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1 Introduction

In September 2017 the LHCb collaboration announced the first measurement of testing the

lepton flavor universality using charmed-beauty meson semileptonic decays to J/ψτ+νµ and

J/ψµ+νµ [1]. The result for the measurement of the ratio of the branching fractions is

RJ/ψ|exp =
BR(B+

c → J/ψτ+ντ )

BR(B+
c → J/ψµ+νµ)

= 0.71± 0.17± 0.18, (1.1)

and is more than 2σ away from the Standard model (SM) prediction. Currently there are

many model dependent calculations of RJ/ψ [2–16] within the SM and they give the results

in the range (without including model uncertainties)

RJ/ψ|SM = 0.24− 0.30. (1.2)

However, the RJ/ψ measurement is challenging. Due to the presence of invisible ν’s, both

decays are observed only through 3 muons, two of them coming from J/ψ decays and being

perfectly identified. The third muon makes a difference and enables distinguishing the

semileptonic Bc decays to τ and to µ from the background. Therefore it is still premature

to speak about the new physics effects in these decays, although one can consider this

probability having in mind that BABAR, Belle and LHCb have also found other intriguing
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anomalies in the semileptonic decays of B mesons, known as RD and RD∗ [17–20]. These

experimental collaborations have revealed a significant deviation of 2.3σ, and 3.5σ of the

ratios RD and RD∗ from the SM predictions. Also some deviations in b → s semileptonic

decays are still present [21].

Moreover, calculations of these semileptonic heavy-meson decays involve theoretical

uncertainties coming from imprecise determination of the hadronic transition form factors

describing the hadronic effect in the transition from the initial to the final meson state.

The calculation of Bc form factors are difficult and leads to big uncertainties. If we

summarize values of Bc into S-wave charmonia form factors at q2 = 0 calculated in different

models (perturbative QCD (pQCD) [2], three-point QCD sum rules (3ptQCDSR) [3–6],

light cone sum rules (LCSR) [7], relativistic quark model (RQM) [8–11], nonrelativistic

quark models (NRQM) [12, 13], light-font quark model (LFQM) [14], constituent quark

model (CQM)) [15], relativistic quark model (RCQM) [16]) in the literature we obtain:

f+(0) = f0(0) = 0.20− 1.43, (1.3)

for Bc → ηc form factors, and

V (0) = 0.17− 1.63,

A1(0) = 0.21− 1.19,

A2(0) = 0.23− 1.27,

A0(0) = 0.12− 1.09, (1.4)

for Bc → J/ψ form factors. It is obvious that with such a large range of estimated form

factors it is impossible to make any reliable prediction for Rηc and RJ/ψ ratios. Moreover,

in many estimations of form factors, the theoretical errors were not given or they are not

under control. Although some of the uncertainties cancel in the ratio, the model predictions

of RJ/ψ calculated in different approaches and taking the theoretical uncertainties into

account vary in a huge range [22–27]

RJ/ψ|SM = 0.17− 0.41. (1.5)

The lattice QCD calculation for Bc → J/ψ form factors V (q2) and A1(q2) are available

now from the preliminary results of the HPQCD collaboration, at several points for V (q2)

and A1(q2) [28]. Earlier, the same collaboration has also produced results for Bc → ηc
form factors, which were reported on in the same proceedings.

In this paper we will address the calculation of the form factors for Bc → S-wave

charmonia in the full q2 range using the LCSR-inspired approach. The LCSR method was

proven to be a reliable method for calculating transition form factors of many heavy-to light

decays, such as B(s), D(s) → π, ρ,K,K∗, η, η′ [29–33] and even for Λb → Λc decays [34, 35].

We will compare our results with the existing QCD lattice points for f+(q2) and f0(q2)

from Bc → ηc and V (q2) and A1(q2) from Bc → J/ψ and will show the nice agreement,

specially having in mind that the lattice results are still preliminary and do not include

systematical errors. Following [24, 25] we have assigned 20% uncertainty to the lattice

QCD results.
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We also cite the results of our recent calculation derived by using the 3ptQCDSR

method [4–6]1 and show that the form factors from two sum rule approaches, although

calculated by using different quark-hadron duality assumptions, appear to be consistent

and precise enough to enable precise determination of the ratios Rηc and RJ/ψ in the SM.

Recently, there also appeared a model-independent estimation of the SM bounds on Rηc
and RJ/ψ [24–26]. Such analysis rely on the data, available lattice results and the heavy-

quark spin-symmetry (HQSS) relations for the form factors at the zero recoil and predict

the R-ratios consistent with eq. (1.2) and our calculation, clearly at 2σ discrepancy with

the experiment. The HQSS and nonrelativistic QCD (NRQCD) relations used in these

approaches will be carefully examined in section 2.2.1.

The possible new physics (NP) effects in the semileptonic Bc → ηc(J/ψ)`ν` decays

have been recently considered in the context of either specific models, such as the lepto-

quark models [36], left-right symmetric models, R-parity violating supersymmetric models,

etc. [37–39] or in a model independent approach based on the most general effective Hamil-

tonian [22, 23, 27, 40–42]. To account for possible NP effects in Bc → ηc and Bc → J/ψ

semileptonic decays we consider here the effective Hamiltonian approach consisting of all

possible four-Fermi operators. The constraints on contributions of these NP operators

and the corresponding Wilson coefficients are obtained from the experimental results of

RD, RD∗ , polarizations of τ and D∗ in B → D(∗)lν decays, as well as on the Bc life-

time. There are various studies [43–48] performing a global fit on these NP operators

considering the presence of only one or two NP operators simultaneously. We have taken

the latest constraints on the Wilson coefficients from ref. [45] and analysed the effects of

these NP operators on various observables such as the ratio of the branching fractions, the

forward-backward asymmetry, the convexity parameter and the longitudinal as well as the

transverse polarization components of τ in the final state. We have also preformed the first

study of the full 4-fold differential decay rate Bc → J/ψ (J/ψ → µ+µ−, e+e−)lνl, where

the leptons from the J/ψ decay are of opposite helicities. The 4-fold decay distribution in

this case is proportional to three angles and the momentum transfer q2. The three distinct

angles give the freedom to construct additional asymmetries sensitive to the real as well as

the imaginary part of the new physics couplings.

The structure of the paper is as follows. We compute the form-factors in the context

of our sum rule model in section 2 and present the results in the whole q2 range. We

compare the results with those existing in the literature and with available preliminary

lattice results. The discussion of the heavy-quark symmetry limit of form factors at the

zero recoil is given in section 2.2.1. The general effective Hamiltonian of the b → c`ν`
transition is introduced in section 3, and we obtain the semileptonic decay distributions for

Bc → ηc, J/ψ in the presence of NP operators using the helicity technique. We compare

predictions for different physical observables in the SM and in the presence of NP. A

detailed comparison of predictions of Rηc,J/ψ in the SM, with the form factors calculated

in our model, with the predictions from other approaches is also provided. In section 4,

we extend the calculation of Bc → J/ψlνl to the J/ψ decay into a pair of muons or

1A very brief discussion on the 3ptQCDSR calculation is provided in appendix A.
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electrons, and discuss the full 4-fold distribution. A set of new observables is considered

and the results are compared for the SM case and beyond. Finally we conclude in the last

section, section 5.

2 Sum rule calculations for the form factors

We will perform the estimation of the Bc → ηc and Bc → J/ψ form factors using the LCSR-

inspired method. We will follow the standard QCD sum rule method, by interpolating the

Bc meson with an appropriate quark current and describing the S-wave charmonia by the

distribution amplitudes (DAs) of increasing twist.

The method of LCSR is very well know and we will just briefly outline the procedure

here in order to properly define all ingredients necessary for calculating the form factors. In

the calculation we will use the following approximations: the twist-2 light-cone distribution

amplitudes will be calculated in the NRQCD model [49], and the Gegenbauer polynomials

expanded at the scale µ. The twist-3 and twist-4 DAs will be taken in their asymptotic form.

Moreover, the Wandzura-Wilczek approximation will be applied, where the three-particle

DA are neglected and therefore the twist-3 and twist-4 DAs are expressed in terms of the

twist-2 distributions. The effects of the final state masses, mηc and mJ/ψ are included [50].

The calculation of the form factors for Bc → ηc proceeds in a similar way as those for

B → π,K. [30, 32, 33, 51–54], while Bc → J/ψ form factor calculation closely follows the

derivation of the form factors of B → K∗ [31, 50, 53, 55, 56]. We have checked that with

appropriate changes in the expressions, all our results agree with previous calculations.

2.1 Definitions

The form factors of the Bc → ηc decay are defined as

〈ηc(p)|c̄γµb|Bc(pBc)〉 =

[
(p+ pBc)µ −

m2
Bc
−m2

ηc

q2
qµ

]
f+(q2) +

[
m2
Bc
−m2

ηc

q2
qµ

]
f0(q2) ,

〈ηc(p)|c̄σµνqνb|Bc(pBc) =
i

mBc +mηc

[
q2(p+ pBc)µ − (m2

Bc −m2
ηc)qµ

]
fT (q2) , (2.1)

where f+(0) = f0(0) and 0 ≤ q2 ≤ (mBc − mηc)
2. The scalar form factor f0(q2) follows

also from the conservation of the vector current as

〈0|c̄b|Bc(pBc)〉 =
m2
Bc
−m2

ηc

mb(µ)−mc(µ)
f0(q2). (2.2)

The decay Bc → J/ψ`+νl is described by the following form factors defined as [31]

〈J/ψ(p, ε)|c̄γµ(1− γ5)b|Bc(pBc)〉 = −iε∗µ(mBc +mJ/ψ)A1(q2)

+ i(pBc + p)µ(ε∗ · q) A2(q2)

mBc +mJ/ψ

+ iqµ(ε∗ · q)
2mJ/ψ

q2

(
A3(q2)−A0(q2)

)
+ εµνρσε

∗νpρBcp
σ 2V (q2)

mBc +mJ/ψ
, (2.3)
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where ε is the polarization vector of the J/ψ meson, q = pBc − p is the momentum transfer

varying in the range 0 ≤ q2 ≤ (mBc −mJ/ψ)2 and

A3(q2) =
mBc +mJ/ψ

2mJ/ψ
A1(q2)−

mBc −mJ/ψ

2mJ/ψ
A2(q2) , (2.4)

satisfying the relation

A3(0) = A0(0). (2.5)

The form factor A0 is the pseudoscalar form factor which can also be defined by applying

the equation of motion to the derivative of the axial current:

〈J/ψ|c̄iγ5b|Bc〉 =
2mJ/ψ

(mb(µ) +mc(µ))
(ε∗ · q)A0(q2) (2.6)

and, as it can be seen below, contributes to the Bc → J/ψlν decay only if the lepton in

the decay is considered to have a non-vanishing mass, which will be case for the τ particle.

The tensor form factors are usually defined as

〈J/ψ(p, ε)|c̄σµνqν(1 + γ5)b|B(pBc)〉 = 2iεµνρσε
∗νpρBcp

σ T1(q2) (2.7)

+ T2(q2)
[
ε∗µ(m2

Bc −m2
J/ψ)− (ε∗ · q) (pBc + p)µ

]
+ T3(q2)(ε∗ · q)

[
qµ −

q2

m2
Bc
−m2

J/ψ

(pBc + p)µ

]
,

and

T1(0) = T2(0). (2.8)

However, as discussed in [31, 50], in the standard QCD sum rule one has to consider the off-

shell pBc momentum (p2
Bc
6= mBc) and in order to avoid any ambiguity in the interpretation

of p2
Bc

appearing at different steps of calculation it is more appropriate to use the following

matrix element as a definition of the tensor form factors;

〈J/ψ(p, ε)|c̄σµνγ5b|B(pBc)〉 = A(q2)
{
ε∗µ(pBc + p)ν − (pBc + p)µε

∗
ν

}
−B(q2)

{
ε∗µqν − qµε∗ν

}
− 2C(q2)

ε∗ · q
m2
Bc
−m2

J/ψ

{pµqν − qµpν} , (2.9)

where A(q2), B(q2) and C(q2) are related to Ti(q
2) defined in eq. (2.7) as

T1(q2) = A(q2), T2(q2) = A(q2)− q2

m2
Bc
−m2

J/ψ

B(q2), T3(q2) = B(q2) +C(q2) . (2.10)

The form factors are extracted from the correlation function of the T-product of the

weak current jΓ,Γ = V,A, S, P, T and an interpolating current of the Bc meson jBc =

mbc̄iγ5b among the vacuum and the external on-shell meson M (M = J/ψ, ηc),

Π(q2, p2
Bc) = i

∫
d4xeiqx

〈
M(p)

∣∣∣T {jΓ(x)j†Bc(0)
}∣∣∣ 0〉 . (2.11)
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Both Bc → M decays proceed through b-quark decays and we assume that in the re-

gion of the large m2
b − q2 ≤ O(mbΛQCD) and m2

b − p2
Bc
≤ O(mbΛQCD) virtualities, the

correlation function eq. (2.11) is dominated by the light-like distances and the descrip-

tion in terms of the products of perturbatively calculable hard-scattering kernels with

non-perturbative and universal light-cone distribution amplitude (LCDA), ordered by in-

creasing twist, is appropriate.

By inserting the sum over states with Bc quantum numbers and by using

〈0|jBc |Bc(pB)〉 =
fBcm

2
Bc

mb(µ) +mc(µ)
(2.12)

for the ground state, with the use of hadronic dispersion relation in the virtuality p2
Bc

of

the Bc channel, we can relate the correlation function eq. (2.11) to the Bc → M matrix

elements and the form factors defined above. As usual, the quark-hadron duality is used to

approximate heavier state contribution by introducing the effective threshold parameter sBc0

and the ground state contribution of the Bc meson is enhanced by the Borel transformation

in the variable p2
Bc
→ σ2.

The strategy which we use to fix the sum rule parameters, in particular the continuum

threshold parameter sBc0 , is to use the lattice results for the decay constant of Bc, eq. (2.18)

and fix the continuum threshold parameters by calculating the constant with the 2-point

functions calculated in the LCSR. This is done by using the NLO expression and the

pole mb,mc masses. The MS masses used in the paper are taken as mb(mb) = 4.18 GeV

and mc(mc) = 1.27 GeV. We have achieved the stability of the 2-point sum rules, i.e.

continuum and higher-order corrections are suppressed and also the mass of Bc is correctly

reproduced for µ = 3.9 ± 0.3 GeV. With the calculated sBc0 = 46.8 ± 0.8 GeV2 we have

also checked the stability of the sum rules for Bc → M transitions. In both cases, the

results are very stable on the variation of the Borel parameter, allowing σ2 to vary between

70− 90 GeV2 with almost no change. Other parameters used in the paper are taken from

the lattice results or from the NRQCD models described afterwards.

The method of the LCSR was extensively used for calculating the heavy-to-light tran-

sition form factors. Here the situation is far more complicated since the final meson is a

quarkonium state ηc or J/ψ. Therefore, to properly account for the non-negligible large

mass corrections O(2mc) in the correlator, one would have to do a systematic expansion

of the correlator near the light cone including those corrections. This is a highly nontrivial

task and according to our knowledge has not been done yet. In the future, to improve the

whole picture, one has to do a revised consideration of the LCDA for charmonia, similar to

what was done for heavy hadrons (B-mesons and Λb), by proving the factorization theo-

rems and deriving the RG evolution kernels of LCDA by considering full mass corrections.

But, such a calculation for charmonia is far more complicated since there is no help from

HQET and heavy-quark symmetries, nor can one achieve fast convergence in the heavy-

mass expansion. Such a calculation, if consistently doable for charmonia, is far beyond the

scope of our paper. Here we assume that these potentially large intrinsic mass effects can

be effectively described using proper phenomenological model of DAs. So, we will follow a

simplified sum rule model where we treat charmonia of Bc-decays as light particles in the
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correlator (2.11) expansion near the light-cone and will closely follow the approach of the

standard LCSR in what follows. On the other hand, to describe nonperturbative proper-

ties of charmonia we will use the NRQCD-inspired DAs which exactly reproduce leading

NR moments of charmonia at ∼ 1 GeV energies. To resolve the right DA structure at the

∼ mb energies of the decay, we calculate the Gegenbauer expansion and evolution of DAs.

The corrections to the leading approximation will be done by making the twist-expansion

and by taking the large mc mass correction in twist-3 and twist-4 DAs into account. The

genuine O(4m2
c/mbΛQCD) corrections are not included as we assume the collinearity of

the wave functions. Moreover, since we are aware of our model constraints in describing

charmonia particles, we will show the stability of the model on the variation of parameters

of the model, the consistency of our results with the 3ptSR calculation of the same form

factors done with the same parameters used here and will also show consistency of the

calculated form factors with the HQSS/NRQCD symmetry relations among form factors.

The leading twist-2 DA of a ηc meson is defined as follows [57]

〈0|c̄(z)γµγ5[z,−z]c(−z)|ηc(p)〉 = −ifηcpµ
∫ 1

−1
dξeiξpzφ(ξ, µ), (2.13)

while for the J/ψ we have

〈0|c̄(z)γµ[z,−z]c(−z)|J/ψ(p, ε(λ=0))〉 = fJ/ψmJ/ψpµ

∫ 1

−1
dξeiξpxφ||(ξ, µ),

〈0|c̄(z)σµν [z,−z]c(−z)|J/ψ(p, ε(λ=±1))〉 = if⊥J/ψ(εµpν − ενpµ)

∫ 1

−1
dueiξpxφ⊥(ξ, µ), (2.14)

where [z,−z] = P exp
{
ig
∫ z
−z dx

µAµ(x)
}

is a gauge integral. In above ξ = u − (1 − u), u

is a fraction of a longitudinal momentum of a meson M carried by a c-quark and (1 − u)

is a fraction of momentum carried by the c-antiquark. The DAs are defined at a scale µ at

which the transverse momenta are integrated up to and all momenta below are included

in the nonperturbative DAs φ. Other higher-twist amplitudes and higher-order corrections

are defined similarly. For all details see, for example [50]. The vector and tensor decay

constants fJ/ψ and fTJ/ψ are defined as

〈0|c̄(0)γµc(0)|J/ψ(p, e(λ))〉 = fJ/ψmJ/ψe
(λ)
µ ,

〈0|c̄(0)σµνc(0)|J/ψ(p, e(λ))〉 = ifTJ/ψ(µ)(e(λ)
µ pν − e(λ)

ν pµ), (2.15)

where fTJ/ψ is renormalization scale dependent:

fTJ/ψ(µ′2) =
(
αs(µ

′2)/αs(µ
2)
)Cf/β0 fTJ/ψ(µ) (2.16)

and β0 = 11− 2/3nf , nf being the number of flavors involved. The decay constant for ηc
is defined correspondingly as

〈0|c̄γµγ5c|ηc(p)〉 = −ifηcpµ. (2.17)

– 7 –
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For the decay constants we will use the lattice results

fBc = 0.427(6)(2) GeV [58, 59],

fJ/ψ = 0.405(6)(2) GeV [60],

fηc = 0.3947(24) GeV [61], (2.18)

while for fTJ/ψ we will use the value extracted from the ratio

RTJ/ψ =
fTJ/ψ(µ = 2 GeV)

fJ/ψ
= 0.975± 0.010, (2.19)

derived by considering combined QCDSR and lattice results [62]. The predictions for

charmonia decay constants in [62] nicely agree with the lattice results above.

2.1.1 Distribution amplitudes for charmonia

The leading twist-2 DAs are expanded in terms of Gegenbauer polynomials as:

φP (u, µ2) = 6u(1− u)

(
1 +

∞∑
n=1

aPn (µ2)C3/2
n (2u− 1)

)
. (2.20)

The leading term is the asymptotic form φ(u, µ2 → ∞) = 6u(1 − u). The Gegenbauer

coefficients an are renormalized multiplicatively

aPn (Q2) =
(
αs(Q

2)/αs(µ
2)
)γPn /(2β0)

aPn (µ2), (2.21)

where the anomalous dimensions γ
‖,⊥
n are given by

γ‖n = 8CF

(
n+1∑
k=1

1/k − 3

4
− 2

(n+ 1)(n+ 2)

)
, (2.22)

γ⊥n = 8CF

(
n+1∑
k=1

1/k − 1

)
. (2.23)

Here CF = (N2
c − 1)/(2Nc) and β0 = 11/3Nc − 2/3Nf , in which Nc is the number of

colors and Nf the number of flavors. The coefficients a
||
n appear in φ(ξ, µ) and φ||(ξ, µ),

while a⊥n are coefficients in the expansion of the transversal twist-2 DA φ⊥(ξ, µ) of a

J/ψ meson.

The eq. (2.20) can be inverted to give the coefficients of the conformal expansion

aPn (µ) =
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0
duC(3/2)

n (2u− 1)φP (u, µ) , (2.24)

and with the help of these coefficients at some low-energy scale µ0, the DA φP (ξ, µ) can

be reconstructed at any scale µ.

The distribution amplitudes can also be defined with the help of calculated moments

of DAs at some scale µ as

〈ξn〉µ =

∫ 1

−1
dξξnφ(ξ, µ). (2.25)
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Charmonia particles are flavor-symmetric and therefore their DAs are symmetric around

u = 1/2. The second moment is calculated in NRQCD [63, 64]

〈ξ2〉µ0 =
〈v2〉M

3
+O(v4) , (2.26)

where µ0 ∼ 1GeV.

The values of the nonrelativistic speeds v2 of quarks in ηc and J/ψ mesons are obtained

in NRQCD by including the first-order αs corrections and non-perturbative contributions

proportional to v2 in the analysis of Γ(ηc → γγ) and Γ(J/ψ → e+e−) rates, respectively,

and 〈v2〉J/ψ = 0.225 +0.106
−0.088 [49], 〈v2〉ηc = 0.226 +0.123

−0.098 [49], 〈v2〉J/ψ = 〈v2〉ηc = 0.21 ±
0.02 [64, 65] have been extracted. As stated in [66], the two-loop [67, 68] and three-loop [69]

perturbative corrections to the NRQCD predictions for the Γ(J/ψ → e+e−) decay rate is

known to be large. In [70] and [71] the O(v2) and O(αs) corrections to twist-2 DAs of ηc
and J/ψ have been calculated. At leading order approximation in relative velocity v there

is no difference between ηc and J/ψ mesons and the results for the moments obtained

are valid for both charmonia DAs. Based on the power-counting rules of NRQCD one

would naively expect that 〈v2〉 ∼ 0.3. Taking all above into account, we will use the latest

improved value [49, 72, 73] for both charmonia:

〈v2〉 = 0.201± 0.064. (2.27)

For the model of twist-2 DA at µ0 = 1 GeV we adopt the Gaussian model [66]:

φ(u, µ0) = Nσ
4u(1− u)√

2πσ
exp

[
−(u− 1

2)2

2σ2

]
; σ2 =

〈v2〉M
12

, (2.28)

where Nσ ≈ 1 is the normalization constant defined from∫ 1

−1
dξφ(ξ, µ) = 1. (2.29)

We also use the Wandzura-Wilczek approximation where three-particle twist-3 DAs

containing quarks and a gluon are neglected. In that case the twist-3 DAs of ηc are fixed

to their asymptotic forms including mass corrections [74]:

φp(u, µ)
∣∣
WWA

= 1 + ρ+(µ)φp,+(u, µ),

φσ(u, µ)
∣∣
WWA

= 6u(1− u) + ρ+(µ)φσ,+(u, µ), (2.30)

where ρ+(µ) = 4m2
c(µ)/m2

ηc and

φp,+(u, µ) =
1

4

[∫ u

0
dv

φ
′
(v, µ)

1− v −
∫ 1

u
dv

φ
′
(v, µ)

v

]
,

φσ,+(u, µ) = −3

2
u(1− u)

[∫ u

0
dv

φ(v, µ)

(1− v)2
+

∫ 1

u
dv

φ(v, µ)

v2

]
. (2.31)
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For the J/ψ meson the situation is somewhat more complicated. In the Wandzura-

Wilczek approximation where three-particle DAs are neglected, by using equations of mo-

tion the twist-3 DAs can be expressed in terms of the leading twist-2 DAs φ‖,⊥ with the

valence quark mass corrections

δ+(µ) =
2mc(µ)

mJ/ψ

1

RTJψ
, δ̃+(µ) =

2mc(µ)

mJ/ψ
RTJψ , (2.32)

as [29, 75–78]:

h̃
(s)
|| = (1− δ+(µ))h

(s)
|| , g̃

(a)
⊥ = (1− δ̃+(µ))g

(a)
⊥ ,

and

g
(v)
⊥ (x, µ)

∣∣
WWA

=
1

4

[∫ u

0
dv

Φ||(y, µ)

1− v +

∫ 1

u
dv

Φ||(v, µ)

v

]
+ δ̃+(µ)φ⊥(u, µ), (2.33)

g̃
(a)
⊥ (x, µ)

∣∣
WWA

= (1− u)

∫ u

0
dv

Φ||(v, µ)

1− v + u

∫ 1

u
dv

Φ||(v, µ)

v
, (2.34)

h
(t)
|| (u, µ)

∣∣
WWA

=
1

2
ξ

[∫ u

0
dv

Φ⊥(y, µ)

1− v −
∫ 1

u
dv

Φ⊥(v, µ)

v

]
+ δ+(µ)φ‖(u, µ), (2.35)

h̃
(s)
|| (u, µ)

∣∣
WWA

= (1− u)

∫ u

0
dv

Φ⊥(v, µ)

1− v + u

∫ 1

u
dv

Φ⊥(v, µ)

v
, (2.36)

with

Φ||(u) = 2φ||(u) + δ̃+ξφ
′
⊥(u) ,

Φ⊥(u) = 2φ⊥(u)− δ+

(
φ‖(u)− ξ

2
φ
′

‖(u)

)
. (2.37)

The J/ψ twist-4 DAs will be taken in their asymptotic form:

h⊥,3 = 6u(1− u) , g‖,3 = 6u(1− u) ,

A|| = 24u2(1− u)2 , A⊥ = 12u2(1− u)2 . (2.38)

Some comments are in order. In the Bc → ηc decay we will retain only contributions

up to twist-3 terms. It is well known that the standard twist expansion works very well

for B → pseudoscalar form factors. It could be that in our case, for Bc → ηc, twist-4

corrections are somewhat larger, due to the large and non-negligible mc mass, but since

hadronic parameters for the twist-4 contribution for ηc are not known we will not include

them. In the decay Bc → J/ψ we keep all contributions up to twist-4, since their asymptotic

form does not depend on the hadronic parameters. The J/ψ DAs defined above do not

correspond to matrix elements of operators with definite twist [31]: φ⊥,‖ are of twist-2,

h
(s,t)
‖ and g

(v,a)
⊥ contain a mixture of twist-2 and 3 contributions and A⊥,‖, h3, g3 are a

mixture of twist-2, 3 and 4 contributions. Therefore it is usual to refer to g
(v,a)
⊥ , h

(s,t)
‖

as twist-3 LCDAs and to h3, g3,A⊥,‖ as twist-4 LCDAs. Also, as the mass of the vector

particle in B → vector decays plays a significant role, in [31] the following classification

of relevance in the two-particle LCDA was proposed: O(δ0): φ⊥; O(δ1): φ‖, g
(v,a)
⊥ ; O(δ2):

h
(s,t)
‖ , h3,A⊥; O(δ3): g3,A‖, where now δ ∼ mJ/ψ is treated as an expansion parameter.

For a more detailed discussion see [50, 53, 55].
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Form

Factor
this work2

QCDSR

[4–6]

QCDSR

[3]

SR

[7]

pQCD

[2]

CCQM

[27, 79]

RQM

[11]

RQM

[10]

LFQM

[14]

latt.

[28]

fηc+,0(0) 0.62± 0.05 0.41± 0.04 0.66 0.87 0.48(7) 0.75 0.47 0.54 0.61(5) 0.59

V J/ψ(0) 0.73± 0.06 0.70± 0.06 1.03 1.69 0.42(2) 0.78 0.49 0.73 0.74(4) 0.70

A
J/ψ
1 (0) 0.55± 0.04 0.50± 0.05 0.63 0.75 0.46(3) 0.56 0.50 0.52 0.50(3) 0.48

A
J/ψ
2 (0) 0.35± 0.03 0.43± 0.05 0.69 1.69 0.64(3) 0.55 0.73 0.51 0.44(5) —

A
J/ψ
0 (0) 0.54± 0.04 0.53± 0.04 0.60 0.27 0.59(3) 0.56 0.40 0.53 0.53(3) —

fηcT (0) 0.93± 0.07 — — — — 0.93 — — — —

T
J/ψ
1,2 (0) 0.47± 0.04 0.48± 0.03 — — — 0.56 — — — —

T
J/ψ
3 (0) 0.19± 0.01 0.27± 0.03 — — — 0.20 — — — —

Table 1. Form factor predictions at q2 = 0. Recent relevant lattice results are given by the HPQCD

collaboration [28], reported here in orange, without the systematical error.

2.2 Parametrization of the form factors and the results

The derivation of the sum rule expressions for the form factors proceeds in a standard

way [50, 53, 55, 56].

The general expression for the calculation of the form factors is given by

FBc→M (q2) =
mb +mc

m2
Bc
fBc

em
2
b/σ

2

∫ 1

uBc0

du

u
exp

[
−m

2
b − ūq2 − uūm2

M

uσ2

]
F (u, µ, q2), (2.39)

where

uBc0 =
1

2m2
M

√(
sBc0 − q2 −m2

M

)2
+ 4m2

M

(
m2
b − q2

)
−
(
sBc0 − q2 −m2

M

)
, (2.40)

σ is the Borel parameter and ū = 1− u. The functions F (u, µ, q2) contain all twist contri-

butions in terms of the various twist DAs, and higher-twist contributions are suppressed

by the Borel parameter.

The derived results at q2 = 0 are listed in table 1, together with the recent QCDSR

result [4–6] briefly discussed in appendix A and earlier results found in the literature on

the same form factors. The errors are obtained by varying all parameters in a given range

and adding them in quadratures.

It is well know that the form factors extracted from the sum rules are valid in the

low q2 region. We use our results for the form factors and calculate them in the range

q2 = {−5, 5}GeV. Then we extrapolate them from the low q2 region to the q2
max by using

Bourrely-Caprini-Lellouch (BCL) parametrization [80] of the form factor series expansion

in powers of a conformal mapping variable, which satisfies unitarity, analyticity and per-

turbative QCD scaling. The BCL parametrization is based on a rapidly converging series

2The cited errors are obtained just by varying all parameters of the model and their smallness shows

the stability of the sum rules used to obtain the predictions for the form factors. The errors do not include

intrinsic uncertainties of the model itself which are hard to predict and could potentially increase the errors

and lower the accuracy of the predictions.
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Form factor JP mR (GeV) α0 α1

f+ 1− 6.34 0.62 −6.13

f0 0+ 6.71 0.63 −4.86

fT 1− 6.34 0.93 −9.36

V 1− 6.34 0.74 −8.66

A1 1+ 6.75 0.55 −4.67

A2 1+ 6.75 0.35 −1.78

A0 0− 6.28 0.54 −6.80

T1 1− 6.34 0.48 −4.88

T2 1+ 6.75 0.48 −2.93

T3 1+ 6.75 0.19 −1.69

Table 2. Summary of the BCL fit for Bc → ηc and Bc → J/ψ form factors. The masses of the

low-laying Bc resonances are taken from [82–85].

in the parameter z as

f(t) =
1

P (t)

∑
k=0

αkz
k(t, t0),

z(t, t0) =

√
t+ − t−

√
t+ − t0√

t+ − t+
√
t+ − t0

, (2.41)

weighted by a simple pole function P (q2) = 1− t/m2
R which accounts for low-laying reso-

nances present below the threshold production of real Bc−M pairs at t+ = (mBc +mM )2.

The parameter t0, 0 ≤ t0 ≤ t− = (mBc −mM )2 is a free parameter that can be used to

optimize the convergence of the series expansion. For the truncation to only two terms in

expansion eq. (2.41), it was shown that the optimized value of t0 has the form [81]:

t0|opt = t+

(
1−

√
1− t−

t+

)
, (2.42)

and that the other choices of t0 do not make a visible change in the form factors parametriza-

tion.

Masses of resonances appearing in the fits are determined by the properties of the form

factors. The form factors V and T1 correspond to the vector components of the currents,

and, as the Bc meson is a pseudoscalar, they correspond to the axial vector components

of the matrix elements. A1,2, as well as T2,3, correspond to the axial vector component

of the V − A, while the form factor A0 correspond to the pseudoscalar current and only

contributes in the decays with the non-vanishing lepton masses (in the semileptonic Bc
decays with the τ lepton in our case). All relevant resonance masses are given in table 2,

together with the fitted parameters α0, α1 from eq. (2.41).

The predicted form factors in a full q2 range are shown in figures 1, 2, 3.
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Figure 1. Pseudoscalar form factors for Bc → ηc calculated in this paper, including the lattice

points from [28] with added 20% systematical error.
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Figure 2. SM form factors for Bc → J/ψ calculated in this paper, including the lattice points

from [28] with added 20% systematical error.
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Figure 3. Tensor form factors for Bc → J/ψ calculated in this paper.
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2.2.1 HQSS/NRQCD symmetry relations among from factors at the zero re-

coil

It is interesting to check the HQSS and NRQCD limits of the form factors for Bc → ηc
and Bc → J/ψ decays. These decays are specific since they proceed through b → c quark

transition and the produced final state is a particle formed by two c quarks. Although

this might resemble heavy-to-heavy transitions which results in interesting symmetries in

a heavy-quark limit [86], the c-quark is significantly lighter than b and the produced c-

quark is quite energetic, which spoils exact heavy-flavor symmetries. On the other hand

c-quark is heavy enough that such decays can be considered as nonrelativistic so that

the approximation of the zero-recoil point, i.e. the symmetry relations for a maximum

momentum transfer q2
max = (mBc −mJ/ψ,ηc)

2 still hold and the form factors can be related

to a single function ∆ [86–88], with an unknown normalization. Following [86] we write

for the form factors near zero recoil (q′ � mc):

〈ηc(v, q′)|Vµ(q2) |Bc(v)〉 = 2
√
mBcmηc ∆(a0q

′) vµ, (2.43)

〈J/ψ(v, q′)|Aµ(q2) |Bc(v)〉 = 2
√
mBcmJ/ψ ∆(a0q

′) ε∗µ, (2.44)

where Vµ = b̄γµc, Aµ = b̄γµγ5c and εµ is a polarization vector of J/ψ. Here v is the velocity

of the Bc meson, and q′ is a small residual velocity carried by the final state meson (not

to be confused by q, the momentum carried by the lepton pair system), so that

pBcµ = mBcvµ; (pηc,J/ψ)µ = mηc,J/ψvµ + q′µ. (2.45)

The parameter a0 is connected to the Bohr radius of the Bc meson, its value is not important

for the further discussion and will not be discussed here.

We can now relate the ∆(a0q
′) function to the Bc → ηc form factor f+(q2) at the zero

recoil as

∆(a0q
′) ≈

√
mBc

mηc

f+(q2
max), (2.46)

which amounts, using the predicted f+(q2
max) from the calculation above, to

∆(a0q
′)our ≈ 0.79± 0.09. (2.47)

This value can be compared with the value obtained in the QCD relativistic potential

model in [88].

In [87] it was shown that in the NRQCD approximation one can derive a generalized set

of relations using the HQSS, so that the transition form factors of Bc → ηc and Bc → J/ψ

decays can be given in terms of a single form factor, even for the case of non-equal four-

velocities v1 6= v2, of the initial and the final state heavy mesons. If the following helicity
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basis for the form factors in Bc → J/ψ decay is defined

g(q2) ≡ (H++ −H−−)/
√
λ(mBc ,mJ/ψ, q2) =

2

mBc +mJ/ψ
V (q2),

f(q2) ≡ −(H++ +H−−)/2 = (mBc +mJ/ψ)A1(q2),

F1(q2) ≡ −
√
q2H00

=
1

mJ/ψ

[
−
λ(mBc ,mJ/ψ, q

2)

2(mBc +mJ/ψ)
A2(q2)

− 1

2
(q2 −m2

Bc +m2
J/ψ)(mBc +mJ/ψ)A1(q2)

]
,

F2(q2) ≡ −2

√
q2√

λ(m2
Bc
,m2

J/ψ, q
2)
Ht0 = 2A0(q2),

(2.48)

and

λ(mBc ,mJ/ψ, q
2) = (q2 +m2

Bc −m2
J/ψ)2 − 4mBcq

2, (2.49)

the expressions from [87], stemming from considering NRQCD and HQSS, and relating

different decay form factors at the point of zero recoil q2
max of Q̄q → Q̄

′
q transitions can be

expressed as [24]:

g(q2
max) =

3 + rQ
4m2

Bc
rJ/ψ

f(q2
max),

F1(q2
max) = mBc(1− rJ/ψ)f(q2

max),

F2(q2
max) =

2(1 + rJ/ψ) + (1− rJ/ψ)(1− rQ)

4mBcrJ/ψ
f(q2

max),

(2.50)

for the Bc → J/ψ decay, and

f0(q2
max) =

1

m2
Bc
−m2

ηc

8m2
Bc

(1− rηc)rηc
2(1 + rηc) + (1− rηc)(1− rQ)

f+(q2
max), (2.51)

for the Bc → ηc decay [25], where some shorthand notation has been introduced: rM =

mM/mBc (with mM = [mJ/ψ,mηc ]), rQ = mQ′/mQ = mc/mb and rq = mq/mQ = rQ.

Additionally, the vector decay form factors can be related to the pseudoscalar ones as [26]

f(q2
max) =

8mBcrηc
3 + rηc − (1− rηc)rQ

f+(q2
max),

g(q2
max) =

1 + rQ
mBcrJ/ψ

4rηc
3 + rηc − (1− rηc)rQ

f+(q2
max),

F1(q2
max) = m2

Bc(1− rJ/ψ)
8rηc

3 + rηc − (1− rηc)rQ
f+(q2

max),

F2(q2
max) =

1 + rJ/ψ

rJ/ψ

4rηc
3 + rηc − (1− rηc)rQ

f+(q2
max),

(2.52)

where we have used that rq = rQ for Bc → ηc, J/ψ and simplified the relations. It is

expected that these relations are broken by terms of order O(mc/mb,ΛQCD/mc) . 30%.
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Here we check the consistency of these relations and our form factor results. At

the zero-recoil F1(q2) and f(q2) are the same up to a constant factor, eq. (2.50), which

explicitly gives
F1(q2

max)

f(q2
max)

= mBc(1− rJ/ψ) = 3.18 , (2.53)

whereas

g(q2
max)|

g(q2
max)|eq.(2.50)

≈ 0.81,

F2(q2
max)|

F2(q2
max)|eq.(2.50)

≈ 0.89,

(2.54)

and
f0(q2

max)|
f0(q2

max)|eq.(2.51)
≈ 1.18. (2.55)

We see that the HQSS/NRQCD predictions are quite consistent with our sum rule predic-

tions for the form factors at the zero recoil and can be safely used in model-independent

bounds on R ratios as it was done in [24–26], keeping in mind that their accuracy is limited

to O(30%). Finally, using eq. (2.52) we obtain,

f(q2
max)|

f(q2
max)|eq.(2.52)

≈ 1.02,

g(q2
max)|

g(q2
max)|eq.(2.52)

≈ 1.05,

F1(q2
max)|

F1(q2
max)|eq.(2.52)

≈ 1.02,

F2(q2
max)|

F2(q2
max)|eq.(2.52)

≈ 1.02,

(2.56)

an excellent agreement among the relations between Bc → ηc and Bc → J/ψ transition

form factors derived from HQSS/NRQCD symmetry relations and our exact results at the

zero recoil.

3 Rηc, RJ/ψ and decay distributions of Bc → ηc`ν` and Bc → J/ψ`ν`

The general effective Lagrangian for the quark level transition b→ c`ν` with ` = e, µ, τ is

given by

L =
GFVcb√

2
[(1 + VL)OVL + VROVR + SLOSL + SROSR + TLOTL ] , (3.1)

with the four-Fermi operators defined as

OVL = (c̄γµ(1− γ5)b)
(
¯̀γµ(1− γ5)ν`

)
, OVR = (c̄γµ(1 + γ5)b)

(
¯̀γµ(1− γ5)ν`

)
,

OSL = (c̄(1− γ5)b)
(
¯̀(1− γ5)ν`

)
, OSR = (c̄(1 + γ5)b)

(
¯̀(1− γ5)ν`

)
,

OTL = (c̄σµν(1− γ5)b)
(
¯̀σµν(1− γ5)ν`

)
. (3.2)
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We use σµν = i [γµ, γν ] /2 and VL,R, SL,R, TL are the complex Wilson coefficients governing

the NP contributions which are zero in the SM. Since we want to explain the possible

lepton-flavour non-universality, we will assume that the NP effects contribute to the τ

leptons only. The matrix element of the semileptonic decays Bc → J/ψ(ηc)τντ then has

the form:

M=
GFVcb√

2

[{
(1+VL+VR)〈J/ψ(ηc)| c̄γµb |B̄c〉+(VR−VL)〈J/ψ(ηc)| c̄γµγ5b |B̄c〉

}
¯̀γµ(1−γ5)ν`

+(SR+SL)〈J/ψ(ηc)| c̄b |B̄c〉 ¯̀(1−γ5)ν`+(SR−SL)〈J/ψ(ηc)| c̄γ5b |B̄c〉 ¯̀(1−γ5)ν`

+TL 〈J/ψ(ηc)| c̄σµν(1−γ5)b |B̄c〉 ¯̀σµν(1−γ5)ν`
]
. (3.3)

We note that the axial and the pseudoscalar hadronic currents do not contribute to the

Bc → ηc decay, and therefore VR − VL = 0, SR − SL = 0,⇒ VR = VL, SR = SL. The

scalar hadronic current does not contribute to the Bc → J/ψ transition which leads to

SL + SR = 0. We henceforth use the shorthand definition SR + SL = S and SR − SL = P

in the text.

The constraints on the Wilson coefficients appearing in eq. (3.1) are obtained from the

combined analysis of the BaBar, Belle and LHCb data for the branching fraction ratios

RD(∗) , the τ polarization asymmetry along the longitudinal directions of the τ lepton in

B → D∗, as well as the longitudinal D∗ polarization in Bc → D∗τντ decay [45]. The

leptonic branching fraction of the Bc meson, BR(Bc → τν), is not yet measured, therefore

the possible NP contributions come from precise experimental measurements of the Bc
lifetime, τ exp

Bc
= (0.507 ± 0.009) ps [89]. The theoretical SM prediction of the Bc lifetime

still allows for up to 60% contribution from NP [45, 90] in the Bc leptonic decay width.

In particular, the best fit point for SR is dependent on the assumption of the Bc → τν

decay width.

We consider for our analysis the limit BR(Bc → τ ν̄) < 30% and the values of the

Wilson coefficients from the combined analysis done in ref. [45]. They studied all one-

dimensional scenarios with only one NP Wilson coefficient considered at a time and the

two-dimensional scenarios with two NP Wilson coefficients considered simultaneously. The

best fit points in the 1D scenarios and their 2σ ranges (given in square brackets below) at

1 TeV are given in table 1 of ref. [45] and we list them below for completion:

VL = 0.11 [0.06, 0.15],

SR = 0.16 [0.08, 0.23], SL = 0.12 [0.01, 0.20],

SL = 4TL = −0.07 [−0.15, 0.02]. (3.4)

Only the real values of the coefficients were considered for the fit. The possibility of

allowing imaginary coefficients was examined in ref. [91] and they obtained that the relation

Im[SL] = 4 Im[TL] is also permitted by recent experiments. We therefore use the best fit

value for SL = 4TL in eq. (3.4) for both, the real and the imaginary case. The results of

the fit for the NP Wilson coefficients in the 2D scenario at 1 TeV are taken from table 2 of
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ref. [45]:

(VL, SL) = −4TL = (0.08, 0.05),

(SR, SL) = (−0.30, − 0.64),

(VL, SR) = (0.09 0.06),

(Re[SL = 4TL], Im[SL = 4TL]) = (−0.06,±0.40). (3.5)

All NP operators are generated by the addition of a single new particle to the SM.

The relation SL = 4TL is generated in the R2 leptoquark scenario with a scalar SU(2)L
doublet [92, 93] at the new physics scale. The leptoquark model with an SU(2)L singlet

scalar S1 gives the relation SL = −4TL at the NP scale. These relations are modified at

the scale mb to: SL(mb) ' 8.1TL(mb) for R2, and SL(mb) ' −8.5TL(mb), after including

one-loop electroweak corrections in addition to the three-loop QCD anomalous dimensions

in the renormalization group running using the following relations [94]:

VL(mb) = VL(1 TeV), SR(mb) = 1.737SR(1 TeV),(
SL(mb)

TL(mb)

)
=

(
1.752 −0.287

−0.004 0.842

)(
SL(1 TeV)

TL(1 TeV)

)
. (3.6)

We now discuss the differential decay rates for the processes Bc → ηc`ν` and Bc →
J/ψ`ν`. The differential decay rate for these semi-leptonic processes depend on the angle

θ` which is the polar angle of the lepton ` (the angle between the lepton direction in the W ∗

rest frame and the direction of the W ∗ in the Bc rest frame) and the momentum transfer

q2 (q = pBc − p) to the `ν` pair. The differential (q2, cos θ`) distribution can be calculated

using the helicity techniques and is of the form

d2Γ

dq2d cos θ`
=
G2
F |Vcb|2|p2|v

(2π)364m2
Bc

HµνL
µν(θ`), (3.7)

where |p2| = λ1/2(m2
Bc
,m2

ηc,J/ψ
, q2)/2mBc is the momentum of ηc(J/ψ) in the Bc rest

frame, v = (1−m2
`/q

2) is the lepton velocity in the `−ν̄` center-of-mass frame and HµνL
µν

is the contraction of the hadronic and the leptonic tensors. The helicity techniques to

calculate the angular distribution in the presence of new physics operators for the semi-

leptonic decays considered here can be found in refs. [95, 96].

The differential distribution for the Bc → ηcτντ is written as

d2Γ(ηc)

dq2dcosθ`
=
G2
F |Vcb|2|p2|q2v2

(2π)316m2
Bc

{
|1+VL+VR|2

[
|H0|2 sin2 θ`+2δ`|Ht−H0 cosθ`|2

]
+|S|2|HS

P |2+16|TL|2
[
2δ`+(1−2δ`)cos2 θ`

]
|HT |2

+2
√

2δ`

(
ReS+SVL

)
HS
P [Ht−H0 cosθ`]

+8
√

2δ`

(
ReTL+TLVL

)
[H0−Ht cosθ`]HT−8HS

PHT cosθ`

(
TLS

)}
, (3.8)

with the helicity flip-factor δ` = m2
`/2q

2, TLVL = ReTL ReVL + ImTL ImVL, TLS =

ReTL ReS + ImTL ImS and S VL = ReS ReVL + ImS ImVL. We consider the interference
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between the different NP operators as their effect can be similar to NP2, if they are of the

same value. The H ′s in eq. (3.8) are the hadronic helicity amplitudes written in terms of

the invariant form factors defined in eq. (2.1) and are of the form

Ht =
Pq√
q2
f0, H0 =

2mBc |p2|√
q2

f+, HS
P =

Pq

mb(µ)−mc(µ)
f0, HT =

2mBc |p2|
mBc +mηc

fT ,

(3.9)

with P = pBc + p and q = pBc − p (p = pηc or p = pJ/ψ.

Next, the differential distribution of the B̄c → J/ψ`−ν̄` decay is considered with

VRVL = ReVR ReVL+ImVR ImVL, TLP = ReTL ReP+ImTL ImPand P VL = ReP ReVL+

ImP ImVL, and is given by

d2Γ(J/ψ)

dq2dcosθ`
=
G2
F |Vcb|2|p2|q2v2

32(2π)3m2
Bc

{
|1+VL|2

[
(1−cosθ`)

2|H++|2+(1+cosθ`)
2|H−−|2

+2sin2 θ`|H00|2+2δ`

(
sin2 θ`(|H++|2+|H−−|2)+2|Ht0−H00 cosθ`|2

)]
+|VR|2

[
(1−cosθ`)

2|H−−|2+(1+cosθ`)
2|H++|2+2sin2 θ`|H00|2

+2δ`

(
sin2 θ`(|H++|2+|H−−|2)+2|Ht0−H00 cosθ`|2

)]
−4
(

ReVR+VRVL

)
[
(1+cos2 θ`)H++H−−+sin2 θ`|H00|2+2δ`

(
sin2 θ`H++H−−+|Ht0−H00 cosθ`|2

)]
+2|P |2|HS

V |2+4
√

2δ`H
S
V (Ht0−H00 cosθ`)

(
ReP+P VL

)
+16cosθ`H

S
VH

0
TTLP

+16|TL|2
[
|H0

T |2
(

1+2δ`+(1−2δ`)cos2θ`

)
+2|H+

T |2 sin2 θ`
2

(
1+2δ`+(1−2δ`)cosθ`

)
+2|H−T |2 cos2 θ`

2

(
1+2δ`−(1−2δ`)cosθ`

)]
−16

√
2δ`

(
ReTL+TLVL

)
[
H++H

+
T +H−−H

−
T +H00H

0
T−
(
H++H

+
T −H−−H−T +Ht0H

0
T

)
cosθ`

]}
. (3.10)

The hadronic helicity amplitudes in terms of the form factors given in eqs. (2.3), (2.7) are

expressed as

H±± =
−(mBc +mJ/ψ)2A1 ± 2mBc |p2|V

mBc +mJ/ψ
, HS

V =
2mBc

mb(µ) +mc(µ)
|p2|A0,

H00 =
−(m2

Bc
−m2

J/ψ − q2)(mBc +mJ/ψ)2A1 + 4m2
Bc
|p2|2A2

2mJ/ψ

√
q2(mBc +mJ/ψ)

, Ht0 = −2mBc |p2|√
q2

A0

H±T = − 1√
q2

[
±λ1/2[m2

Bc ,m
2
J/ψ, q

2]T1 + (m2
Bc −m2

J/ψ)T2

]
,

H0
T == − 1

2mJ/ψ

[
(m2

Bc + 3m2
J/ψ − q2)T2 −

λ[m2
Bc
,m2

J/ψ, q
2]

m2
Bc
−m2

J/ψ

T3

]
. (3.11)

3.1 Results for the branching ratios and Rηc, RJ/ψ predictions

We first give our predictions for branching fractions in the SM of both decays in table 3,

where the branching fraction values are updated using the latest value for the Bc lifetime,
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Mode this work
QCDSR

[3]

SR

[7]

pQCD

[2]

RCQM

[16]

CCQM

[27, 79]

RQM

[11]

RQM

[8]

RQM

[10]

RQM

[9]

LFQM

[14]

Bc → ηclν̄l 0.82+0.12
−0.11

0.85

(0.75)

1.85

(1.64)

0.50

(0.44)

0.91

(0.81)
0.95

0.47

(0.42)
0.89

0.52

(0.52)
0.85

0.74

(0.67)

Bc → ηcτ ν̄τ 0.26+0.06
−0.05

0.25

(0.23)

0.55

(0.49)

0.15

(0.14)

0.25

(0.22)
0.24 — — — —

0.21

(0.19)

Bc → J/ψlν̄l 2.24+0.57
−0.49

2.16

(1.9)

2.67

(2.37)

1.13

(1.00)

2.33

(2.07)
1.67

1.39

(1.23)
1.42

1.49

(1.47)
2.33

1.64

(1.49)

Bc → J/ψτν̄τ 0.53+0.16
−0.14

0.54

(0.48)

0.73

(0.65)

0.33

(0.29)

0.55

(0.49)
0.40 — — — —

0.41

(0.37)

Table 3. Branching fractions of Bc → J/ψ, ηc decays calculated in different models and given in

%, with l denoting a light lepton, e or µ. The numbers in the bracket are the original published

values of the branching fractions.

τBc = (0.507 ± 0.009) ps [89], while in the brackets we cite the original published values

of the BRs. If there are no brackets the branching fractions have already been calculated

using the latest value for τBc .

The ratios of semileptonic branching fractions using our calculated form factors from

eq. (2.39) are

Rηc |SM ≡
Γ(Bc → ηcτ ν̄τ )

Γ(Bc → ηcµν̄µ)
= 0.32± 0.02 , (3.12)

RJ/ψ|SM ≡
Γ(Bc → J/ψτν̄τ )

Γ(Bc → J/ψµν̄µ)
= 0.23± 0.01. (3.13)

We see that above results agree with the recent model-independent analysis of

RJ/ψ [24, 26] and Rηc [25, 26]. See also the discussion in section 2.2.1.

Next we compute the ratios of the branching fractions RJ/ψ,ηc in the context of dif-

ferent NP scenarios using the form factors calculated in section 2. The values of the NP

operators’ effective couplings considered for our analysis are discussed before and are given

by eqs. (3.4), (3.5). In figure 4 we show the q2 dependence of the ratios Rηc and RJ/ψ in

the presence of only one NP operator (first two figures of both panels). The third figure

in both panels shows the ratio in presence of two NP operators. The SM value is always

shown by the blue dotted line. We see that the ratio increases for most of NP contributions

for both J/ψ and ηc. The SL = 4TL case with the coupling being pure real or imaginary

results in a decrease in the ratio Rηc . This is due to the negative interference between SL
and TL, eq. (3.8). The shaded region shows the 2σ allowed region for VL, SL = 4TL, SL,R
parameters in the 1D fit, with the central value shown by a dashed line. In case of the

2D scenarios the results are presented for the best fit points. As expected, the ratio Rηc is

more sensitive to the scalar and the tensor operators, whereas RJ/ψ is more sensitive to VL.

The values of RJ/ψ and Rηc in the presence of different NP scenarios are listed in table 4.

The results are presented for the best fit points, as well as for the 2σ allowed regions in

the 1D scenario.

Note that any of the considered NP scenarios derived from the recent global fit anal-

ysis on available experimental data on semileptonic B → (D,D∗)`ν` decays [45] cannot

simultaneously explain the 2σ tension with the experiment eq. (1.1) of RJ/ψ ratio.
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Figure 4. Ratios of branching fractions Rηc(q2) (upper panel), RJ/ψ(q2) (lower panel) as a function

of q2. The blue dotted lines are the SM prediction, the green dashed line is for the best fit values

of the NP couplings in the 1D scenario as discussed in the text. The green band represents the NP

effects from the 2σ allowed regions in the 1D scenarios. The third figure in both panels is the result

for the best fit points in the 2D scenarios.

SM VL SL SR SL = 4TL (VL, SL = −4TL) (SR, SL) (VL, SR) Re,Im[SL = 4TL]

Rηc 0.32 0.390.42
0.36 0.440.55

0.33 0.490.59
0.40 0.260.34

0.20 0.42 0.45 0.44 0.43

RJ/ψ 0.23 0.290.31
0.26 0.240.24

0.23 0.230.22
0.23 0.250.26

0.23 0.29 0.22 0.27 0.26

Table 4. The values of Rηc and RJ/ψ in the presence of different NP scenarios. The subscript and

the superscript are the values for the 2σ range of the NP couplings.

3.2 Forward-backward asymmetry, convexity parameter and the τ polariza-

tion

The differential distributions defined in eqs. (3.8), (3.10) can be written in a simple form

as a function of cos θ` as

dΓ

dq2d cos θ`
=
G2
F |Vcb|2|p2|q2v2

32(2π)3m2
Bc

(A(q2) + B(q2) cos θ` + C(q2) cos2 θ`). (3.14)

Observables depending on the polar angle distribution of the emitted leptons such as the

forward-backward lepton asymmetry and the convexity parameter are considered first.

They are defined by

AFB(q2) =

( ∫ 1
0 −

∫ 0
−1

)
d cos θ`

d2Γ
dq2d cos θ`( ∫ 1

0 +
∫ 0

1

)
d cos θ`

d2Γ
dq2d cos θ`

=
B(q2)

2
(
A(q2) + C(q2)/3

) ,
CτF (q2) =

1

dΓ/dq2

d2(dΓ/dq2)

d(cos θ`)2
=

C(q2)(
A(q2) + C(q2)/3

) . (3.15)

The A(q2),B(q2) and C(q2) functions can be easily obtained from eqs. (3.8), (3.10). We

present in figures 5, 6 the q2 dependence of the forward-backward asymmetry AFB(q2) and
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Figure 5. Forward-backward asymmetry AFB(q2) for ηc (upper panel), and J/ψ (lower panel)

as a function of q2. The blue dotted lines are the SM prediction, the green dashed line is for the

best fit values of the NP couplings in the 1D scenario as discussed in the text. The green band

represents the NP effects from the 2σ allowed regions. The third figure in both panels is the result

for the best fit points in the 2D scenarios.

the convexity parameter CτF (q2). These observables are not sensitive to the case where

VL is the only NP contribution. The Bc → ηc transition appears to be more sensitive to

the new physics operators as compared to the Bc → J/ψ transition. In case of the J/ψ

decay mode, the presence of the SL, SR coefficients in the 2D scenario leads to a significant

deviation from AFB(q2) prediction in the SM. The present allowed values of the coupling

have a very small effect on CτF (q2) in case of J/ψ, whereas in case of ηc the SL = 4TL case

enhances CτF (q2) only at large values of q2.

Now we discuss the effect on the polarization of the emitted τ in the W− rest frame in

the presence of the NP operators. The differential decay rate for a given spin projection in

a given direction can be easily obtained with the inclusion of the spin projection operators

(1 + γ5/si)/2 for τ in the calculation. The longitudinal and the transverse polarization

components of the τ are then defined as:

PL,T (q2) =
dΓ(sµi )/dq2 − dΓ(−sµi )/dq2

dΓ(sµi )/dq2 + dΓ(−sµi )/dq2
=

PL,T (q2)

2(A(q2) + C(q2)/3)
, i = L, T, (3.16)

where sµL and sµT are the longitudinal and the transverse polarization four-vectors of τ− in

the W− rest frame and are given by [97–99]

sµL =
1

mτ
(|~pτ |, Eτ sin θτ , 0, Eτ cos θτ ), sµT = (0, cos θτ , 0,− sin θτ ). (3.17)

The longitudinal and transverse polarizations in the Bc → η, J/ψτντ decays are given as:

PηcL (q2) =
{
|1+VL+VR|2

[
−|H0|2+δτ (|H0|2+3|Ht|2)

]
+3
√

2δτH
S
PHt

(
ReS+SVL

)
+

3

2
|S|2|HS

P |2+8|TL|2(1−4δτ )|HT |2−4
√

2δτ

(
ReTL+TLVL

)
H0HT

}
, (3.18)
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Figure 6. Convexity parameter CτF (q2) for ηc (upper panel), and J/ψ (lower panel) as a function

of q2. The blue dotted lines are the SM prediction, the green dashed line is for the best fit values

of the NP couplings in the 1D scenario as discussed in the text. The green band represents the NP

effects from the 2σ allowed regions. The third figure in both panels is the result for the best fit

points in the 2D scenarios.

PJ/ψL (q2) =
{

(|1+VL|2+|VR|2)
[
−
∑
n=±,0

|Hnn|2+δτ

( ∑
n=±,0

|Hnn|2+3|Ht0|2
)]

+2ReVR

[
(1−δτ )(|H00|2+2H++H−−)+3δτ |Ht0|2

]
−3
√

2δτ

(
ReP+P VL

)
HS
VHt0

+
3

2
|P |2|HS

V |2+8|TL|2(1−4δτ )
∑
n

|Hn
T |2+4

√
2δτ

(
ReTL+TLVL

) ∑
n=±,0

HnnH
n
T

}
,

PηcT (q2) =
3π
√
δτ

2
√

2

{
|1+VL+VR|2H0Ht+

1√
2δτ

(
ReS+SVL

)
HS
PH0

+4
√

2δτ

(
ReTL+TLVL

)
HtHT +4HS

PHTTLS
}
, (3.19)

PJ/ψT (q2) =
3π
√
δτ

4
√

2

{
(|1+VL|2−|VR|2)(|H−−|2−|H++|2)+2(|1+VL|2+|VR|2)Ht0H00

−4ReVRHt0H00− 2√
2δτ

(
ReP+P VL

)
HS
VH00+16|TL|2(|H−T |2−|H+

T |2)

+4(ReTL+TLVL)
[

1+2δτ√
2δτ

(H++H
+
T −H−−H−T )−2

√
2δτHt0H

0
T

]
+8HV

S H
0
TTLP

}
.

The transverse polarization of τ as can be seen from eq. (3.19) has an overall factor of√
δτ and therefore vanishes in the limit of zero lepton mass and the emitted lepton is then

fully longitudinally polarized. Therefore, the τ lepton can be largely transversely polarized

as compared to the muons or the electrons. The q2 dependence of the τ polarization in

presence of different NP operators is shown in figures 7, 8. The following observations

can be made from the figures. The longitudinal and transverse polarizations of τ in the

ηc decay mode are more sensitive to the NP operators compared to the J/ψ decay mode.

The tau transverse polarization in the J/ψ decay mode is again mostly affected by the

NP operator SL = 4TL at low values of q2, whereas the SL, SR parameters in the 2D
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Figure 7. Longitudinal polarization of τ (P
ηc,J/ψ
L ) in the decay of Bc → ηcτν (upper panel), and

Bc → J/ψτντ (lower panel) as a function of q2. The blue dotted lines are the SM prediction, the

green dashed line is for the best fit values of the NP couplings in the 1D scenario as discussed in

the text. The green band represents the NP effects from the 2σ allowed regions. The third figure

in both panels is the result for the best fit points in the 2D scenarios.
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Figure 8. Transverse polarization of τ (P
ηc,J/ψ
T ) in the decay for Bc → ηcτν (upper panel), and

Bc → J/ψτντ (lower panel) as a function of q2. The blue dotted lines are the SM prediction, the

green dashed line is for the best fit values of the NP couplings in the 1D scenario as discussed in

the text. The green band represents the NP effects from the 2σ allowed regions. The third figure

in both panels is the result for the best fit points in the 2D scenarios.

scenario lead to a deviation from the SM prediction for both the longitudinal and the

transverse τ polarization. The predictions for the mean forward-backward asymmetry, the

convexity parameter and the tau polarization in the presence of different NP operators are

summarised in table 5.
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SM SL SR SL = 4TL (VL, SL = −4TL) (SR, SL) (VL, SR) Re,Im[SL = 4TL]

AηcFB −0.35 −0.31−0.29
−0.34 −0.30−0.28

−0.32 −0.36−0.34
−0.36 −0.33 −0.31 −0.33 −0.27

Cτ,ηcF −0.22 −0.16−0.13
−0.21 −0.14−0.12

−0.17 −0.27−0.21
−0.35 −0.19 −0.15 −0.19 −0.16

P ηcL 0.42 0.580.66
0.43 0.620.68

0.53 0.310.45
0.14 0.50 0.59 0.50 0.57

P ηcT 0.81 0.730.80
0.67 0.700.76

0.66 0.840.86
0.80 0.77 0.72 0.77 0.43

A
J/ψ
FB 0.02 0.0050.02

−0.01 0.040.05
0.03 0.020.02

0.01 0.006 0.07 0.03 0.02

C
τ,J/ψ
F −0.07 −0.07−0.07

−0.07 −0.07−0.07
−0.07 −0.07−0.06

−0.07 −0.07 −0.08 −0.08 −0.08

P
J/ψ
L −0.53 −0.50−0.48

−0.53 −0.57−0.55
−0.58 −0.53−0.53

−0.53 −0.51 −0.60 −0.54 −0.48

P
J/ψ
T 0.40 0.430.45

0.40 0.350.38
0.33 0.350.41

0.29 0.39 0.29 0.38 0.28

Table 5. The integrated values of the forward-backward asymmetry, the convexity parameter and

the longitudinal and transverse polarization of τ in the whole q2 region, in case of different NP

scenarios discussed in the text. The subscript and the superscript are the values for the 2σ range

of the NP couplings.

θV

µ−

µ+

J/ψ

Bc

χ

W ∗

ℓ−

ν̄ℓ

θℓ
z

Figure 9. Angular conventions for the Bc → J/ψ`ν`, J/ψ → µ+µ− decay.

4 Decay distribution of Bc → J/ψ (J/ψ → µ+µ−) `ν` decay

We consider in this section the process Bc → J/ψ (J/ψ → µ+µ−) `ν`, with the 4-fold

differential decay rate being dependent on three angles θV , θ`, χ and the momentum transfer

q2. The angle θ` is same as defined before, θV is the polar angle between the direction of

the emitted µ− in the J/ψ rest frame and the parent J/ψ in the Bc rest frame, and χ is the

azimuthal angle between the W ∗`ν plane and the J/ψµ+µ− plane. The angles are shown

in figure 9 and are defined as usually being taken in the literature. The J/ψ is too light to

decay to τ+τ−, therefore the outgoing leptons can be either a pair of µ or of e. We ignore

the masses mµ,me from the J/ψ decays but the mass of lepton from W ∗ decay is retained.

The total differential decay rate for the µ−Lµ
+
R (σ ∼ λ−` − λ+

` = −1) final state is given by

eq. (4.1) below. The corresponding expressions for µ−Rµ
+
L final state can be obtained by
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setting θV → θV + π in eq. (4.1).

dΓ(Bc→ J/ψ`ν`,J/ψ→µ+
Rµ
−
L )

dq2dcosθ`dcosθV dχ
=

3G2
F |Vcb|2|p2|q2v2

8(4π)4m2
Bc

BR(J/ψ→µ−Lµ
+
R)
[
|1+VL|2TVL+|VR|2T|VR|2

+TV int
R

+2|P |2(HV
S )2 sin2 θV +TP int +|TL|2T|TL|2 +TT int

L

]
,

(4.1)

with

TVL
= sin2 θV

(
2H2

00

(
sin2 θ`+2δτ cos2 θ`

)
+4δτH

2
t0

)
+8H2

++ sin2 θ`

2
sin4 θV

2

(
2δτ cos2 θ`

2
+sin2 θ`

2

)
+8H2

−− cos2 θ`

2
cos4 θV

2

(
2δτ sin2 θ`

2
+cos2 θ`

2

)
+H++H−− sin2 θ` sin2 θV cos2χ(1−2δτ )

−8sinθ` sinθV cosχH00

(
H++ sin2 θV

2

(
sin2 θ`

2
+δτ cosθ`

)
+H−− cos2 θV

2

(
cos2 θ`

2
−δτ cosθ`

))
+8δτ sinθ` sinθV cosχHt0

(
H++ sin2 θV

2
−H−− cos2 θV

2

)
−8sinθ2

V cosθ`δτHt0H00,

T|VR|2 = sin2 θV
(
2H2

00

(
sin2 θ`+2δτ cos2 θ`

)
+4δτH

2
t0

)
+8H2

−− sin2 θ`

2
sin4 θV

2

(
2δτ cos2 θ`

2
+sin2 θ`

2

)
+8H2

++ cos2 θ`

2
cos4 θV

2

(
2δτ sin2 θ`

2
+cos2 θ`

2

)
+H++H−− sin2 θ` sin2 θV cos2χ(1−2δτ )

−8sinθ` sinθV cosχH00

(
H−− sin2 θV

2

(
sin2 θ`

2
+δτ cosθ`

)
+H++ cos2 θV

2

(
cos2 θ`

2
−δτ cosθ`

))
+8δτ sinθ` sinθV cosχHt0

(
H−− sin2 θV

2
−H++ cos2 θV

2

)
−8sinθ2

V cosθ`δτHt0H00,

TV int
R

=−2ReVR sin2 θV

(
2H2

00(sin2 θ`+2δτ cos2 θ`)+4δτH
2
t0

)
−sin2 θ` sin2 θV (1−2δτ )[

H2
++(ReVR cos2χ+ImVR sin2χ)+H2

−−(ReVR cos2χ−ImVR sin2χ)
]

−2ReVRH++H−−

[
(1+cos2 θV )

(
1+cos2 θ`+2δτ sin2 θ`

)
+4cosθV cosθ`

]
+16ReVR cosθ` sin2 θVH00Ht0+

(
4sinθV cosθ`−sin2θV sin2θ`(2δτ−1)

)
H00(

H++(ReVR cosχ+ImVR sinχ)+H−−(ReVR cosχ−ImVR sinχ)
)

+4δτ sinθ` sin2θVHt0

[
H++(ReVR cosχ+ImVR sinχ)+H−−(ReVR cosχ−ImVR sinχ)

]
,

TP int = 4
√

2δτH
V
S

[
ReP sin2 θV

(
Ht0−H00 cosθ`

)
+sinθV sinθ`

{
H++ sin2 θV

2(
ReP cosχ+ImP )sinχ

)
−H−− cos2 θV

2

(
ReP cosχ−ImP sinχ

)}]
,

T|TL|2 = 16|TL|2
[
2|H0

T |2 sin2 θV (cos2 θ`+2δτ sin2 θ`)+8|H+
T |2 sin2 θ`

2
sin4 θV

2

(
2δτ sin2 θ`

2
+cos2 θ`

2

)
+ 8|H−T |2 cos2 θ`

2
cos4 θV

2

(
2δτ cos2 θ`

2
+sin2 θ`

2

)
−H+

T H
−
T sin2 θ` sin2 θV cos2χ(1−2δτ )

− 4sinθ` sinθV cosχH0
T

{
H+
T sin2 θV

2

(
2δτ sin2 θ`

2
+cosθ`

)
+H−T cos2 θV

2

(
2δτ cos2 θ`

2
−cosθ`

)}]
,

TT int
L

= 16
√

2δτ

[
H0
T

{
ReTL sin2 θV

(
Ht0 cosθ`−H00

)
+sinθ` sinθV

(
H++ sin2 θV

2
(ReTL cosχ+ImTL sinχ)

+H−− cos2 θV

2
(ReTL cosχ−ImTL sinχ)

)}
+H+

T

{
sinθ` sinθV

(
ReTL cosχ−ImTL sinχ

)
(H00−Ht0)sin2 θV

2
−4ReTL sin2 θ`

2
sin4 θV

2
H++

}
+H−T

{
sinθ` sinθV

(
ReTL cosχ+ImTL sinχ

)
(H00+Ht0)cos2 θV

2
−4ReTL cos2 θ`

2
cos4 θV

2
H−−

}]
.
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We only list the interference terms of NP with SM and do not show the NP-NP interference

terms, but they are included in our calculations. The expressions above for the 4-fold

differential distribution are now more involved and contain various combinations with θ`,

θV and χ angles, with the imaginary couplings being proportional to sin χ. The constraints

on the NP coefficients (VL, SL and SR) in the 1D scenario are obtained using the condition

that they are purely real. The global fit results which we consider here, do not include

the vector operator VR, as this vector operator with right-handed coupling to the quarks

does not arise at the dimension-six level in the SU(2)L-invariant effective theory. The

relation SL = 4TL in the pure imaginary case is in more agreement with the SM compared

to the case with the real Wilson coefficients. However, the effects of the real and the

imaginary components of these NP coefficients can be isolated by constructing different

angular asymmetries.

We first consider the forward-backward asymmetry in θV and both θV , θ` with the

angle χ fully integrated over:

A
J/ψ
FB (θV ) =

1

Γ

∫
dq2

∫ 2π

0
dχ

∫ 1

−1
d cos θ`

(∫ 1

0
−
∫ 0

−1

)
d cos θV G[q2, θ`, θV , χ]

=
8π

3Γ

[
|1 + VL|2(1 + δ`)

(
H2
−− −H2

++

)
+ 8|TL|2(1 + 4δ`)(|H−T |2 − |H+

T |2)

−12
√

2δ`

(
ReTL + TLVL

)(
H−−H

−
T −H++H

+
T

)]
,

A
J/ψ
FB (θV , θ`) =

1

Γ

∫
dq2

∫ 2π

0
dχ

(∫ 1

0
−
∫ 0

−1

)
d cos θV

(∫ 1

0
−
∫ 0

−1

)
d cos θ` G[q2, θ`, θV , χ]

=
2π

Γ

[
|1 + VL|2

(
H2
−− +H2

++

)
+ 32|TL|2δ`(|H−T |2 + |H+

T |2)

−8
√

2δ`

(
ReTL + TLVL

)(
H++H

+
T +H−−H

−
T

)]
, (4.2)

where G =
(

d4Γ
dq2 d cos θ` d cos θV dχ

)
and Γ in the denominator is the decay width of Bc →

µ+µ−`ν`, obtained by integrating eq. (4.1) and is given by

Γ(Bc→µ+µ−`ν`) =
16π

9

[
2|1+VL|2

{
(1+δτ )

(
H2

00+H2
+++H2

−−

)
+3δτH

2
t0

}
+3|HV

S |2|P |2

+6
√

2δτH
V
S Ht0

(
ReP+P VL

)
+16|TL|2(1+4δτ )

(
|H0

T |2+|H+
T |2+|H−T |2

)
−24

√
2δτ

(
ReTL+TLVL

)(
H00H

0
T +H++H

+
T +H−−H

−
T

)]
. (4.3)

It can be seen from eq. (4.2) that the numerator is not sensitive to the scalar type

NP operators. Therefore the sensitivity to the scalar NP comes only from the total decay

width in the denominator, eq. (4.3). In figure 10 we show A
J/ψ
FB (θV ) and A

J/ψ
FB (θV , θ`) as a

function of q2 with the values of the new physics couplings as given in eqs. (3.4), (3.5). The

current bound on the NP couplings makes the observable A
J/ψ
FB (θV ) sensitive to SL = 4TL

in the 1D scenario and to the same combination with both the real and the imaginary

components present in case of 2D scenario. As for the asymmetry A
J/ψ
FB (θV ), the deviation

from the SM in case of 2D scenario for the combination Re[SL = 4TL], Im[SL = 4TL]

can be as large as 50–70% in the region of small q2. However, the other observable with
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Figure 10. Forward-backward asymmetry AFB(θV ) [upper-panel] and AFB(θV , θ`) [lower-panel]

as a function of q2. The blue dotted lines are the SM prediction, the green dashed line is for the

best fit values of the NP couplings in the 1D scenario as discussed in the text. The green band

represents the NP effects from the 2σ allowed regions. The third figure in both panels is the result

for the best fit points in the 2D scenarios.

the asymmetry in both θV and θ`, A
J/ψ
FB (θV , θ`) is not a good observable to look for NP

scenarios in the current situation.

One can build additional asymmetries in the angle χ along with θV and θ`. These

asymmetries are proportional to both cosχ and sinχ, and their corresponding expressions

are given below:

A
J/ψ
FB (χ,θV ) =

1

Γ

∫
dq2

(∫ π/2

−π/2
−
∫ 3π/2

π/2

)
dχ

∫ 1

−1
dcosθ`

(∫ 1

0
−
∫ 0

−1

)
×dcosθV G[q2,θ`,θV ,χ]

=
−4π

3Γ

[
|1+VL|2

{
H00

(
H−−−H++

)
+2δ`Ht0

(
H−−+H++

)}
−2HV

S H
+
T TLP

+
√

2δ`

(
H−−+H++

)
HV
S

(
ReP+P VL

)
+32δ`H

0
T

(
H−T −H+

T

)
|TL|2

− 4
√

2δ`

(
ReTL+TLVL

)(
H00(H−T −H+

T )+H0
T (H−−−H++)+Ht0(H−T +H+

T )
)]
,

A
J/ψ
FB (χ,θV ,θ`) =

1

Γ

∫
dq2

(∫ π/2

−π/2
−
∫ 3π/2

π/2

)
dχ

(∫ 1

0
−
∫ 0

−1

)
dcosθ`

(∫ 1

0
−
∫ 0

−1

)
×dcosθV G[q2,θ`,θV ,χ]

=
16

9Γ
(2δ`−1)

[
|1+VL|2H00

(
H−−+H++

)
−16|TL|2H0

T

(
H−T +H+

T

)]
. (4.4)

We show in figure 11, the asymmetries A
J/ψ
FB (χ, θV ) [upper-panel] and AFB(χ, θV , θ`) [lower-

panel] as a function of q2. They behave similar to the asymmetries (A
J/ψ
FB (θV ), A

J/ψ
FB (θV , θ`))

discussed above, where χ was integrated over the whole range. These observables do

not provide any additional information compared to AFB(θV ) and AFB(θV , θ`) discussed
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Figure 11. Asymmetries AFB(χ, θV ) [upper-panel] and AFB(χ, θV , θ`) [lower-panel] as a function

of q2. The blue dotted lines are the SM prediction, the green dashed line is for the best fit values

of the NP couplings in the 1D scenario as discussed in the text. The green band represents the NP

effects from the 2σ allowed regions. The third figure in both panels is the result for the best fit

points in the 2D scenarios.

before. The 2D scenario in case of A
J/ψ
FB (χ, θV ) with Re[SL = 4TL], Im[SL = 4TL] results

in about 10–20% deviation from the SM value at low values of q2.

Finally, we consider the observables which will be sensitive to only the imaginary

component of the NP operators. These asymmetries are zero within the SM. There are

three possible combinations, (a) asymmetry depending only on χ, (b) asymmetry depending

on χ and θV , and (c) asymmetry depending on χ, θV and θ`. The relevant expressions are:

Aimg
FB (χ) =

1

Γ

∫
dq2

(∫ π

0
−
∫ 2π

π

)
dχ

∫ 1

−1
dcosθ`

∫ 1

−1
dcosθV G[q2,θ`,θV ,χ] (4.5)

=
π2

Γ

[√
2δ`

(
4{ImTL+(TLVL)∗}

{
H00(H−T −H+

T )+H0
T (H++−H−−)

+ Ht0(H+
T +H−T )

}
+HV

S {ImP+(P VL)∗}
(
H−−+H++

))
+4HV

S H
+
T (P TL)∗

]
,

where (TLVL)∗ = ImTLReVL − ImVLReTL, (P VL)∗ = ImP ReVL − ImVLReP, (P TL)∗ =

ImP ReTL − ImTLReP ,

Aimg
FB (χ,θV ) =

1

Γ

∫
dq2

(∫ π

0
−
∫ 2π

π

)
dχ

∫ 1

−1
dcosθ`

(∫ 1

0
−
∫ 0

−1

)
dcosθV G[q2,θ`,θV ,χ]

=
4π

3Γ

√
δ`

[
4
√

2{ImTL−(TLVL)∗} (4.6)

×
{
H00(H−T +H+

T )+Ht0(H−T −H+
T )−H0

T (H+++H−−)
}

+
√

2HV
S

(
H−−−H++

)
{ImP−(P VL)∗}+ 4√

δ`
HV
S H

+
T (P TL)∗

]
,
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Figure 12. Asymmetries Aimg
FB (χ) [upper-panel] and Aimg

FB (χ, θV ) [lower-panel] as a function of q2.

The SM value being zero is shown by a blue dotted line, the green dashed line is for the best fit

values of the NP couplings in the 1D scenario as discussed in the text. The green band represents

the NP effects from the 2σ allowed regions. The second figure is for the relevant 2D scenario.

Aimg
FB (χ,θV ,θ`) =

1

Γ

∫
dq2

(∫ π

0
−
∫ 2π

π

)
dχ

(∫ 1

0
−
∫ 0

−1

)
dcosθ`

(∫ 1

0
−
∫ 0

−1

)
×dcosθV G[q2,θ`,θV ,χ] (4.7)

=
16

9Γ
(2δ`−1)

[
H00

(
H−−−H++

)(
2ImVR+ImVRReVL−ReVRImVL

)]
.

The asymmetry Aimg
FB (χ, θV , θ`) is only sensitive to the NP operator VR and is therefore

not relevant for our case since these VR coefficients are not considered in the global fits

as discussed before. We show in figure 12 Aimg
FB (χ) [upper-panel] and Aimg

FB (χ, θV ) [lower-

panel] as a function of q2. These observables are only shown for ImSL = 4 ImTL in the 1D

scenario and ReSL = 4 ReTL, ImSL = 4 ImTL in the 2D scenarios as these were the only

cases considered in the global fit in ref. [45]. The forward-backward asymmetry depending

only on χ in the light of results from the current global fit shows about 1% deviation from

the SM in the 1D scenario and up to 3% deviation in the 2D scenario, in the mid-range

of q2 = 5 − 9 GeV2. The asymmetry Aimg
FB (χ, θV ) in case of the 2D scenario will have

only 1% deviation in low q2 region, whereas it is insensitive to NP in the 1D scenario. The

predictions for the integrated forward-backward asymmetries in the presence of different

NP operators are summarised in table 6.
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SM SL SR SL = 4TL (VL, SL = −4TL) (SR, SL) (VL, SR) Re,Im[SL = 4TL]

A
J/ψ
FB (θV ) 0.16 0.160.16

0.15 0.170.17
0.16 0.140.17

0.12 0.15 0.17 0.16 0.09

A
J/ψ
FB (θV , θ`) 0.21 0.200.21

0.20 0.210.22
0.21 0.210.22

0.21 0.21 0.22 0.21 0.21

−AJ/ψFB (χ, θV ) 0.09 0.100.10
0.09 0.090.09

0.09 0.090.10
0.08 0.10 0.08 0.10 0.07

−AJ/ψFB (χ, θV , θ`) 0.03 0.030.03
0.03 0.030.03

0.03 0.030.03
0.03 0.03 0.03 0.03 0.02

AFBimg(χ) 0.0 0.0 0.0 −0.0040.001
−0.01 0.0 0.0 0.0 0.02

AFBimg(χ, θV ) 0.0 0.0 0.0 −0.0020.0
−0.003 0.0 0.0 0.0 −0.001

Table 6. The integrated values of the forward-backward asymmetries in the whole q2 region, in

case of different NP scenarios discussed in the text. The subscript and the superscript are the values

for the 2σ range of the NP couplings.

5 Conclusions

Experimental measurements of semileptonic decays of the B mesons have led to intriguing

experimental tensions with the SM in the last years. The LHCb measurement of Bc →
J/ψlνl decays has lead to the speculation whether the observed potential lepton flavour

universality (LFU) violation in B decays can be also seen in the semileptonic Bc channels.

However, the SM prediction for the Bc decays require a knowledge of the transition

form factors of Bc → ηc, J/ψ and the ignorance of the form factor theoretical errors yields

a degree of uncertainty in the prediction. Preliminary results for these form factors exist at

couple of q2 values from the lattice QCD, but they do not cover the entire allowed range of

the momentum transfer and are still given without systematical errors. We have calculated

the form factors in the sum rule approach and have given the results in the full q2 region.

Our results are in good agreement with the existing lattice points. The SM branching

ratios of the Bc meson to J/ψ and ηc are calculated and compared with the results from

other approaches. Our predictions for the semileptonic ratios RJ/ψ|SM = 0.23 ± 0.01 and

Rηc |SM = 0.32 ± 0.02 are in agreement with other derivations and support the existing

tension at 2σ level with the experiment on RJ/ψ, eq. (1.1). With more data on Bc decays

from HL-LHC all observables in Bc → ηc, J/ψ semileptonic decays will be within the reach

of LHCb and tested in the near future.

The possible NP effects in the semileptonic decays of Bc to ηc and J/ψ is also studied

based on the effective Hamiltonian approach consisting of all possible four-fermi operators.

The constraints on these NP operators can be obtained from the experimental data on

RD(∗), the τ and D∗ longitudinal polarization from B → D∗ decay and the leptonic Bc →
τµ branching ratio. We take into account the latest constraints from ref. [45] and analyse

the effects of the NP operators on various observables. The ratio RJ/ψ is sensitive to VL
in the high q2 range whereas Rηc is more sensitive to the scalar and the tensor operators,

as expected.

The sensitivity of all the considered observables in this work to the different NP op-

erators is summarized in table 7. We find that most of the observables in the ηc decay

mode are sensitive to the NP coupling SR. The transverse polarization of τ is mostly

affected by the current best fit point of the combination of coefficients Re,Im[SL = 4TL]
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VL SL SR SL = 4TL (VL, SL = −4TL) (SR, SL) (VL, SR) Re,Im[SL = 4TL]

Rηc X

AηcFB X∗ X∗ X

Cτ,ηcF X X X∗

P ηcL X X∗

P ηcT X

RJ/ψ X X

A
J/ψ
FB X

P
J/ψ
L X

P
J/ψ
T X∗ X X

Table 7. Summary of the sensitivity of the observables to the NP couplings. The best fit value of

the NP coupling which is most sensitive to the observable is marked with X. The boxes with X∗

are the ones where 2σ ranges of NP parameters give the largest deviation from the SM value.

in the 2D NP scenario. The 2D NP scenario with the presence of both SR, SL leads to

the largest deviation from the SM predictions for most of the observables in the case of

J/ψ, apart from RJ/ψ. In addition, the full 4-fold differential distribution of the decay rate

Bc → J/ψ`ν`, with J/ψ decaying to a pair of leptons of opposite helicity is considered for

the first time in the presence of new physics operators. We find that the asymmetry in the

angle θV (A
J/ψ
FB (θV )) is mostly sensitive to the NP couplings Re,Im[SL = 4TL], in the 2D

NP scenarios. The asymmetries in the angle χ, which are zero in the SM and are sensitive

to the imaginary part of the NP coupling, are also considered and found to be sensitive

to SL = 4TL combination of parameters. Therefore, with the current allowed parameter

space for the SL = 4TL NP parameters obtained from the global fit to experimental data

on semileptonic B → D,D∗ decays, the asymmetries constructed with θV , χ and (θV , χ)

angles lead to significant deviation from the SM prediction.

However, it is important to stress that none of the NP scenarios derived from the

recent global fit analysis of the available experimental data on semileptonic B → (D,D∗)`ν`
decays [45] can also simultaneously explain the current 2σ tension with the experimental

RJ/ψ ratio. With the extended experimental LHCb program, future studies with more

data will be needed to boost or disapprove this evidence of LFU violation in Bc decays.
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A Form factors calculated in the three-point QCDSR model [4–6]

We have previously calculated in [4–6] the same form factors using a more traditional,

albeit somewhat modified approach of three-point QCD sum rules (3ptQCDSR) and we

present the corresponding results in table 1. Here we just briefly discuss the method of our

calculation and the main difference to the LCSR-inspired approach used in the paper. In

3ptQCDSR mesonic states are interpolated by the currents as

jBc(x) = c̄(x)iγ5b(x),

jνJ/ψ(x) = c̄(x)γνc(x),
(A.1)

taken at large virtualities. By inserting a set of hadronic states in the correlation function

defined as

Πµν(pBc , pJ/ψ) ≡ i2
∫∫

d4x d4y e−i(pBcx−pJ/ψy) 〈0|T
{
jνJ/ψ(y)jµV−A(0)j†Bc(x)

}
|0〉 , (A.2)

one can extract the form factors by calculating the perturbative part of the correlator and

the nonperturbative contributions given in terms of universal vacuum condensates built

from the quark and gluon operators of increasing dimension (here we have calculated only

the leading nonperturbative contribution coming from the gluon condensate) and matching

the QCD result via dispersion relation to a sum over hadronic states. At the end, the

expressions are Borel transformed in order to improve the convergence.

Since it is known that in the sum rule calculation of heavy meson decay constants

higher orders of perturbation series can contribute as much as 40–50%, whereas the 3-

point function is calculated at LO, in order to reduce the uncertainties we have performed

the following procedure: in the form factors calculation we have taken for the s0 threshold

parameters the same values as those that reproduce the corresponding charmonia decay

constants obtained from lattice QCD when the decay constants are calculated in the sum

rules by taking into account only the LO perturbative part and the gluon-condensate

contribution, i.e. with the same approximations as for the form factors, whereas the Borel

mass parameter is taken in the region where stability is achieved (we aim at the ∼ 5%

stability in the Borel masses in the given Borel window). Furthermore in order to reduce the

uncertainties even more, we do not vary the decay constants and thresholds independently,

but rather in the 3ptQCDSR calculation we always use the decay constants (varied inside

the range allowed by lattice) together with the corresponding thresholds fixed by the decay

constants calculation. The hope is that all the higher order/higher dimension operator

contributions are then simulated through the appropriate threshold modification in the

3-point QCDSR calculation. The parameters obtained that way are given in table 8 below.

One can notice that in contrast to the LCSR-inspired calculation used in the main text,

here we use the pole mass of the b-quark together with the c-quark mass derived from the

ratio of masses extracted from the lattice calculations.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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mb = 4.6+0.1
−0.1 GeV sBc = 52− 54 GeV2

mc = Zmb, ∀Z ≈ 0.29+0.1
−0.1 sJ/ψ = 15.5− 16.5 GeV2〈

αs
π GG

〉
= 0.012+0.006

−0.010 GeV4 M2
Bc

= 60− 80 GeV2

M2
J/ψ = 20− 25 GeV2

Table 8. Parameters used in the 3ptQCDSR calculation [4–6].
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B → π form factors revisited, JHEP 04 (2008) 014 [arXiv:0801.1796] [INSPIRE].
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