CloudMan as a Tool Execution Framework for
the Cloud

Enis Afgan, Davor Davidovi¢, Tomislav Lipi¢, Ivan Sovi¢ and Karolj Skala
Ruder Boskovi¢ Institute/Centre for Informatics and Computing,
Bijeni¢ka 54, HR-10000, Zagreb, Croatia
{Enis.Afgan, Davor.Davidovic, Tomislav.Lipic, Ivan.Sovic, skala}@irb.hr

Abstract - Cloud computing has revolutionized how
availability and access to computing and storage resources is
realized; it has made it possible to provision a large
computational infrastructure in a matter of minutes, all
through a web browser. What it has not yet solved is
accessibility of a tool execution environment where tools and
data can easily be added and used in non-trivial scenarios.
In this paper, we demonstrate how CloudMan
(http://usecloudman.org) can be used to provide complete
and complex tool execution environments for making cloud
resources functional for a desired domain.

. INTRODUCTION

Conducting controlled, consistent, verifiable and
repeatable experiments is of utmost importance for the
development of computer science [1] - although this
paradigm is applicable for every research regardless of the
field of study. Additionally, many branches of modern
research are computation- and data-intensive forms of
discovery, encompassing the generation, analysis and
interpretation of vast amounts of data against catalogs of
existing knowledge in complex multi-stage workflows
that are enabled by a combination of analysis platforms
and computational infrastructures. Massive amount of
computing power, derived from a large number of
computers, is often required to perform these large-scale
experiments [2]. Scientific computing in most cases
requires availability of such distributed computing and
networking platforms which, in traditional high-
performance computing solutions, account either for
locally installed clusters and supercomputers, or
distributed grids, that are often difficult to setup, maintain
and operate. On the other hand, cloud computing provides
a completely new model of utilizing the computing
infrastructure, where computing and storage resources can
be provisioned in a dynamic, scalable, on demand and pay
per use basis, and released when no longer needed [2].

Cloud computing refers both to applications delivered
as services over the Internet and the hardware and systems
software in the data centers that provide those services [3].
In this manner, the cloud can be divided into three major
service types that are available to end users, scientific
institutions, and enterprises: Infrastructure as a Service
(laaS), Platform as a Service (PaaS) and Software as a
Service (SaaS) [2]. laaS refers to provisioning IT
infrastructure resources over the network based on virtual
or physical resources that meet the CPU, power, storage,
and operating system requirements [2]. Amazon Web
Services (aws.amazon.com) is an example of a major laaS

vendor, while other providers include GoGrid and
Flexiscale Error! Reference source not found.. PaaS
encompasses the provisioning of a platform layer with
resources such as software development frameworks for
applications that will run on the cloud. Applications
utilizing PaaS layer interact with the cloud on the higher
level of abstraction while the low-level components are
hidden behind the platform layer. Examples of PaaS
providers include Google App Engine and Microsoft
Azure. SaaS represents the top end of the cloud computing
stack by providing functional applications and services but
also vyielding least user customization [2]Error!
Reference source not found.. Examples of SaaS include
Google Documents, online email clients, or photo sharing
sites.

Although gradually adopted by select groups, the
potential offered by cloud platforms is only partially
exploited because much of its functionality is still
cumbersome to use for the end users. The reality of using
cloud resources is that the necessary tools, libraries, and
applications for every day best practices in research and
operational business routines are by themselves relatively
complicated to install and customize. Even if those are
made available via predefined platforms or custom
solutions, their scope is often limited and usage
predefined. They typically also involve a high level of on-
going maintenance to keep the software and data up-to-
date. Such maintenance currently requires significant
expertise in software development and system
administration. These requirements stand in the way of
cloud adoption, particularly among small development
and research groups with insufficient capacity to tackle
such IT challenges.

Currently many powerful solutions exist for
materializing the cloud concepts, but somewhat lack easy-
to-use principles that would allow end users to take full
advantage of them. Thus, developing cloud methodologies
is no longer the main challenge in the uptake of the cloud.
Instead the problem lies in making existing methodologies
usable for end users so that they can take full advantage of
the existing resources. Some of the challenges standing in
the way of the widespread acceptance of clouds are being
addressed by a number of research projects, contributing
to minimize the technical complexities of using the cloud
by leveraging and developing cloud platforms to reach
higher levels of innovation and automation [5]. These
research projects include (amongst others): mOSAIC [6],
4CaaST [7], Contrail [8], CumuloNimbo [9], StratusLab

[10], StarCluster [11], RedHat OpenShift Flex [12],
Manjrasoft Aneka [13], and Cirrocumulus [14].

To bridge this critically important gap between
computational resources and end users we have previously
developed CloudMan [1][15][17]. CloudMan makes it
remarkably easy to exploit the potential of cloud resources
without burdening users with tedious details: it delivers a
framework and a platform for providing accessible
solutions built on the flexibility of laaS while delivering it
in a PaaS format. The software and services offered by
CloudMan have already attracted and established a
growing community of users and developers, which
confirms the emerging trend of acceptance and integration
of accessible solutions based on the cloud computing
model into the everyday workflow of end users.

In this paper we demonstrate the application of
CloudMan as a tool execution framework for the cloud,
and give insight to the ease and rapidity of deploying
configured and ready to use systems. In Section Il we
present the overview of the CloudMan architecture
including supported file systems, the data persistence
model, and deployment concepts. Lastly, we describe
three categories of applications that can be deployed into
the CloudMan platform, thus alluding at the potential
flexibility of the described platform.

Il. TooL DEPLOYMENT AND EXECUTION FRAMEWORK
For THE CLOUD

The cloud infrastructure and the overlaying layer for
operating it are in a mature phase (e.g. AWS, OpenStack,
Eucalyptus, OpenNebula). Although the infrastructure
provides most of the required functionality to gain access
to a functional infrastructure, it is quite complicated and
time consuming for the inexperienced and non-technically
educated users to properly exploit infrastructure’s full
potential. CloudMan has successfully resolved many
issues regarding accessibility to cloud resources.

CloudMan provides an interface between laaS and
SaaS, acting as a platform that encapsulates several
important functionalities. Some of the most prominent
features that are supported include automated (and thus
reproducible) configuration for machine image, dynamic
persistent storage for tools and data, automated scaling of
the underlying infrastructure, and sharing of complete
deployments. All this is exposed through a web browser
making it very accessible to end users.

The underlying architecture allows each CloudMan
deployment to be customized by individual users and thus
meet their specific needs. Once customized, the
customizations can be persisted even after the cloud
instance is terminated (i.e. cloud image can be saved and
re-opened again without losing any information).
Furthermore, the customized instances can easily be
shared with different users within the same cloud
provider. This implies sharing of the deployment
(including the applications and the data) so that the entire
deployment runs under a different user account and is thus

independent of other user’s resources. Lastly, CloudMan
provides support for elastic resource scaling, which can be
manual or automatic. The elastic scaling reduces the cost
as the certain resources (storage, CPUs, etc) can be
removed or added dynamically during the instance
runtime, based on the current workload.

CloudMan platform also defines functional but
customizable application execution environments (e.g.,
SMP, MPI, map-reduce). These parallel execution
environments are automatically set-up at the instance
launch time and made available to users and applications.
These environments cover a wide range of uses without
requiring users to perform any configuration, which
contributes toward making the underlying infrastructure
accessible and instantly usable. Simultaneously, because
each CloudMan instance of the can be customized, these
environments can be adjusted to meet specific application
needs. This enabled CloudMan to act as a platform - a
platform that allows users to incrementally build on top of
an already rich set of preconfigured and functional
features. This is in direct contrast with having to recreate
all of the lower-level features or mastering an entirely new
methodology for working with the cloud infrastructures.
This model makes it possible to support the entire life
cycle of a tool and an analysis without requiring any
special provisions from the developer or the end user.

A. CloudMan arhitecture

CloudMan architecture represents a step toward
defining a universal environment for deploying a range of
applications on cloud infrastructures. The motivation for
this approach is twofold: (1) provide a template for those
wishing to migrate their own application to an aggregated
infrastructure environment and (2) enable the underlying
infrastructure to be interchanged while minimizing
changes required to realize the bridge between laaS and
SaaS.

The presented architecture focuses on encapsulating an
existing application into a deployable unit that can be
instantiated by an individual user. With this approach the
applications are abstracted and infrastructure independent.
At the same time, a readily deployable application unit
allows users to easily and quickly gain access to the
desired application. The user is thus not encumbered by
having to install and maintain their own infrastructure or
installation, nor limited by restrictions imposed by
availability of a public deployment of an application. If
the application deployment unit exists for multiple
infrastructure providers, the user is also free to choose
where to run the application. As a result of the self-
contained application unit deployment process, the user
can independently utilize laaS infrastructure while
enjoying SaaS usability. This approach creates a
separation of concerns at a high level and allows everyone
involved to focus on their domain instead of being bogged
down by management and maintenance routines and
requirements.

Instance Block Storage

Management
Console

10

CloudMan Machine Image

Persistent Data
Repository

s2/Swift

CloudMan MI

CloudMan M| CM-w
CM-w

CloudMan MI CM

CloudMan Instance

Figure 1. Composition of components composing the arhitecture to enable CloudMan exexution in virtualized environment: (1) The administrator
user accesses the infrastructure console manager and requests an instance; (2) an instance is instantiated (this may be an instance with CloudMan
already enabled or CloudMan can easily be added to the instance); (3) CloudMan controller starts; (4) the controller contextualizes itself by obtaining
needed context from the persistent data repository; (5) any external storage resources are then attached and configured automatically by eCloudMan
into appropriate file systems; (6) the administrator user has the option of providing configuration information about their new cluster through
eCloudMan’s web interface, e.g., cluster size limits; (7) optionally, eCloudMan configures and starts specific application(s); (9) the user can monitor
and update deployment parameters via CloudMan, CloudMan automatically scales the cluster, acquiring and releasing additional worker instances as
needed but also staying within the predefined constraints; (10) the platform and the application can be used directly or via the eCloudMan API; (11)
applications run transparently on the backend resources.

CloudMan is implemented as a standalone web
application that acts as a manager for the instantiated
deployment. To enable composition of multiple instances
into a compute cluster, at the implementation level,
CloudMan is represented by two services, a master and a
worker. The distinction between services is determined at
instance boot time, based on the given instance’s role. All
of the instance contextualization, master-worker
communication, and status reporting is performed through
a messaging system implemented using the Advanced
Message Queuing Protocol standard and using a
RabbitMQ server deployed on the master instance [16].

Conceptually, CloudMan architecture is based on
separation and subsequent coordination of otherwise
independent infrastructure components: the machine
image, a persistent data repository, and persistent storage
resources (e.g. data snapshots). The composition and
interaction of those three independent components, that
comprise the CloudMan architecture, are described in
Figure 1. The machine image is characterized by
simplicity; it consists only of the basic services required to
initiate the application unit deployment process. In
particular, besides selecting the underlying operating
system, only the core set of services is installed on the
image itself. Alongside these services, a contextualization
script is included in the basic machine image.
Contextualization is the process of coordinating the
machine instance preparation and deployment at runtime.
The contextualization script included in CloudMan’s
machine image serves only as an access point to the
instance while the contextualization details are extracted
and stored from the persistent data repository. The
persistent data repository lives independent of the
machine image and is used to provide instance
contextualization details, such as, the boot time scripts that

define which services should be started. Lastly, persistent
storage resources, or snapshots, are used as the storage
medium for applications, any required tools, libraries, or
datasets the application depends on, and the user data.

Once instantiated, these components are aggregated by
CloudMan into a cohesive and operational unit with all the
features described above becoming functional. As part of
the setup, CloudMan automatically configures the master
instance as a head node of a Sun Grid Engine (SGE)
compute cluster but it does not start any additional worker
instances or assign persistent storage to the cluster. In the
context of cloud computing, compute instances are usually
transient, meaning that any changes made to an instance
while the instance is alive are lost at instance termination.
In order to persist any data uploaded to the cloud or any
analysis results, the data needs to be stored on an external
data volume. In the case of CloudMan on EC2, Amazon’s
Elastic Block Storage (EBS) volumes are used as the
persistent storage resources.

At termination time, any read-only persistent storage
resources are deleted because they will be recreated from
the preexisting snapshots. The persistent storage resources
containing user data however are preserved in the user’s
account. Similarly, all of the cluster configuration settings
are preserved in the persistent data repository and will be
used upon next cluster instantiation to assemble the
complete deployment.

Over the past two years of development, the described
architecture has proven very effective and resilient to
different cloud providers. Overall, the architecture
provides the following benefits:

e Minimum setup time and cost: no need for an
external broker

e Automated configuration
e Transparent data persistence

customizable
data, and

e Self-contained deployment:
instances; versioning of tools,
configurations

B. Running applications using CloudMan

CloudMan currently supports creation of compute
clusters on Amazon’s EC2 Error! Reference source not
found. cloud computing infrastructure as well as
OpenStanc and OpenNebula based clouds. The process of
instantiating a cluster does not require any computational
experience, and requires no compute infrastructure or
software beyond the web browser used to control the
cluster. Thus, CloudMan is ideal for independent
researchers and small labs that have a specific or periodic
need for computational resources but lack informatics
expertise and commitment to manage and maintain a
computational cluster. The process of instantiating a
CloudMan compute cluster consists of three steps: (1)
obtain an account on the supported cloud (AWS or
OpenStack or OpenNebula private clouds), (2) use
biocloudcentral.org portal to start a master instance, and
(3) use the CloudMan web console on the master instance
to manage the cluster size and data persistence. This
approach takes very short time to setup a compute cluster
and allows a user to have any number of independent
clusters, thus supporting easy separation of projects or
groups. Once set up, additional users may use the cluster.
Depending on the type of application used, user may be
able to use the cluster via the web interface or by logging
into the instance via command line tools.

For the case of AWS, CloudMan comes preconfigured
with more than 100 bioinformatics tools. In addition, at
cluster start time, it can be configured to deploy Galaxy
application with numerous other tools and 700GB of
reference genome data. If a specific tool is not available, it
is possible for a user to customize their instance and add
the desired tool (see below). Once added, the instance
changes may be persisted and shared with other users, as
outlined in section B above.

Another interesting example of utilizing CloudMan
platform is deployment of the WRF-ARW - weather
research and forecasting model. This model requires large
storage and computational resources and is favorable to
see how it can exploit unique and powerful features of
Cloud. In the past, several deployments of the WRF-ARW
model has been made on Grid infrastructure [18][19]. All
of these attempts of deployments were on a fixed and pre-
defined architecture (computing nodes, storage, operating
system, etc.).

Regardless of whether is a preinstalled tool or a user-
installed one, SGE job manager is configured and used on
the cluster for job management. This makes it possible for
users to simply copy their job scripts to the cloud cluster
and run them there - but with the scalability offered
through cloud computing. When a given cluster is no
longer needed, the CloudMan web interface can be used to
terminate all of the services and worker instances. If
persistent data storage was associated with the cluster, the

data is preserved while the cluster is offline, and made
available in the same state once the cluster is instantiated
again. It takes only a few minutes to scale up or down a
cluster and consume the required amount of resources.

When installing the set of tools supported by
CloudMan platform by default, a script is used to
automatically install all the tools. This script is available at
https://bitbucket.org/afgane/mi-deployment/ and may be
used when customizing individual instances to include the
desired tools. Once customized, the user has an option to
persist the changes via CloudMan’s web interface, thus
making those changes readily available for future cluster
invocations and/or sharing with other users.

In order to install a custom application, a user
instantiates a cloud cluster, modifies the contents of the
persistent storage resources (e.g. EBS volumes) by
installing the desired tools (performed just like on any
other machine), creates a snapshot of the modified data
volume (done automatically through CloudMan’s web
interface), and points their cluster setup to use the newly
created data volume snapshot (also done automatically
through a web Ul). As a result, the functionality and the
architecture of CloudMan can easily be adjusted to the
computing needs of individual researchers and different
domains. This makes it possible for end users to add their
own tools to a CloudMan cluster instance while also
reusing all of the other provided features.

Note that the implications of such customization mean
that one could install a custom tool and provide some
sample data. Then persist those changes and share the
cluster with the community. Then, users can simply
instantiate this shared instance and start using the tool and
the data made available without actually having to install
or configure anything. Along with the tool, the users were
also able to acquire the infrastructure (form the cloud),
thus making a given tool instantly accessible to the end
users.

C. Application types and the CloudMan platform

Based on the defined architecture of CloudMan, one
can define three applications types. Application types are
divided depending on where, how and when the
applications are installed. These types are:

Type I a self-contained application that can be
installed manually by the user as it would be installed on
any user machine or cluster. This application and its
dependencies should be installed on the user’s persistent
data volume and thus it will be retained across invocations
of this cluster. The WRF-ARW model is an example for
this type.

Type II: an application that wants to be shared with
others or may have 3" party dependencies but none of
those include system-level changes. This type of
application should be installed on the persistent data
repository derived from a snapshot and use CloudMan’s
features to persist those changes on the otherwise read-
only file system. An example for this type of application is
SGE.

Type IlI: an application that requires system-wide
install because its dependencies must be a part of the

operating system. For this case, a new machine image
needs to be created. Once the new machine image is
created, future invocations of this cluster should use that
particular machine image. GalaxyTool is an example of

this type.

I1l. CONLUSION

To keep up with the growth of research data being
produced and the accompanying computational demand
required to process those data, there is a need for
increased access to computational resources. Cloud
computing offers access to such resources but still makes
it difficult to create complex deployments of useful
standalone infrastructures. This is especially cumbersome
for individuals and small labs that lack informatics
support to fully harness this general-purpose
infrastructure.

This paper showcases how CloudMan can be used to
lower the barrier of entry into cloud computing while
readily leveraging many of the features of the cloud.
Namely, CloudMan handles all of the intricacies of cloud
computing resource acquisition, configuration, and scaling
to deliver a personal compute cluster in a matter of
minutes. All of the interaction with CloudMan and the
associated cloud cluster management is performed
through a web based user interface and requires no
computational expertise. Alternatively, if advanced access
to the system is desired, one can easily gain access while
continuing to operate in a traditional cluster environment.

Overall, the CloudMan platform can be preconfigured
with numerous applications that are ready to be used. The
installation procedure for those tools is fully automated
thus supporting reproducibility. In addition, three different
cloud application types were categorized according to the
way of their deployment as potential candidates for
customizing a given instance of CloudMan.

ACKNOWLEDGMENT

The authors acknowledge the support of scientific
research project “Methods of scientific visualization”
(098-098 2562-2567), founded by the Ministry of Science,
Education and Sports of the Republic of Croatia.
Additionally, the authors would also like to thank the

Galaxy Team who was responsible for deployment of the
Galaxy application with CloudMan.

REFERENCES

[1] Afgan E., Baker D., Coraor N., Goto H., Paul I.M, Makova K.D.,
Nekrutenko A., Taylor J., "Harnessing cloud computing with
Galaxy Cloud," Nature Biotechnology, Vol 29, Issue 11, 2011.

[2] Christian Vecchiola, Suraj Pandey, and Rajkumar Buyya, “High-
Performance Cloud Computing: A View of Scientific
Applications, in Proceedings of the 10th International Symposium
on Pervasive Systems Algorithms and Networks, 2009, p. 13

[3] Above the Clouds: A Berkeley View of Cloud Computing

[4] Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state of the
art and research challenges. Journal of In-ternet Services and
Applications 1(1) (2010)

[5] A. Menychtas, G. Kousiouris, D. Kyriazis, and T. Varvarigou,
“Minimizing technical complexities in emerging cloud computing
platforms”, in Euro-Par 2010 Proceedings of the 2010 conference
on Parallel processing, 2010, pp. 603-610.

[6] “Mosaic Cloud.”, http://www.mosaic-cloud.eu/

[7] <«“4CaaSt.”, http://4caast. morfeo-project.org/

[8] <“Contrail.”, http://contrail-project.eu/

[9] “CumuloNimbo.”, http://cumulonimbo.eu/

[10] “StratusLab.”, http://stratuslab.eu/doku.php/start

[11] “StarCluster.”, http://web.mit.edu/stardev/cluster/

[12] “Red Hat OpenShift.”, https://openshift.redhat.com/app/

[13] “Manjrasoft Aneka.”, http://www.manjrasoft.com/products.html

[14] “Cirrocumulus.”,
http://knoesis.org/research/srl/projects/cirrocumulus/.

[15] E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and
J. Taylor, “Galaxy CloudMan: delivering cloud compute
clusters.”, BMC bioinformatics, vol. 11 Suppl 1, no. 12, p. S4, Jan.
2010.

[16] Afgan E., Baker D., Taylor J., “A Reference Model for Deploying
Applications in Virtualized Environments,” Concurrency and
Computation: Practice and Experience, 2011.

[17] Afgan E., Goecks J., Baker D., Coraor N., the Galaxy Team,
Nekrutenko A., and Taylor J., "Galaxy - a Gateway to Tools in e-
Science," in Guide to e-Science: Next Generation Scientific
Research and Discovery , K. Yang, Ed., ed: Springer, 2011, p.
145-177.

[18] Davidovi¢, D.; Skala, K.; Belusi¢, D.; Telisman-Prtenjak, M.,
“Grid implementation of the Weather Research and Forecasting

model,” Earth Science Informatics, vol. 3, issue 4, pp.199-208,
2010

[19] Davidovi¢, Davor; Skala, Karolj. Implementation of the WREF-
ARW prognostic model on the Grid, Proceedings Vol. 1.
MEET&GVS 33rd International Convention MIPRO, pp. 253-
258, 2010

http://www.mosaic-cloud.eu/
http://4caast.morfeo-project.org/
http://contrail-project.eu/
http://cumulonimbo.eu/
http://web.mit.edu/stardev/cluster/
https://openshift.redhat.com/app/
http://www.manjrasoft.com/products.html
http://knoesis.org/research/srl/projects/cirrocumulus/

