino-
phosphazeno-based substituents that act as strong electron

donors were employed in the design of novel superbases using
one and combined two or three 1-azaazulenes as a core unit.
The maximum basicity of azaazulene-based compounds is
achieved when substituents are placed at positions 4, 6, and 8
of azaazulene, due to the most favorable distribution of
electron density that makes the nitrogen atom in the
azaazulene ring more negative and thus increases the basicity
of the molecule. In molecules based on one azaazulene unit,
substitution with CPI yields superbases with the calculated PA
in a range from 272.9 to 290.7 kcal mol−1 and pKa in MeCN
from 28.8 to 34.1 units. The presence of the same substituent
in compounds containing two azaazulenes as a scaffold resulted
in slightly stronger superbases with PA values from 282.3 to
297 kcal mol−1 and pKa in MeCN from 28.8 to 36, whereas the
strongest superbase with CPI is trisazaazulenyl containing six
cyclopropenimino groups (4,6-Tc) with a PA of almost 307
kcal mol−1. Although the expansion of a core unit that carries
electron-donating groups enables substitution with a larger
number of substituents and therefore leads to an increase in
basicity, this dependence is not linear. This is related to the
saturation of the substituent effect, but it is also a consequence
of the fact that the strongest electron-donating effect originates
from substituent(s) placed at the same azaazulene where
protonation occurs, whereas the rest of present groups placed
to the second and third azaazulenyls have a smaller influence
on the system. The important factor that increases the basicity
of bis- and tris-azazulenyl superbases is the IHB between the
proton and nitrogen atom that belongs to the neighboring
azaazulene that occurs in the protonated form of these
superbases, regardless of the substituent type. Substitution with
the CPI-P group expectedly resulted in a very high super-
basicity; for molecules with one azaazulene the PA was as high
as 319.2 kcal mol−1 and pKa in MeCN was estimated at 47.5
units. The most basic bisazaazulenyl with four CPI-P
substituents has a PA of 322.8 kcal mol−1 and pKa in MeCN
of 45.7, whereas the strongest superbase proposed in this work
is tris-azaazulenyl substituted with six cycloropeniminephos-
phazeno groups, 4,6-Tp, with a PA as high as 335.2 kcal mol−1

and a pKa of 50.
The investigation of reaction kinetics for the proton transfer

between the neutral and protonated form of the same molecule
(dicyclopropenimino-1-azaazulene, 6,8-Ac, and 6,6′-dicyclo-
propenimino bis(1-azaazulen-2-yl)-methyl-amine, 6-Bc) shows
that, unlike in proton sponges, the reaction of deprotonation
has a small activation energy, so their kinetic basicity is also
highnot only the protonation but also a release of the proton
from the protonated base occurs very easily, which makes them
suitable for reactions where fast proton exchange is needed.
Although some of the proposed compounds show

remarkable basicity, their possible application as deprotonating
agents in organic syntheses could be limited by their bulkiness
and size. However, unlike the small superbase, the bulky one
would be able to generate the “naked anion”, which is often
needed as an activation step during organic syntheses.
Given the presence of conjugated π electrons in azaazulene,

the further theoretical investigation of spectroscopic properties
of the designed molecules is planned to reveal whether the
protonation causes the change of UV/vis spectra, which would
lead to the application of these systems as pH sensors. Because
the paths for the synthesis of 1-azaazulene derivatives are
already known,28−31 and having in mind that both
dimethylamino-cyclopropemenimines16 as well as higher-
order cyclopropenimino superbases and cyclopropenimino-

Scheme 5. Proton Exchange between the Conjugate Acid
and Neutral Form of DMAN

Figure 6. Optimized structures of the transition state for proton
transfer between protonated to neutral 6,8-disubstituted 1-azaazulene
6,8-Ac (left) and 6,6′-disubstituted bis(1-azaazulen-2-yl)-methyl-
amine, 6-Bc (right).
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phosphazenes,17b can be efficiently synthesized, we believe that
new superbases should be recognized as targets for synthesis
and possible application.
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15738−15743. (b) Kögel, J. F.; Oelkers, B.; Kovac ̌evic,́ B.;
Sundermeyer, J. A new synthetic pathway to the second and third
generation of superbasic bisphosphazene proton sponges: the run for
the best chelating ligand for a proton. J. Am. Chem. Soc. 2013, 135,
17768−17774.
(22) (a) Howard, S. T.; Platts, J. A.; Alder, R. W. Ab Initio Studies of
Proton Sponges. 2: 1,6-Diazabicyclo[4.4.4]tetradecane. J. Org. Chem.
1995, 60, 6085−6090. (b) Howard, S. T.; Platts, J. A. Ab initio studies

of proton sponges. 4: calculating the strain energy. J. Org. Chem. 1998,
63, 3568−3571. (c) Llamas-Saiz, A. L.; Foces-Foces, C.; Elguero, J.
Proton sponges. J. Mol. Struct. 1994, 328, 297−323.
(23) (a) Pozharskii, A. F.; Ozeryanskii, V. A. Proton sponges. In The
Chemistry of Anilines; Rappoport, Z., Ed.; John Wiley & Sons:
Chichester, 2007; Part 2, Chapter 17, pp 931−1019. (b) Pozharskii,
A. F.; Degtyarev, A. V.; Ryabtsova, O. V.; Ozeryanskii, V. A.; Kletskii,
M. E.; Starikova, Z. A.; Sobczyk, L.; Filarowski, A. 2- α-Hydroxyalkyl-
and 2,7-Di(α- hydroxyalkyl)-1,8-bis(dimethylamino)naphthalenes:
Stabilization of Non-Conventional In/Out−Conformers of “Proton
Sponges” via N...H−O Intramolecular Hydrogen Bonding. A
Remarkable Kind of Tandem Nitrogen Inversion. J. Org. Chem.
2007, 72, 3006−3019. (c) Kostyanowskii, R. G.; Pozharskii, A. F.;
Kadorkina, G. K.; Nabiev, O. G.; Degtyarev, A. V.; Malyshev, O. R.
Spontaneous resolution of a chiral proton sponge.Mendeleev Commun.
2007, 17, 214−219.
(24) (a) Klisch, M.; Richter, P.; Puchta, R.; Had̈er, D.-P.; Bauer, W.
The Stereostructure of Porphyra-334: An Experimental and Calcula-
tional NMR Investigation. Evidence for an Efficient Proton Sponge.
Helv. Chim. Acta 2007, 90, 488−511. (b) Kostic,́ M. D.; Divac, V. M.;
Alzoubi, B. M.; Puchta, R. Aplicyanins − brominated natural marine
products with superbasic character. Z. Naturforschung B 2016, 71,
883−889.
(25) Bruns, H.; Patil, M.; Carreras, J.; Vaźquez, A.; Thiel, W.;
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