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We consider the generalized (10 + 10)-dimensional D = 4 quantum phase spaces containing translational 
and Lorentz spin sectors associated with the dual pair of twist-quantized Poincare Hopf algebra H and 
quantum Poincare Hopf group Ĝ. Two Hopf algebroid structures of generalized phase spaces with spin 
sector will be investigated: first one H(10,10) describing dynamics on quantum group algebra Ĝ provides 
by the Heisenberg double algebra HD =H � Ĝ, and second, denoted by H̃(10,10) , describing twisted 
Hopf algebroid with base space containing twisted noncommutative Minkowski space x̂μ. We obtain the 
first explicit example of Hopf algebroid structure of relativistic quantum phase space which contains 
quantum-deformed Lorentz spin sector.
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1. Introduction

Following recent description of noncommutative quantum
phase spaces as bialgebroids and Hopf algebroids (see [1–10]) we 
shall study in this paper such algebraic structures in quantum 
phase spaces derived from twisted quantum Poincare symmetries. 
In comparison with recent studies [5–10] the novelty in our ap-
proach is the appearance of Hopf algebroid description of D = 4
generalized relativistic quantum-deformed phase spaces with ad-
ditional coordinates and momenta describing Lorentz spin sector.

The quantum-deformed relativistic phase spaces H(4,4) , span-
ned by the degrees of freedom (x̂μ, p̂μ), are described by quantum 
deformations of canonical relativistic Heisenberg algebra1

[
pμ, xν

] = −iημν,
[
xμ, xν

] = [
pμ, pν

] = 0. (1)

Such choice of phase space is suitable only for the description of 
standard spinless dynamics. In this paper we shall consider the 
generalized D = 4 quantum phase spaces H(10,10) and H̃(10,10) . 
The additional generators �̂μν will be given by quantum coun-
terpart of six Lorentzian angles (�̂�̂T = �̂T �̂ = I) dual to the 
generators Mμν describing quantum-deformed Lorentz algebra.

* Corresponding author.
E-mail address: jerzy.lukierski@ift.uni.wroc.pl (J. Lukierski).

1 We denote the undeformed canonical phase space variables and canonical 
Poincare algebra generators by letters without hats.
https://doi.org/10.1016/j.physletb.2018.11.055
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SCOAP3.
The phase space description of spin dynamics as Heisenberg 
double has its roots in the half century old idea of Souriau [11]
and Kostant [12] who described symplectic dynamics of point-like 
objects by the geometry of cosets K =G/S , where G is the space–
time symmetry group, and S its so-called stability group. If G is 
the Poincare group P4, for providing the dynamics of spin de-
grees of freedom the coset K should include besides translations 
as well some Lorentz group parameters (see e.g. [13–17]). In such 
a way one can describe e.g. the infinite-dimensional spin multi-
plets by adding to coordinate sector the spinorial Weyl spinor co-
ordinates ηα, ηα̇ = η̄α(α = 1, 2) defined by fourdimensional coset 
of S L(2; C). In this way one can introduce the generalized wave 
functions (classical fields) �(x; ηα, ηα̇) obtained if S is a suitable 
two-dimensional subgroup of Lorentz group.2

The Souriau–Kostant approach as well as its generalization to 
Poisson manifolds [23], [24] and Poisson–Lie theory [25–27] can be 
also extended to models based on noncommutative (NC) geometry. 
The construction of quantum-deformed NC space–times extended 

2 It can be shown (see e.g. [18], [15]) that for D = 4 the generalized field 
ψ(x; η, ̄η) can be defined as introduced on 8-dimensional coset P4/H2, where H2

is generated by Lorentz generators (M01 + M31, M02 + M32) and SL(2; C)/H2 is 
parametrized by a pair (ηα, ̄ηα̇) of complex-conjugated D = 4 Weyl spinors. The 
idea of studying dynamics on 10-dimensional Poincare group manifold was early 
advocated by Lurcat [19], [14]. Other way of introducing additional variables de-
scribing spin is to supplement space–time by two-parameter auxiliary manifold 
described by the sphere S2 [20–22].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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by the additional quantum Lorentz group parameters has been re-
cently also proposed in the case of quantum-deformed Poincare 
group (see e.g. [28,29] where the case D = 2 + 1 was considered).

In this paper we shall study firstly the generalized quantum-
deformed phase space H(10,10) = (ξ̂μ, �̂μν; pμ, Mμν) with non-
commutative generalized coordinates described by the algebraic 
manifold of full quantum D = 4 Poincare group (i.e. S = 1), and 
supplemented with dual algebra of generalized momenta defined 
by ten generators of quantum-deformed Poincare algebra. The 
quantization will be obtained by the twisting procedure considered 
recently in [10] (see also [30]), which generate the Lie-algebraic 
deformation of space–time translations algebra and the quadratic 
algebra describing the commutators of all ten quantum Poincare 
group generators (ξ̂μ, �̂μν). Subsequently, following [1] we an-
ticipate the Hopf algebroid structure describing the dynamics on 
algebraic quantum Poincare group manifold.

Further, following [2], [9] we introduce (10 + 10)-dimensional 
quantum phase space H̃(10,10) = (x̂μ, �̃μν; pμ, Mμν) with Hopf 
algebroid structure generated by twist-deformed D = 4 Poincare–
Hopf algebra H, with base space described by H-module X̂ A =
(x̂μ, �̃μν), (A = 1 . . . 10), its noncommutativity structure deter-
mined by twist-deformed star product multiplication

X̂ A · X̂B � X A 	F XB = m[F−1 ◦ (X A ⊗ XB)]
= (F−1

(1) � X A)(F−1
(2) � XB) (2)

where the Drinfeld twist factor F = ∑
F(1) ⊗ F(2) ∈ H⊗H sat-

isfies the two-cocycle condition [2], [31]. In nondeformed rela-
tivistic theory one can identify the translations fourvectors ξ̂μ and 
Minkowski space–time coordinates x̂μ; in the presence of quantum 
deformations the algebraic properties of base spaces (ξ̂μ, �̂μν) and 
(x̂μ, �̃μν) are usually different.3

We shall consider therefore two possible types of Hopf alge-
broids describing quantum phase spaces which are defined by 
twist-quantized Hopf algebra H (quantum deformed Poincare al-
gebra) defining generalized momenta and generalized coordinates, 
given by two choices of the H-module:

i) described by Heisenberg double HD = H � Ĝ defined by 
smash product4 of dual Hopf algebras H, ̂G, with built-in Hopf 
action h � ĝ = ĝ(1)〈h, ̂g(2)〉 and h � (ĝ ĝ′) = (h(1) � ĝ)(h(2) �
ĝ′) (h ∈ H; ̂g, ̂g′ ∈ Ĝ; 
(h) = h(1) ⊗ h(2)). The associative mul-
tiplication formula in Ĝ⊗H algebra is given by

(ĝ ⊗ h)(ĝ′ ⊗ h′) = ĝ(h(1) � ĝ′) ⊗ h(2)h
′ (3)

where Ĝ describes generalized coordinates.
Heisenberg double data are specified by the pair of dual Hopf 
algebras (H, ̂G) with the pairing 〈·, ·〉 (see also footnote 4), 
which expresses the duality of H and Ĝ by the formulae

〈h, ĝ ĝ′ 〉 = 〈
(h), ĝ ⊗ ĝ′ 〉 (4)

〈hh′, ĝ 〉 = 〈h ⊗ h′,
(ĝ) 〉 . (5)

3 In the canonical case of θμν -deformation this difference is exposed e.g. in [30], 
[32].

4 Smash product algebra (see e.g. [33]) is a special kind of cross-product algebra 
H �V when the left H-module V is provided by dual Hopf algebra Ĝ, with the 
action H ⊗ Ĝ→Ĝ defined with the help of bilinear pairing 〈·, ·〉 : H ⊗ Ĝ→C. In 
the derivation of quantum-mechanical Heisenberg algebra (see (1)) as Heisenberg 
double the C-number pairing is assumed to be proportional to h̄; in this paper we 
shall put h̄ = 1.
Heisenberg doubles provide the associative algebras of quan-
tum phase spaces endowed with quantum-deformed NC sym-
plectic structure (see e.g. [27]), however without the Hopf-
algebraic coalgebra sector.5

ii) We introduce the twist-deformed coordinate sector described 
by X̂ A ∈ X̂, where X̂ is the H-module algebra, however not 
obtained from H via Hopf-algebraic duality.6 We shall at-
tach to the quantum phase space algebra H̃(10,10) = (x̂μ, �̃μν ;
pμ, Mμν) the coalgebraic sector and antipodes, which define 
the twisted Hopf algebroid structure (see [2], [9]). For twisted 
Hopf algebroid H̃(10,10) the base algebra (X̂, 	F ) is endowed 
with the multiplication defined by the star product (2), which 
describes the generalized NC coordinates X̂ A = (x̂μ, �̃μν), 
which will describe the Lie-algebraic type of noncommutativ-
ity.

The plan of our paper is the following: In Sect. 2 following 
[10] and [30] we shall describe the pair of dual twist-deformed 
Poincare–Hopf algebras H, ̂G. In Sect. 3 we shall introduce the gen-
eralized D = 4 quantum phase spaces H(10,10) containing space–
time translations generators ξ̂μ as well as H̃(10,10) with the quan-
tum Minkowski space–time coordinates x̂μ . In Sect. 4 by following 
Xu twisted bialgebroids framework [2] we will show how to get 
for the quantum phase space H̃(10,10) the explicit Hopf algebroid 
structure. In Sect. 5 we present final remarks and comments on 
possible extensions of presented results.

2. Dual pair of twisted Hopf algebras

2.1. Twist-deformed Poincare algebra H

The classical D = 4 Poincare–Hopf algebra looks as follows

[pμ, pν ] = 0 (6)

[Mμν, pρ ] = ηνρ pμ − ημρ pν (7)

[Mμν, Mρσ ] = ηνρ Mμσ − ημρ Mνσ − ηνσ Mμρ + ημσ Mνρ (8)

where ημν = diag(−1, 1, ..., 1) and


0(pμ) = pμ ⊗ 1 + 1 ⊗ pμ 
0(Mμν) = Mμν ⊗ 1 + 1 ⊗ Mμν

(9)

S0(pμ) = −pμ S0(Mμν) = −Mμν (10)

ε0(pμ) = 0 ε0(Mμν) = 0. (11)

We define twist F as an element of H ⊗ H (H =U(P)) which 
has an inverse, satisfies the cocycle condition

F12 (
0 ⊗ 1) F = F23 (1 ⊗ 
0) F (12)

and the normalization condition

(ε ⊗ 1)F = (1 ⊗ ε)F = 1 (13)

where F12 =F ⊗ 1 and F23 = 1 ⊗F . It is known, that F does not 
modify the algebraic part and the counit, but changes the coprod-
ucts and the antipodes in the following way

5 Partial coalgebraic structure can be introduced only separately in generalized 
coordinate and generalized momenta sectors, described respectively by dual Hopf 
algebras. If in quantum phase space we introduce the bialgebroid coproducts (see 
Sect. 4), the group coproducts are changed, but the partial coalgebraic structure in 
generalized momenta sector can be preserved.

6 In distinction to the action h � g , the action h � X A is described by a white 
triangle.
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F (h) = F ◦ 
0(h) ◦F−1 (14)

SF (h) = U S0(h) U−1 (15)

where due to (12) the coproduct 
F is coassociative, U =∑
f(1) S( f(2)) (we use Sweedler’s notation F = ∑

f(1) ⊗ f(2)). In 
such a way we obtain for any choice of the twist F the quasitri-
angular Hopf algebra.

Our family of Abelian twists is7

Fu := exp( fu)

= exp
(
(1 − u)

a · p

2κ
⊗ θαβ Mαβ − uθαβ Mαβ ⊗ a · p

2κ

)
= exp

(
1 − u

2
Kαβ ⊗ Mαβ − u

2
Mαβ ⊗Kαβ

) (16)

where a · p = aμημν pν . The parameter u ∈ [0, 1], κ is the deforma-
tion parameter with dimension of mass, a2 ≡ aμaμ ∈ {−1, 0, 1},

Kμν = a · p

κ
θμν (17)

and further

θμν = −θνμ, aμθμν = 0. (18)

From twists (16) one gets the coproducts


F (pμ) = pα ⊗ (e−uK)αμ + (e(1−u)K)αμ ⊗ pα (19)


F (Mμν) = Mαβ ⊗ (e−uK)αμ(e−uK)βν

+ (e(1−u)K)αμ(e(1−u)K)βν ⊗ Mαβ (20)

+ θαβ

2κ
(aμδ

γ
ν − aνδ

γ
μ)

[
(1 − u)pδ ⊗ Mαβ(e−uK)δγ

− uMαβ(e(1−u)K)δγ ⊗ pδ

]
where Kμν is given by equation (17), and corresponding antipodes 
are:

SF (pμ) = −(e−(1−2u)K)
α

μpα (21)

SF (Mμν) = −Mαβ(e−(1−2u)K)αμ(e−(1−2u)K)
β
ν (22)

+ 1

κ
(aμδα

ν − aνδα
μ)

[
S(pα) + (1 − 2u)θαβ S(pβ)

]
The counit is trivial:

ε(pμ) = 0, ε(Mμν) = 0. (23)

2.2. RTT matrix quantum Poincare group ̂G

The universal R-matrix ((a ∧ b = a ⊗ b − b ⊗ a))

R = F T
u F−1

u = exp[1

2
(Mαβ ∧Kαβ)] (a ⊗ b)T = b ⊗ a

(24)

can be used for the description of 10-generator deformed D = 4
Poincaré group. Using the 5 ×5 – matrix realization of the Poincaré 
generators

(Mμν)A
B = δA

μηνB − δA
νημB (Pμ)A

B = −iδA
μδ4

B (25)

7 See [30] and [10]; the twists corresponding to special cases u = 0 and u = 1
2

were considered also respectively in [35] and [36]. The twists (16) with different u
can be related by coboundary twist (see e.g. [34], Sect. 3.1) which does not modify 
the universal R-matrix.
we can show that in (24) only the linear term is non-vanishing

R = 1 ⊗ 1 + 1

2
(Mαβ ∧Kαβ). (26)

To find the matrix quantum group which is dual to our Hopf 
algebra H we introduce the following 5 × 5 – matrices

T̂AB =
(

�̂μν ξ̂μ
0 1

)
(27)

where �̂μν parametrizes the quantum Lorentz rotation and ξ̂μ
denotes quantum translations. In the framework of the FRT quanti-
zation procedure [37], the algebraic relations defining such a quan-
tum group Ĝ is described by the following relation

RT̂1T̂2 = T̂2T̂1R (28)

while the composition law for the coproduct remains classical


(T̂AB) = T̂AC ⊗ T̂ C
B (29)

with T̂1 = T̂ ⊗ 1, T̂2 = 1 ⊗ T̂ and quantum R-matrix given in the 
representation (25).

In terms of the operator basis (�̂μν, ̂ξμ) the algebraic relations 
(28) describing quantum group algebra can be written as follows[

ξ̂μ, ξ̂ν

]
= i

κ
(aνθ α

μ − aμθ α
ν )ξ̂α (30)

[ξ̂μ, �̂ρσ ] = i

κ

(
�̂ραθα

σ aγ �̂μγ − aμθ α
ρ �̂ασ

)
(31)

[�̂μν, �̂ρσ ] = 0 (32)

while the coproduct (29) takes the well known primitive forms


(�̂μν) = �̂μρ ⊗ �̂
ρ
ν 
(ξ̂μ) = �̂μν ⊗ ξ̂ ν + ξ̂μ ⊗ 1 . (33)

One can check that coproducts (33) are consistent with the com-
mutators (30)–(32).

2.3. Duality between quantum algebra H and quantum group ̂G

Two Hopf algebras H, ̂G are said to be dual if there exists a 
nondegenerate bilinear form

〈 , 〉 : H×Ĝ −→C (h, ĝ) −→ 〈h, ĝ 〉 (34)

such that the duality relations (4)–(5) are satisfied. One can check, 
using the following pairing relations

< pμ, ξ̂ν > = −iημν < Mμν, �̂αβ > = −(ημαηνβ − ηναημβ)

< 1, �̂μν > = ημν (35)

that we have in our case (h, h′ = {Mμν, pμ}; ĝ, ̂g′ = {�̂μν, ̂ξμ})
〈h, [ĝ, ĝ′] 〉 = 〈
(h), ĝ ⊗ ĝ′ − ĝ′ ⊗ ĝ 〉 (36)

〈[h,h′], ĝ〉 = 〈h ⊗ h′ − h′ ⊗ h,
(ĝ) 〉 . (37)

The basic action of H on Ĝ promoting Ĝ to the H-module is given 
by the relation

h � ĝ = ĝ(1)〈h, ĝ(2)〉 . (38)

After using (4) one gets the relation

h � (ĝ ĝ′) = ĝ ĝ′
(1)〈
h, ĝ(2) ⊗ ĝ′

(2)〉 = ĝ ĝ′
(1)〈h(1), ĝ(2)〉〈h(1), ĝ′

(2)〉
= (h(1) � ĝ)(h(2) � ĝ′) (39)

what establishes that algebra Ĝ is the H-module.
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3. Heisenberg double HD and generalized D = 4 quantum phase 
spaces

Using the formula (3), in Heisenberg double framework we can 
obtain cross commutators between the algebra H and group Ĝ by 
the following relation

[h, ĝ] = ĝ(2)〈h(1), ĝ(1) 〉h(2) − ĝh

h = {Mμν, pμ}; ĝ = {�̂μν, ξ̂μ}. (40)

Using pairing (35) and coproducts (19), (20) and (33) we get

[pμ, ξ̂ν ] = −i(e−uK)νμ + i(1 − u)
aν

κ
θμ

α pα (41)

[pμ, �̂ρσ ] = 0 (42)

[Mμν, �̂ρσ ] = u

κ
θ α
ρ �̂ασ (aμpν − aν pμ) (43)

+ �̂ασ (e−uK)α[μ(e−uK)ρν]

[Mμν, ξ̂ρ ] = ξ̂γ (euK)
γ

[μ (euK)ν]ρ + u

κ
θ α
ρ ξ̂α(aμpν − aν pμ)

+ i(u − 1)

2κ
θαβ Mαβa[μ(e−uK)ρυ]

+ i(u − 1)

κ
aρ M[μαθα

ν] (44)

One can show that the generators of quantum Poincare group 
algebra, satisfying relations (30)–(32), (41)–(44) can be expressed 
in terms of classical group parameters (ξμ, �ρσ ) as follows

ξ̂μ = ξα(e−uK) α
μ + (1 − u)

iaμ

2κ
θ M (45)

�̂ρσ = (e−uK) α
ρ �αβ(e

1
κ (p�a)θ )

β
σ . (46)

The group manifold Ĝ as H-module algebra can be promoted 
to the base algebra of Hopf algebroid. We get in such a way the 
application of Lu construction [1], which provides for Heisenberg 
double HD = H �Ĝ, with generators (ξ̂μ, �̂μν ; pμ, Mμν) the Hopf 
algebroid structure.8

Let us introduce in place of relations (31) the following set of 
parameter-dependent algebraic relations (s-real parameter)

[ξ̂ (s)
μ , �̂

(s)
ρσ ] = i

κ

(
s�̂(s)

ραθα
σ aγ �̂

(s)
μγ − aμθ α

ρ �̂
(s)
ασ

)
. (47)

One can show that the relation (47) forms together with relations 
(30), (32) the consistent algebra of associative generalized quan-
tum Poincare phase spaces, satisfying Jacobi relations. However, for 
ξ = 0 and ξ = 1 one can supplement the Hopf algebroid structure, 
namely

i) if s = 1 (ξ̂
(1)
μ ≡ ξ̂μ, �̂(1)

ρσ ≡ �̂ρσ ) one can construct the Hopf 
algebroid H(10,10) with base algebra Ĝ = (ξ̂μ, �̂μν) described 
by algebraic quantum Poincare group manifold.

ii) if s = 0 (ξ̂
(0)
μ ≡ x̂μ, �̂(0)

ρσ ≡ �̃ρσ ) one gets alternative Hopf alge-

broid, denoted by H̃(10,10) , with algebra X̂ =(x̂μ, �̃μν) as base 
algebra, with the multiplication given by the star product for-
mula (2). The formula (2) can be also written as follows

8 See [1], Sect. 5. The compact formula for the corresponding target map is un-
der consideration. We add that in [1] it was proved explicitly that the Heisenberg 
doubles of finite-dimensional Hopf algebras carry a Hopf algebroid structure. Our 
Hopf algebra H is infinite-dimensional, however filtered by finite-dimensional sub-
algebras HN , and the limit N → ∞ should be considered for delivering the rigorous 
proof.
f (X) 	F k(X ′) = f̂ (X) � k(X ′) (48)

where f̂ (X) denotes the noncommutative representation of 
f ( X̂) defined as follows

f ( X̂) � f̂ (X) = m[F−1(� ⊗1)( f (X) ⊗ 1)] (49)

where in formulae (48), (49) we use (see also (2))

h � X A = [h, X A], h = {pμ, Mμν}, X A = {xμ,�μν} (50)

and for Lorentz sector we obtain

[Mμν,�ρσ ] = ηρν�μσ − ηρμ�νσ . (51)

Substituting in (49) the twist (16) we get the following explicit 
formulas describing base algebra X̂ A = {x̂μ, �̃μν}

x̂μ = m[F−1(� ⊗1)(xμ ⊗ 1)] (52)

= xα(e−uK)μ
α + (1 − u)

iaμ

2κ
θ M

�̃ρσ = m[F−1(� ⊗1)(�ρσ ⊗ 1)] (53)

= (e−uK)ρ
α
�ασ

satisfying the following algebraic relations

[
x̂μ, x̂ν

] = i

κ
(aνθ α

μ − aμθ α
ν )x̂α (54)

[x̂μ, �̃ρσ ] = − i

κ
aμθ α

ρ �̃ασ (55)

[�̃μν, �̃ρσ ] = 0 . (56)

The generators �ρσ and Mμν satisfying the relation (51) de-
scribe the pair of undeformed dual variables in Lorentz sector, 
defined by the limit κ → ∞ of the formula (43).

4. Hopf algebroid structures

The Hopf algebroid is described by the data B(H, A; s, t; 
̃, S, ε)

where H is total algebra, A the base algebra, and bialgebroidal co-
products 
̃ are described by the maps H → H ⊗A H into (A, A)

bimodules H ⊗A H , which do not inherit the H algebra structure. 
The bimodule (A, A) property follows from the assumed existence 
of two maps:

i) source map s(a) : A → H (homomorphism),
ii) target maps t(a) : A → H (antihomomorphism),

where

[s(a), t(b)] = 0 a,b ∈ A s(a), t(b) ∈ H . (57)

The relation (57) permits to introduce the basic (A, A) bimodule 
formula, namely ahb = ht(a)s(b). Further, the algebra H ⊗A H can 
be defined as the quotient of H ⊗ H by left ideal IL generated by 
the following elements9

IL = s(a) ⊗ 1 − 1 ⊗ t(a) a ∈ A. (58)

The canonical choice s(a) = a of the source map leads to canonical 
form of (58)

Ic
L = a ⊗ 1 − 1 ⊗ tc(a) a ∈ A (59)

9 The use of left ideal (58)–(59) describes right bialgebroid H̃R . The elements of 
left bialgebroid H̃L are intertwined with H̃R by antipode map S .
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with the target map tc(a) determining the explicit form of coalge-
bra gauge freedom (see e.g. [7]). Further the canonical coproducts 
of the elements of base algebra A are chosen to be half-primitive 
(see e.g. [1,2])


̃(â) = â ⊗ 1 â ∈ A (60)

i.e. the coproducts (60) are homomorphic in trivial way to the al-
gebra structure of A.

In this paper we have two choices of algebra A: given by quan-
tum group algebra Ĝ, with quantum space–times translations ξ̂μ , 
and by generalized coordinates sector X̂ with quantum-deformed 
Minkowski space–time coordinates introduced as the module alge-
bra of twisted Poincare algebra. Below we shall consider in some 
detail the second choice.

If the quantum deformation is generated by twist, the bialge-
broid source and target map are described by the formulae anal-
ogous to relations (49) (see [2], [9]). For the choice (16) of twist 
factor one gets:

• source map

sF (x̂μ) = m[F−1(� ⊗1)(s0(xμ) ⊗ 1)] (61)

= xα(e−uK)μ
α + (1 − u)

iaμ

2κ
θ M ≡ x̂μ

sF (�̃ρσ ) = m[F−1(� ⊗1)(s0(�ρσ ) ⊗ 1)] (62)

= (e−uK)ρ
α
�ασ ≡ �̃ρσ

• target map

t(x̂μ) = m[(F−1)τ (� ⊗1)(t0(xμ) ⊗ 1)] (63)

= xα(e(1−u)K)μ
α − u

iaμ

2κ
θ M = x̂α(eK)μ

α − i
aμ

2κ
θ M

t(�̃ρσ ) = m[(F−1)τ (� ⊗1)(t0(�ρσ ) ⊗ 1)] (64)

= (e(1−u)K)ρ
α
�ασ = (eK)ρ

α
�̃ασ .

One can check that images of source and target maps commute 
as follows

[s( X̂ A), s( X̂B)] = C AB
C s( X̂C ) (65)

[t( X̂ A), t( X̂B)] = −C AB
C t( X̂C ) (66)

[s( X̂ A), t( X̂B)] = 0 (67)

where constant structures C AB
C describe the Lie algebraic struc-

ture of commutation relations (54)–(56). The coproducts of base 
algebra elements are given by relations (60), and the coalgebra 
of generalized momentum sector H is described by Hopf-algebraic 
formulae (14) and (19)–(20).

In the case of our twisted Hopf algebroid the canonical ideal 
(59) is the following

Ic
L(x̂μ) = x̂μ ⊗ 1 − 1 ⊗ (x̂α(eK)μ

α − i
aμ

2κ
θ M) (68)

Ic
L(�̃ρσ ) = �̃ρσ ⊗ 1 − 1 ⊗ (eK)ρ

α
�̃ασ (69)

with counits given by the canonical formula

ε( X̂ A) = m[F−1(� ⊗ 1)(ε0(X A) ⊗ 1)] = X̂ A (70)

and ε(h) = 0 and ε(1) = 1. The antipodes should satisfy the fol-
lowing relations
S(t( X̂ A)) = s( X̂ A) = X̂ A (71)

m[(1 ⊗ S) ◦ 
̃] = sε = ε (72)

m[(S ⊗ 1) ◦ 
̃] = tεS. (73)

Using (71) one gets explicit formulae for the antipodes

S (̂xμ) = (eK)μ
α

x̂α − i
aμ

2κ
θαβ Mαβ = t (̂xμ) (74)

S(�̃μν) = (eK)μ
α
�̃αν = t(�̃μν). (75)

In our case we have S2 = 1 and the anchor map is not needed (see 
[1–3]).

5. Final remarks

The Hopf algebras, which we define over commutative ring, 
can be generalized to Hopf-algebraic structures over noncommu-
tative ring A, what leads to the notion of Hopf algebroids. If the 
algebra sector of Hopf algebroid B is endowed with (pre)sym-
plectic structure, as it occurs in Heisenberg double construction 
presented here, we obtain various models of quantum-deformed 
phase space algebras. We presented in this paper two types of 
quantum-deformed phase spaces with Hopf algebroid structure: 
with coordinates described by quantum-deformed Poincare group 
algebra and with NC space–time coordinates generated by twist-
dependent star product formula (48).

Our considerations have been illustrated by explicit example of 
Drinfeld twist, but our considerations can be generalized to arbi-
trary Drinfeld twist case. It has been shown (see [3], Sect. 4) that 
there exists a generic construction of bialgebroid associated with 
FRT quantization method of quantum matrix groups, which also in 
general case provides the braid-commutative choice of base alge-
bras defining the Yetter–Drinfeld module [3].

Hopf algebroids are defined in their coalgebraic sectors by the 
coproducts 
̃ : H → H ⊗ H defined modulo the coproduct gauge 
freedom (see e.g. [7]; we stress that ⊗ denotes standard tensor 
product). It is an interesting problem to characterize the algebraic 
manifold C parametrizing the coproduct gauge transformations, 
and subsequently define the coproduct gauge-invariant quantum 
two-particle phase space as the factor algebra H ⊗ H/C which does 
not depend on the choice of coproduct gauge.

We add that HD construction and corresponding Hopf alge-
broid structures can be introduced also for infinite-dimensional 
affine algebras, which are linked with integrable many-body sys-
tems of Calogero type (e.g. Calogero–Moser [38,39] and Ruijse-
naars–Schneider [40,41] integrable hierarchies) as well as applied 
for dynamical quantum groups, described by parameter-dependent 
(dynamical) Yang–Baxter equations (see e.g. [42]). Other exten-
sion, which has as well the link with algebroid structures, is re-
lated with recent development in string models with applications 
of generalized geometries and T-duality covariance. Such general-
ized phase space dynamics formulated in the framework of string 
theories, related with double field theories, has been recently in-
vestigated under the name of metastring theories (see e.g. [43], 
[44]).
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