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1 Introduction

The top quark, the heaviest elementary particle in the standard model (SM), has been
the subject of numerous detailed studies using hadron-hadron collisions. The pair produc-
tion (tt) cross section (o) as a function of center-of-mass energy can be of interest for
the extraction of the top quark pole mass [1] and has been used to constrain the gluon
distribution function [2] at large fractions = of the proton longitudinal momentum carried
by the gluon, where the gluon distribution is poorly known. Precise measurements of o;
in proton-proton (pp) collisions have been published at /s values of 7 and 8 [3-6] and
13 TeV [7-10] by the ATLAS and CMS Collaborations at the LHC.

In November 2015, the LHC delivered pp collisions at /s = 5.02TeV. The fraction
of tt events initiated by gluon-gluon collisions grows monotonically with +/s. It is around
73% at 5.02 TeV, as calculated with POWHEG (v2) [11-13] at next-to-leading order (NLO)



using the NNPDF3.0 NLO [14] parton distribution functions (PDFs), and increases to
around 86% at 13 TeV, making this new data set partially complementary to the higher-
energy samples. Measurements of tt production at various /s probe different values of x
and thus can provide complementary information on the gluon distribution. In addition,
future measurements of o,; in nuclear collisions at the same nucleon-nucleon center-of-
mass energy [15, 16] would profit from the availability of a reference measurement in pp
collisions at /s = 5.02 TeV, without the need to extrapolate from measurements at different
v/s. This has already been demonstrated with the first observation of the tt process using
proton-nucleus collisions at a higher nucleon-nucleon center-of-mass energy [17].

In the SM, top quarks in pp collisions are mostly produced as tt pairs. Each top
quark decays predominantly to a W boson and a bottom (b) quark. The tt events are
categorized according to the decay of the two W bosons. In tt events where one W boson
decays leptonically and the other hadronically (¢+jets channel), the final state presents
a typical signature of one isolated lepton, missing transverse momentum, two jets from
the W boson hadronic decay, and two jets coming from the hadronization of the b quarks
(“b jets”). On the other hand, in tt events where both W bosons decay leptonically
(dilepton channel), the final state contains two leptons of opposite electric charge, missing
transverse momentum, and at least two b jets. The f+jets channel has a large branching
ratio with a moderate amount of background, while the dilepton channel is characterized
by a high purity.

This analysis represents the first measurement of o5 in pp collisions at /s = 5.02 TeV
using tt candidate events with ¢+jets, where leptons are either electrons (£ = e) or muons
(¢ = ), and dilepton (e*uT or p* ;) final states. In the former case, o; is extracted by a
fit to the distribution of a kinematic variable for different categories of lepton flavor and jet
multiplicity, while in the latter an event counting approach is used. The two results are then
combined in the final measurement, which is used as input to a quantum chromodynamics
(QCD) analysis at next-to-next-to-leading order (NNLO) to investigate the impact on the
determination of the gluon distribution in the less-explored kinematic range of x = 0.1.

This paper is structured as follows. Section 2 describes the CMS detector. Section 3
gives a summary of the data and simulated samples used. After the discussion of the object
reconstruction in section 4, and of the trigger and event selection in section 5, section 6
describes the determination of the background sources. The systematic uncertainties are
discussed in section 7. The extraction of o; is presented in section 8 and the impact of the
presented measurement on the determination of the proton PDFs is discussed in section 9.
A summary of all the results is given in section 10.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T parallel to the beam direction.

Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crys-
tal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter
(HCAL), each composed of a barrel and two endcap sections. A preshower detector, con-



sisting of two planes of silicon sensors interleaved with about 3 radiation lengths of lead, is
located in front of the endcap regions of ECAL. Hadron forward calorimeters using steel as
an absorber and quartz fibers as the sensitive material extend the pseudorapidity coverage
provided by the barrel and endcap detectors from |n| = 3.0 to 5.2.

Charged particle trajectories with |n| < 2.5 are measured by the tracker system, while
the energy deposits in ECAL and HCAL cells are summed to define the calorimeter tower
energies, subsequently used to calculate the energies and directions of hadronic jets. Muons
are detected in the pseudorapidity window |n| < 2.4 in gas-ionization detectors embedded
in the steel flux-return yoke outside the solenoid. Photons and electrons are reconstructed
by their deposited energy in groups of ECAL crystals (“clusters”). Events of interest
are selected using a two-tiered trigger system [18]. The first level, composed of custom
hardware processors, uses information from the calorimeters and muon detectors to select
events at a rate of around 100 kHz within a time interval of less than 4 us. The second
level, known as the high-level trigger, consists of a farm of processors running a version of
the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in ref. [19].

3 Data, simulated samples and theoretical cross section

This analysis is based on an integrated luminosity of 27.4 4 0.6 pb~* [20]. The presence of
multiple proton collisions in the same or nearby bunch crossings (“pileup”) results in an
average number of overlapping interactions estimated online to be 1.4, assuming a total
inelastic cross section of 65 mb.

Several Monte Carlo (MC) event generators are used to simulate signal and back-
ground events. The NLO POWHEG (v2) [11-13] generator is used for tt events, assum-
ing a value of 172.5GeV for the top quark mass (mop). These events are passed to
PYTHIA (v8.205) [21, 22| to simulate parton showering, hadronization, and the underlying
event, using the CUETP8M1 (23, 24] tune for the default tt MC sample. The NNPDF3.0
NLO PDFs with strong coupling as(My) = 0.118 at the Z boson mass scale My are utilized
in the MC calculations.

The MADGRAPH5_aMC@NLO (v5-2.2.2) generator [25] is used to simulate W boson
production with additional jets (W+jets), and high-mass (>50GeV) Drell-Yan quark-
antiquark annihilation into lepton-antilepton pairs through Z boson or virtual-photon ex-
change (referred to as “Z/~v*”). The simulation includes up to two extra partons at matrix
element level, and the FXFX merging procedure [26] is used to interface with PYTHIA.
Low-mass Z/~* events (20-50GeV) are simulated with PYTHIA. The normalization of
the W+jets and Z/~v* processes is either derived from data (in the dilepton channel) or
estimated based on the NNLO cross sections (in the ¢+jets channel) from the FEWZ pro-
gram (v3.1.b2) [27]. Single top quark plus W boson events (tW) are simulated using
POWHEG (v1) [28, 29] interfaced with PYTHIA, and are normalized to the approximate
NNLO cross sections [30]. The contributions from WW and WZ production (referred to as



“WV”) are simulated with PYTHIA, and are normalized to the NLO cross sections calcu-
lated with the MCFM (v8.0) program [31]. All generated events undergo a full GEANT4 [32]
simulation of the detector response.

The expected signal yields are normalized to the value of the SM prediction for the tt
production cross section:

o NEO — 68,9 +19 (scale) + 2.3 (PDF) *14 (as) pb, (3.1)

as calculated with the ToP++ program [33] at NNLO in perturbative QCD, including soft-
gluon resummation at next-to-next-to-leading-logarithmic order [34], using the NNPDF 3.0
NNLO PDF set, with as(Mz) = 0.118 and myep = 172.5 GeV. The systematic uncertainties
in the theoretical tt cross section are associated with the choice of the renormalization (ugR)
and factorization (up) scales — nominally set at ugr = up = meop + p2T7tOp with pr top
the top quark transverse momentum — as well as with the PDF set and the o, value. The
uncertainty of 0.1% in the LHC beam energy [35] translates into an additional uncertainty
of 0.22 pb in the expected cross section, with negligible impact on the acceptance of any of
the channels included in this analysis.

4 Object reconstruction

The particle-flow (PF) algorithm [36] is used to reconstruct and identify individual par-
ticles using an optimized combination of information from the various elements of the
CMS detector.

The electron momentum is calculated by combining the energy measurement in
the ECAL with the momentum measurement in the tracker, taking into account the
bremsstrahlung photons spatially compatible with originating from the electron track. The
momentum resolution for electrons with transverse momentum pr = 45 GeV from Z — ee
decays ranges from 1.7% for nonshowering electrons in the barrel region to 4.5% for show-
ering electrons in the endcaps [37]. Muon candidates are reconstructed from a combination
of the information collected by the muon spectrometer and the silicon tracker. This results
in a relative pr resolution of 1.3-2.0% in the barrel and better than 6% in the endcaps,
for muons with 20 < pr < 100 GeV and within the range || < 2.4 [38, 39]. The photon
energy is directly obtained from the ECAL measurement, corrected for zero-suppression
effects. The charged hadron energies are determined from a combination of their momenta
measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for
zero-suppression effects and for the response function of the calorimeters to hadronic show-
ers. Finally, the neutral hadron energies are obtained from the corresponding corrected
ECAL and HCAL energies.

The missing transverse momentum vector is defined as the negative vector sum of
the momenta of all reconstructed PF candidates in an event, projected onto the plane

perpendicular to the direction of the proton beams. Its magnitude is referred to as p%iss

and the corrections to jet momenta are propagated to the p%iss calculation [40].
The reconstructed vertex with the largest value of summed physics-object p% is taken
to be the primary pp interaction vertex. The physics objects are the jets, clustered using

the jet finding algorithm [41, 42] with the tracks assigned to the vertex as inputs, and the



associated p%iss. The isolation of electron and muon candidates from nearby jet activity

is then evaluated as follows. For electron and muon candidates, a cone of AR = 0.3 and
0.4, respectively, is constructed around the direction of the lepton track at the primary
event vertex, where AR is defined as vV (An)? + (A¢)?, and An and A¢ are the differences
in pseudorapidity and azimuthal angle between the directions of the lepton and another
particle. A relative isolation discriminant, I, is calculated by the ratio between the
scalar pt sum of all particle candidates inside the cone consistent with originating from
the primary vertex and the pr of the lepton candidate. In this sum, we exclude the pr
of the lepton candidate. The neutral particle contribution to I, is corrected for energy
deposits from pileup interactions using different techniques for electrons and muons. For
muons, half of the total pr of the charged hadron PF candidates not originating from the
primary vertex is subtracted. The factor of one half accounts for the different fraction of
charged and neutral particles in the cone. For electrons, the FASTJET technique [43] is
used, in which the median of the energy-density distribution of neutral particles (within
the area of any jet in the event) multiplied by the geometric area of the isolation cone
— scaled by a factor that accounts for the residual 7-dependence of the average energy
deposition due to pileup — is subtracted.

The efficiency of the lepton selection is measured using a “tag-and-probe” method
in same-flavor dilepton events enriched in 7 boson candidates, following the method of
ref. [44]. The sample of Z — ppu~ events used for muon efficiency extraction is selected
by the same trigger requirement used by the main analysis (section 5). The Z — ete™
sample for electron efficiency extraction makes use of events that satisfy a diphoton trigger
with symmetric transverse energy, Et = ) . E;sin6;, thresholds of E1 = 15GeV covering
the full tracker acceptance, where E; is the energy seen by the calorimeters for the ith
particle, 6; is the polar angle of particle ¢, and the sum is over all particles emitted into
a fixed solid angle in the event. Pairs of photon candidates above the Et threshold are
accepted only if their invariant mass is above 50 GeV. The trigger selection requires a
loose identification using cluster shower shapes and a selection based on the ratio of the
hadronic to the electromagnetic energy of the photon candidates. Based on a comparison
of the lepton selection efficiency in data and simulation, the event yield in simulation is
corrected using data-to-simulation scale factors.

Jets are reconstructed from the PF candidates using the anti-kr clustering algo-
rithm [41] with a distance parameter of 0.4. Jets closer than AR = 0.3 to the nearest
muon or electron are discarded. Jet energy corrections extracted from full detector sim-
ulation are also applied as a function of jet pr and n [45] to data and simulation. A
residual correction to the data is applied to account for the discrepancy between data and
simulation in the jet response.

5 Event selection

The event sample is selected by a loose online trigger and further filtered offline to remove
noncollision events, such as beam-gas interactions or cosmic rays. Collision events contain-
ing one high-pr electron (muon) candidate are selected online by requiring values of Er



(pr) greater than 40 (15) GeV and of || less than 3.1 (2.5). The measured trigger efficiency
for each decay channel, relative to the final selection, is higher than 90%.

In the ¢+jets analysis, electron candidates are selected if they have pr > 40 GeV and
In| < 2.1. Further identification and isolation criteria are applied to the electron candidates.
Electrons reconstructed in the ECAL barrel (endcap) are required to have I < 4 (5)%.
Electron candidates in the 1.44 < |n| < 1.57 region, i.e., in the transition region between
the barrel and endcap sections of the ECAL, are excluded because the reconstruction of an
electron object in this region is less efficient. Muons are required to have pt > 25 GeV and
In| < 2.1. Additional identification criteria are applied and I, is required to be < 15%.
Events are rejected if they contain extra electrons or muons identified using a looser set of
identification criteria and have pt > 10 or 15 GeV, respectively.

The distinct signature of two b jets, expected in tt decays, is rare in background events,
and thus is exploited in the ¢+jets analysis. Backgrounds from W+jets, QCD multijet,
and Z/~* events are controlled by counting the number of b jets in the selected events.
In addition, two light-flavor jets are expected to be produced in the decay of one of the
W bosons for signal events. The correlation in phase space of these light jets carries a
distinctive hallmark with respect to the main backgrounds. To that end, jets are selected if
they have pp > 30 GeV and |n| < 2.4. The flavor of the jets is identified using a combined
secondary vertex algorithm [46] with an operating point that yields a b jet identification
efficiency of about 70%, and misidentification (mistag) probabilities of about 1% and 15%
for light-flavor (u, d, s, and gluons) and c jets, respectively. The event selection requires
at least two non-b-tagged jets to be identified as candidates from the W boson hadronic
decay. Additional jets passing the b quark identification criteria are counted and used
to classify the selected events in none (0 b), exactly one (1 b), or at least two (>2 b)
tagged jet categories. The efficiency of the b jet identification algorithm is measured in
situ, simultaneously with the signal cross section.

Dilepton events are required to contain at least one muon candidate at trigger level.
No requirement on the presence of electron candidates is made at trigger level owing to the
relatively high-Er threshold (40 GeV) of the trigger. Electrons are selected if they have
pr > 20GeV, |n| < 2.4, and I < 9 (or 12)% if in the barrel (or one of the endcaps).
As in the /+jets channel, electrons detected in the transition region between the barrel
and endcap sections of the ECAL are excluded. Muons are required to have pp > 18 GeV,
In| < 2.1, and I < 15%. At least two jets satisfying the criteria py > 25 GeV and |n| < 3
are required. Events are subsequently selected if they have a pair of leptons with opposite
charge (e*uT or pu*uT) passing the requirements listed above. In events with more than
one pair of leptons passing the above selection, the two leptons of opposite charge that
yield the highest scalar pr sum are selected.

Candidate events with dilepton invariant masses of My, < 20GeV are removed to
suppress events from decays of heavy-flavor resonances and low-mass Z/v* processes.
Dilepton events with two muons in the final state are still dominated by the Z/~* back-
ground. In order to suppress this contribution, events in the Z boson mass window of
76 < My < 106 GeV are vetoed in this channel. To further suppress the Z/v* events, a
requirement on p%liss of >35GeV is imposed.



In both the /+jets and dilepton analyses, events with 7 leptons are considered as signal
if they decay to electrons or muons that satisfy the selection requirements, and are included
in the simulation.

6 Background estimation

6.1 The £+jets final state

In the ¢+jets analysis, the contributions of all background processes are estimated from
simulation, with the exception of the QCD multijet background. Due to its large cross
section, there is a nonnegligible contribution from the latter faking a tt event with £-+jets
in the final state. Both the contribution from hard fragmentation of ¢ and b quarks whose
hadrons decay semileptonically, and the contribution from misidentified leptons, such as
from either punch-through hadrons or collimated jets with a high electromagnetic fraction,
can yield ¢+jets-like topologies.

The estimation of the QCD multijet background is separately performed for the events
with 0, 1, or >2 b jets using a control region where either the muon candidate fails a
looser isolation requirement (Ie] < 20%) or the electron candidate fails the identification
criteria. The choice of the QCD multijet control region has been made in such a way
as to minimize the contamination due to the signal and W+jets events, while retaining
a large number of events in the sample for the estimation of this type of background.
The initial normalization of the QCD multijet contribution in the signal region is derived
from events with piiss < 20 GeV (“reduced-signal” region). Events in both the reduced-
signal and control regions fulfilling this requirement are counted. After subtracting the
expected contributions from non-QCD processes, the ratio between the numbers of events
observed in the reduced-signal region and in the control region, is used as a transfer factor
to normalize the QCD multijet background estimate. In both the electron and muon
channels, a 30% uncertainty is assigned to the estimate of the expected contribution from
non-QCD processes, estimated after varying the QCD scales in the W+jets simulation. This
uncertainty propagates as both a normalization and a shape uncertainty in the predicted
distributions for the QCD multijet processes. The variations are applied independently
in the reduced-signal and control regions in order to determine an uncertainty envelope.
A more accurate normalization for this contribution is obtained by the fit performed to

extract the final cross section, described in section 8.1.

6.2 The dilepton final state

Final states with two genuine leptons can originate from background processes, primarily
from Z/v* — 777~ (where the 7 leptonic decays can yield e T or u*uT plus p%ﬁss due
to the neutrinos), tW, and WV events. Other background sources, such as W+jets events
or tt production in the f+jets final state, can contaminate the signal sample if a jet is
misidentified as a lepton, or if an event contains a lepton from the decay of b or ¢ hadrons.
These are included in the “non-W/Z” category, since genuine leptons are defined as origi-
nating from decays of W or Z bosons. The yields from tW and WV events are estimated



from simulation, while the contribution of the Z/~v* background is evaluated using control
samples in data. The rate of non-W/Z backgrounds is extracted from control samples in
data for the e* ;¥ channel and is estimated from simulation for the p* ;T channel.

A scale factor for the Z/~* background normalization is estimated, as in ref. [47], from
the number of events within the Z boson mass window in data, which is extrapolated to the
number of events outside the window. A scale factor of 0.91+0.14 (stat) is obtained in the
et T channel, and 0.96 & 0.78 (stat) in the puT channel. The estimation is performed
using events with at least two jets, and the dependence on different jet multiplicities is
discussed in section 7.

The non-W/Z background in the e*u¥ channel is estimated using an extrapolation
from a control region of same-sign (SS) dilepton events to the signal region of opposite-sign
(OS) dileptons. The SS control region is defined using the same criteria as for the nominal
signal region, except requiring dilepton pairs of the same charge. The muon isolation
requirement is relaxed in order to enhance the number of events. The SS dilepton events
predominantly contain at least one misidentified lepton. Other SM processes produce
genuine SS or charge-misidentified dilepton events with significantly smaller rates; these
are estimated using simulation and subtracted from the observed number of events in data.
The scaling from the SS control region in data to the signal region is performed using an
extrapolation factor extracted from MC simulation, given by the ratio of the number of OS
events with misidentified leptons to the number of SS events with misidentified leptons.
The resulting estimate for the non-W/Z background is 1.0 £ 0.9 (stat) events, where the
central value comes from the estimation using events with at least two jets. No particular
dependence of this scale factor is observed for different jet multiplicities within the large

statistical uncertainty.

7 Systematic uncertainties

The integrated luminosity has been estimated offline using a pixel cluster counting
method [20]. The estimation takes into account normalization uncertainties and uncer-
tainties related to the different conditions during typical physics periods relative to the
specially tailored beam-separation scans, adding up to a total uncertainty of 4+2.3%.

The uncertainties in the electron trigger efficiency (1.5%) and the identification and
isolation efficiency (2.5%) are estimated by changing the values of the data-to-simulation
scale factors within their uncertainties, as obtained from the “tag-and-probe” method.
The uncertainty in the muon identification and isolation efficiency, including the trigger
efficiency, is 3% and covers one standard deviation of the scale factor from unity.

The impact of the uncertainty in the jet energy scale (JES) is estimated by changing
the pp- and 7-dependent JES corrections by a constant 2.8% [45, 48]. The uncertainty
in jet energy resolution (JER) is estimated through n-dependent changes in the JER cor-
rections to the simulation [45, 48]. The uncertainty arising from the use of p2! in the
pE i channel is dominated by the unclustered energy contribution to p%‘iss [40]. Finally,
a 30% uncertainty is conservatively assigned to the jet misidentification probability in the



{+jets analysis, as no dedicated measurement of this quantity has been performed for the
considered data set.

Theoretical uncertainties in the simulation of tt production cause a systematic bias re-
lated to the missing higher-order diagrams in POWHEG, which is estimated through studies
of the signal modeling by modifying the ug, ur scales within a factor of two with respect
to their nominal value. In the f+jets analysis, the impact of the ugr,ur variations are
examined independently, while in the dilepton analysis they are varied simultaneously. In
both analyses, these variations are applied independently at the matrix element (ME) and
parton shower (PS) levels. The uncertainty arising from the hadronization model mainly
affects the JES and the fragmentation of jets. The hadronization uncertainty is determined
by comparing samples of events generated with POWHEG, where the hadronization is either
modeled with PYTHIA or HERWIG++ (v2.7.1) [49]. This also accounts for differences in the
PS model and the underlying event. The uncertainty from the choice of PDF is determined
by reweighting the sample of simulated tt events according to the root-mean-square (RMS)
variation of the NNPDF3.0 replica set. Two extra variations of ag are added in quadrature
to determine the total PDF uncertainty.

In the /+jets analysis, the uncertainty in the choice of the ug, ur scales in the W+jets
simulation is taken into account by considering alternative shapes and yields after varying
independently the ug, ur scales, following a similar procedure to that described above for
the signal. Due to the finite event count in the W+jets simulated sample, an additional
bin-by-bin uncertainty is assigned by generating an alternative shape to fit (see section 8.1),
where the bin prediction is varied by +1 standard deviation, while keeping all the other bins
at their nominal expectation. The uncertainty assigned to the QCD multijet background
includes the statistical uncertainty in the data, and the uncertainty from the non-QCD
multijet contributions subtracted from the control region, as described in section 6.1, and an
additional 30%-100% normalization uncertainty. The latter depends on the event category
and stems from the measured difference with respect to an alternative estimate of the

QCD normalization based on the transverse mass, mT, of the lepton and prTniSS system.

miss

The magnitude of mT equals V4 2pTp'** (1 — cos A¢), where pr is the lepton transverse
momentum and A¢ is the azimuthal angle between the lepton and the direction of PSS,
Finally, a 30% normalization uncertainty in the theoretical tW, Z/v*, and WV background
cross sections is assigned [5], given the previously unexplored /s value and that the final
states contain several jets.

In the dilepton channel, an uncertainty of 30% is assumed [5] for the cross sections of
the tW and WV backgrounds to cover the theoretical uncertainties and the effect of finite
simulated samples. The uncertainty in the Z/~* estimation is calculated by combining
in quadrature the statistical uncertainty and an additional 30% from the variation of the
scale factor in the different levels of selection, resulting in uncertainties of about 30 and
80% in the e* T and p*uT channels, respectively. The systematic uncertainty in the non-
W/Z background is estimated to be 90% in the e*uT channel and is dominated by the
statistical uncertainty in the method. Owing to the limited sample size in the data, the
method cannot be applied in the p* T channel. The estimation is therefore based on MC
simulation, and an uncertainty of 100% is conservatively assigned.



8 Measurement of the tt cross section

8.1 The £+jets final state

In the /+jets analysis, the tt cross section is measured in a fiducial phase space by means
of a fit. Two variables were independently considered for the fit, which are sensitive to the
resonant behavior of the light jets produced from the W boson hadronic decay in a tt event.
Given that these light jets, here denoted by j and j’, are correlated during production, they
are also expected to be closer in phase space when compared to pairs of other jets in the
event. The angular distance AR can thus be used as a metric to rank all pairs of non-b-
tagged jets in the event, maximizing the probability of selecting those from the W boson
hadronic decay in cases where more than two non-b-tagged jets are found. From simulation
we expect that the signal peaks at low AR, while the background is uniformly distributed
up to AR = 3. Above that value, fewer events are expected and background processes are
predicted to dominate. The invariant mass M(j,j’) of jets j and j’ also has a distinctive
peaking feature for the signal in contrast with a smooth background continuum. From
simulation we expect that the minimum angular distance AR between all pairs of jets j
and j', ARnin(J,7’), is robust against signal modeling uncertainties such as the choice of
the ur, ur scales and jet energy scale and resolution, while the M (3, j') variable tends to
be more affected by such uncertainties. Owing to its more robust systematic uncertainties
and signal-to-background discrimination power, the A Ry,in (7, j') variable is used to extract
the tt cross section.

In order to maximize the sensitivity of the analysis, the A Ry,in(7,7’) distributions are
categorized according to the number of jets — in addition to the ones assigned to the W
boson hadronic decay — passing the b quark identification criteria. In total, 6 categories
are used, corresponding to electron or muon events with 0, 1, or >2 b jets. The expected
number of signal and background events in each category prior to the fit and the observed
yields are given in table 1. Good agreement is observed between data and expectations.

The M(j,7') and ARmin(j,7’) distributions are shown in figure 1. The distributions
have been combined for the e+jets and p+jets channels to maximize the statistical preci-
sion and are shown for events with different b-tagged jet multiplicities. Fair agreement is
observed between data and the pre-fit expectations.

A profile likelihood ratio (PLR) method, similar to the one employed in ref. [10], is
used to perform the fit. In addition, a scale factor for the b tagging efficiency (SFy,) is
included as a parameter of interest in the fit. The PLR is written as:
L(p, SFy,, ©)

Au, SFy) = ZUe 5, 0)
(SFv) = o STy, ©)

(8.1)

where p1 = 0/0theo is the signal strength (ratio of the observed tt cross section to the ex-
pectation from theory) and © is a set of nuisance parameters that encode the effect on the
expectations due to variations in the sources of the systematic uncertainties described in
section 7. The quantities 6 correspond to the values of the nuisance parameters that max-
imize the likelihood for the specified signal strength and b tagging efficiency (conditional

~10 -



b tag category

Source 0b 1b >2b

e+jets ptjets e+jets ptjets e+jets ujets
tW 3.03+£0.02 5.6+0.03 249£0.02 45+£0.03 0.39+0.01 0.67+0.01
Wjets 776 £17 1704 426 13+2 26+3 0.2+0.3 0.8+0.6
Z/v* 136 +4 162+5 1.7£0.5 2.8+0.6 0.1£0.1 0.1+0.1
WV 0.52+£0.01 1.014+0.02 <0.01 <0.02 <0.01 <0.01
QCD multijet 440£130 490+ 150 36+1.1 28+38 2.5+0.8 2.0+0.8
tt signal 22.8+0.3 423404 369+04 71.1+0.5 13.8£0.2 27.0+£0.3
Total 1380+ 130 24104150 57.7+2.4 131+9 16.8+0.9 31+1
Observed data 1375 2406 61 129 19 33

Table 1. The number of expected background and signal events and the observed event yields in
the different b tag categories for the e+jets and p+jets analyses, prior to the fit. With the exception
of the QCD multijet estimate, for which the total uncertainty is reported, the uncertainties reflect
the statistical uncertainty in the simulated samples.

_ 27.4 pb” (5.02 TeV) 27.4pb” (5.02 TeV) i 27.4 pb” (5.02 TeV)
%J FCMS + Data % tCMS ¢+ Data % tCMS ¢+ Data
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o E W o N W o E W
Q600 I W+ets N ok m W+ets U I W+ets
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Figure 1. The predicted and observed distributions of the (upper row) M (j,j’) and (lower row)
ARumin(7,7") variable for ¢+jets events in the 0 b (left), 1 b (center), and >2 b (right) tagged jet
categories. The distributions from data are compared to the sum of the expectations for the signal
and backgrounds prior to any fit. The QCD multijet background is estimated from data (see section
5.1). The cross-hatched band represents the statistical and the integrated luminosity uncertainties
in the expected signal and background yields added in quadrature. The vertical bars on the data
points represent the statistical uncertainties.
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Figure 2. Left: the 68% CL contour obtained from the scan of the likelihood in £+jets analysis, as
a function of y and SFy, in the /+jets analysis. The solid (dashed) contour refers to the result from
data (expectation from simulation). The solid (hollow) diamond represents the observed fit result
(SM expectation). Right: summary of the signal strengths separately obtained in the e+jets and
u+jets channels, and after their combination in the ¢+4jets channel. The results of the analysis from
the distributions are compared to those from the cross-check analysis with event counting (Count).
The inner (outer) bars correspond to the statistical (total) uncertainty in the signal strengths.

likelihood), and fi, SFy, O are, respectively, the values of the signal strength, b tagging
efficiency, and nuisance parameters that maximize the likelihood.

Figure 2 (left) shows the two-dimensional contours at the 68% confidence level (CL)
obtained from the scan of —21In(\), as functions of p and SF},. The expected results,
obtained using the Asimov data set [50], are compared to the observed results and found
to be in agreement well within one standard deviation. The signal strength is obtained after
profiling SF}, and the result is ;1 = 1.00 7009 (stat) 7009 (syst). As a cross-check, the signal
strength is also extracted by fitting only the total number of events observed in each of the
six categories. The observed value p = 1.03 7019 (stat) T92] (syst) is in agreement with
the analysis using the AR, (4, 7’) distributions. Figure 2 (right) summarizes the results
obtained for the signal strength fit in each channel separately from the analysis of the
distributions and from event counting. In both cases, a large contribution to the uncertainty
is systematic in nature, although the statistical component is still significant. In the /+jets
combination, the p+jets channel is expected and observed to carry the largest weight.

In order to estimate the impact of the experimental systematic uncertainties in the
measured signal strength, the fit is repeated after fixing one nuisance parameter at a time
at its post-fit uncertainty (+1 standard deviation) values. The impact on the signal strength
fit is then evaluated from the difference induced in the final result from this procedure. By
repeating the fits, the effect of some nuisance parameters being fixed may be reabsorbed
by a variation of the ones being profiled, owing to correlations. As such, the individual
experimental uncertainties obtained and summarized in table 2 can only be interpreted as
the observed post-fit values, and not as an absolute, orthogonalized breakdown of uncer-
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Ap/p
Distr. Count

Statistical uncertainty 0.095 0.100
Experimental systematic uncertainty 0.085 0.160

Source

Individual experimental uncertainties

W+jets background 0.035 0.025
QCD multijet background 0.024 0.044
Other background 0.013 0.013
Jet energy scale 0.030 0.031
Jet energy resolution 0.006 0.023
b tagging 0.034 0.045
Electron efficiency 0.011 0.028
Muon efficiency 0.017 0.022
Theoretical uncertainties
Hadronization model of tt signal 0.028  0.069
uR, pr scales of tt signal (PS) 0.044 0.115
uR, pr scales of tt signal (ME) <0.010 <0.010
Total uncertainty 0.127 0.189

Table 2. Estimated impact of each source of uncertainty in the value of u extracted from the
analysis of distributions, and in the cross-check from event counting. The “Other background”
component includes the contributions from Z/v*, tW, and WV events. The total uncertainty is
obtained by adding in quadrature the statistical, experimental systematic, and theoretical uncer-
tainties. The individual experimental uncertainties are obtained by repeating the fit after fixing
one nuisance parameter at a time at its post-fit uncertainty (£1 standard deviation) value. The
values quoted have been symmetrized.

tainties. With respect to the event counting, the analysis of the distributions is less prone
to the uncertainties in the QCD multijet background, jet energy resolution, and signal
modeling. In both cases, the signal modeling uncertainties and the b tagging efficiency are
among the largest sources of uncertainty.

The fiducial cross section is measured in events with one electron (muon) in the range
pr > 35 (25) GeV and |n| < 2.1 (including the transition region for electrons), and at least
two jets with pr > 25GeV and |n| < 2.4. After multiplying the signal strength by the
theoretical expectations (eq. (3.1)), we find

ora = 20.8 £ 2.0 (stat) &+ 1.8 (syst) & 0.5 (lumi) pb.

The combined acceptance in the e+jets and p+jets channels is estimated using the
NLO POWHEG simulation to be A = 0.301 £+ 0.007, with the uncertainty being dominated
by the variation of the ugr,ur scales at ME and PS levels and the hadronization model
used for the tt signal. The uncertainty due to the PDF's is included but verified to be
less important. Taking into account the acceptance of the analysis and its uncertainty, the
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inclusive tt cross section is determined to be
o = 68.9 £ 6.5 (stat) £ 6.1 (syst) £ 1.6 (lumi) pb,
in agreement with the SM prediction and attaining a 13% total relative uncertainty.

8.2 The dilepton final state

In the dilepton analysis, the tt cross section is extracted from an event counting measure-
ment. Figure 3 shows the distributions of the jet multiplicity and the scalar pr sum of
all jets (Hr), for events passing the dilepton criteria in the e*F channel. In addition, it
displays the lepton-pair invariant mass and pr distributions, after requiring at least two
jets in the event in the e*uT channel. Figure 4 shows the p%‘iss and the lepton-pair invari-
ant mass distributions in the p*u™ channel for events passing the dilepton criteria, and
the Z boson veto with the p%iss > 35 GeV requirement, in the second case. The predicted
distributions take into account the efficiency corrections described in section 5 and the
background estimations discussed in section 6.2. Good agreement is observed between the
data and predictions for both signal and background.

The fiducial tt production cross section is measured by counting events in the visible
phase space (defined by the same pr, |n|, and multiplicity requirements for leptons and jets
as described in section 5, but including the transition region for electrons) and is denoted
by ogq. It is extrapolated to the full phase space in order to determine the inclusive tt
cross section using the expression

N—-Ng o5q
o _ ofid 2
T AL A (8.2)

where N is the total number of dilepton events observed in data, Ng the number of esti-
mated background events, ¢ the selection efficiency, A the acceptance, and £ the integrated
luminosity. Table 3 gives the total number of events observed in data, together with the
total number of signal and background events expected from simulation or estimated from
data, after the full set of selection criteria. The total detector, trigger, and reconstruc-
tion efficiency is estimated from data to be ¢ = 0.55 & 0.02 (0.57 4+ 0.04) in the e*pT
(u*pF) channel. Using the definitions above, the yields from table 3, and the systematic
uncertainties from table 4, the measured fiducial cross section for tt production is

orqa = 41 £ 10 (stat) + 2 (syst) £ 1 (lumi) pb
in the e* ;T channel and
ofq = 22 + 11 (stat) + 4 (syst) + 1 (lumi) pb

in the p*uT channel.

The acceptance, as estimated from MC simulation, is found to be A = 0.53 + 0.01
(0.3740.01) in the e*uT (u* uF) channel. The statistical uncertainty (from MC simulation)
is included in the uncertainty in A. By extrapolating to the full phase space, the inclusive
tt cross section is measured to be

o = 77 £ 19 (stat) £ 4 (syst) £ 2 (lumi) pb
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Figure 3. Predicted and observed distributions of the (upper row) jet multiplicity and scalar pr
sum of all jets (Hrt) for events passing the dilepton criteria, and of the (lower row) invariant mass
and pr of the lepton pair after requiring at least two jets, in the e* T channel. The Z/v* and non-
W/Z backgrounds are determined from data (see section 6.2). The cross-hatched band represents
the statistical and integrated luminosity uncertainties in the expected signal and background yields
added in quadrature. The vertical bars on the data points represent the statistical uncertainties.
The last bin of the distributions contains the overflow events.

27.4 pb™ (5.02 TeV)

>0t - >
0'7F CMS  pfui+Zveto ¢ Dawa ©
o m o
i1? B Non-W/zZ N
P Wy P
€102 W <
g m zZy 4
Wi 9% Stat @ lumi 7]
1
.

100 120 140
p_Tlss (GeV)

27.4 pb™ (5.02 TeV)

_ CMS

o'

S

uHu + Z veto + sts

¢ Data

it

I Non-W/z
WV

m Ziy
55 Stat @ lumi

Figure 4. Predicted and observed distributions of the (left) p2is in events passing the dilepton cri-
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vertical bars on the data points represent the statistical uncertainties. The last bin of the distribu-
tions contains the overflow events.
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Source et T altii
tW 0.92 £ 0.02 0.29 £ 0.01
Non-W/Z leptons 1.0 £ 0.9  0.04 £ 0.01
Z/v* 1.6 £ 0.2 1.1 £ 0.8
\\AY% 0.44 £0.02 0.15 £ 0.01
tt signal 18.0 £ 0.3 6.4 + 0.2
Total 22.0 £ 0.9 7.9 £0.8
Observed data 24 7

Table 3. The predicted and observed numbers of dilepton events obtained after applying the full
selection. The values are given for the individual sources of background, tt signal, and data. The
uncertainties correspond to the statistical component.

et pEpF

Source Aog/og (%) Aoy (pb)  Aog/og (%) Aoy (pb)
Electron efficiency 1.4 1.0 — —
Muon efficiency 3.0 2.3 6.1 3.6
Jet energy scale 1.3 1.0 1.3 0.7
Jet energy resolution <0.1 <0.1 <0.1 <0.1
Missing transverse momentum — — 0.7 0.4
UR, pr scales of tt signal (PS) 1.2 0.9 1.7 1.0
UR, pr scales of tt signal (ME) 0.2 0.1 1.1 0.6
Hadronization model of tt signal 1.2 0.9 5.2 3.1
PDF 0.5 04 04 0.2
MC sample size 1.4 1.1 2.4 14
tW background 1.4 1.1 1.6 0.9
WYV background 0.7 0.5 0.9 0.5
Z/v* background 2.7 2.1 15 9.1
Non-W/Z background 2.5 1.9 0.7 0.4
Total .systematic un(?ertajinty 5.8 44 18 1
(w/o integrated luminosity)

Integrated luminosity 2.3 1.8 2.3 14
Statistical uncertainty 25 19 48 29
Total uncertainty 25 19 52 31

Table 4. Summary of the individual contributions to the systematic uncertainty in the o;; mea-
surements for the dilepton channels. The relative uncertainties Ao ;/o; (in %), as well as absolute
uncertainties in oy, Ao (in pb), are presented. The statistical and total uncertainties are also
given, where the latter are the quadrature sum of the statistical and systematic uncertainties.
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in the e*y¥ channel and
o = 59 £ 29 (stat) & 11 (syst) £ 1 (lumi) pb

in the p*uF channel. Table 4 summarizes the relative and absolute statistical and system-
atic uncertainties from different sources contributing to o;. The separate total systematic
uncertainty without the uncertainty in the integrated luminosity, the part attributed to the
integrated luminosity, and the statistical contribution are added in quadrature to obtain
the total uncertainty. The cross sections, measured with a relative uncertainty of 25 and
52%, are in agreement with the SM prediction (eq. (3.1)) within the uncertainties in the
measurements.

8.3 Combination

The three individual o;; measurements are combined using the BLUE method [51, 52] to
determine an overall tt cross section. All systematic uncertainties are considered as fully
correlated across all channels, with the following exceptions: the uncertainty associated
with the finite event size of the simulated samples is taken as uncorrelated; the electron
identification is not relevant for the pp channel; and the b tagging and QCD multijet
background uncertainties are only considered for the /+jets channel. In the {+jets channel,
the WV and Z/~* backgrounds are not considered separately but as part of the “Other
backgrounds” component, which is dominated by tW events. The uncertainty associated
with this category is therefore treated as fully correlated with the tW uncertainty in the
dileptonic channels and uncorrelated with the WV and Z/+* uncertainties.

The combined inclusive tt cross section is measured to be:
o = 69.5 £ 6.1 (stat) £ 5.6 (syst) £ 1.6 (lumi) pb = 69.5 £ 8.4 (total) pb,

where the total uncertainty is the sum in quadrature of the individual uncertainties. The
weights of the individual measurements, to be understood in the sense of ref. [52], are
81.8% for f+jets, 13.5% for et uT, and 4.7% for pu* T channels.

The combined result is found to be robust by performing an iterative variant of the
BLUE method [53] and varying some assumptions on the correlations of different combi-
nations of systematic uncertainties. Also, the post-fit correlations between the nuisance
parameters in the ¢+jets channel have been checked and found to have negligible impact.

Figure 5 presents a summary of CMS measurements [5, 6, 9, 10] of o7 in pp collisions
at different /s in the ¢+jets and dilepton channels, compared to the NNLO-+NNLL pre-
diction using the NNPDF3.0 PDF set with as(Mz) = 0.118 and myep = 172.5GeV. In
the inset, the results from this analysis at /s = 5.02 TeV are also compared to the pre-
dictions from the MMHT14 [54], CT14 [55], and ABMP16 [56] PDF sets, with the latter
using ag(Mz) = 0.115 and myep = 170.4 GeV. Theoretical predictions using different PDF
sets have comparable values and uncertainties, once consistent values of o and my,p, are
associated with the respective PDF set.
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Figure 5. Inclusive o,; in pp collisions as a function of the center-of-mass energy; previous CMS
measurements at /s = 7, 8 [5, 6], and 13 [9, 10] TeV in the separate {+jets and dilepton channels are
displayed, along with the combined measurement at 5.02 TeV from this analysis. The NNLO+NNLL
theoretical prediction [34] using the NNPDF3.0 [14] PDF set with as(Mz) = 0.118 and myo, =
172.5 GeV is shown in the main plot. In the inset, additional predictions at /s = 5.02 TeV using
the MMHT14 [54], CT14 [55], and ABMP16 [56] PDF sets, the latter with as(Mz) = 0.115 and
Mop = 170.4GeV, are compared, along with the NNPDF3.0 prediction, to the individual and
combined results from this analysis. The vertical bars and bands represent the total uncertainties

in the data and in the predictions, respectively.

9 QCD analysis

To illustrate the impact of the o measurements at /s = 5.02 TeV on the knowledge of the
proton PDFs, the results are used in a QCD analysis at NNLO, together with the combined
measurements of neutral- and charged-current cross sections for deep inelastic electron-
and positron-proton scattering (DIS) at HERA [57], and the CMS measurement [58] of the
muon charge asymmetry in W boson production at /s = 8 TeV. The latter data set is
used in order to improve the constraint on the light-quark distributions.

Version 2.0.0 of XFITTER [59, 60], the open-source QCD-analysis framework for PDF
determination, is employed, with the partons evolved using the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equations [61-66] at NNLO, as implemented in the Q¢DNUM 17-01/13 pro-
gram [67]. The treatment and the choices for the central values and variations of the c
and b quark masses, the strong coupling, and the strange-quark content fraction of the
proton follow that of earlier CMS analyses, e.g., ref. [58]. The ug, ur scales are set to
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the four-momentum transfer in the case of the DIS data, the W boson mass for the muon
charge asymmetry results, and the top quark mass in the case of o;.

The systematic uncertainties in all three measurements of o; and their correlations
are treated the same way as in the combination described in section 8.3. The theoretical
predictions for o are obtained at NNLO using the HATHOR calculation [68], assuming
Miop = 172.5GeV. The bin-to-bin correlations of the experimental uncertainties in the
muon charge asymmetry and DIS measurements are taken into account. The theoretical
predictions for the muon charge asymmetry are obtained as described in ref. [58].

The procedure for the determination of the PDFs follows the approach used in the
QCD analysis of ref. [58] and results in a 14-parameter fit. The parametrized PDF's are the
gluon distribution, xg, the valence quark distributions, xu,, xd,, and the u-type and d-type
antiquark distributions, U, zD. The relations U = 2@ and D = 2d + 25 are assumed at
the initial scale of the QCD evolution Q% = 1.9GeV?. At this scale, the parametrizations
are of the form:

zg(r) = AgxBe (1 — )% (1 + Dyz), (9.1)
zuy(z) = Ay, P (1 — )% (1 4+ Dy,z + By, 2?), (9.2)
xdy(x) = Ag,zB (1 — 2)%0, (9.3)
2U(z) = AzzBo (1 — )0 (1 + Ezz?), (9.4)
zD(z) = Ax2Pp (1 — 2)°D. (9.5)

The normalization parameters A,,, Aq,, and Ag are determined by the QCD sum
rules, the B parameters are responsible for the small-z behavior of the PDFs, and the
C parameters describe the shape of the distribution as x — 1. Additional constraints
By = By and Ay = Ap(1 — f;) are imposed, with f; being the strangeness fraction,
§/(d+5), which is set to 0.31 +0.08 as in ref. [69], consistent with the value obtained using
the CMS measurements of W+-c production [70]. Using the measured values for o.; allows
the addition of a new free parameter, D, , in eq. (9.2), as compared to the analysis in
ref. [58].

The predicted and measured cross sections for all the data sets, together with their
corresponding uncertainties, are used to build a global x?, minimized to determine the PDF
parameters [59, 60]. The results of the fit are given in table 5. The quality of the overall
fit can be judged based on the global y? divided by the number of degrees of freedom,
ngot- For each data set included in the fit, the partial x? divided by the number of the
measurements (data points), nap, is also provided. The correlated part of x?, also given in
table 5, quantifies the influence of the correlated systematic uncertainties in the fit. The
global and partial y? values indicate a general agreement among all the data sets. The
somewhat high x?/nqp, values for the combined DIS data are very similar to those observed
in ref. [57], where they are investigated in detail.

The experimental uncertainties in the measurements are propagated to the extracted
QCD fit parameters using the MC method [71, 72]. In this method, 400 replicas of pseudo-
data are generated, with measured values for o; allowed to vary within the statistical and
systematic uncertainties. For each of them, the PDF fit is performed and the uncertainty
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Data sets Partial x?/nap
HERA neutral current, e™p, E, = 920 GeV 449/377
HERA neutral current, e™p, E, = 820 GeV 71/70
HERA neutral current, e*p, E, = 575 GeV 224/254
HERA neutral current, e™p, E, = 460 GeV 218/204
HERA neutral current, e™p, £}, = 920 GeV 218/159
HERA charged current, etp, E, = 920 GeV 43/39
HERA charged current, e"p, E, = 920 GeV 53/42
CMS W+ muon charge asymmetry 2.4/11
CMS o, eFuT, 5.02 TeV 1.03/1
CMS o, ptuT, 5.02 TeV 0.01/1
CMS oz, (+jets, 5.02 TeV 0.70/1
Correlated x? 100
Global x2/nqof 1387/1145

Table 5. Partial x2 per number of data points, Ndp, and the global x? per degrees of freedom, ngof,
as obtained in the QCD analysis of DIS data, the CMS muon charge asymmetry measurements,
and the oz results at /s = 5.02 TeV from this analysis. For the HERA measurements, the energy
of the proton beam (E,) is listed for each data set, with the electron/positron energy of 27.5 GeV.
The correlated part of the global x? value is also given.

is estimated as the RMS around the central value. In figure 6, the ratio and the relative
uncertainties in the gluon distributions, as obtained in the QCD analyses with and without
the measured values for o;, are shown. A moderate reduction of the uncertainty in the
gluon distribution at = 2 0.1 is observed, once the measured values for o,; are included in
the fit. The uncertainties in the valence quark distributions remain unaffected. All changes
in the central values of the PDF's are well within the fit uncertainties.

Possible effects from varying the model input parameters and the initial PDF
parametrization are investigated in the same way as in the similar analysis of ref. [58].
The two cases when the measured values for o; are included or excluded from the fit are
considered, resulting in the same associated model and parametrization uncertainties.

In conclusion, the o measurements at /s = 5.02 TeV provide improved uncertainties
in the gluon PDF at high =, though the impact is small, owing to the large experimental
uncertainties.

10 Summary

The first measurement of the top quark pair (tt) production cross section in pp collisions at
/s = 5.02TeV is presented for events with one or two leptons and at least two jets, using a
data sample collected by the CMS experiment, corresponding to an integrated luminosity
of 27.4 £ 0.6pb~!. The final measurement is obtained from the combination of the mea-
surements in the individual channels. The result is o = 69.5 + 6.1 (stat) £ 5.6 (syst) £
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Figure 6. The relative uncertainties in the gluon distribution function of the proton as a function
of z at u2 = 105 GeV? from a QCD analysis using the HERA DIS and CMS muon charge asymmetry
measurements (hatched area), and also including the CMS oz results at /s = 5.02 TeV (solid area).
The relative uncertainties are found after the two gluon distributions have been normalized to unity.
The solid line shows the ratio of the gluon distribution function found from the fit with the CMS
o, measurements included to that found without.

1.6 (lumi) pb, with a total relative uncertainty of 12%, which is consistent with the stan-
dard model prediction. The impact of the measured tt cross section in the determination
of the parton distribution functions of the proton is studied in a quantum chromodynamics
analysis at next-to-next-to-leading order. A moderate decrease of the uncertainty in the
gluon distribution is observed at high values of x, the fractional momentum of the proton
carried by the gluon.
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