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Abstract

Two algorithms for calculating overlaps between CIS (or TDDFT) type excited state

wave functions are presented, one based on expansion of overlap determinants into level

2 minors (OL2M) and the other based on an expansion of the wave functions into nat-

ural transition orbitals (ONTO). Both are significantly faster than previously available

algorithms, with the ONTO algorithm reducing the cost of a single overlap element

calculation by a factor of the square of the number of occupied orbitals in the system,

resulting in orders of magnitude faster calculations for large systems and significantly

increasing the size of systems for which TDDFT based nonadiabatic dynamics simula-

tions can be performed. The OL2M algorithm is significantly slower for a single overlap

matrix element, but becomes preferred when overlaps between large numbers of states

are required. Additionally, we test the accuracy of approximate overlaps calculated

using truncated wave functions and show that truncation can lead to very large errors

in the overlaps. Lastly, we provide examples of applications for wave function overlaps

outside the context of nonadiabatic dynamics.
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1 Introduction

Overlaps between many-electron wave functions play an important role in photochemical

studies as they offer an intuitive and straightforward way to track the electronic character of

the states along different nuclear geometries. As such, they are often used for constructing

multi-state, multi-dimensional potential energy surfaces (PES) for quantum dynamics.1–15

In photoionization, the computation of transition dipole matrix elements using the Dyson

orbital approach requires the computation of overlaps between the initially excited state and

the final ionic bound states.16–21

Overlaps are also extensively used in the context of nonadiabatic dynamics simula-

tions. Initially, they were introduced as a means of approximating time-derivative couplings
〈

ΨA
∣∣∣ ∂∂t
∣∣∣ΨB

〉
(TDCs) in fewest-switches surface hopping (FSSH)22,23 calculations. This was

primarily done in situations when an analytic calculation of nonadiabatic coupling vectors

was not available or too expensive,23,24 and was shown to give results in agreement with

the analytic method.24,25 More recently, a number of methods,24,26–30 all employing wave

function overlaps, have been developed to address the trivial crossings problem in nonadia-

batic dynamics. This problem occurs at intersections between weakly coupled states, where

nonadiabatic couplings are highly peaked and the entire region where the coupling is sig-

nificant can be jumped over in a single time step. In such cases the dynamics proceed in

the same adiabatic state when a hop is supposed to occur for the system to remain in the

same diabatic state. These problems are more pronounced in large molecules or clusters

of molecules where couplings between states are more often vanishingly small due to the

spatial separation between the excitations for different states.27,31,32 Peaks in the couplings

can be avoided altogether by switching to a locally diabatic basis.26 When propagation in

the adiabatic representation is preferred, sudden changes in the electronic structure of the

adiabatic states (crossings between diabatic states) can be detected from the overlap matrix

elements and the trajectory can be forced to follow the correct diabatic state24,27–29 or the

overlap matrix can be interpolated while preserving the norm of the states30 which recovers
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the peak in the couplings at state crossings. These corrections allow larger time steps to be

used in dynamics calculations, significantly reducing their overall cost.

A major limitation of wave function overlap based approaches is their unfavourable scaling

with the size of the system. Full overlap calculations are always slower than the orbital

derivatives method for approximating TDCs33 and can become more expensive than the

analytic calculation of nonadiabatic coupling vectors (and the entire electronic structure

calculation) for larger systems. Since (at least approximate) overlaps are needed to treat

trivial crossings, speeding up the calculation of overlaps can significantly increase the size of

systems for which FSSH simulations can be reliably performed.

In this work, we present two highly efficient algorithms for calculating overlaps between

excited states which can be written using CIS type wave functions. This covers excited

states obtained by two electronic structure methods frequently used in FSSH calculations,

linear response time-dependent density functional theory (LR-TDDFT) and the algebraic

diagrammatic construction to second order (ADC(2)).34,35 For LR-TDDFT, the Casida den-

sity assignment ansatz36 is used to construct excited state auxiliary wave functions as a sum

of singly excited Slater determinants constructed from Kohn-Sham orbitals.37,38 For ADC(2)

and other correlated single reference methods, exact wave function overlaps are usually not

available, but approximate overlaps can be obtained if single excitations are assumed to be

the dominant contribution.39,40

Furthermore, we show how an overlap-based assignment procedure for following the char-

acter of the electronic states at different geometries27 can be used to simplify common tasks

in photochemical studies such as locating minima on excited state PES and assigning spec-

tra.
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2 Theory

2.1 Overview

We are interested in calculating the overlap matrix between a set of NA electronic states

{|ΨA〉} and NB states
{∣∣Ψ′

B

〉}
with elements

SAB =
〈
ΨA

∣∣Ψ′
B

〉
. (1)

In general, the only requirement is that the states have the same number of electrons of

each spin. Additionally, we limit our scope to states described by CIS type wave functions

|ΨA〉 =

{α,β}∑

σ

nσ∑

a

mσ∑

i

dAai,σ
∣∣Φi

a,σ

〉
(2)

∣∣Ψ′
B

〉
=

{α,β}∑

τ

nτ∑

b

m
′
τ∑

j

d′Bbj,τ
∣∣Φ′j

b,τ

〉
, (3)

where nσ and mσ are, respectively, the number of occupied and virtual orbitals of spin σ,
∣∣Φi

a,σ

〉
are Slater determinants (SDs) with a single excitation from canonical occupied orbital

a to virtual orbital i of spin σ with CI coefficients dAai,σ. Primes denote that the states in
{∣∣Ψ′

B

〉}
can differ from those in {|ΨA〉} in the CI coefficients, MO coefficients, molecular

geometry or basis set.

Before considering the overlaps of CIS wave functions, it is informative to consider the

overlap of two SDs. It can be shown that this is equal to the determinant of the matrix

of overlaps between the (HF or KS) orbitals composing the two SDs.41,42 Since overlaps for

orbitals of different spin vanish, this matrix is block diagonal which allows solving the α and

4
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β parts separately. The overlap of the two reference determinants is

〈
Φ0

∣∣Φ′
0

〉
=

∣∣∣∣∣∣∣∣∣∣

〈
φ1α

∣∣φ′
1α

〉
· · ·

〈
φ1α

∣∣φ′
nαα

〉

... . . . ...
〈
φnαα

∣∣φ′
1α

〉
· · ·

〈
φnαα

∣∣φ′
nαα

〉

∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣

〈
φ1β

∣∣φ′
1β

〉
· · ·

〈
φ1β

∣∣∣φ′
nββ

〉

... . . . ...
〈
φnββ

∣∣∣φ′
1β

〉
· · ·

〈
φnββ

∣∣∣φ′
nββ

〉

∣∣∣∣∣∣∣∣∣∣

=
〈
Φ0

∣∣Φ′
0

〉
α

〈
Φ0

∣∣Φ′
0

〉
β
, (4)

where we define
〈
Φ0

∣∣Φ′
0

〉
σ
as the determinant of the spin σ block of the overlap.

Inserting the CIS wave functions 2 and 3 into Eq. 1 we get

〈
ΨA

∣∣Ψ′
B

〉
=

{α,β}∑

σ

{α,β}∑

τ

nσ∑

a

nτ∑

b

mσ∑

i

m
′
τ∑

j

dAai,σd
′B
bj,τ

〈
Φi
a,σ

∣∣Φ′j
b,τ

〉
(5)

and after splitting the SD overlaps into blocks as in Eq. 4 and rearranging the sums

〈
ΨA

∣∣Ψ′
B

〉
=
〈
Φ0

∣∣Φ′
0

〉
β




nα∑

a

nα∑

b

mα∑

i

m
′
α∑

j

dAai,αd
′B
bj,α

〈
Φi
a

∣∣Φ′j
b

〉
α




+

(
nα∑

a

mα∑

i

dAai,α
〈
Φi
a

∣∣Φ′
0

〉
α

)


nβ∑

b

m
′
β∑

j

d′Bbj,β
〈
Φ0

∣∣Φ′j
b

〉
β




+

( nβ∑

a

mβ∑

i

dAai,β
〈
Φi
a

∣∣Φ′
0

〉
β

)


nα∑

b

m
′
α∑

j

d′Bbj,α
〈
Φ0

∣∣Φ′j
b

〉
α




+
〈
Φ0

∣∣Φ′
0

〉
α




nβ∑

a

nβ∑

b

mβ∑

i

m
′
β∑

j

dAai,βd
′B
bj,β

〈
Φi
a

∣∣Φ′j
b

〉
β


 . (6)

The above equation consists of eight blocks (four for each spin) which can be calculated

separately. The most expensive step is the calculation of n2
σmσm

′
σ determinants of the form

〈
Φi
a

∣∣Φ′j
b

〉
σ
. Since the calculation of a determinant is itself an O(n3

σ) calculation, the overall

scaling for this block is O(n5
σmσm

′
σ) and this quickly becomes the bottleneck of the entire

calculation. Apart from the determinant calculation, the double sums themselves can be a
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costly step since they have to be computed for each pair of states as the CI coefficients in

the sums are state dependent. The algorithm for calculating overlaps based on equation 6

will be denoted OCIS further in the text.

Plasser and coworkers42 obtained a significant speedup for MR-CIS expansions using a

single step Laplace’s recursive formula during the determinant calculations. Expanding the

determinants into minors along a column allows one to reuse the minors for all determinants

which are different from the starting determinant by only that column. Expanding
〈
Φi
a

∣∣Φ′j
b

〉
σ

along column j (and dropping the index σ for convenience) one arrives at

〈
Φi
a

∣∣Φ′j
b

〉
=

n∑

c 6=a
ocj(−1)c+b

〈
Φi
a,c

∣∣Φ′
b

〉
+ oij(−1)a+b

〈
Φa

∣∣Φ′
b

〉
, (7)

where oij denotes the overlap between molecular orbitals i and j. Here, none of the deter-

minants have a dependence on index j, meaning that the determinant calculations can be

taken out of the sum over m′ virtual orbitals (at a cost of an additional sum over n orbitals).

2.2 Computation of CIS wave function overlaps

In the following we describe two separate numerical procedures aiming to reduce the cost

of overlap matrix computations for CIS type wave functions. The first approach (denoted

OL2M) relies on level 2 minors obtained from Laplace’s recursive formula to further optimize

the overlap calculation based on Eq. 6, while the second approach (denoted ONTO) makes

use of the reduced number of determinants in the wave function expansions based on natural

transition orbitals (NTOs).43–45

In the OL2M approach, we continue from equation 7 and further expand the resulting
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minors along the row corresponding to orbital j

〈
Φi
a

∣∣Φ′j
b

〉
=

n∑

c 6=a

n∑

d6=b
ocjoid sgn(b− d) sgn(c− a)(−1)a+b+c+d

〈
Φa,c

∣∣Φ′
b,d

〉

+ oij(−1)a+b
〈
Φa

∣∣Φ′
b

〉
, (8)

where sgn(b−d) and sgn(c−a) are used because all indices beyond the removed row/column

in the level 1 minors are decreased by 1 from the indices in the original matrix. Interchanging

indices a and c or b and d doesn’t change the minors, so there are a total of 1
4
n2(n − 1)2

unique level 2 minors which need to be calculated. For CIS wave functions this fully takes

the determinant calculations out of the sums over virtual orbitals. The full determinants still

need to be calculated from the minors, which can be done efficiently using matrix-matrix

multiplications in O(n4m′ + n3mm′) operations and overlaps have to be calculated from the

determinants, which can be performed in O(n2m′mNB + n2m′NANB) operations. Either

the calculation of the minors, or the later steps can be the bottleneck of the calculation,

depending on the system size and number of states and basis functions.

The ONTO approach is based on the expansion of the CIS wave function in terms of

natural transition orbitals (NTOs)43–45

|ΨA〉 =

{α,β}∑

σ

nσ∑

k

λAk,σ

∣∣∣ΘA
k,σ

〉
(9)

|ΨB〉 =

{α,β}∑

τ

nσ∑

l

λBl,σ

∣∣∣ΘB
l,σ

〉
(10)

where
∣∣∣ΘA

k,σ

〉
are singly excited SDs with excitations from the kth occupied to kth virtual

natural orbital. In this form, the full wave function is a linear combination of only nα + nβ

Slater determinants. The natural orbitals are obtained by a singular value decomposition of

the CI coefficients matrix44 which can be performed in O(n2
σmσ) operations. Inserting into
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Eq. 1 we get

〈
ΨA

∣∣Ψ′
B

〉
=
〈

ΘA
0

∣∣∣Θ′B
0

〉
β

(
nα∑

k

nα∑

l

λAk,αλ
′B
l,α

〈
ΘA
k

∣∣∣Θ′B
l

〉
α

)

+

(
nα∑

k

λAk,α

〈
ΘA
k

∣∣∣Θ′B
0

〉
α

)( nβ∑

l

λ′Bl,β

〈
ΘA

0

∣∣∣Θ′B
l

〉
β

)

+

( nβ∑

k

λAk,β

〈
ΘA
k

∣∣∣Θ′B
0

〉
β

)(
nα∑

l

λ′Bl,α

〈
ΘA

0

∣∣∣Φ′B
k

〉
α

)

+
〈

ΘA
0

∣∣∣Θ′B
0

〉
α

( nβ∑

k

nβ∑

l

λAk,βλ
′B
l,β

〈
ΘA
k

∣∣∣Θ′B
l

〉
β

)
(11)

where only double sums over nσ remain, meaning only n2
σ determinants need to be calculated.

The drawback of using Equation 11 is that the NTOs are different for each state, which

means that the determinants cannot be reused when calculating overlaps between multiple

states. Because of this, the scaling of the entire overlap matrix calculation using the ONTO

algorithm is O(NANBn
5
σ). For typical calculations, NANB � n2

σ � mσm
′
σ and the ONTO

algorithm is expected to be significantly faster than the OL2M algorithm, which is expected

to be significantly faster than the OL1M and OCIS algorithms.

2.3 Wave function truncation

For most systems of interest it is possible to calculate overlaps using the ONTO algorithm

at virtually no cost compared to the electronic structure calculations. Still, it is possible to

further reduce the cost of the calculation by introducing a truncation of the wave functions.42

The expansion coefficients are sorted and the kt largest coefficients are kept

∣∣∣Ψ̃A

〉
=

kt∑

i

λAi

∣∣∣ΘA
i

〉
(12)
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so that the norm of the truncated wave function
∣∣∣Ψ̃A

〉
is larger than a selected threshold t

〈
Ψ̃A

∣∣∣Ψ̃A

〉
=

kt∑

i

(λAi )2 ≥ t (13)

Wave functions that are dominated by a small number of terms with large coefficients

will benefit most from this truncation scheme. This makes the NTO expansions ideal for

this type of approximation, as expansions of Eq. 9 and 10 are typically dominated by one

or two determinants. However, two problems with this approximation should be considered.

First, due to loss of norm upon truncation, the overlaps are systematically underestimated

unless the states are renormalized after the truncation (which can also be accomplished by

orthogonalization of the overlap matrix). This was shown to give very accurate overlaps in

initial tests.42 The renormalization introduces the possibility of overestimating the overlaps

by a maximum of 1 − t which is an acceptable (and expected) error. The second problem,

not addressed by renormalization, is that the maximum underestimation error is 2
√
t
√

1− t.

This can be simply illustrated with an overlap of two states dominated by the same two

excitations

|ΨA〉 =
√
t |Θ1〉+

√
1− t |Θ2〉 (14)

|ΨB〉 =
√
t |Θ2〉+

√
1− t |Θ1〉 (15)

The overlap of these two states is equal to 2
√
t
√

1− t when the full wave functions are

considered. If the states are truncated, only the dominant excitations are kept and the

overlap is 0. For t = 0.9, this produces an error of 0.6, and even for t = 0.99 the error is still

0.2. Particularly in the case of the NTO expansion (which is often dominated by one or two

excitations) the above example might be a realistic scenario which requires testing.
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3 Results and discussion

3.1 Performance

In this section we compare the performance the OL2M and ONTO algorithms with varying

size of the system, basis set and number of states included. Increasing the system size has

the most drastic effect on the calculation, as even the ONTO algorithm scales with the fifth

power of the number of occupied orbitals. Tests were performed for a series poly-alanine

peptides with 3 to 30 residues (62 to 575 occupied orbitals) employing two basis sets and

5 excited states (25 overlap matrix elements) included in the calculations. The number

of virtual orbitals grows from 196 to 1843 for the small basis set (def-SV(P)) and from

656 to 6083 for the large basis set (cc-pVTZ). Timings are shown in Figure 1a for overlap

matrix calculations performed on a single CPU core. In addition to results from the new

algorithms, we show results using the previously available algorithm based on level 1 minors

(OL1M algorithm).42 Both algorithms improve upon the OL1M algorithm, but the ONTO

algorithm also outperforms the OL2M algorithm by an order of magnitude even for the

smallest test case. The differences are more pronounced for larger systems. Going beyond

≈ 200 occupied orbitals, the OL2M algorithm quickly becomes too expensive while the

ONTO algorithm still takes only eight hours on a single processor at 575 occupied orbitals.

The curves for the two basis sets overlap for both algorithms, meaning that the benefits

of the new algorithms are largest for calculations with large basis sets. To further show the

effect of basis set size on the calculation cost, we performed calculations for the 5 Alanine

system with a wider range of basis sets (Fig. 1b). The ONTO algorithm still shows almost no

dependence on the basis set, as only the SVD decomposition to generate the NTOs (which

is less than 0.1 second for the largest basis set) depends on the number of virtual orbitals.

For the largest basis set with the ONTO algorithm more time is spent for reading the

input and calculating the atomic and molecular orbital overlaps than in the wave function

overlap calculation. The cost increase in the OL2M algorithm is also initially negligible.
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Figure 1: Comparison of the performance of the OL1M (red), OL2M (green) and ONTO
(blue) algorithms. (a) Scaling with the system size (number of residues) with 5 excited states.
Additional tests were performed on the 3 Alanine (b, d) and 5 Alanine (c, e) systems. (b)
3-Ala and (c) 5-Ala scaling with basis set size for 5 excited states going from the def-SV(P)
to the aug-cc-pVQZ basis set. (d) 3-Ala and (e) 5-Ala scaling with the number of states
included in the calculation.

11
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However, the cost of calculating the overlaps from the minors eventually becomes comparable

to the determinant calculations and scaling with the square of the number of virtual orbitals

emerges.

In a final set of tests, we look at the scaling of the two algorithms with the number of

states (Fig. 1d and 1e) where we see that the OL2M algorithm becomes preferable to the

NTO algorithm around 23(37) states for the 3(5) Alanine system. The dominant steps for

large systems in the OL2M and ONTO algorithms are O(n7) and O(n5NANB), respectively.

Because of this, the OL2M algorithm becomes preferred over the ONTO algorithm when

NANB/n
2 > c, where c is some implementation dependent constant (c ≈ 1

6
in our current

approximation). A small increase in the cost of the OL2M algorithm is visible for the larger

basis, again due to the O(n2m′mNB) part becoming relevant.

3.2 Truncation

The truncation scheme was tested for a range of different nuclear geometries along a FSSH

trajectory by repeating overlap calculations using different values of the t truncation thresh-

old parameter. One TDDFT(B3LYP)/def2-TZVPD and one ADC(2)/aug-cc-pVDZ trajec-

tory was randomly selected from a previously reported set of FSSH dynamics simulations

of the pyrrole molecule excited to B2(ππ
?) state.40 All electronic structure calculations were

performed using the Turbomole program package.46–48 In both cases, ten excited electronic

states were included in the calculations and trajectories were propagated for 250 fs with a

time step of 0.5 fs for a total of 50000 overlap matrix elements between excited states. The

basis set for the TDDFT calculations included 18 occupied and 212 virtual orbitals, while

the basis set for the ADC(2) calculation included 13 occupied (the five core orbitals were

frozen) and 142 virtual orbitals. The total number of determinants computed along the

trajectory is shown in Figure 2. The efficiency of the truncation scheme is determined by

the number of excitations with significant coefficients in the wave function expansion. In

the TDDFT calculations, the auxilliary wave functions, written in terms of excitations from
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Kohn-Sham orbitals, are dominated by only a few excitations. Because of this, for small

values of t the possibility of reusing determinants for multiple states in the OCIS algorithm

slightly outweighs the compactness of the wave functions in the ONTO algorithm. However,

as the threshold is increased above t = 0.98, the cost of the OCIS algorithm quickly overtakes

the ONTO algorithm. In the ADC(2) calculation, a larger number of singly excited determi-

nants has significant contributions and the ONTO algorithm requires less determinants for

t = 0.99 than the OCIS algorithm for t = 0.9. In both cases, the number of determinants

calculated along the trajectory is lower with the ONTO algorithm by more than two orders

of magnitude for higher values of t. For larger systems or smaller numbers of states, these

differences will be even more pronounced in favour of the ONTO algorithm.
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Figure 2: Comparison of the total number of determinants computed along a (a)
TDDFT(B3LYP)/def2-TZVPD and (b) ADC(2)/aug-cc-pVDZ (b) FSSH trajectory of pyr-
role for different values of the CI vector truncation threshold t using the ONTO algorithm
(blue squares) and OCIS algorithm (red circles).

The errors introduced by the truncation are shown in Figure 3. All overlap matrix ele-

ments were compared to the corresponding elements calculated using the full wave functions.

The mean error of the approximation scheme is small for both the OCIS and ONTO algo-

rithm and is reduced further by orthogonalization of the overlap matrix. However, the more
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relevant information for FSSH calculations is the maximum error, since a large error in a

single matrix element can cause an unphysical hop which affects the remainder of the tra-

jectory. Here, both algorithms perform much worse. In the case of the TDDFT trajectory,

both the CIS and NTO expansions are usually dominated by a few determinants and the

maximum errors are approximately the same with both algorithms. ADC(2) wave functions

usually have contributions from a larger number of excitations. Still, the maximum errors of

the OCIS algorithm are only slightly smaller than these of the ONTO algorithm. Orthogo-

nalization has almost no effect on the maximum errors since they are not caused by the loss

of norm of the wave functions. In any case, it should be assumed that, at least for TDDFT

and ADC(2) wave functions, errors of the order 2
√

1− t are possible with this approximation

scheme and it should be avoided or used with the largest possible values of the truncation

threshold when quantitative results are required. These results also call into question the

approximate overlaps used for CC2/ADC(2) calculations. Calculation of exact overlaps with

these methods is not feasible even for small systems and only their singles amplitudes are

taken to construct a formal CIS wave function.39 Along the tested trajectory, the mean norm

of the (neglected) doubles amplitudes is 0.076, meaning overlaps can be underestimated by

as much as 0.530 even before any other approximations.
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Figure 3: Mean (a, c) and maximum (b, d) errors for overlap elements computed with differ-
ent threshold values along a (a, b) TDDFT(B3LYP)/def2-TZVPD and (c, d) ADC(2)/aug-
cc-pVDZ FSSH trajectory using the ONTO algorithm (blue squares) and OCIS algorithm
(red circles). Errors for the raw overlap matrix elements (full lines) and errors after orthog-
onalization (dashed lines) and the maximum error expected for the approximation scheme
(black line) are shown.
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3.3 Applications

When considering excited electronic states, it is often more useful to think in terms of the

electronic character of the states (diabatic states) rather than their ordering at a particu-

lar nuclear geometry (adiabatic states). However, only adiabatic states are obtained from

electronic structure calculations and mapping these states at different geometries to some

diabatic states defined by their electronic character is often needed in photochemical stud-

ies. This can be accomplished in a straightforward way by defining the diabatic states at a

reference geometry and solving the assignment problem for the overlap matrix between the

adiabatic states27,49 at the reference geometry and other geometries. In this section, we show

an example of how this mapping can be used to simplify some common tasks encountered

in photochemical studies. For the case study, we selected pyrrole, one of the best studied

photochemical systems.40,50–57

We start with a decomposition of an absorption spectrum simulated using the nuclear-

ensemble method58–60 into contributions by state. The absorption spectrum was calculated

using a set of 8000 geometries sampled from the thermal harmonic oscillator Wigner distri-

bution for the ground state minimum of pyrrole. The absorption spectrum is built using ex-

citation energies and oscillator strengths calculated at these geometries at the B3LYP/def2-

TZVPD level. This method was used previously for simulating the first absorption band of

pyrrole and was shown to be in qualitative agreement with the experimental spectrum.40,60

The intense and very narrow peak at 5.85 eV assigned to the B1(3py) state, however, is

not reproduced at with this method. To decompose the spectrum, adiabatic states at the

ground state minimum geometry were labeled according to their electronic character and

the states at all other geometries were assigned based on their overlaps with the reference

states (Fig. 4). From this, we can confirm that the main contribution to the first band in the

spectrum of pyrrole is from the B2(ππ
?) state which also has the largest oscillator strength.

However, we also see significant contributions to the spectrum, especially at lower energies,

from states with primarily B1(πσ
?), A2(3pz) or B1(3py) character which have negligible os-
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cillator strengths at the ground state minimum geometry. Looking at these states at other

geometries (Fig. 4b and 4c), it can be seen that their oscillator strengths are proportional

to their overlaps with the Bvert
2 (ππ?) state at the ground state minimum geometry (where

it is the S5 state), indicating that their contributions to the spectrum are due to their mix-

ing with the bright B2(ππ
?) state. This qualitative analysis agrees well with the spectrum

of pyrrole calculated from wavepacket propagations using MCTDH which have shown that

intensity borrowing from the B2(ππ
?) to the lower-lying states plays a significant role.56

Figure 4: (a) Spectrum of pyrrole computed using the nuclear ensemble method and de-
composed into contributions by state based on overlaps with the reference states defined
at the ground state minimum geometry. Evidence of intensity borrowing from the B2(ππ

?)
to the (b) A2(3pz) and (c) B1(3py) states can be seen by examining the dependence of the
oscillator strength of those states to their overlaps with the B2(ππ

?) state at the ground
state minimum geometry.

Next, we focus on the geometry optimization of the bright B2(ππ
?) state (Fig 5). To

locate the B2(ππ
?) minimum, we start the optimization from the S5 state at the ground

state minimum geometry and, at each subsequent step, we continue the optimization on

the adiabatic state which is characterized as the B2(ππ
?) state at the current geometry (i.e.

mapped to the S5 state at the initial geometry), based on the overlap matrix assignment.
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In this way, when a conical intersection is reached during optimization, the optimization

continues on the target state, unlike the standard adiabatic state geometry optimization,

which usually reaches the first CI and fails to converge. In the present example, three

such conical intersections (with the B1(πσ
?), B1(3py) and A2(3pz) states) are crossed and

the algorithm converges to a minimum where B2(ππ
?) is the S2 adiabatic state. From the

dominant NTO pairs of the target state along the optimization path (Fig. 5c), it is obvious

that the electronic character of the state remained unchanged during optimization. The

B2(ππ
?) minimum, reported previously,40,61 is non-planar with the N atom and H atoms out

of plane in opposite directions. Relaxation towards this minimum is the initial step of the

main deactivation pathway of pyrrole upon excitation at ≈ 200 nm.40

a

c

Step 0 Step 2 Step 6 Step 16 Minimum

B2(πσ*) minimum
energy structure

b

Figure 5: (a) Optimization of the B2(ππ
?) state of pyrrole at the B3LYP/def2-TZVPD level

of theory with three CI crossings occurring during the first 20 steps. (b) The converged
minimum energy structure. (c) The dominant natural transition orbital pairs for the target
state along the optimization path (at points marked by light blue squares)

The presented algorithm can simplify initial explorations of potential energy surfaces as

18
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it gives a rough guess of the motion along the initially populated diabatic state. It gives

the location of the minimum, but also approximate CI structures which can be optimized

to locate minimum energy CIs or used as starting points for optimizations of other diabatic

states. These physically relevant geometries can provide insight into the PES, but can also

be used to assess the applicability of the chosen electronic structure method as vertical

excitation energies are not an adequate indicator of the quality of the results with a given

method. Let us mention, however, that the algorithm can fail to converge if there is heavy

mixing between adiabatic states in a wide PES region making the one to one assignment

between states at different geometries meaningless. Also, when the reference states are fixed

at the initial geometry, the overlaps systematically become smaller as the geometry moves

further from the initial guess. This is mostly recovered by orthogonalization of the overlap

matrix since all overlaps are affected by the translation of the basis set in the same way,

but changes to the algorithm would be required for large displacements from the initial

geometry.

4 Conclusion

A code for calculating overlap matrices between CIS type wave functions has been developed

using two very efficient new algorithms, OL2M and ONTO, based on, respectively, a two

step Laplace’s recursive formula and expansion of the wave functions into natural transition

orbitals. Overall, the ONTO algorithm allows us to calculate the overlap matrix elements

without any approximations for all systems typically investigated using FSSH approaches

with the LR-TDDFT or ADC(2) methods, shifting the bottleneck of such calculations back

to the electronic structure method without making any approximations to the overlaps. For

specific situations where one might need a very large number of states in the calculation, the

L2M algorithm is preferred. Additionally, we show how even seemingly small approximations

to the wave function can result in large errors in the calculated overlaps, which further

19
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demonstrates the need for efficient calculations of exact wave function overlaps. The code is

parallelized and has been interfaced to the Turbomole program package, but can easily be

interfaced to any electronic structure program.

Nonadiabatic dynamics simulations are the most common use of wave function overlaps.

However, there are many possible applications and extensions of the present algorithms. Us-

ing pyrrole as an illustrative example, we show the utility of the overlap calculation for the

assignment of UV absorption spectra obtained by sampling over a large number of nuclear ge-

ometries or for following the electronic character of a state along a path in nuclear coordinate

space. Other applications include comparison of results obtained with different electronic

structure methods or basis sets,42 or calculation of Dyson orbitals for the simulation of time

resolved photoelectron spectra.19 Further work is in progress along these lines.
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