1

Identification of high-spin proton configurations in ¹³⁶Ba and ¹³⁷Ba

2	L. Kaya, ^{1, a} A. Vogt, ¹ P. Reiter, ¹ C. Müller-Gatermann, ¹ A. Gargano, ² L. Coraggio, ² N. Itaco, ^{2, 3} A.
3	Blazhev, ¹ K. Arnswald, ¹ D. Bazzacco, ⁴ B. Birkenbach, ¹ A. Bracco, ⁵ B. Bruyneel, ⁶ L. Corradi, ⁷ F. C. L.
4	Crespi, ⁵ G. de Angelis, ⁷ M. Droste, ¹ J. Eberth, ¹ E. Farnea, ^{4, b} E. Fioretto, ⁷ C. Fransen, ¹ A. Gadea, ⁸ A.
5	Giaz, ⁵ A. Görgen, ^{9,10,11} A. Gottardo, ⁷ K. Hadyńska-Klęk, ⁷ H. Hess, ¹ R. Hetzenegger, ¹ R. Hirsch, ¹ P.
6	R. John, ¹² J. Jolie, ¹ A. Jungclaus, ¹³ W. Korten, ¹⁰ S. Leoni, ⁵ L. Lewandowski, ¹ S. Lunardi, ^{14, 4} R.
7	Menegazzo. ⁴ D. Mengoni. ^{14,4} C. Michelagnoli. ¹⁵ T. Mijatović. ¹⁶ G. Montagnoli. ^{14,4} D. Montanari. ¹⁷ D.
8	Napoli, ⁷ Zs. Podolyák, ¹⁸ G. Pollarolo, ¹⁹ F. Recchia, ^{14,4} D. Rosiak, ¹ N. Saed-Samii, ¹ F. Sahin, ²⁰ M.
0	Siciliano ^{14,7} F. Scarlassara ^{14,4} M. Seidlitz ¹ P-A. Söderström ²¹ A. M. Stefanini ⁷ O. Stezowski ²²
10	S. Szilner, ¹⁶ B. Szpak, ²³ C. Ur, ⁴ J. J. Valiente-Dobón, ⁷ M. Weinert, ¹ K. Wolf, ¹ and K. O. Zell ¹
11	¹ Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
12	² Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli, Italy
13	³ Dipartimento di Matematica e Fisica, Università degli Studi della
14	Campania "Luigi Vanvitelli", viale A. Lincoln 5, I-8110 Caserta, Italy
15	⁴ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
16	⁵ Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, I-20133 Milano, Italy
17	⁶ CEA Saclay, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette, France
18	⁷ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
19	⁸ Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
20	⁹ Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway
21	$^{10}Institut\ de\ Recherche\ sur\ les\ lois\ Fondamentales\ de\ l'Univers\ -\ IRFU,$
22	CEA/DSM, Centre CEA de Saclay, F-91191 Gif-sur-Yvette Cedex, France
23	¹¹ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
24	¹² Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
25	¹³ Instituto de Estructura de la Materia, CSIC, Madrid, E-28006 Madrid, Spain
26	¹⁴ Dipartimento di Fisica e Astronomia, Università di Padova, I-35131 Padova, Italy
27	¹³ Institut Laue-Langevin (ILL), 38042 Grenoble Cedex 9, France.
28	¹⁶ Ruđer Bošković Institute, HR-10 002 Zagreb, Croatia
29	¹ USIAS - Universite de Strasbourg, IPHC-CNRS, F-67037 Strasbourg Cedex 2, France.
30	Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
31	¹⁵ Dipartimento di Fisica Teorica dell'Università di Torino and INFN, I-10125 Torino, Italy
32	²⁵ Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway.
33	²² Extreme Light Infrastructure-Nuclear Physics (ELI-NP), 07/125 Bucharest-Magurele, Romania
34	Universite de Lyon, Universite Lyon-1, CNRS/IN2P3,
35	UMR5822, IPNL, F-69622 Villeurbanne Cedex, France
36	¹ Henryk Niewoaniczański Institute of Nuclear Physics PAN, PL-31342 Krakow, Polana
37	(Dated: December 11, 2018)
	The high-spin structures of ¹³⁶ Ba and ¹³⁷ Ba are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. ¹³⁶ Ba is populated in a ¹³⁶ Xe+ ²³⁸ U MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two ⁹ Be + ¹³⁰ Te fusion-evaporation reactions using the High-efficiency Observatory for γ -Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are

38

PACS numbers: 23.20.Lv, 27.60.+j, 29.40.Gx, 21.60.Cs

of proton character.

^b Deceased.

populated in an elusive reaction channel in the ¹¹B + ¹³⁰Te fusion-evaporation reaction utilizing the HORUS γ -ray array. The level scheme above the $J^{\pi} = 10^+$ isomer in ¹³⁶Ba is revised and extended up to an excitation energy of approx. 5.5 MeV. From the results of angular-correlation measurements, the $E_x = 3707$ - and $E_x = 4920$ -keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both ¹³²Te and ¹³⁴Xe are characterized by high-energy $12^+ \rightarrow 10^+$ transitions, the ¹³⁶Ba E2 ground-state band is interrupted by negativeparity states only a few hundred keV above the $J^{\pi} = 10^+$ isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in ¹³⁷Ba. The new results close a gap along the highspin structure of N < 82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130 and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly

^a Corresponding author: levent.kaya@ikp.uni-koeln.de

INTRODUCTION I.

The 50 $\leq Z$, $N \leq 82$ nuclei outside the doubly-magic 40 $_{\rm 41}$ nucleus $^{132}{\rm Sn}$ are described within the valence space ⁴² made up by the orbitals $0g_{7/2}$, $1d_{5/2}$, $1d_{3/2}$, $2s_{1/2}$, and ⁴³ $0h_{11/2}$. $A \approx 135$ nuclei near the N = 82 shell closure have ⁴⁴ the Fermi surface in the middle of the proton $d_{5/2}$ - $g_{7/2}$ 45 subshell between Z = 50 and Z = 64 and offer a fertile ⁴⁶ region to deepen the understanding of the single-particle 47 structure in the framework of the nuclear shell model ⁴⁸ and to study the evolution of different multi-quasiparticle configurations formed by a combined contribution of neu-49 tron holes and proton particles. 50

This work focuses on the high-spin structures of ¹³⁶Ba 51 ⁵² and ¹³⁷Ba with one and two valence neutron holes out-53 side the N = 82 closed shell. Isomeric yrast $J^{\pi} = 10^+$ states accumulate in moderately neutron-rich Xe and Ba $_{55}$ isotopes, as well as throughout the N = 78, N = 80, and $_{56}$ N = 82 isotones above the Z = 50 shell closure. Along ⁵⁷ the N = 80 isotones, between ¹³⁰Sn and ¹⁴²Sm, these ¹⁴ tions [17]. In ¹³⁸Ce the E2 yrast sequence is interrupted ⁵⁸ isomers are predominantly of $\nu h_{11/2}^{-2}$ character and se- ¹¹⁵ by an intermediate $J^{\pi} = 11^+$ state, connecting J = 12⁵⁹ niority v = 2 [1–6]. The single-particle excitation energy 60 of the $\nu h_{11/2}$ neutron orbital is observed to increase with ⁶¹ proton number. This increase in single-particle energy is ⁶² responsible for an increase of more than 1 MeV in the ex-⁶³ citation energy of the yrast $J^{\pi} = 10^+$ state between ¹³⁰Sn ⁶⁴ and ¹⁴⁰Nd. From the proton Z = 64 subshell closure at ¹⁴⁴Gd onwards, $J^{\pi} = 10^+$ isomers are proposed to have 66 two-proton $\pi h_{11/2}^2$ configurations [6, 7]. A compilation $_{\rm 67}$ of high-spin level schemes above the isomeric J^{π} = 10^+ $_{68}$ states along N = 80 is presented in Fig. 1(a).

The $10^+ \rightarrow 8^+$ isomeric transitions of 132 Te and 134 Xe 69 ⁷⁰ have low energies of 22 and 28 keV, respectively [2]. Highspin states in the N = 80 isotone ¹³²Te were investigated 71 up to spin $J^{\pi} = (17^+)$ with an excitation energy of 6.17 ⁷³ MeV [8]. The states along the $(16^+) \rightarrow (15^+) \rightarrow (14^+) \rightarrow$ $_{74}$ (12⁺) \rightarrow (10⁺) cascade above the $J^{\pi} = 10^{+}$ isomer are $_{75}$ predominantly of $\nu h_{11/2}^{-2}$ character. In 134 Xe, the high-⁷⁶ spin structure above the isomeric $J^{\pi} = 10^+$ is known up ₁₃₄ Fig. 1(b). $_{77}$ to spin $J^{\pi} = (16^+)$ at 5.83 MeV. The high-spin yrast $_{_{135}}$ ⁷⁸ sequence is similar to ¹³²Te, despite an additional tenta-⁷⁹ tively assigned $J^{\pi} = 13^+$ state between the $J^{\pi} = 12^+$ $_{81} J^{\pi} = 10^+$ isomers involve the rearrangement of the va-⁸² lence protons since the configuration of the neutrons is $_{\rm 83}$ already constrained. Therefore, both $^{132}{\rm Te}$ and $^{134}{\rm Xe}$ ⁸⁴ are characterized by high-energy $12^+ \rightarrow 10^+$ transitions of 900 and 1323 keV, respectively.

 $_{\rm 94}$ who populated $^{136}{\rm Ba}$ in a $^{136}{\rm Xe} + ^{198}{\rm Pt}$ multinucleon-95 transfer reaction at a beam energy of 850 MeV. The ₉₆ groups reported half-lives of $T_{1/2} = 94(10)$ ns [14] and $T_{1/2} = 91(2)$ ns [3]. Valiente-Dobón *et al.* employed 97 prompt-delayed correlations to identify seven γ -ray tran-98 ⁹⁹ sitions feeding the $J^{\pi} = 10^+$ state and established a ten-¹⁰⁰ tative high-spin structure. Contrary to ¹³²Te and ¹³⁴Xe, ¹⁰¹ the next excited state is located only 349 keV above the ¹⁰² 3357-keV isomeric state. According to shell-model calcu-103 lations and systematics, it was assumed that the excita-104 tion pattern above the $J^{\pi} = 10^+$ state does not corre-¹⁰⁵ spond to an E2 yrast sequence. Instead, a $J^{\pi} = 10^{-}$, $_{106}$ 11⁻ or 12⁻ assignment was suggested for the $E_x = 3707$ -107 keV state. However, angular-correlation measurements ¹⁰⁸ were not in the scope of the experiment [3].

Approaching the proton subshell closure, elaborate 109 110 high-spin information from heavy-ion fusion-evaporation $^{\scriptscriptstyle 111}$ reactions are available for both $^{138}\mathrm{Ce}$ and $^{140}\mathrm{Nd}$ [15, 16]. ¹¹² Measurements of the $J^{\pi} = 10^+_1$ isomer's g-factors in ¹¹³ both nuclei corroborated $\nu h_{11/2}^{-2}$ neutron-hole configura- $_{116}$ states of positive and negative parity with the 82(2)-¹¹⁷ ns $J^{\pi} = 10^+$ isomer. Going to higher spins, the level ¹¹⁸ structure is significantly fragmented into several band ¹¹⁹ structures dominated by different quasiparticle configu- $_{120}$ rations [15].

The high-spin regime of ¹⁴⁰Nd is even more fragmented 121 122 and explained by different two-neutron and two-proton ¹²³ excitations [16, 18, 19]. The 33(2)-ns $J^{\pi} = 10^+_1$ isomer ¹²⁴ decays via negative-parity states to the 0.6-ms $J^{\pi} = 7^{-1}_{1}$ 125 state. It is directly fed by $J^{\pi} = 11^{-}$ and $J^{\pi} = 10^{-}$ ¹²⁶ states [19]. A second $J^{\pi} = 10^+$ state was identified at ¹²⁷ 4155 keV, fed by positive-parity states [16]. Furthermore, $_{^{128}}$ $^{140}\mathrm{Nd}$ exhibits a six-quasiparticle $J^{\pi}=20^+$ isomer with ¹²⁹ a half-life of $T_{1/2} = 1.23(7)$ µs at 7430 keV [20].

Similar to the $J^{\pi} = 10^+$ isomers along N = 80, 130 $_{131} J^{\pi} = 19/2^{-}$ isomers are a common feature of nuclei along $_{132} N = 81 [4, 22, 23]$. A compilation of several partial ¹³³ level schemes above the $J^{\pi} = 19/2^{-}$ isomers is shown in

The level scheme of 133 Te is known up to 6.2 MeV with 136 tentative spin assignments up to $J^{\pi} = (31/2^{-})$ [25, 26]. ¹³⁷ A $J^{\pi} = (19/2^{-})$ state at 1.610 MeV is found to be isoand 14⁺ levels [9]. States of higher spins built on the $_{138}$ meric with an adopted half-life of $T_{1/2} = 100(5)$ ns [27]. $_{\rm 139}$ In $^{135}{\rm Xe}$ the high-spin regime is investigated up to 140 4.07 MeV, however, no spin and parities are known be-¹⁴¹ youd the $J^{\pi} = 19/2^{-}$ state which is identified as an iso-142 mer with a half-life of $T_{1/2} = 9.0(9)$ ns [22].

¹⁴³ Pioneering studies of ¹³⁷Ba mainly focused on low-⁴⁵ Pioneering work on ¹³⁶Ba focused on low-spin states ¹⁴³ and medium-spin states. Data were obtained utilizing ⁸⁷ up to the $J^{\pi} = 8^+$ state at $E_x = 2994$ keV, investi-¹⁴⁵ β decay [28, 29], neutron-induced reactions [30], and ³⁶ ag ated via Coulomb excitation [10], β -decay [11], (n, γ) ¹⁴⁶ Coulomb excitation [31]. The spins, parities and half-⁸⁹ reactions [12], and ⁹Be-induced fusion-evaporation reac-¹⁴⁷ lives of the ground state and the $J^{\pi} = 11/2^{-1}$ isomer ⁹⁰ tions [13]. The $J^{\pi} = 10^+$ state at $E_x = 3357$ keV with $_{148}$ at 661.659(3) keV with a half-life of 2.552(1) min are ⁹¹ a $\nu h_{11/2}^{-2}$ configuration was simultaneously discovered by ¹⁴⁹ well established. First results on medium-spin states ⁹² Shizuma et al. [14] employing a 82 Se+ 139 La deep-inelastic ${}_{150}$ of 137 Ba were obtained by Kerek et al. in 1973 [32], ⁹³ reaction at 450 MeV and by Valiente-Dobón *et al.* [3] ¹⁵¹ via an α -induced reaction on a ¹³⁶Xe-enriched gas tar-

Figure 1. Comparison of high-spin states above (a) the $J^{\pi} = 10^+_1$ isomers along N = 80 and (b) above the $J^{\pi} = 19/2^-_1$ isomers along N = 81. There is a significant lack of information on spin assignments in ¹³⁶Ba and ¹³⁷Ba. Data taken from Refs. [3, 9, 15, 16, 19, 21–24].

¹⁵³ ble spin assignments $J^{\pi} = (15/2, 17/2, 19/2)$ and a half-¹⁸⁰ no evidence of a positive-parity band connected to the ¹⁵⁴ life of $T_{1/2} = 590(100)$ ns was observed. This state ¹⁸¹ $J^{\pi} = 19/2^-$ isomer was found to date. Thus, the typ-155 156 The authors of the present work studied ¹³⁷Ba as a 184 discontinued in ¹⁴¹Nd. 157 ¹⁵⁸ multinucleon-transfer and fusion-evaporation product us-¹⁵⁹ ing the Advanced Gamma-ray Tracking Array (AGATA) + PRISMA setup at LNL Legnaro, the GAMMAS-¹⁶¹ PHERE array at Lawrence Berkeley National Laboratory ¹⁸⁸ tative excitation energies. Aim of the present work was ¹⁶² and the HORUS array at Cologne [22]. The level scheme ¹⁸⁹ to complement these earlier studies with spin and par-¹⁶³ was extended up to approx. 5 MeV excitation energy. ¹⁹⁰ ity assignments of the high-spin states. The systemat-¹⁶⁴ Spin and parity assignments of high-spin states were not $_{191}$ ics along the N = 80 chain suggest that the yrast E2 ¹⁶⁵ subject of the work [22].

166 167 ¹⁶⁸ tion energy of approx. 8 MeV [33, 34]. A band on top ¹⁹⁵ isomeric $J^{\pi} = 10^+$ state in ¹³⁶Ba and above the isomeric ¹⁶⁹ of a $J^{\pi} = 19/2^-$ isomer was initially proposed to be of ¹⁹⁶ $J^{\pi} = 19/2^-$ state in ¹³⁷Ba. ¹⁷⁰ negative parity [33, 34]. Recently, this structure was re- ¹⁹⁷ In this Paper new results on ¹³⁶Ba and ¹³⁷Ba are $_{171}$ vised to be a positive-parity cascade built on top of a $_{198}$ presented. 136 Ba was populated in a 136 Xe + 238 U 172 173 isomer [24].

174 ¹⁷⁵ bands were discovered in ¹⁴¹Nd [35, 36]. In an ear- $_{202}$ over, ¹³⁶Ba is investigated in two ⁹Be + ¹³⁰Te and one ¹⁷⁶ lier experiment [4], delayed time distributions indicated $_{203}$ ¹¹B + ¹³⁰Te fusion-evaporation experiment employing $_{177}$ a possible $J = 19/2^{-1}$ isomeric state with $T_{1/2} = 26(5)$ ns $_{204}$ two different configurations of the High-efficiency Ob-¹⁷⁸ at an energy of 2886 + x keV. However, this isomer was ²⁰⁵ servatory for γ -Ray Unique Spectroscopy (HORUS) [41]

¹⁵² get. An isomeric state at $E_x = 2350$ keV with possi-¹⁷⁹ not confirmed by subsequent studies [35, 36]. Moreover, was found to decay via a 120-1568-keV γ -ray cascade, $_{182}$ ical features of $J^{\pi} = 19/2^{-}$ isomers and the associated finally populating the long-lived $J^{\pi} = 11/2_1^-$ isomer. 183 feeding high-spin structures along N = 81 could be first

Along the N = 80 and N = 81 isotones, spin and 185 ¹⁸⁶ parity assignments are missing inter alia for ¹³⁶Ba and ¹⁸⁷¹³⁷Ba. Available information is limited to in part ten- $_{192}$ 12⁺ \rightarrow 10⁺ cascades are first interrupted in 136 Ba accom-In ¹³⁹Ce the yrast negative-parity band based on the ¹⁹³ panied by a change in nuclear structure. This motivates $J^{\pi} = 19/2^{-}$ isomer is well established up to an excita- 194 a refined investigation of the high-spin features above the

 $J^{\pi} = 23/2^+$ bandhead decaying into the $J^{\pi} = 19/2^-$ ¹⁹⁹ multinucleon-transfer (MNT) experiment employing the $_{200}$ AGATA γ -ray spectrometer [37] in combination with the Adding two more protons, a plethora of high-spin 201 magnetic mass spectrometer PRISMA [38-40]. More-

206 at the Institute of Nuclear Physics, University of 257 thick Cu layer for heat dissipation. In the three experi-208 209 correlations. 210

211 $_{212}$ setup and data analysis of the experiments are described $_{263}$ beam axis. In total, $9 \times 10^7 \gamma \gamma$ -coincidence events were ²¹³ in Sec. II, followed by the experimental results in Sec. III. ²⁶⁴ collected. ²¹⁴ A comparison with large-scale shell-model calculations is $_{\rm 215}$ presented in Sec. IV before the paper is completed with ²¹⁶ a summary and conclusions.

EXPERIMENTAL PROCEDURE II. 217

136 Xe + 238 U multinucleon transfer 218

219 220 221 222 223 224 vided by the magnetic spectrometer PRISMA placed at $_{277}$ order of magnitude higher than in the first experiment. the reaction's grazing angle of $\theta_{lab} = 50^{\circ}$. γ rays from 226 227 excited states in both beam- and target like nuclei were detected with the AGATA γ -ray spectrometer [37] in the 228 demonstrator configuration [42] placed 23.5 cm from the 229 target position. The array consisted of 15 large-volume 279 230 231 232 233 234 235 236 tion of isomeric γ -ray transitions is suppressed. 237

238 $_{239}$ nals was applied to determine the individual interaction $_{288}$ the results of the $\gamma\gamma$ analysis of this experiment can be 240 points within the HPGe shell [44], enabling the Orsay 289 found in Ref. [22]. $_{241}$ forward-tracking algorithm [45] to reconstruct the indi- $_{290}$ In all three fusion-evaporation experiments, γ -ray 242 244 the emission angle. Together with the kinematic infor- 293 (DGF) data-acquisition system. The data were analyzed ²⁴⁵ mation from PRISMA, a precise Doppler correction was ²⁹⁴ offline using the codes SOCO-V2 [47] and TV [48]. ²⁴⁶ performed. Further details on the analysis can be found ²⁹⁵ ²⁴⁷ in Ref. [46].

248

249 250 251 253 $_{255}$ riched 130 Te with a thickness of 1.8 mg/cm², evaporated $_{307}$ tween the planes spanned by the detectors and the beam $_{256}$ onto a 120 mg/cm² thick Bi backing plus a 132 mg/cm² $_{308}$ axis. Note that the correlation intensities also depend

Cologne. 137 Ba was populated in the $^{11}B + ^{130}$ Te fusion- $_{258}$ ments, all reaction products were stopped inside the Bi evaporation experiment. The HORUS experiments pro- $_{259}$ backing. γ rays from excited reaction products were meavide detailed information on $\gamma\gamma$ coincidences and angular 260 sured with a γ -ray array equipped with 11 high-purity $_{261}$ germanium (HPGe) detectors, placed in rings at 45° (6 This paper is organized as follows: the experimental 262 detectors) and 143° (5 detectors) with respect to the

²⁶⁵ C. Part II: ⁹Be + ¹³⁰Te fusion-evaporation reaction

Another ${}^{9}\text{Be} + {}^{130}\text{Te}$ fusion-evaporation reaction was 266 ²⁶⁷ performed at 43 MeV beam energy. The HORUS array ²⁶⁸ comprised 14 HPGe detectors, six of them equipped with ²⁶⁹ BGO Compton-suppression shields. The detectors were $_{\rm 270}$ positioned on the eight corners and six faces of a cube. To In this experiment, ¹³⁶Ba was populated in a ¹³⁶Xe + ²⁷¹ reduce background radiation from X rays, each detector ²³⁸U multinucleon-transfer experiment at the Laboratori ²⁷² was shielded by 2-mm-thick sheets of lead and copper. Nazionali di Legnaro, Italy. The $6.84 \text{ MeV/nucleon} {}^{136}\text{Xe} {}^{273}$ Note that the relative efficiency of the first experiment beam, accelerated by the PIAVE+ALPI accelerator com- 274 (Sec. II B) exceeds the relative efficiency of the second explex, impinged onto a 1 and a 2-mg/cm² 238 U target. An 275 periment by a factor of more than 16 at a γ -ray energy of isotopic identification of the nuclei of interest was pro- 276 100 keV. However, the total $\gamma\gamma$ -statistic is more than one

D. ${}^{11}B + {}^{130}Te$ fusion-evaporation reaction

In the third experiment, $^{136}\mathrm{Ba}$ and $^{137}\mathrm{Ba}$ were popelectronically segmented high-purity Ge (HPGe) detec- 280 ulated via a ¹¹B + ¹³⁰Te fusion-evaporation reaction. tors in five triple cryostats [43]. An event registered by 281 Several fusion-evaporation codes predict a relative crossthe PRISMA focal-plane detector in coincidence with an $_{282}$ section of < 1% for the evaporation channels of inter-AGATA event was taken as a trigger for the data acquisi- 283 est. The HORUS array was arranged similarly to the tion. In this way the origin of the γ rays is distinguished, ²⁸⁴ second ¹³⁶Ba experiment (Sec. II C). However, no addibackground from beta-decay is reduced and a major frac- 285 tional shielding in front of the detectors were mounted. ²⁸⁶ In total, $1.5 \times 10^{10} \gamma \gamma$ -coincidence events were recorded. Pulse-shape analysis of the digitized detector sig- 287 Additional information about the experimental setup and

vidual emitted γ -ray energies, determine the first inter- 291 events were processed triggerless and recorded utilizing action point of the γ ray in the germanium and, thus, 292 the synchronized 80-MHz XIATM Digital Gamma Finder

The HORUS spectrometer arranged in the cube con-²⁹⁶ figuration allows to investigate multipole-mixing ratios of $_{297}$ transitions between excited states with the $\gamma\gamma$ angular-²⁹⁸ correlation code CORLEONE [49, 50] based on the phase B. Part I: ⁹Be + ¹³⁰Te fusion-evaporation reaction ²⁹⁹ convention by Krane, Steffen, and Wheeler [51, 52]. $_{300}$ Different hypotheses of involved spins J_1, J_2, J_3 and In this experiment excited states in ¹³⁶Ba were pop-³⁰¹ multipole-mixing ratios δ_1, δ_2 of two coincident γ rays in ulated in a ${}^{9}\text{Be} + {}^{130}\text{Te}$ fusion-evaporation reaction. ${}_{302}$ a cascade $J_1 \xrightarrow{\delta_1} J_2 \xrightarrow{\delta_2} J_3$ are evaluated by χ^2 fits of the The FN Tandem accelerator of the Institute of Nuclear 303 correlation function $W(\Theta_1, \Theta_2, \Phi) = W(J_1, \delta_1, J_2, \delta_2, J_3)$ Physics, University of Cologne, provided a 40-MeV ⁹Be ³⁰⁴ to experimental intensities in eight different correlation beam. In this and two additional experiments, intro- $_{305}$ groups, each associated with detector pairs at angles $\Theta_{1,2}$ duced in Sec. II B-II D, the target consisted of 99.3% en- $_{306}$ with respect to the beam axis and a relative angle Φ be-

Figure 2. (a) Level scheme assigned to ¹³⁶Ba in the present work. Transitions and excitation energies are given in keV. γ -ray intensities above the $J^{\pi} = 10^+$ isomer are deduced from the ⁹Be + ¹³⁰Te experiment and normalized to the 349-keV transition. (b) Level scheme assigned to ¹³⁷Ba and normalized to the 275-keV transition. Transitions and excitation energies are taken from the previous work, using the same ${}^{11}\text{B} + {}^{130}\text{Te}$ experiment, presented in Ref. [22]. Tentative assignments are given in brackets and dashed lines. In both isotopes new spin/parity assignments are based on the spin/parity assignments of the isomeric 3357.3 keV state in ¹³⁶Ba given in Ref. [14] and on the spin/parity assignments of the isomeric 2349.9 keV state in ¹³⁷Ba given in Refs. [22, 23]. See text for details.

 $_{310}$ reaction orients the spin of the initial level J_1 with re- $_{325}$ tematics, shell-model calculations and measured DCO ra- $_{311}$ spect to the beam axis. The orientation is described by $_{326}$ tios [3, 14]. 312 a Gaussian distribution of the magnetic substates with ³¹³ mean value $\langle m \rangle = 0$ and variance σ^2 . The width of ³¹⁴ the alignment distribution was found to be constant at $\sigma = 2.1$. More details on the angular-correlation analysis σ Fig. 3(a). The mass spectrum along the Ba isotopes ³¹⁶ with CORLEONE are given in Refs. [53, 54]

III. EXPERIMENTAL RESULTS 317

136 Ba Α. 318

319 ³²⁰ ments is presented in Fig. 2(a). New parity assignments ³³⁹ are found to be suppressed in the spectrum. The largest $_{321}$ of states above the $J^{\pi} = 10^+$ isomer are based on the par- $_{340}$ peaks in the spectrum are located at 349 and 510 keV. ₃₂₂ ity assignments of the isomeric 3357-keV state in ¹³⁶Ba ₃₄₁ In previous works both transitions were placed on top ₃₂₃ given in Refs. [3, 14]. The $J^{\pi} = 10^+$ assignment with ₃₄₂ of the 3357-keV isomer to form a cascade deexciting the

 $_{309}$ on the orientation parameter σ : the fusion-evaporation $_{324}$ the tentative positive parity is strongly supported by sys-

The Doppler-corrected AGATA singles γ -ray spectrum 327 $_{328}$ of 136 Ba in the 136 Xe + 238 U experiment is shown in ³³⁰ identified with PRISMA and the applied gate on ¹³⁶Ba $_{331}$ is shown in the inset Fig. 3(b). Transitions at γ -ray ener-332 gies of 529, 602, and 807 keV are contaminants from the $_{333}$ +4n channel ¹⁴⁰Ba. Moderately weak lines at 262 and ³³⁴ 1399 keV can be associated to known transitions in the $_{\rm 335}$ isobar $^{136}{\rm Cs.}$ Due to the restriction to prompt events 336 in the time-difference spectrum between PRISMA and $_{337}$ AGATA, i.e. $\Delta t_{\rm PRISMA-AGATA} \approx 16$ ns, transitions be-The level scheme of ¹³⁶Ba deduced in the four experi- 338 tween states below the $E_x = 3357$ keV $J^{\pi} = 10^+$ isomer

Figure 3. (a) Doppler-corrected γ -ray spectrum gated on ¹³⁶Ba identified in PRISMA in the ¹³⁶Xe + ²³⁸U experiment. γ -ray energies are given in keV. (b) Mass spectrum of Ba isotopes identified with PRISMA. The applied mass gate on ¹³⁶Ba is marked black. A gate on the prompt time peak between AGATA and PRISMA is applied to reduce random background.

346 347 348 intensities.

Measured intensities of coincident γ rays from the HO-349 RUS experiments are summarized in the right-hand side 350 of Tab. I. All intensities are efficiency-corrected and nor-351 malized to the intensity of the 349-keV transition. Intensities are extracted from the ${}^{9}\text{Be} + {}^{130}\text{Te}$ experiment I_{γ}^{9} Be) as well as from the ${}^{11}\text{B} + {}^{130}\text{Te}$ experiment $(I_{\gamma}^{11}\text{B})$. 354 The independently measured intensities show a consistent assignment of states and transitions. The uncertain-356 ties in the transition energies are ± 0.5 keV. Spin/parity 357 assignments are supported by angular-correlation mea-358 surements and shell-model calculations. Various HORUS 359 background-subtracted prompt $\gamma\gamma$ -coincidence spectra 360 from the first ${}^{9}\text{Be} + {}^{130}\text{Te}$ experiment (see Sec. II B) with gates on transitions above the $J^{\pi} = 10^+$ isomer 362 are shown in Figs. 4(a)-(d). Contaminant transitions in 363 the spectrum gated on the 328 keV transition (Fig. 4(c)) 364 stem from $35/2^- \rightarrow 33/2^-$ transition in ¹³⁵Ba [55]. Coin-365 cident transitions deexciting the isomeric $E_x = 3357$ -keV 366 state are suppressed in intensity, due to the prompt $\gamma\gamma$ -367 coincidence time gate of 175 ns. 368

369 370 on the 349-keV transition. Coincidences are labeled with 408 the 566- and 661-keV transitions in the level scheme. We 371 372 signed peaks at 130, 247, 566, and 661 keV, observed in 411 is limited due to the use of absorbers. 373 the AGATA experiment, are coincident to the 349-keV $_{412}$ Figures 4(e)-(g) show double-gated $\gamma\gamma\gamma$ -coincidence 374 375 376 377 A gate on the 848-keV transition is shown in Fig. 4(b). 415 projection gated on 510 and 349 keV, as displayed in ³⁷⁸ The absence of the 144-1214-keV cascade requires the ⁴¹⁶ Fig. 4(e). Hence, the transitions have to feed the 4217-379 848-keV transition to be placed parallel to this cascade. 417 keV state. Since the 566- and 661-keV transitions are not

 $_{343}$ 4217-keV state [3, 14]. Further peaks at 130, 144, 247, $_{380}$ The intensity of the 1214-keV peak in the $\gamma\gamma$ -coincidence 328, 848, and 1214 keV are consistent with those found 381 spectrum gated on 349 keV exceeds the one of the 144-keV by Valiente-Dobón et al. [3]. However, the placement of 382 line. Moreover, the 144-1214-keV cascade corresponds to 130- and 247-keV transitions was unknown in the level 383 the sum energy of the 848-510-keV cascade. Therefore, in scheme of the previous work due to similar relative peak 384 accordance with the measured intensity relations of the 385 1214- and 144-keV transitions, the 144-keV transition has 386 to be placed on top of the 1214-keV transition, resulting in a new state at 4921 keV excitation energy.

> Coincidences with the 848-keV and 1214-keV transi-388 389 tions as well as intensity balances require a placement ³⁹⁰ of the 130, 247, and 328-keV transitions above the 5065-³⁹¹ keV state. Since the 130-keV transition is mutually coin- $_{392}$ cident with the 328-keV transition (cf. Fig 4(c)), both ³⁹³ transitions form a 328-130 keV cascade on top of the $_{394} E_x = 5065$ -keV state. The ordering of the 328- and 130-395 keV transitions agrees with the intensity balance mea-³⁹⁶ sured in the $\gamma\gamma$ projections gated on the 144-, 349-, 848-, ³⁹⁷ and 1214-keV transitions. Additionally, Fig. 4(d) shows ³⁹⁸ that the 247-keV transition is not coincident with the 328-³⁹⁹ 130-keV cascade. Consequently, the 247-keV transition is $_{400}$ placed parallel to the 328-130-keV cascade to establish a $_{401}$ state at $E_x = 5311$ keV.

402 Moreover, Fig. 4(a) shows two additional coincidences 403 at 566 and 661 keV, however, both transitions are neither 404 coincident with the transitions at 848 and 328 keV, nor $_{405}$ with the 247-keV transition (cf. Fig. 4(a)-(d)). Due to 406 insufficient statistics we use the higher $\gamma\gamma$ statistics from Figure 4(a) presents the γ -ray spectrum with a gate $_{407}$ the second $^{9}\text{Be}+^{130}\text{Te}$ experiment (see Sec. II C) to place filled arrow heads. The spectrum exhibits anticipated $_{409}$ remind the reader that although the total $\gamma\gamma$ statistics of coincidences at 144, 328, 510, 848, and 1214 keV. Unas- 410 this experiment is higher, the efficiency at small energies

transition. In the previous work [3], the 144 and 1214- 413 and sums of double-gated $\gamma\gamma\gamma$ -coincidence spectra. Both keV γ -rays are arranged to form a state at $E_x = 3850$ keV. ⁴¹⁴ the 566- and 661-keV transitions emerge in the $\gamma\gamma\gamma$

Figure 4. Prompt $\gamma\gamma$ double-coincidence spectra from the first ${}^{9}\text{Be} + {}^{130}\text{Te}$ experiment (see Sec. II B) with gates on (a) 349, (b) 848, (c) 328, and (d) 247 keV. Transitions above the $J^{\pi} = 10^+$ isomer are marked with asterisks. Coincidences are labeled by filled arrow heads. Contaminant transitions in the spectrum gated on the 328 keV stem from transitions in 135 Ba. $\gamma\gamma\gamma$ triple-coincidence spectra from the second ${}^{9}\text{Be} + {}^{130}\text{Te}$ experiment (see Sec. II C) with (e) a double gate on 349 & 510 keV, a sum of double-gated triples coincidence spectra gated on (f) 566 & 510 and 566 & 349 keV, and a similar sum spectra gated on (g) 661 & 510 and 661 & 349 keV. Prompt $\gamma\gamma$ double-coincidence spectra with a gate on (h) 818 and (i) 349 keV from the $^{11}\text{B} + ^{130}\text{Te}$ experiment (see Sec. II D). The gate on 349 keV is contaminated with transitions from ^{137}La .

⁴¹⁹ placed parallel, directly feeding the $E_x = 4217$ -keV state. ⁴³⁴ Half Maximum (FWHM) of the coincident 510-keV tran-Furthermore, the spectrum gated on the 510-349-keV 420 cascade (c.f. 4(e)) reveals weak lines at 317 and 412 keV. 421 The 317-keV transition corresponds to the energy dif-422 ference between the new established states at 4878 and 423 5195 keV, while the 412-keV transition corresponds to 424 the transition between the new established states at 4782 425 and 5195 keV. As expected, the 412-keV transition is only observed in coincidence with the 566-keV transition 427 (c.f. 4(f)) and the 317-keV transition is in coincidence 428 with the 661-keV transition (c.f. 4(g)). 429

430 $_{432}$ of this peak is clearly separated by 0.9 keV from the 510- $_{447}$ the 3707-keV state and a proposed $E_x = 3410$ keV state

 $_{418}$ in mutual coincidence (cf. Fig. 4(f)-(g)) both have to be $_{433}$ keV peak position in Fig. 4(f). Since the Full Width at ⁴³⁵ sition gated on 566-keV is broader than the similar peak 436 gated on 661-keV, the 509-keV transition is identified as ⁴³⁷ another transition above the 4878-keV state.

An intense 1380-keV transition is observed in the 439 AGATA spectrum in Fig. 3. In accordance with previ-440 ous studies performed with the AGATA dataset [9, 22], ⁴⁴¹ a transition from a contaminant can be excluded. In the 442 HORUS experiment this transition is observed to be co- $_{\rm 443}$ incidence with transitions stemming from the 5^- \rightarrow 2⁺ $_{444}$ decay in $^{134}\mathrm{Ba}$ and in coincidence with a 297-keV transi-A further 509-keV transition is in coincidence with the $_{445}$ tion. Assuming a 1380-keV transition above the $J^{\pi} = 7^{-1}$ 510-349-keV cascade, as shown in Fig. 4(e). The centroid $_{446}$ isomer at $E_x = 2030$ keV, the energy difference between

Table I. Energies, spin assignments and relative in-beam intensities for γ -ray transitions in ¹³⁶Ba above the $J^{\pi} = 10^+_1$ isomer at $E_x = 3357.3$ keV. Fitted energies and relative intensities normalized to the 349.4-keV transition are taken from two experiments: $I_{\gamma}^{^{11}\text{B}}$ from $^{^{11}\text{B}}+^{^{130}\text{Te}}$ and $I_{\gamma}^{^{^{9}\text{Be}}}$ from $^{^{9}\text{Be}}+^{^{130}\text{Te}}$.

E_{γ} (keV)	E_i (keV)	E_f (keV)	I_i^{π}	I_f^{π}	$I_{\gamma}^{^{11}\mathrm{B}}$	$I_{\gamma}^{9_{\text{Be}}}$
130.1	5194.6	5064.5	(14^{+})	(13^{+})	20(2)	18(2)
143.9	5064.5	4920.6	(13^{+})	$12^{(+)}$	29(2)	23(2)
316.7	5194.6	4877.9	(14^{+})	(13_1^-)	9(2)	weak
246.6	5311.1	5064.5	—	(13^{+})	12(3)	10(1)
327.9	5522.5	5194.6	(15^{+})	(14^{+})	12(3)	13(2)
349.4	3706.7	3357.3	$11^{(-)}$	$10^{(+)}$	$\equiv 100$	$\equiv 100$
412.2	5194.6	4782.4	(14^{+})	(13_1^-)	10(2)	weak
508.7	5386.6	4877.9	(14^{-})	(13_2^-)	weak	weak
509.8	4216.5	3706.7	$12^{(-)}$	$11^{(-)}$	62(9)	63(7)
565.9	4782.4	4216.5	(13_1^-)	$12^{(-)}$	25(3)	15(1)
661.4	4877.9	4216.5	(13_1^-)	$12^{(-)}$	20(2)	13(1)
848.0	5064.5	4216.5	(13^{+})	$12^{(-)}$	30(3)	27(3)
1213.9	4920.6	5064.5	$12^{(+)}$	$11^{(-)}$	42(4)	35(3)

⁴⁴⁸ corresponds to 297 keV. Accordingly, the 297-1380-keV 449 cascade is tentatively placed above the $J^{\pi} = 7^{-}$ isomer, $_{\rm 450}$ connecting the $E_x=3707{\rm -keV}$ state with the isomer. This assignment is further supported by the recent observation of a similar 415-1099-keV cascade on top of the 452 $J^{\pi} = 7^{-}$ isomer in the isotone ¹³⁴Xe [9]. 453

 136 Ba was also populated in the $^{11}B + ^{130}$ Te fusion-454 ⁴⁵⁵ evaporation experiment with significantly lower relative ⁴⁵⁶ cross section (see Sec. IID). Figs. 4(h)-(i) show exam- $_{457}$ plary prompt $\gamma\gamma$ -coincidence spectra with gates on the 458 818- and 349-keV transitions. Besides dominant coinci- $_{459}$ dent transitions originating from the 348-keV (33/2^+ \rightarrow $_{460}$ 31/2⁻) decay in ¹³⁷La [56], also transitions from ¹³⁶Ba, ⁵¹⁶ tion in ¹³²Xe. The fit of a 5⁺ $\xrightarrow{\delta}$ 4⁺ $\xrightarrow{E2}$ 2⁺ hypothesis 461 including the new established transitions, are observed 517 yields a good agreement with the experimental distribuwell above the background. Intensities (I_{γ}^{11}) , normal-463 ized to the intensity of the 349-keV transition, are listed $_{\rm 464}$ in Tab. I. The observed coincidences in the $^{11}{\rm B}+^{130}{\rm Te}$ ex-465 periment are consistent with the aforementioned results 521 ⁴⁶⁶ and strongly support the new results on ¹³⁶Ba.

467 ⁴⁶⁸ experiment (see Sec. II C) were arranged in a cube con- ⁵²⁴ mixing ratio δ in the $J_1 \xrightarrow{\delta_1} J_2 \xrightarrow{\delta_2} J_3$ cascade is fixed $_{469}$ figuration, yielding five rings at relative angles of 35° $_{525}$ while the other is varied in order to avoid an overdeter-471 ⁴⁷² the distribution of the measured singles γ -ray intensity of ⁵²⁸ Scenarios of 11 $\xrightarrow{\delta_1=0}$ 11 $\xrightarrow{\delta_2}$ 10 and 12 $\xrightarrow{\delta_1=0}$ 11 $\xrightarrow{\delta_2}$ 10 ⁴⁷³ the well-known 1052-keV transition (19/2⁻ $\xrightarrow{E2}$ 15/2⁻) ⁵²⁹ for the 510-349-keV cascade yield χ^2 values of 10 and ⁴⁷⁴ in ¹³⁵Ba in the different rings, normalized to the inten-⁵³⁰ 14. Obviously, a parity-changing 510-keV *E*1 transition ⁴⁷⁵ sity of ring 3. Moreover, Fig. 5(b) shows a similar dis-⁵³¹ can be rejected. Moreover, a 13 $\xrightarrow{\delta_1=0}$ 11 $\xrightarrow{\delta_2}$ 10 as-⁴⁷⁶ tribution for the 391-keV transition $(21/2^- \xrightarrow{E1} 19/2^-)$ ⁵³² sumption does not fit the experimental data, which ex-477 in ¹³⁵Ba. Both distributions are compared with theoret- 533 cludes an E2 transition with 510 keV. Vice versa, keep- $_{478}$ ical pure dipole- and quadrupole- transition hypotheses $_{534}$ ing $\delta_2 = 0$ fixed, a much better agreement is obtained. 479 as described by Yamazaki et al. [57]. Both angular distri- 535 Fig. 5(e) visualizes the angular-correlation distribution

⁴⁸⁰ butions are symmetric around 90°. The intensity of the ⁴⁸¹ quadrupole 1052-keV transition ($\Delta I = 2$) in Fig. 5(a) is 482 maximum along the beam axis, whereas the one of the ⁴⁸³ dipole 391-keV transition ($\Delta I = 1$) in Fig. 5(b) is maxi-⁴⁸⁴ mum perpendicular to the beam axis, demonstrating spin ⁴⁸⁵ alignment with respect to the beam axis.

The characteristic investigation of dipole and 486 487 quadrupole radiation signatures in the HORUS exper-488 iment is used to determine the multipolarity of the $_{489}$ 349-keV transition in 136 Ba. In Fig. 5(c) the singles 490 γ -ray intensity distribution of the 349-keV transition ⁴⁹¹ is compared to different theoretical pure dipole and ⁴⁹² quadrupole distributions for spins J = 10, 11, 12 of the ⁴⁹³ $E_x = 3707$ -keV state. The 12 $\xrightarrow{\Delta I=2}$ 10 and 10 $\xrightarrow{\Delta I=1}$ 10 ⁴⁹⁴ hypotheses can be clearly rejected. Since the 349-keV γ $_{\rm 495}$ ray has a Weisskopf half-life estimate of $T_{1/2}=0.17~{\rm ms}$ 496 for an E3 transition, an E3 character is disregarded. ⁴⁹⁷ Possible, 10 $\xrightarrow{\Delta I=2}$ 10 and 11 $\xrightarrow{\Delta I=2}$ 10 hypotheses show ⁴⁹⁸ large discrepancies between theoretical and experimental ⁴⁹⁹ values. Moreover, a mixed dipole-quadrupole transition ⁵⁰⁰ with initial spin of $J^{\pi} = 10^+$ does not provide a better ⁵⁰¹ agreement. Hence, the four abovementioned hypotheses ⁵⁰² can be rejected. A pure dipole decay and an initial spin 503 of J = 11 for the $E_x = 3707$ -keV state yields the best ⁵⁰⁴ agreement with the experimental intensity distribution.

Based on the assigned spin of the $E_x = 3707$ -keV state, 505 further spin hypotheses are tested for the $E_x = 4217$ -506 507 keV and the newly established $E_x = 4921$ -keV states 508 applying the procedure of $\gamma\gamma$ angular correlation mea-⁵⁰⁹ surements discussed in Sec. II. Angular-distribution func-⁵¹⁰ tions $W(\Theta_1, \Theta_2, \Phi)$ of two coincident γ -ray transitions $_{511}$ are fitted to experimental γ -ray intensity distributions $_{512}$ obtained by gates on depopulating transitions in the $\gamma\gamma$ -⁵¹³ coincidence matrices of eight angular-correlation groups. $_{514}$ Figure 5(d) shows a benchmark angular-correlation fit 515 of the 727-keV decay, gated on the 773-keV E2 transi- $_{518}$ tion. Moreover, the obtained E2/M1 multipole-mixing ⁵¹⁹ ratio of $\delta_{\text{exp.}} = 0.44(7)$ agrees well with the evaluated ⁵²⁰ value of $\delta = 0.41^{+7}_{-8}$ [58].

Similarly, keeping the spin of the 3357- and the 3707- $_{522}$ keV state in 136 Ba fixed, spins of J = 11, 12, and 13The detectors in the HORUS setup of the ${}^{9}\text{Be} + {}^{130}\text{Te}$ 523 were tested for the $E_x = 4217$ -keV state. One multipole- $(ring 1), 45^{\circ} (ring 2), 90^{\circ} (ring 3), 135^{\circ} (ring 4), and 145^{\circ} _{526} minacy of the fit. For a parity-changing E1 transition, a$ (ring 5) with respect to the beam axis. Fig. 5(a) shows $_{527}$ multipole-mixing ratio in the order of $\delta \approx 0$ is expected.

Figure 5. (Color online) Benchmark angular distribution of (a) the 1052-keV ($19/2^- \rightarrow 15/2^-$) γ -ray transition and (b) the 391-keV $(21/2^- \rightarrow 19/2^-) \gamma$ -ray transition, both in ¹³⁵Ba. Experimental values (data points) are compared to pure dipole and quadrupole hypotheses (solid lines). (c) Angular distribution of the 349-keV transition, feeding the $J^{\pi} = 10^+$ isomer in ¹³⁶Ba. Several pure dipole and quadrupole hypotheses (lines) are plotted. (d) Benchmark $\gamma\gamma$ angular-correlations for the $5_1^+ \rightarrow 4_1^+ \rightarrow 2_1^+$ (727-773-keV) cascade in ¹³²Xe. Experimental values (data points) are compared to calculated angularcorrelation functions $W(\Theta_1, \Theta_2, \Phi)$ (lines) for eight correlation groups using the code CORLEONE. Investigation for (e) the 510-349-keV cascade and (f) the 1214-349-keV cascade in ¹³⁶Ba. Several spin hypotheses are plotted.

⁵³⁷ different groups. The 12 $\xrightarrow{\delta_1}$ 11 $\xrightarrow{\delta_2=0}$ 10 hypothesis with 538 $\delta_1 = -0.15(6)$ ($\chi^2 = 1.1$) gives the best agreement with 539 the experimental $W(\Theta_1, \Theta_2, \Phi)$ distribution in all corre-540 lation groups. Thus, a spin of J = 12 is assigned to the ⁵⁴¹ 4217-keV state. Apart from that, similar fits assuming a $_{542}$ larger fixed δ_2 value for the 349-keV transition yield sig-⁵⁴³ nificantly worse χ^2 values of the 12 $\xrightarrow{\delta_1}$ 11 $\xrightarrow{\delta_2}$ 10 hypoth-⁵⁴⁴ esis (i.e. $\delta_2 \equiv \pm 0.05$; $\chi^2 > 2.6$ and $\delta_2 \equiv \pm 0.1$; $\chi^2 > 3.3$). 545 Hence, on the basis of a pure-dipole character for the 349- $_{546}$ keV γ -ray as shown in Fig. 5(c) and the overall agreement ⁵⁴⁷ with the shell-model calculations presented in Sec. IV A, $_{548}$ a parity changing E1 transition is proposed leading to a ⁵⁴⁹ negative parity assignment of the 3707-keV state.

Employing the same method, the spin of the newly es-550 tablished excited state at $E_x = 4921$ keV is determined, 551 ₅₅₂ as shown in Fig. 5(f). Spins of J = 11, 12, and 13 are tested. Assuming $\delta_2 = 0$, the 1214-349-keV cascade is $_{554}$ best reproduced by a 12 $\xrightarrow{\delta_1}$ 11 $\xrightarrow{\delta_2}$ 10 sequence with 555 $\delta_1 = -0.01(12)$. Vice versa, keeping $\delta_1 = 0$ fixed, δ_2 is ⁵⁵⁶ determined to be in agreement with zero. The obtained 557 χ^2 values of both fits are similar, showing the mutual 580 ⁵⁵⁸ consistency of both hypotheses. Consequently, similar to ⁵⁸¹ of ¹³⁷Ba above the $J^{\pi} = 19/2^{-1}$ isomer was extended to ⁵⁵⁹ the negative-parity $E_x = 4217$ -keV state, the $E_x = 4920$ - ⁵⁸² the structure presented in Fig. 2(b), using the $\gamma\gamma$ coin-560 keV state has a spin of J = 12. The pure dipole charac- 583 cidences from the ¹¹B + ¹³⁰Te experiment introduced in 561 ter of the 1214-keV transition suggests a E1 character of 584 Sec. II D. This paper focuses on the angular-distribution

 $_{536}$ for the 510-349 keV cascade in 136 Ba with respect to the $_{562}$ this transition, indicating that the $E_x = 4920$ -keV state ₅₆₃ has different spin than the $E_x = 3707$ -keV state and is ⁵⁶⁴ therefore most probably of positive parity. Moreover, the ⁵⁶⁵ independently measured 1214-349-keV cascade supports ⁵⁶⁶ a pure-dipole E1 349-keV transition.

> The $\gamma\gamma$ angular-correlation analysis is further exploited 567 ⁵⁶⁸ to verify the validity of the 297-1380-keV cascade on top 569 of the $J^{\pi} = 7^{-}$ isomer. The spin of the initial J = 11570 state and that of the final J = 7 state are fixed. A spin 571 assumption of J = 9 for the $E_x = 3410$ -keV state yields 572 a χ^2 value of 1.8, compared to χ^2 values of 2.2 and 2.3 for J = 10 and J = 8 hypotheses. Since an E3 or M2 574 transition in this cascade would corroborate another iso-575 mer, a spin assignment of J = 9 for the $E_x = 3410$ -keV 576 state is necessary to keep a prompt decay character. Con-577 sequently, the angular-correlation measurement supports $_{578}$ the 297-1380-keV cascade in 136 Ba.

¹³⁷Ba B.

In a previous work by this group [22], the level scheme

579

586 ₅₈₇ spin states is based on the tentative $J^{\pi} = 19/2^{-}$ assign- ₆₄₄ 3545-keV state (c.f. Fig. 6(b)-(c)). Consequently, the ⁵⁸⁸ ment of the isomeric 2350 keV state in ¹³⁷Ba given in ⁶⁴⁵ spin values of the 2913- and 3841-keV states are limited ported by systematics and shell-model calculations. 590

591 592 593 tra of the different rings of the HORUS setup. The 594 fusion-evaporation reaction orients the spin of the initial level with respect to the beam axis. However, according 596 to the very long half-life of the $J^{\pi} = 19/2^{-}$ state, the 597 598 to the beam axis; it decays instead isotropic. Thus, a 599 γ -ray gate on 1568 keV does affect the alignment with 600 ⁶⁰¹ respect to the beam axis for coincident transitions above the isomer. 602

To verify that the spins above the isomer are still 603 604 aligned with respect to the beam axis, a benchmark 605 angular γ -ray distribution of the well-known 1172-keV $_{606}$ (23/2⁻ $\xrightarrow{E2}$ 19/2⁻ [56]) transition in ¹³⁷La is shown in 607 Fig. 6(a). The intensities in the different rings are exfor tracted from the corresponding γ -ray spectra, gated on 609 the 782-keV $(15/2^- \rightarrow 11/2^-)$ transition, located below 610 the $J^{\pi} = 19/2^{-}$ $(T_{1/2} = 360(40) \text{ ns } [59])$ isomer. A good 611 agreement between measured and theoretical intensity 612 distribution of a pure quadropole transition is demon-613 strated.

 $_{^{614}}$ $\,$ In $^{137}{\rm Ba}$ the $J^{\pi}=19/2^-~(T_{1/2}=0.589(20)$ µs [22]) $_{^{615}}$ isomer decays via a 120-1568-keV cascade. Applying a 616 1568-keV gate to all rings, comparisons between mea-617 sured and theoretical angular distributions for the 275-⁶¹⁸ and 1195-keV transitions in ¹³⁷Ba are shown in Figs. 6(b) $_{619}$ and $_{6(c)}$. In both cases, the highest intensity was mea-620 sured in the detectors perpendicular to the beam axis, ₆₂₁ what is opposite to the distribution of the benchmark $_{622}$ quadrupole transition presented in Fig. 6(a). Therefore, 623 both experimentally determined intensity distributions ₆₂₄ are incompatible with a quadrupole $23/2 \xrightarrow{\Delta I=2} 19/2$ 625 transition. Also an E3 transition can be clearly rejected $_{626}$ for both γ rays, since the Weisskopf half-life estimate is 627 several orders of magnitude larger compared to a com-628 petitive quadrupole transition. Moreover, pure as well as ⁶²⁹ mixed quadrupole/dipole $19/2 \xrightarrow{\Delta I=1,2} 19/2$ transitions $_{630}$ do not fit the experimental data. Overall, a J = 21/2⁶³¹ hypothesis for both initial states match the experimental values best. 632

Spins of the 2913- and 3841-keV states are determined 633 $_{634}$ using the $\gamma\gamma$ -coincidence angular-correlation technique. The number of groups has to be reduced in order to per-635 form angular-correlation measurements in the elusive Ba 636 637 channels. To ensure the quality of the angular-correlation ₆₃₈ analysis, a benchmark fit of the well-established $4^+ \rightarrow$ $_{639}$ 2⁺ \rightarrow 0⁺ cascade in ¹³⁶Ba is presented in Fig. 6(d). The $_{693}$ 640 E2 character of the 1048-keV transition is well repro-641 duced.

 $_{585}$ and angular-correlation analysis of this data set. Note $_{642}$ The singles γ -ray angular-distribution measurement that the new determined spins and parity of the high- $_{643}$ suggested a spin of J = 21/2 for both the 2624- and Refs. [22, 23]. However, the assignment is strongly sup- $_{646}$ to J = 21/2, 23/2, and 25/2. Fig. 6(e) shows the exper-647 imental angular-correlation distribution of the 289-keV Due to the low cross section of the p3n evaporation ⁶⁴⁸ transition in the different groups, gated on the 275-keV channel, the basis of the data analysis are double- γ HPGe $_{649}$ transition. Assuming a vanishing multipole-mixing racoincidences to reduce the complexity of the γ -ray spec- $_{50}$ tion ($\delta_1 = 0$) of the 289-keV transition and a variable δ_2 651 value of the 275-keV transition, fits of the three afore-₆₅₂ mentioned hypotheses results in χ^2 values larger than 4. ⁶⁵³ Furthermore, fixing the 275-keV transition to a dipole ₆₅₄ character ($\delta_2 = 0$) and varying the δ_1 value of the 289-120-1568-keV cascade is no longer aligned with respect 655 keV transition, χ^2 values larger than 6 were obtained. $_{\rm 656}$ Since the 275- and 289-keV transitions are incompatible 657 with a multipole-mixing ratio of zero, a parity-changing $_{\rm 658}$ E1 character of the 275- or 289-keV transition can be ⁶⁵⁹ ruled out. Likewise, a parity-conserving E2 character ₆₆₀ with a spin change from J = 25/2 to J = 21/2 for the 661 289-keV transition is not compatible with the experimen- $_{662}$ tal distribution. Fig. 6(e) shows two examples for fits ⁶⁶³ with corresponding χ^2 values of 12.7 and 8.2. Since the ₆₆₄ 289-275-keV cascade built on the $J^{\pi} = 19/2^{-}$ state has ⁶⁶⁵ no parity-changing character, we propose negative-parity 666 states $J^{\pi} = 21/2^{-}$ at $E_x = 2624$ -keV and $J^{\pi} = 23/2^{-}$ at 667 $E_x = 2913$ -keV.

> Fig. 6(f) shows the experimentally deduced angular- $_{669}$ correlation intensity distribution for the coincident γ 670 rays at 1195 and 296 keV, compared to calculated val-671 ues for different scenarios of the spin and parity of the ⁶⁷² 3841-keV state. Fixing the spin value of the 3545-keV $_{\rm 673}$ state to J~=~21/2, hypotheses with pure dipole char- $_{674} \text{ acter } (21/2 \xrightarrow{\delta_1=0} 21/2 \text{ or } 23/2 \xrightarrow{\delta_1=0} 21/2) \text{ as well as}$ $_{675}$ a pure quadrupole character (25/2 $\xrightarrow{\delta_1=0}$ 21/2) yield 676 a limited agreement with the data. Instead, a good 677 match is obtained by assuming a dominant dipole com-₆₇₈ ponent ($\delta_2 = 0$) for the $21/2 \rightarrow 19/2$ 1195-keV tran- $_{\rm 679}$ sition and a non-zero δ_1 value for the 296-keV transi-680 tion. A hypothesis of J = 23/2 for the $E_x = 3841$ keV ⁶⁸¹ state yields the best result. The non-vanishing multipole- $_{682}$ mixing ratio $\delta_1 = -0.09(3)$ clearly indicates that the 683 296-keV transition is parity-conserving. Assuming a non- $_{684}$ zero fixed δ_2 value of the 1195-keV transition and a vari- $_{\tt 685}$ able δ_1 value of the 296-keV transition, the χ^2 value of ⁶⁸⁶ the 23/2 $\xrightarrow{\delta_1}$ 21/2 $\xrightarrow{\delta_2}$ 19/2 hypothesis get larger (i.e. ⁶⁸⁷ $\delta_2 = \pm 0.05$; $\chi^2 > 2.2$ and $\delta_2 = \pm 0.1$; $\chi^2 > 2.9$). Based 688 on the results of the shell-model calculations presented $_{689}$ in Sec. IV B, this observation supports a pure-dipole E1 ⁶⁹⁰ 1195-keV transition which is in line with a change from ⁶⁹¹ negative to positive parity.

SHELL MODEL IV.

The extended level schemes of 136 Ba and 137 Ba are 694 ⁶⁹⁵ compared with the results of shell-model theory. All

Figure 6. (Color online) Angular distributions of transitions in ¹³⁷La and ¹³⁷Ba. Experimental distribution is obtained in the γ -ray spectra, gated on deoriented transitions below the isomers. (a) Benchmark angular distribution of the well-known 1172-keV $(23/2^- \rightarrow 19/2^-) \gamma$ -ray transition in ¹³⁷La. The pure quadrupole hypothesis is well reproduced with this approach. Angular distribution of (b) 275 and (c) 1195-keV transition, decaying into the 19/2⁻ isomer in ¹³⁷Ba. Intensities are extracted from $\gamma\gamma$ coincident spectra with a gate on the $15/2^- \rightarrow 11/2^-$ transition. Several pure dipole and quadrupole hypothesis (lines) are plotted. (d) Benchmark $\gamma\gamma$ angular-correlations for the $4_1^+ \rightarrow 2_1^+ \rightarrow 0_1^+$ (1048-818-keV) cascade in ¹³⁶Ba. Investigation for (e) the 289-275-keV cascade and (f) the 296-1195-keV cascade in ¹³⁷Ba. Several spin hypotheses are plotted.

696 shell-model calculations were carried out in an untrun- 723 The approach leverages a pairing-plus-quadrupole in- $_{697}$ cated qdsh valence space outside doubly-magic 100 Sn, $_{724}$ teraction that consists of spherical single-particle ener-608 699 ANTOINE shell-model code [62]. 700

701 702 from a realistic G matrix based on the Bonn-C poten- $_{730}$ given in Refs. [69, 70]. 703 tial [65]. Empirical monopole corrections to the original ₇₃₁ 704 707 nuclei. 708

709 710 of the realistic shell model [66, 67], denoted as Realistic 737 interaction [65] was employed to construct the realistic 711 712 free nucleon-nucleon potential [65] using the $V_{\text{low-}k}$ ap- $_{740}$ in ¹³³Sb and ¹³¹Sn. 713 proach with a cutoff momentum of $\Lambda = 2.6 \text{ fm}^{-1}$, plus 714 the Coulomb force for protons. The effective shell-model 715 Hamiltonian is derived iteratively by means of the many-716 body perturbation theory in the \hat{Q} -box folded diagram 717 expansion, including all diagrams up to third order in 718 the interaction. More details can be found in Ref. [68]. 719

720 721 722 PQM130 (Pairing+QQ+Multipole for mass region 130). 745 GCN50:82, Realistic SM, and SN100PN interactions. Ef-

employing the shell-model code NUSHELLX@MSU [60], 725 gies, a monopole-pairing, a quadrupole-pairing, and a the massive-parallelization code KSHELL [61], and the 726 quadrupole-quadrupole interaction. The Hamiltonian in 727 each neutron and proton space is diagonalized separately The first calculation is conducted with the effective in- 728 and afterwards the total Hamiltonian is diagonalized in teraction GCN50:82 [63, 64]. The interaction is derived 729 the truncated space. More details on the calculation are

Another calculation is carried out with the jj55pn G matrix are introduced by fitting different combinations 732 Hamiltonian (referred to as the SN100PN interacof two-body matrix elements to sets of experimental exci-733 tion) [71]. The Hamiltonian consists of four terms covertation energies from even-even and even-odd semi-magic 734 ing the neutron-neutron, neutron-proton, proton-proton, 735 and Coulomb repulsion between the protons individu-The second calculation is conducted in the framework $_{736}$ ally. A renormalized G matrix derived from the CD-Bonn SM. Single-particle energies and two-body effective in-738 two-body residual interaction. The proton and neutron teraction are determined from the established CD-Bonn 739 single-particle energies are based upon the energy levels

¹³⁶Ba Α.

742 As a first benchmark for the validity of the shell-A third calculation is performed utilizing the frame- 743 model results in the high-spin regime, reduced transition work of the pair-truncated shell model, denoted as 744 probabilities $B(E2; 10^+_1 \rightarrow 8^+_1)$ are calculated with the

Figure 7. Comparison of experimental energy spectra with the results of shell-model calculations for ¹³⁶Ba. Only states above the $J^{\pi} = 10^+$ state are displayed. For clarity, the states are separated into columns for positive- and negative-parity states, as well as for yrast and yrare states. (a)-(b) Experimental energy spectra, shell-model results obtained with (c) GCN50:82, (d) PQM130, (e) Realistic SM and, (f) SN100PN interactions.

 $_{746}$ fective charges are chosen as $e_{\pi} = 1.82$ and $e_{\nu} = 0.82$ in $_{768}$ 819, 1867, 2207 and 2994 keV are well reproduced. The 747 the GCN50:82 and SN100PN interaction, while an effec- 769 different shell-model calculations locate the correspond-⁷⁴⁸ tive microscopic E2 operator, derived consistently with 770 ing states at energies of $E_x = 842, 1873, 2195, 3036$ ⁷⁴⁹ the effective Hamiltonian, is employed in Realistic SM. τ_1 (GCN50:80), $E_x = 1041, 1959, 2297, 3209$ (Realistic SM), 750 in a previous study of 136 Ba [3]. 751

752 753 754 alistic SM) are in reasonable agreement with the previ- 776 (GCN), 3354 (Realistic SM), 3164 (PQM130), and $_{755}$ ously reported experimental values of 0.97(2) $e^2 \text{fm}^4$ [3] $_{777}$ 3126 keV (SN100PN), which are in good agreement $_{756}$ and $0.96(10) e^2 \text{fm}^4$ [14]. The agreement between cal- $_{778}$ with the experimentally determined energy of 3357 keV. rs7 culated and experimental $B(E2; 10^+_1 \rightarrow 8^+_1)$ value has r79 In particular, the GCN50:82 interaction provides an ⁷⁵⁸ improved considerably compared to the shell-model cal-⁷⁸⁰ excellent agreement with the well-known yrast states ⁷⁵⁹ culations conducted in Ref. [3].

760 To tions are compared to the experimental levels of ¹³⁶Ba, 783 the first excited $J^{\pi} = 12^+$ state differs by 0.5 MeV. 762 as shown in Fig. 7 ((c) GCN50:82; (d) PQM130; (e) 784 ₇₆₃ Realistic SM; and (f) SN100PN). Since states above ₇₈₅ surements in Sec. III A indicated a $J^{\pi} = 11$ assignment $_{764}$ the $J^{\pi} = 10^+$ isomer are subject of this discus- $_{786}$ for the 3707-keV state and a pure-dipole character for 765 sion, only these states are displayed. However, also 787 the 349-keV transition. It is noteworthy that all interac-

The effective charge values are equal to the charges used $\pi_2 E_x = 814, 1638, 2230, 3109$ (PQM130), and $E_x =$ 773 893, 1896, 2083, 2959 keV (SN100PN).

The calculated $B(E2; 10^+_1 \rightarrow 8^+_1)$ values of 0.81 $e^2 \text{fm}^4$ τ_{74} The calculations predict the $J^{\pi} = 10^+_1$ state with (GCN50:82), 0.44 $e^2 \text{fm}^4$ (SN100PN), and 0.22 $e^2 \text{fm}^4$ (Re- τ_{75} the $\nu h_{11/2}^{-2}$ configuration at excitation energies of 3332 $_{781}$ $J^{\pi} \leq 10^+$. Larger discrepancies between the calculations Calculated level energies of four shell-model calcula- 782 emerge in the high-spin regime; e.g. the predictions for

The angular-correlation and angular-distribution mea-⁷⁶⁶ the excitation energies of the yrast states $J^{\pi} = _{788}$ tions do not predict a yrast positive-parity state with spin $_{767} 2^+, 4^+, 6^+$, and 8^+ at excitation energies of $E_x = _{789} J > 10$ until approx. 1 MeV above the $J^{\pi} = 10^+$ state.

13

Figure 8. (Color online) Decomposition of the total wave function configuration into its proton and neutron components for several positive- and negative-parity states in (a)-(f) ¹³⁶Ba and (g)-(l) ¹³⁴Xe, employing the GCN50:82 (filled blue boxes) and the SN100PN interaction (empty red boxes). Strongest components in the GCN50:82 interaction are labeled with corresponding percentages. The other configurations of both calculations are drawn with areas proportional to their percentages.

⁷⁹⁰ However, all four interactions yield excited $J^{\pi} = 10^{+}_{2}$, ⁸¹⁷ are 388-103-177 (GCN), 314-111-39 (Realistic SM), 397-⁷⁹¹ 10⁻₁, and 11⁻₁ states only a few hundred keV above the ⁸¹⁸ 215-106 (PQM130), and 233-111-135 keV (SN100PN), re-⁷⁹² isomer. Moreover, $J^{\pi} = 11^+$ states are coherently pre-⁸¹⁹ spectively. According to the good agreement between $_{793}$ dicted at higher energies than the $J^{\pi} = 11^{-}$ states. Ac- $_{820}$ calculated and experimental energy differences, the 328-794 cordingly, a parity-changing E1 transition is proposed 821 130-144-keV cascade can most likely be attributed to ⁷⁹⁵ and the state at $E_x = 3707$ keV is identified as the ⁸²² the $15^+ \rightarrow 14^+ \rightarrow 13^+ \rightarrow 12^+$ sequence. Shell-model $_{796} J^{\pi} = 11^{-}$ state, based on these theoretical findings. $_{823}$ calculations suggest a dominant M1 character for this 797 Assuming a proceeding negative-parity character of this 824 band; i.e. GCN50:82 predicts multipole-mixing ratios of 798 band, the states at $E_x = 4782$ and $E_x = 4878$ keV, de- $_{825} \delta_{15 \rightarrow 14} = -0.05$, $\delta_{14 \rightarrow 13} = -0.01$, and $\delta_{13 \rightarrow 12} = -0.02$ $_{799}$ caying parallel into the $J^{\pi} = 12^{-}$ 4217 keV state, can $_{826}$ which are very similar to the values calculated with most likely be interpreted as the first and second excited $_{827}$ SN100PN. In the calculations $J^{\pi} = 9^{-}$ states are pre- $_{801} J^{\pi} = 13^{-}$ states.

In the calculations the energy difference between the 802 $_{803} J^{\pi} = 12^{+}_{1}$ and $J^{\pi} = 10^{+}_{1}$ state amount to 1555 ⁸⁰⁴ (GCN50:82), 1551 (Realistic SM), 1543 (PQM130), and ⁸⁰⁵ 1442 keV (SN100PN). The calculated values are in good ⁸⁰⁶ agreement with the experimentally observed energy dif-⁸⁰⁷ ference of 1562 keV between the $J^{\pi} = 10^+_1$ and the $E_{x} = 4920$ keV state. In the aforementioned discus- $_{809}$ sion of Fig. 5(f) a pure-dipole character of the 1214-keV ^{\$10} transition was confirmed, which suggests a parity change. ⁸¹¹ Combining this experimental result with the shell-model $_{812}$ results, the $E_x = 4920$ keV state is clearly assigned to $_{813} J^{\pi} = 12^+.$

⁸¹⁵ 130-144-keV cascade is observed. The calculated transi-⁸⁴² are broken to obtain the total angular momentum of the s16 tion energies in the $15^+ \rightarrow 14^+ \rightarrow 13^+ \rightarrow 12^+$ cascade states.

sightly above the $J^{\pi} = 10^+$ isomer. In accordance ⁸²⁹ with the angular-correlation measurement, a tentative so spin assignment of $J^{\pi} = (9^{-})$ for the $E_x = 3410$ -keV 831 state is made.

The shell-model results provide insight into the struc-832 ⁸³³ ture of the levels built on top of the isomeric $J^{\pi} = 10^+_1$ 834 state. The nuclear structure of 136 Ba and the -2p iso-⁸³⁵ tone ¹³⁴Xe have similar characteristics. Figure 8 shows a 836 detailed decomposition of several states into their proton ⁸³⁷ and neutron configurations in (a)-(f) ¹³⁶Ba and (g)-(l) 838 134 Xe computed with GCN50:82 (filled blue boxes) and ⁸³⁹ SN100PN (empty red boxes). The decomposition of the $_{840}$ total angular momentum of states in 134 Xe and 136 Ba are On top of the $E_x = 4921$ keV state, a low-energy 328- ⁸⁴¹ presented in Figs. 9(a)-(1) indicating which nucleon pairs

Figure 9. (Color online) Decomposition of the total angular momentum of selected states of (a)-(f) 136 Ba and (g)-(l) 134 Xe. using the GCN50:82 interaction (filled blue boxes) and the SN100PN interaction (empty red boxes) into their proton and neutron spins.

844 $_{845}$ resemble the ones in 134 Xe. In the different positive- and negative-parity states, protons are easily redistributed 846 from $g_{7/2}$ to $d_{5/2}$, i.e., these orbitals are energetically 847 close together. 848

The configurations of the $J^{\pi} = 8^+_1$ state in ¹³⁴Xe and 849 ¹³⁶Ba are predicted to be highly fragmented in both 850 ⁸⁵¹ calculations, as displayed in Figs. 8(a) and 8(g). In $^{134}\mathrm{Xe},$ the four valence protons mainly occupy the $\pi(g_{7/2}^4)$ 852 $\pi(g_{7/2}^3)$ and the $\pi(g_{7/2}^3)^{1/2}$ configuration. The total angular 854 momentum of the $J^{\pi} = 8^+$ state is mainly generated ⁸⁵⁵ from these configurations in the proton space, as visi- $_{856}$ ble in Fig. 9(g). Excitations into the proton $h_{11/2}$ or-⁸⁵⁷ bital can be neglected (< 2%). Using GCN50:82, the ⁸⁵⁸ neutron configurations $\nu h_{11/2}^{-2}$, $\nu (h_{11/2}^{-1} s_{1/2}^{-1})$, and $\nu d_{3/2}^{-2}$ $_{359}$ account for 20%, 10%, and 16% of the overall configso uration in the $J^{\pi} = 8^+_1$ state in ¹³⁶Ba, respectively. In ⁸⁶¹ the Realistic-SM calculation main configurations are cou- π^{5} plings of the $\pi(g^5_{7/2}d^1_{5/2})$ proton configuration to (17%) $_{\rm 863}$ $\nu d_{3/2}^{-2}$ and (15%) $\nu h_{11/2}^{-2},$ which is in good agreement with ⁸⁶⁴ the results of the GCN50:82 and SN100PN calculations. Similarly to ¹³⁴Xe, the $J^{\pi} = 8^+$ state in ¹³⁶Ba is domi-⁸⁶⁶ nated by proton spins of (45%) $I_{\pi} = 8$ and (37%) $I_{\pi} = 6$, $_{867}$ as displayed in Fig. 9(a).

The wave function of the isomeric $J^{\pi} = 10^+_1$ state in ¹³⁶Ba is dominated by the neutron $\nu(h_{11/2}^{-2})$ configura-⁸⁷⁰ tion with spins of 56% $\nu_{10^+} \otimes \pi_{0^+}$ and 30% $\nu_{10^+} \otimes \pi_{2^+}$. ⁸⁷¹ A major $\nu(h_{11/2}^{-2})$ configuration for the $J^{\pi} = 10^+_1$ state ⁸⁷² is also in accordance with the SN100PN and Realistic 873 SM calculations. Significant deviations between the cal-⁸⁷⁴ culations arise for the $J^{\pi} = 12_1^+$ state in ¹³⁶Ba. The ⁹⁰⁸ The role of the different proton and neutron orbitals is ⁸⁷⁵ decomposition matrix of the $J^{\pi} = 12_1^+$ bandhead of the ⁹⁰⁹ further scrutinized by investigating the evolution of av-⁸⁷⁶ positive-parity band computed by the GCN50:82 interac-⁹¹⁰ erage occupation numbers of neutrons in the *gdsh* model $_{977}$ tion, displayed in Fig. 8(d), shows an additional occupa- $_{911}$ space for several high-spin states in N = 80 isotones, as

Although more fragmented in ¹³⁶Ba, the configurations $_{379}$ the occupation of the $\nu(h_{11/2}^{-2})$ configuration. A declining impact of the $\nu(h_{11/2}^{-2})$ configuration of the $J^{\pi} = 12^+_1$ ⁸⁸¹ state in ¹³⁶Ba is also predicted by the Realistic SM where ⁸⁸² $\pi(g_{7/2}^5 h_{11/2}^1) \otimes \nu(d_{3/2}^{-1} h_{11/2}^{-1})$ is computed as main configu- $_{\tt 883}$ ration with a probability of 51%. However, the SN100PN ⁸⁸⁴ interaction does not predict a change of neutron occupaset tion between the $J^{\pi} = 10^+_1$ and $J^{\pi} = 12^+_1$ states. Such ⁸⁸⁶ discrepancies between both calculations are not observed $_{\rm 887}$ for states in $^{134}{\rm Xe.}$

> The differences in the predicted structure of the $J^{\pi} =$ 888 12^+ state is mirrored in the spin composition, as visible ⁸⁹⁰ in Fig. 9(d). While the SN100PN interaction predicts a ⁸⁹¹ dominant neutron spin of (91%) $I_{\nu} = 10^+$, the GCN50:82 892 predicts this fully-aligned neutron-spin configuration to $_{893}$ be insignificant (7%). Instead, major contributions stem ⁸⁹⁴ from $\pi_{12^+} \otimes \nu_{0^+}$ and $\pi_{10^+} \otimes \nu_{2^+}$. The proton spin is gen-⁸⁹⁵ erated dominantly by the $\pi(g_{7/2}^4 d_{5/2}^2)$ configuration with ⁸⁹⁶ a maximum spin contribution of $I_{\pi} = 12$. The proton ⁸⁹⁷ $h_{11/2}$ orbital does not contribute considerably (< 2%) to ⁸⁹⁸ the configuration of the $J^{\pi} = 12^+$ state using GCN50:82. 899 Going to higher spins along the positive-parity band, 900 a strong $\nu(h_{11/2}^{-2})$ contribution returns to prevail for $_{901} J^{\pi} \geq 13^+_1$ states in the GCN50:82 calculation. Con- $_{902}$ figurations including the neutron $d_{3/2}$ orbital become ⁹⁰³ negligibly small in the GCN50:82 and SN100PN inter- $_{\rm 904}$ actions. In contrast, the leading neutron configuration of ⁹⁰⁵ the negative-parity states with $J^{\pi} > 10^{-1}_1$ is $\nu(h^{-1}_{11/2}d^{-1}_{3/2})$. $_{906}$ The neutron $\nu(h_{11/2}^{-2})$ configuration nearly vanishes in the

 $a_{3/2}$ tion of the neutron $d_{3/2}$ and $s_{1/2}$ orbital, which reduces $a_{1/2}$ listed in Tab. II. In all even-mass isotones from 134 Xe to

907 decomposition of the negative-parity states.

 $_{913}$ ¹³⁸Ce, the average occupation of the neutron $h_{11/2}$ orbital ⁹¹⁴ for the $J^{\pi} = 10^+$ states is $N_{\nu} \approx 10$, indicating a two-⁹¹⁵ neutron $\nu h_{11/2}^{-2}$ configuration. However, in the GCN50:82 $_{\rm 916}$ and Realistic SM interactions, the $\nu d_{3/2}$ orbital is gain- $_{917}$ ing significance for the $J^{\pi} = 11^{-}_{1}$ and 12^{+}_{1} states from ⁹¹⁸ ¹³⁶Ba onwards. Furthermore, both states have only one ⁹¹⁹ neutron hole in the $\nu h_{11/2}$ orbital ($N_{\nu} \approx 11$). For com-⁹²⁰ pleteness, the corresponding average occupation of the ⁹²¹ neutron $d_{3/2}$, $s_{1/2}$, and $h_{11/2}$ orbitals in the Realistic 922 SM calculation have values of 3.12, 1.99, 11.01 for the $_{923} J^{\pi} = 11^{-}_{1}$ state and 3.23, 1.87, 11.00 for the $J^{\pi} = 12^{+}_{1}$ ⁹²⁴ state, respectively. Accordingly, proton configurations ⁹²⁵ are vital to generate the spin, which is consistent with $_{926}$ the results presented in Figs. 8(c)-(d). Hence, the con-₉₂₇ figuration of the $J^{\pi} = 12^+_1$ state in ¹³⁶Ba, calculated by 928 GCN50:82 and Realistic SM, mirrors rather the configu-⁹²⁹ ration of the $J^{\pi} = 11^{-}_{1}$ state than that of the $J^{\pi} = 10^{+}_{1}$ ⁹³⁰ state, which supports a decay of the $J^{\pi} = 12^+_1$ state into 931 the $J^{\pi} = 11^{-}_{1}$ state.

The dominating proton configuration of the yrast $J^{\pi} =$ 932 $_{933}$ 8⁺ state causes the isomeric character of the two-neutron ⁹³⁴ hole $J^{\pi} = 10^+_1$ state [3]. In a similar way, the unobserved $_{935}$ 12⁺ \rightarrow 10⁺ transition can be understood microscopically. 136 Ba is the lowest-mass isotone along the N = 80 chain ⁹³⁷ in which an angular momentum of J = 12 can be gener- $_{
m 938}$ ated exclusively from protons in the $g_{7/2}$ and $d_{5/2}$ orbitals $_{939}$ (i.e. $\pi(g_{7/2}^4 d_{5/2}^2)$). The dominating proton configuration $_{\rm 940}$ of the J^{π} = 12⁺ state, as calculated by the GCN50:82 ⁹⁴¹ interaction and the Realistic-SM interaction, hinders a $_{942}$ decay into the two-neutron hole $J^{\pi} = 10^+$ state. Calcu-⁹⁴³ lated reduced transition probabilities $B(E2; 12^+ \rightarrow 10^+)$ ⁹⁴⁴ underpin the reliability of the GCN50:82 and Realistic-945 SM interaction. Corresponding values are compatible in 134 Xe (215 e^2 fm⁴ with GCN50:82 and 222 e^2 fm⁴ with 946 ⁹⁴⁷ SN100PN), while they differ significantly in ¹³⁶Ba: The ⁹⁴⁸ larger proton component in the $J^{\pi} = 12^+$ state causes ⁹⁴⁹ a lower $B(E2; 12^+ \rightarrow 10^+)$ value of 62 $e^2 \text{fm}^4$ in the GCN50:82 and of 3 $e^2 \text{fm}^4$ in the Realistic-SM calcula- $_{951}$ tion, compared to $B(E2; 12^+ \rightarrow 10^+) = 375 \ e^2 \text{fm}^4$ us- $_{952}$ ing SN100PN. The low $B(E2; 12^+ \rightarrow 10^+)$ values in the 953 GCN50:82 and Realistic-SM calculations is in agreement with the experimentally unobservability of this transi-954 955 tion.

Interestingly, adding two protons to ¹³⁶Ba, the occu-956 ₉₅₇ pation number of $N_{\nu} \approx 11$ for the neutron $h_{11/2}$ orbital 958 in Tab. II indicates that the SN100PN interaction pre-959 dicts an emerging proton component for the $J^{\pi} = 12^+$ ₉₆₀ state in ¹³⁸Ce.

q	6	1
	~	1

¹³⁷Ba в.

Calculated level energies for states above the J = 988⁹⁶³ 19/2⁻ isomer in ¹³⁷Ba ((c) GCN50:82; (d) PQM130; (e) ⁹⁶⁹ in particular GCN50:82 tend to group pairs of yrast spins ⁹⁶⁴ Realistic SM and (f) SN100PN), are compared to exper-⁹⁹⁰ $(J^{\pi} = 25/2^{-}, 27/2^{-})$ and $(J^{\pi} = 29/2^{-}, 31/2^{-})$. Both $_{965}$ imental level energies in Fig. 10. The pivotal $J = 11/2^{-}$ $_{991}$ groups are separated by a larger energy gap compared to

Table II. Average neutron occupation numbers in each singleparticle orbit of the gdsh model space for observed high-spin states in ¹³⁴Xe, ¹³⁶Ba, and ¹³⁸Ce using the GCN50:82 and SN100PN interaction.

Isotope	J^{π}	$g_{7/2}$	$d_{5/2}$	$d_{3/2}$	$s_{1/2}$	$h_{11/2}$
				GCN50:8	31	
134 Xe	10^{+}_{1}	8.00	6.00	4.00	2.00	10.00
	11_{1}^{-}	7.97	5.97	3.06	1.99	11.00
	12_{1}^{+}	8.00	6.00	4.00	2.00	10.00
136 Ba	10_{1}^{+}	7.99	5.99	4.00	2.00	10.03
	11_{1}^{-}	7.96	5.96	3.09	1.99	11.00
	12_{1}^{+}	7.87	5.86	3.57	1.79	10.91
$^{138}\mathrm{Ce}$	10_{1}^{+}	7.98	5.98	3.99	2.00	10.05
	11_{1}^{-}	7.94	5.95	3.11	1.99	11.00
	12_{1}^{+}	7.94	5.96	3.16	1.94	11.00
		SN100PN				
134 Xe	10_{1}^{+}	8.00	6.00	4.00	2.00	10.00
	11_{1}^{-}	7.98	5.96	3.07	1.99	11.00
	12_{1}^{+}	8.00	6.00	4.00	2.00	10.00
136 Ba	10_{1}^{+}	8.00	6.00	4.00	2.00	10.00
	11_{1}^{-}	7.97	5.95	3.11	1.98	11.00
	12_{1}^{+}	8.00	5.99	3.99	2.00	10.03
$^{138}\mathrm{Ce}$	10_{1}^{+}	7.99	5.99	4.00	2.00	10.02
	11_{1}^{-}	7.95	5.93	3.13	1.99	11.00
	12_{1}^{+}	7.96	5.94	3.21	1.89	11.00

967 excitation energies of 534 (GCN50:82), 643 (Realistic 968 SM), 692 (PQM130), and 478 keV (SN100PN). The shell-⁹⁶⁹ model calculations compute the 120-1567-keV cascade $_{970}$ to have γ -ray energies of 285-1396 (GCN50:82), 412-971 1491 (PQM130), and 231-1396 keV (SN100PN). Going ⁹⁷² to higher spins, the energy differences in the four calcu-973 lations between states of same spin and parity amount ₉₇₄ for up to 1 MeV.

In the calculated excitation pattern, the $J^{\pi} = 21/2_1^{-1}$ 975 976 states emerge at 240 (GCN50:82), 195 (Realistic SM), 977 234 (PQM130), and 220 keV (SN100PN) above the $J^{\pi} =$ 978 19/2⁻ states. Moreover, $J^{\pi} = 23/2^{-}_{1}$ states are predicted 979 684 (GCN50:82), 465 (Realistic SM), 100 (PQM130), and 425 keV (SN100PN) higher in excitation energy with re-980 $_{981}$ spect to the $J^{\pi}~=~21/2^-_1$ state. In accordance with $_{982}$ the results of $\gamma\gamma$ angular-correlation measurements (see ₉₈₃ Fig. 6(b) and (e)), which confirmed mixed M1/E2 289-⁹⁸⁴ and 275-keV transitions and therefore a parity-conserving $_{985}$ 289-275-keV cascade, the $E_x=2624\text{-}$ and $E_x=2913\text{-}\mathrm{keV}$ $_{986}$ states are identified as the first excited $J^{\pi} = 21/2^{-}$ and $_{987}$ 23/2⁻ states, respectively.

Going to higher spins along the negative-parity band, $_{966}$ neutron-hole isomer at $E_x = 662$ keV is predicted at $_{992}$ the energy gaps between both states within the group.

Figure 10. Comparison of experimental energy spectra with the results of shell-model calculations for ¹³⁷Ba. Only states above the $J^{\pi} = 19/2^{-1}$ state are displayed. For clarity, the states are separated into columns for positive- and negative-parity states, as well as for yrast and yrare excited states. (a)-(b) Experimental energy spectra, shell-model results obtained with (c) GCN50:82, (d) PQM130, (e) Realistic SM, and (f) SN100PN interactions.

⁹⁹³ This observation associates the $E_x = 3611$ -keV state with ¹⁰¹⁵ states. Consequently, a spin of $J^{\pi} = 23/2^+$ for the $J^{\pi} = (25/2^{-}, 27/2^{-})$ and the $E_x = 4233$ -keV state with 1016 $E_x = 3841$ keV state is in agreement with shell-model 995 $J^{\pi} = (29/2^{-}, 31/2^{-}).$ 1017 calculations.

Similar to the $E_x = 2624$ -keV state, also the spin 1018 996 ⁹⁹⁷ of the $E_x = 3545$ -keV state is measured to be of spin ¹⁰¹⁹ 4 MeV, no unambiguous assignment for the $E_x = 4120$ -J = 21/2 (see Fig. 6(c)). Positive-parity states of simi- J_{1020} and 4799-keV states is possible. Since both states do not ¹⁰²⁰ and ¹¹²⁰ loce 12, ¹⁰²⁰ J^{\pm} are calculated to appear at higher ¹⁰²¹ exhibit decay branches into the $J^{\pi} = 19/2^-$ or $21/2^-$ ¹⁰⁰ excitation energy than the $J^{\pi} = 19/2^{-1}_{1}$ state. The ¹⁰¹ $_{1022}$ state, they have most likely spins J > 23/2. By a similar 1001 energy difference between the $J^{\pi} = 19/2^{-}_{1}$ and $21/2^{+}_{1}$ 1002 states is predicted to be 1323 (GCN50:82), 1067 (Real-¹⁰⁰³ istic SM), 1360 (PQM130), and 1337 keV (SN100PN). ¹⁰⁰⁴ In accordance with the experimental results obtained in 1005 the angular-correlation and angular-distribution investi-1006 gations (see Fig. 6(c) and (f)), the state at $E_x = 3545$ keV ¹⁰²⁷ mented as in ¹³⁶Ba. The decomposition of the total an-¹⁰⁰⁷ is interpreted as the first excited $J^{\pi} = 21/2^+$ state and, ¹⁰²⁸ gular momentum $I = I_{\pi} \otimes I_{\nu}$ into its proton and neutron 1008 thus, as the bandhead of the positive-parity band.

Moreover, assuming a J = 23/2 assignment for the 1009 3841-keV state, the multipole-mixing ratio of the 296-1010 1011 keV transition is measured as $\delta = -0.09(3)$ which sug-

Due to the large density of predicted states above $_{1023}$ argument the 3322 and 4152 keV states are interpreted to 1024 have a spin of J > 21/2. Otherwise, they would directly 1025 decay to the $J^{\pi} = 19/2^{-}$ state.

The theoretical wave functions of ¹³⁷Ba are not as frag-1026 1029 components for the $J^{\pi} = 19/2^{-}_{1}, 21/2^{+}_{1}$ and $23/2^{+}_{1}$ states ¹⁰³⁰ in ¹³⁷Ba predicted by the GCN50:82 and SN100PN is pre-¹⁰³¹ sented in Fig. 11. Table III shows the calculated average $_{1032}$ neutron occupation numbers of each orbital in the gdsh¹⁰¹¹ KeV transition is measured as $\delta = -0.09(3)$ which sug-¹⁰¹² gests that the 3841-keV state has the same parity as the ¹⁰³³ model space. For GCN50:82, the $J^{\pi} = 19/2_{1}^{-1}$ isomer con-¹⁰¹³ 3545-keV state (see Fig. 6(f)). Excited $J = 23/2_{1}^{+}$ states ¹⁰³⁴ sists mainly (29%) of the $\nu h_{11/2}^{-1} \otimes \pi(g_{7/2}^{5}d_{5/2}^{1})$, 21% of the ¹⁰¹⁴ are calculated 152 to 453 keV above the $J = 21/2_{1}^{+}$ ¹⁰³⁵ $\nu h_{11/2}^{-1} \otimes \pi(g_{7/2}^{3}d_{5/2}^{3})$, and 13% of the $\nu h_{11/2}^{-1} \otimes \pi(g_{7/2}^{4}d_{5/2}^{2})$

Table III. Average neutron occupation numbers in each single-1075 particle orbit of the gdsh model space in ¹³⁷Ba, calculated using the GCN50:82 and SN100PN interaction.

J^{π}	$g_{7/2}$	$d_{5/2}$	$d_{3/2}$	$s_{1/2}$	$h_{11/2}$		
GCN50:82							
$19/2_{1}^{-}$	8.00	6.00	4.00	2.00	11.00		
$21/2_1^+$	7.98	5.98	3.07	1.98	11.99		
$23/2_1^+$	8.00	6.00	4.00	2.00	11.00		
SN100PN							
$19/2_{1}^{-}$	8.00	6.00	4.00	2.00	11.00		
$21/2_1^+$	7.99	5.98	3.08	1.96	12.00		
$23/2_1^+$	8.00	6.00	4.00	2.00	11.00		

^{11/2} figuration is also visible in the average occupation num- ^{10/2} mer is fed by a $J^{\pi} = 11^{-}$ state. This disruption in the nu-¹⁰³⁸ bers with an occupation of $N_{\nu} \approx 11$ in the neutron $h_{11/2}$ ¹⁰⁹² clear structure along the N = 80 isotones is explained by ¹⁰³⁹ orbital. Also the SN100PN and the Realistic-SM calcu-¹⁰⁹³ a dominant proton configuration of the $J^{\pi} = 12^+$ state ¹⁰⁴⁰ lation predict a strong neutron-hole $\nu h_{11/2}^{-1}$ configuration ¹⁰⁹⁴ in ¹³⁶Ba. While the $J^{\pi} = 10^+$ isomer consists mainly 1041 for the $J^{\pi} = 19/2^{-}_{1}$ state. Couplings of this configura-1042 tion to proton configurations with spins of 4⁺ (33%), 5⁺ 1043 (16%), and 6⁺ (41%) contribute to the $J^{\pi} = 19/2^{-}_{1}$ state. Also for the $J^{\pi} = 21/2^-$, $J^{\pi} = 23/2^-$, and higher-lying 1045 1046 dominates.

1047 The polatice party parts, responding shell-model calculations yield ambiguous re-¹⁰⁴⁹ are connected via a high-energy (≈ 1.2 MeV) transi-¹¹⁰⁴ sults. Only the SN100PN interaction predicts a predom-1050 tion to the negative-parity band. Like the $J^{\pi} = 12^+$ ¹⁰⁵⁰ tion to the negative-parity band. Like the $J^{\pi} = 12^+$ ¹¹⁰⁵ inant neutron character of the $J^{\pi} = 12^+$ state, while ¹⁰⁵¹ bandhead in ¹³⁶Ba, the $J^{\pi} = 21/2^+$ bandhead in ¹³⁷Ba ¹¹⁰⁶ GCN50:82 and Realistic SM exhibit the emerging pro- $_{1052}$ shows a smaller degree of $\nu d_{3/2}$ occupation than for the $_{1107}$ ton configuration. In previous publications, it was found $_{1053} J^{\pi} = 19/2^{-}$ state. The $\nu h_{11/2}$ orbital becomes fully oc- $_{1108}$ that the proton-neutron part of the SN100PN interaction ¹⁰⁵⁵ cupied, as calculated by GCN50:82, Realistic SM, and ¹¹⁰⁹ falls short to reproduce several nuclear-structure features ¹⁰⁵⁵ SN100PN (see Tab. III). GCN50:82 predicts a mixture of ¹¹⁰⁹ fails short to reproduce several nuclear-structure features ¹⁰⁵⁵ SN100PN (see Tab. III). GCN50:82 predicts a mixture of ¹¹⁰⁰ in the mass region. SN100PN could not reproduce back-¹⁰⁵⁶ (67%) $\nu d_{3/2}^{-1} \otimes \pi (g_{7/2}^5 d_{5/2}^1)$ and (11%) $\nu d_{3/2}^{-1} \otimes \pi (g_{7/2}^3 d_{5/2}^3)$ ¹¹¹¹ bending in the high-spin regime of ¹³¹Xe [72] and the ¹⁰⁵⁷ with dominating proton-spin components of $I_{\pi} = 9^+$ ¹¹¹² decay features of isomeric states in ¹³⁵Xe and ¹³⁷Ba [22]. ¹⁰⁵⁸ and 10⁺ coupled to neutron spin $I_{\nu} = 3/2^+$ in the ¹¹¹³ Similar conclusions on the monopole part were also dis-¹⁰⁵⁹ and 10⁺ coupled to neutron spin $I_{\nu} = 3/2^+$ in the ¹¹¹³ Similar conclusions on the monopole part were also dis- $_{1059} J^{\pi} = 21/2^+$ state in ¹³⁷Ba. All three interactions predict $_{1114}$ cussed in Ref. [73]. In the present study, it is worthy of

1060 a similar structure for the $J^{\pi} = 21/2^+$ state. From the ¹⁰⁶¹ second excited state in this band onwards $(J^{\pi} \geq 23/2^+_1)$, 1062 the valence neutron hole, is mainly occupying the $\nu h_{11/2}$ ¹⁰⁶³ orbital. As a consequence a dominating neutron spin of $I_{\nu} = 11/2^{-}$ returns to prevail, as shown in Fig. 11(c). 1065 According to the distinct similarities of the configura-1066 tions, the $J^{\pi} = 21/2^+$ bandhead in ¹³⁷Ba can be in-¹⁰⁶⁷ terpreted as the configuration of the $J^{\pi} = 12^+$ state in 1068 ¹³⁶Ba coupled to a $\nu h_{11/2}$ neutron hole. Interestingly, ¹⁰⁶⁹ in ¹³⁷Ba SN100PN is able to describe the predominant Figure 11. (Color online) Decomposition of the total angular 1070 proton character of the $J^{\pi} = 21/2^+$ state, which is the momentum of selected states of 137 Ba, using the GCN50:82 1071 $J^{\pi} = 12^+$ state analogon in the even-even core 136 Ba, interaction (filled blue boxes) and the SN100PN interaction 1072 to which a single neutron is coupled, but it is unable to (empty red boxes) into their proton and neutron spins $I_{\pi} \otimes I_{\nu}$ 1073 describe the proton structure of the $J^{\pi} = 12^+$ state in 1074 ¹³⁶Ba.

CONCLUSIONS

In summary, four experiments employing two ${}^{9}\text{Be} +$ 1077 ¹³⁰Te and one ¹¹B + ¹³⁰Te fusion-evaporation reactions $_{1078}$ as well as the $^{136}Xe + ^{238}U$ multinucleon-transfer reac-1079 tion were used to investigate high-spin states above the $_{1080}$ $J^{\pi} = 10^+$ isomer in 136 Ba and above the $J^{\pi} = 19/2^-$ ¹⁰⁸¹ isomer in ¹³⁷Ba. The level scheme of ¹³⁶Ba was revised, ¹⁰⁸² incorporating nine new states and transitions. Proper ¹⁰⁸³ spin, and multipolarity assignments were determined by ¹⁰⁸⁴ γ -ray angular distribution measurements and $\gamma\gamma$ coinci-¹⁰⁸⁵ dence relations. The $E_x = 4920$ -keV state is identified ¹⁰⁸⁶ as the $J^{\pi} = 12^+$ state. The high-spin regime of ¹³⁶Ba 1087 differs significantly from the lower mass isotones.

While the high-spin regimes of both $^{132}\mathrm{Te}$ and $^{134}\mathrm{Xe}$ 1088 1089 exhibit high-energy $12^+ \rightarrow 10^+$ yrast transitions, no such ¹⁰³⁶ configuration. The dominating neutron-hole $\nu h_{11/2}^{-1}$ con-¹⁰⁹⁰ transition is observed in ¹³⁶Ba. Instead the $J^{\pi} = 10^+$ iso-1095 of neutron configurations, a pure proton configuration 1096 for the $J^{\pi} = 12^+$ state and the interrupting $J^{\pi} = 11^-$ 1097 state is energetically favorable compared to the contin-1098 uation via a $\nu h_{11/2}$ configuration. The configuration of negative-parity states the neutron $\nu h_{11/2}^{-1}$ configuration 1099 the $J^{\pi} = 12^+$ state mirrors the structure of the $J^{\pi} = 8^+$ ¹¹⁰⁰ state below the isomer. ¹³⁶Ba is the first isotone along $_{1101} N = 80$ for which a combined proton alignment in the The positive-parity bands in ¹³⁶Ba and ¹³⁷Ba have mir-₁₀₂ $g_{7/2}$ and $d_{5/2}$ orbitals can form a spin of J = 12. Cor-

18

rected monopole parts, i.e. GCN50:82 and Realistic SM, 1136 taka Yoshinaga from Saitama University, Japan, for proreproduce the non-observation of the $12^+ \rightarrow 10^+$ transi- 1137 viding the results of their shell-model calculation with tion by the different structure of these two levels.

 $E_x = 3545$ -keV state is proposed to be the bandhead of 1141 TP1, from the European Union Seventh Framework Pro-¹¹² the positive-parity band, which is explained as the cou-¹¹⁴² gramme FP7/2007-2013 under Grant Agreement No. ¹¹²³ pling of the aforementioned $J^{\pi} = 12^+$ state of the even-¹¹⁴³ 262010 - ENSAR, from the Spanish Ministerio de Cien-¹¹²⁴ even core ¹³⁶Ba and a neutron. The identification of the ¹¹⁴⁴ cia e Innovación under contract FPA2011-29854-C04, ¹¹²⁵ high-spin structures complete the systematics for N = 80 ¹¹⁴⁵ from the Spanish Ministerio de Economía y Competi-1126 1127 closure. In future, measurements of lifetimes and g fac- 1147 U.K. Science and Technology Facilities Council (STFC). 1128 1129 1130 ¹¹³¹ in ¹³⁶Ba and ¹³⁷Ba.

1117

1118

1132

ACKNOWLEDGMENTS

We thank the IKP FN Tandem accelerator team for 1133 ¹¹³⁴ the support during the experiment. Furthermore, we ex-

- 1153 [1] B. Fogelberg, K. Heyde, and J. Sau, "Energy levels and 1187 transition probabilities in ¹³⁰Sn," Nucl. Phys. A 352, 157 1188 1154 -180(1981).1155 1189
- [2] J. Genevey, J. A. Pinston, C. Foin, M. Rejmund, R. F. 1190 1156 Casten, H. Faust, and S. Oberstedt, "Conversion elec- 1191 1157 tron measurements of isomeric transitions in ^{130,132}Te 1192 1158 and 134 Xe," Phys. Rev. C **63**, 054315 (2001). 1159 1193
- J. J. Valiente-Dobón, P. H. Regan, C. Wheldon, C. Y. 1194 $\left|3\right|$ 1160 Wu, N. Yoshinaga, K. Higashiyama, J. F. Smith, 1195 1161 D. Cline, R. S. Chakrawarthy, R. Chapman, M. Cro- 1196 1162 maz, P. Fallon, S. J. Freeman, A. Görgen, W. Gelletly, 1197 1163 A. Hayes, H. Hua, S. D. Langdown, I. Y. Lee, X. Liang, 1198 1164 A. O. Macchiavelli, C. J. Pearson, Zs. Podolyák, G. Slet- 1199 1165 ten, R. Teng, D. Ward, D. D. Warner, and A. D. 1200 Yamamoto, "¹³⁶Ba studied via deep-inelastic collisions: 1201 Identification of the $(\nu h_{11/2})_{10+}^{-2}$ isomer," Phys. Rev. C 1202 1166 1167 1168 **69**, 024316 (2004). 1169 1203
- J. Ludziejewski, J. Bialkowski, Z. Haratym, L-E. de Geer, 1204 $\left|4\right|$ 1170 A. Kerek, and J. Kozyczkowski, "The life-time mea- 1205 1171 surements of some high-spin states in the ^{138,139}Ce and ¹²⁰⁶ 1172 ^{141,142}Nd nuclei," Phys. Scr. **14**, 133 (1976). 1207 1173
- J. C. Merdinger, F. A. Beck, E. Bozek, T. Byrski, 1208 [5] 1174 C. Gehringer, Y. Schutz, and J. P. Vivien, "Magnetic 1209 1175 moments of the $I^{\pi} = 10^+$ isomers in Ce and Nd N = 80 1210 1176 isotones," Nucl. Phys. A 346, 281 - 284 (1980). 1211 1177
- M. Lach, J. Styczen, R. Julin, M. Piiparinen, 1212 [6]1178 H. Beuscher, P. Kleinheinz, and J. Blomqvist, "The 10^+ 1213 1179 states of $\nu h_{11/2}^{-2}$ and $\pi h_{11/2}^{2}$ character in the N = 80 iso- 1214 tones ¹⁴⁴Gd and ¹⁴²Sm," Z. Phys. A – Atoms and Nuclei ¹²¹⁵ 1180 1181 **319**, 235–236 (1984). 1182
- H. A. Roth, S. E. Arnell, D. Foltescu, Ö. Skeppstedt, J. ¹²¹⁷ 1183 |7|Blomqvist, G. de Angelis, D. Bazzacco, and S. Lunardi, ¹²¹⁸ 1184 "Yrast level structure of the neutron-deficient N = 80 $^{\rm 1219}$ 1185 isotones ¹⁴⁶Dy, ¹⁴⁷Ho and ¹⁴⁸Erup to high-spin values," ¹²²⁰ 1186

1115 attention that only interactions with improved and cor- 1135 press our thanks to Dr. Eri Teruya and Prof. Dr. Nao-¹¹³⁸ the PQM130 interaction. The research leading to these In ¹³⁷Ba spins above the $J^{\pi} = 19/2^{-}$ isomer at ¹¹³⁹ results has received funding from the German BMBF un-¹¹²⁰ $E_x = 2350$ keV were measured for the first time. The ¹¹⁴⁰ der contract No. 05P15PKFN9 TP1 and 05P18PKFN9 and N = 81 isotones in the vicinity of the N = 82 shell 1146 tividad under contract FPA2014-57196-C5, and from the tors that serve as sensitive probes for nucleon alignment 1148 L.K. and A.V. thank the Bonn-Cologne Graduate School should be performed to independently confirm the pro- 1149 of Physics and Astronomy (BCGS) for financial support. posed proton character of the positive-parity bandheads 1150 One of the authors (A. Gadea) has been supported by the ¹¹⁵¹ Generalitat Valenciana, Spain, under the grant PROM-1152 ETEOII/2014/019 and EU under the FEDER program.

Eur. Phys. J. A 10, 275–287 (2001).

- S. Biswas, R. Palit, A. Navin, M. Rejmund, A. Bisoi, [8] M. Saha Sarkar, S. Sarkar, S. Bhattacharyya, D. C. Biswas, M. Caamaño, M. P. Carpenter, D. Choudhury, E. Clément, L. S. Danu, O. Delaune, F. Farget, G. de France, S. S. Hota, B. Jacquot, A. Lemasson, S. Mukhopadhyay, V. Nanal, R. G. Pillay, S. Saha, J. Sethi, Purnima Singh, P. C. Srivastava, and S. K. Tandel, "Structure of ${}^{132}_{52}$ Te₈₀: The two-particle and twohole spectrum of ${}^{132}_{50}$ sn₈₂," Phys. Rev. C **93**, 034324 (2016).
- A. Vogt, B. Birkenbach, P. Reiter, A. Blazhev, M. Si-[9] ciliano, J. J. Valiente-Dobón, C. Wheldon, D. Bazzacco, M. Bowry, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, R. Chapman, D. Cline, L. Corradi, F. C. L. Crespi, M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, E. Farnea, E. Fioretto, S. J. Freeman, A. Gadea, K. Geibel, W. Gelletly, A. Gengelbach, A. Giaz, A. Görgen, A. Gottardo, A. B. Hayes, H. Hess, H. Hua, P. R. John, J. Jolie, A. Jungclaus, W. Korten, I. Y. Lee, S. Leoni, X. Liang, S. Lunardi, A. O. Macchiavelli, R. Menegazzo, D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montagnoli, D. Montanari, D. Napoli, C. J. Pearson, L. Pellegri, Zs. Podolyák, G. Pollarolo, A. Pullia, F. Radeck, F. Recchia, P. H. Regan, E. Sahin, F. Scarlassara, G. Sletten, J. F. Smith, P.-A. Söderström, A. M. Stefanini, T. Steinbach, O. Stezowski, S. Szilner, B. Szpak, R. Teng, C. Ur, V. Vandone, D. Ward, D. D. Warner, A. Wiens, and C. Y. Wu, "High-spin structure of ¹³⁴Xe," Phys. Rev. C **93**, 054325 (2016).
- [10]P. J. Rothschild, A. M. Baxter, S. M. Burnett, M. P. Fewell, G. J. Gyapong, and R. H. Spear, "Quadrupole moment of the first excited state of ¹³⁶Ba," Phys. Rev. C 34, 732–735 (1986).

- 1221 [11] M. Ohshima, S. Hayashibe, N. Kawamura, Y. Itoh, 1285 1222 M. Fujioka, and T. Ishimatsu, "Magnetic moment of the 1286
- 1223 2140.2 kev 5⁻ state in 136 Ba," Hyperfine Interactions 7, 1287 1224 103–107 (1979). 1288
- ¹²²⁵ [12] W. Gelletly, J. A. Moragues, M. A. J. Mariscotti, and ¹²⁸⁹ ¹²²⁶ W. R. Kane, "¹³⁵Ba (n, γ) reaction and level structure of ¹²⁹⁰ ¹²²⁷ ¹³⁶Ba," Phys. Rev. **181**, 1682–1696 (1969). ¹²⁹¹
- 1231 [14] T. Shizuma, Z. G. Gan, K. Ogawa, H. Nakada, M. Os- 1295
 1232 hima, Y. Toh, T. Hayakawa, Y. Hatsukawa, M. Sug- 1296
 1233 awara, Y. Utsuno, and Z. Liu, "A new isomer in ¹³⁶Ba 1297
 1234 populated by deep inelastic collisions," Eur. Phys. J. A 1298
 1235 20, 207-210 (2004). 1299
- 1236 [15] T. Bhattacharjee, S. Chanda, S. Bhattacharyya, S.K. 1300 [24]
 1237 Basu, R.K. Bhowmik, J.J. Das, U. Datta Pramanik, 1301
 1238 S.S. Ghugre, N. Madhavan, A. Mukherjee, G. Mukherjee, 1302
 1239 S. Muralithar, and R.P. Singh, "Band structures in near 1303
 1240 spherical ¹³⁸Ce," Nuc. Phys. A **825**, 16 38 (2009). 1304
- C. M. Petrache, M. Fantuzi, G. LoBianco, D. Mengoni, 1305 1241 [16]A. Neusser-Neffgen, H. Hübel, A. Al-Khatib, P. Bringel, 1306 1242 A. Bürger, N. Nenoff, G. Schönwasser, A. K. Singh, 1307 1243 I. Ragnarsson, G. B. Hagemann, B. Herskind, D. R. 1308 1244 Jensen, G. Sletten, P. Fallon, A. Görgen, P. Bednar- 1309 1245 czyk, D. Curien, G. Gangopadhyay, A. Korichi, A. Lopez- 1310 1246 Martens, B. V. T. Rao, T. S. Reddy, and Nirmal Singh, 1311 1247 "Evolution from spherical single-particle structure to sta-1312 ble triaxiality at high spins in ¹⁴⁰Nd," Phys. Rev. C **72**, 1313 [26] 1248 1249 064318(2005).1314
- ¹²⁵⁰ 064318 (2005). ¹³¹⁴ ¹²⁵¹ [17] J. C. Merdinger, F. A. Beck, E. Bozek, T. Byrski, ¹³¹⁵ ¹²⁵² C. Gehringer, Y. Schutz, and J. P. Vivien, "Magnetic ¹³¹⁶ ¹²⁵³ moments of the $I^{\pi} = 10^+$ isomers in Ce and Nd N = 80 ¹³¹⁷ ¹²⁵⁴ isotones." Nucl. Phys. A **346**, 281 – 284 (1980). ¹³¹⁸
- ¹²⁵⁵ [18] E. Gülmez, H. Li, and J. A. Cizewski, "Level structure ¹³¹⁹ [27] ¹²⁵⁶ of ¹⁴⁰Nd," Phys. Rev. C **36**, 2371–2379 (1987). ¹³²⁰
- 1257 [19] C. M. Petrache, R. A. Bark, S. T. H. Murray, M. Fan- 1321
 1258 tuzi, E. A. Lawrie, S. Lang, J. J. Lawrie, S. M. Maliage, 1322 [28]
 1259 D. Mengoni, S. M. Mullins, S. S. Ntshangase, D. Pe- 1323
 1260 trache, T. M. Ramashidzha, and I. Ragnarsson, "Six- 1324
 1261 quasiparticle isomer in ¹⁴⁰Nd," Phys. Rev. C 74, 034304 1325 [29]
 1262 (2006).
- 1263 [20] M. Ferraton, R. Bourgain, C. M. Petrache, D. Verney, 1327 1264 F. Ibrahim, N. de Séréville, S. Franchoo, M. Lebois, 1328 1265 C. Phan Viet, L. Sagui, I. Stefan, J. F. Clavelin, 1329 1266 and M. Vilmay, "Lifetime measurement of the six- 1330 1267 quasiparticle isomer in 140 Nd and evidence for an isomer 1331 1268 above the $19/2^+$ state in 139 Nd," Eur. Phys. J. A **35**, 1332 1269 167–170 (2008). 1333
- 1270 [21] "Evaluated Nuclear Structure Data File (ENSDF)," 1334 http://www.nndc.bnl.gov/ensdf. 1335
- 1272 [22] A. Vogt, B. Birkenbach, P. Reiter, A. Blazhev, M. Sicil-1336
 1273 iano, K. Hadyńska-Klęk, J. J. Valiente-Dobón, C. Whel-1337
 1274 don, E. Teruya, N. Yoshinaga, K. Arnswald, D. Bazzacco, 1338
 1275 M. Bowry, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, 1339
 1276 R. Chapman, D. Cline, L. Corradi, F. C. L Crespi, 1340
 1277 M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, 1341
 1278 E. Farnea, E. Fioretto, S. J. Freeman, B. Fu, A. Gadea, 1342
- 1279 K. Geibel, W. Gelletly, A. Gengelbach, A. Giaz, A. Gör- 1343
- 1280 gen, A. Gottardo, A. B. Hayes, H. Hess, R. Hirsch, 1344
- 1281 H. Hua, P. R. John, J. Jolie, A. Jungclaus, L. Kaya, 1345
- 1282 W. Korten, I. Y. Lee, S. Leoni, L. Lewandowski, 1346
- X. Liang, S. Lunardi, A. O. Macchiavelli, R. Menegazzo, 1347
 D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montag- 1348

noli, D. Montanari, C. Müller-Gatermann, D. Napoli, C. J. Pearson, L. Pellegri, Zs. Podolyák, G. Pollarolo, A. Pullia, M. Queiser, F. Radeck, F. Recchia, P. H. Regan, D. Rosiak, N. Saed-Samii, E. Şahin, F. Scarlassara, D. Schneiders, M. Seidlitz, B. Siebeck, G. Sletten, J. F. Smith, P.-A. Söderström, A. M. Stefanini, T. Steinbach, O. Stezowski, S. Szilner, B. Szpak, R. Teng, C. Ur, V. Vandone, D. D. Warner, A. Wiens, C. Y. Wu, and K. O. Zell, "Isomers and high-spin structures in the N = 81 isotones ¹³⁵Xe and ¹³⁷Ba," Phys. Rev. C **95**, 024316 (2017).

- [23] A. Kerek and J. Kownacki, "The level structure of the N = 81 and 82 nucleides 137,138 Ba as investigated in 136 Xe(α , xn) reactions," Nucl Phys. A **206**, 245 272 (1973).
- [24] S. Kaim, C. M. Petrache, A. Gargano, N. Itaco, T. Zerrouki, R. Leguillon, A. Astier, I. Deloncle, T. Konstantinopoulos, J. M. Régis, D. Wilmsen, B. Melon, A. Nannini, C. Ducoin, D. Guinet, and T. Bhattacharjee, "High-spin spectroscopy of ¹³⁹Ce," Phys. Rev. C **91**, 024318 (2015).
- [25] P. Bhattacharyya, P. J. Daly, C. T. Zhang, Z. W. Grabowski, S. K. Saha, B. Fornal, R. Broda, W. Urban, I. Ahmad, D. Seweryniak, I. Wiedenhöver, M. P. Carpenter, R. V. F. Janssens, T. L. Khoo, T. Lauritsen, C. J. Lister, P. Reiter, and J. Blomqvist, "Yrast excitations in n = 81 nuclei ¹³²Sb and ¹³³Te from ²⁴⁸Cm fission," Phys. Rev. C 64, 054312 (2001).
- [26] J. K. Hwang, A. V. Ramayya, J. H. Hamilton, C. J. Beyer, J. O. Rasmussen, Y. X. Luo, S. C. Wu, T. N. Ginter, C. M. Folden, P. Fallon, P. M. Zielinski, K. E. Gregorich, A. O. Macchiavelli, M. Stoyer, S. J. Asztalos, A. Covello, and A. Gargano, "Particle-hole excited states in ¹³³Te," Phys. Rev. C 65, 034319 (2002).
- [27] Yu. Khazov, A. Rodionov, and F. G. Kondev, "Nuclear data sheets for A = 133," Nucl. Data Sheets **112**, 855 1113 (2011).
- [28] B. K. Wagner, P. E. Garrett, Minfang Yeh, and S. W. Yates, "On the first excited state of ¹³⁷Ba," J. Radioanal. Nucl. Chem. **219**, 217–220 (1997).
- [29] I. Bikit, I. Aničin, J. Slivka, M. Krmar, J. Puzović, and Lj. Čonkić, "Population of the 283 keV level of ¹³⁷Ba by the β decay of ¹³⁷Cs," Phys. Rev. C 54, 3270–3272 (1996).
- [30] V. A. Bondarenko, I. L. Kuvaga, P. T. Prokofjev, A. M. Sukhovoj, V. A. Khitrov, Yu. P. Popov, S. Brant, and V. Paar, "Levels of ¹³⁷Ba studied with neutron-induced reactions," Nucl. Phys. A 582, 1 22 (1995).
- E. Dragulescu, M. Ivascu, R. Mihu, D. Popescu, G. Semenescu, A. Velenik, and V. Paar, "Coulomb excitation of levels in ¹³⁵Ba and ¹³⁷Ba," J. Phys. G 10, 1099 (1984).
 - [32] A. Kerek and J. Kownacki, "The level structure of the N = 81 and 82 nucleides ^{137,138}Ba as investigated in ¹³⁶Xe(α,xn) reactions," Nucl. Phys. A **206**, 245 272 (1973).
 - [33] Somen Chanda, Tumpa Bhattacharjee, Sarmishtha Bhattacharyya, Anjali Mukherjee, Swapan Kumar Basu, I. Ragnarsson, R. K. Bhowmik, S. Muralithar, R. P. Singh, S. S. Ghugre, and U. Datta Pramanik, "Sevenquasiparticle bands in ¹³⁹Ce," Phys. Rev. C **79**, 054332 (2009).
 - [34] D. Bucurescu, G. Căta-Danil, I. Căta-Danil, M. Ivaşcu, N. Mărginean, R. Mărginean, L. C. Mihăilescu, C. Rusu, and G. Suliman, "Gamma-ray spectroscopy of the nu-

cleus ¹³⁹Ce," Eur. Phys. J. A **27**, 301–312 (2006). 1349

- S. Bhowal, C. Lahiri, R. Raut, P. Singh, M. K. Raju, 1414 1350 [35]A. Goswami, A. K. Singh, S. Bhattacharya, T. Bhat- 1415 1351 tacharjee, G. Mukherjee, et al., "Energy levels in ¹⁴¹Nd ₁₄₁₆ 1352 from fusion evaporation study," J. Phys. G. 38, 035105 1417 1353 (2011).1354 1418
- T. Zerrouki, C. M. Petrache, R. Leguillon, K. Hauschild, 1419 [36]1355 A. Korichi, A. Lopez Martens, S. Frauendorf, I. Rag- 1420 1356 narsson, H. Hübel, A. Neußer-Neffgen, A. nd Al-Khatib, 1421 1357 P. Bringel, A. Bürger, N. Nenoff, G. Schönwaßer, A. K. 1422 1358
- Singh, D. Curien, G. B. Hagemann, B. Herskind, G. Slet- 1423 1359 ten, P. Fallon, A. Görgen, and P. Bednarczyk, "Shape 1424
- 1360 evolution and magnetic rotation in ¹⁴¹Nd," Eur. Phys. J. 1425 1361 A 51, 50 (2015). 1426 1362
- S. Akkoyun et al., "AGATA Advanced GAmma Track- 1427 [37] 1363 ing Array," Nucl. Instrum. Methods Phys. Res. A 668, 1428 1364 26 (2012). 1429 1365
- A. M. Stefanini, L. Corradi, G. Maron, A. Pisent, 1430 [38] 1366 M. Trotta, A. M. Vinodkumar, S. Beghini, G. Montag- 1431 [48] 1367 noli, F. Scarlassara, G. F. Segato, A. De Rosa, G. In- 1432 1368 glima, D. Pierroutsakou, M. Romoli, M. Sandoli, G. Pol- 1433 1369 larolo, and A. Latina, "The heavy-ion magnetic spec- 1434 1370 1371
- L. Corradi, S. Szilner, G. Pollarolo, D. Montanari, 1436 1372 39
- E. Fioretto, A. M. Stefanini, J. J. Valiente-Dobón, 1437 [50] 1373 E. Farnea, C. Michelagnoli, G. Montagnoli, F. Scarlas- 1438 1374 sara, C. A. Ur, T. Mijatović, D. Jelavić Malenica, N. Soić, 1439 1375 and F. Haas, "Multinucleon transfer reactions: Present 1440 1376 status and perspectives," Nucl. Instrum. Methods Phys. 1441 1377 Res. B **317**, **Part B**, 743 – 751 (2013). 1442 1378
- S. Szilner, C. A. Ur, L. Corradi, N. Marginean, G. Pol- 1443 [40]1379 larolo, A. M. Stefanini, S. Beghini, B. R. Behera, 1444 1380 E. Fioretto, A. Gadea, B. Guiot, A. Latina, P. Mason, 1445 1381 G. Montagnoli, F. Scarlassara, M. Trotta, G. de Angelis, 1446 [51] K. S. Krane and R. M. Steffen, "Determination of the 1382 F. Della Vedova, E. Farnea, F. Haas, S. Lenzi, S. Lunardi, 1447 1383 R. Marginean, R. Menegazzo, D. R. Napoli, M. Nespolo, 1448
- 1384
- I. V. Pokrovsky, F. Recchia, M. Romoli, M.-D. Salsac, 1449 [52] 1385 N. Soić, and J. J. Valiente-Dobón, "Multinucleon trans- 1450 1386 fer reactions in closed-shell nuclei," Phys. Rev. C 76, 1451 1387 024604 (2007). 1452 1388
- L. Netterdon, V. Derya, J. Endres, C. Fransen, A. Hen- 1453 [41]1389 nig, J. Mayer, C. Müller-Gatermann, A. Sauerwein, 1454 1390 P. Scholz, M. Spieker, and A. Zilges, "The γ -ray spec- 1455 1391 trometer HORUS and its applications for nuclear astro-1456 1392 physics," Nucl. Instrum. Methods. Phys. Res. A 754, 94 1457 [54] 1393 -100(2014).1394 1458
- [42] A. Gadea, E. Farnea, J. J. Valiente-Dobón, B. Million, 1459 1395 D. Mengoni, D. Bazzacco, F. Recchia, A. Dewald, Th. 1460 1396 Pissulla, W. Rother, G. de Angelis, et al., "Concep-1461 1397 tual design and infrastructure for the installation of the 1462 1398 first AGATA sub-array at LNL," Nucl. Instrum. Methods 1463 1399 Phys. Res. A 654, 88 - 96 (2011). 1464 1400
- [43]A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, 1465 1401 J. Eberth, D. Lersch, G. Pascovici, P. Reiter, and H.- 1466 1402 G. Thomas, "The AGATA triple cluster detector," Nucl. 1467 1403 Instrum. Methods Phys. Res. A 618, 223 – 233 (2010). 1468 1404
- B. Bruyneel, B. Birkenbach, and P. Reiter, "Pulse shape 1469 [44]1405 analysis and position determination in segmented HPGe 1470 1406 detectors: The AGATA detector library," Eur. Phys. J. 1471 1407 A **52**, 70 (2016). 1408 1472
- A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, 1473 [45]1409 and J-P. Thibaud, " γ -ray tracking algorithms: a compar- 1474 1410 ison," Nucl. Instrum. Methods Phys. Res. A 533, 454 – 1475 1411 466 (2004). 1476 1412

- 1413 [46] A. Vogt, B. Birkenbach, P. Reiter, L. Corradi, T. Mijatović, D. Montanari, S. Szilner, D. Bazzacco, M. Bowry, A. Bracco, B. Bruyneel, F. C. L. Crespi, G. de Angelis, P. Désesquelles, J. Eberth, E. Farnea, E. Fioretto, A. Gadea, K. Geibel, A. Gengelbach, A. Giaz, A. Görgen, A. Gottardo, J. Grebosz, H. Hess, P. R. John, J. Jolie, D. S. Judson, A. Jungclaus, W. Korten, S. Leoni, S. Lunardi, R. Menegazzo, D. Mengoni, C. Michelagnoli, G. Montagnoli, D. Napoli, L. Pellegri, G. Pollarolo, A. Pullia, B. Quintana, F. Radeck, F. Recchia, D. Rosso, E. Sahin, M. D. Salsac, F. Scarlassara, P.-A. Söderström, A. M. Stefanini, T. Steinbach, O. Stezowski, B. Szpak, Ch. Theisen, C. Ur, J. J. Valiente-Dobón, V. Vandone, and A. Wiens, "Light and heavy transfer products in ¹³⁶Xe+²³⁸U multinucleon transfer reactions," Phys. Rev. C **92**, 024619 (2015).
 - N. Saed-Samii, Diplomarbeit, Universität zu Köln (2013), [47]unpublished.
 - J. Theuerkauf, Die Analyse von zwei- und mehrdimensionalen $\gamma\gamma$ -Koinzidenzspektren an Beispielen aus Hochspinexperimenten in der Massengegend um ^{146}Gd , Ph.D. thesis, Universität zu Köln (1994).
- trometer PRISMA," Nucl. Phys. A 701, 217 221 (2002). 1435 [49] I. Wiedenhöver, "Computer code CORLEONE," (1997), unpublished.
 - I. Wiedenhöver, O. Vogel, H. Klein, A. Dewald, P. von Brentano, J. Gableske, R. Krücken, N. Nicolay, A. Gelberg, P. Petkov, A. Gizon, J. Gizon, D. Bazzacco, C. Rossi Alvarez, G. de Angelis, S. Lunardi, P. Pavan, D. R. Napoli, S. Frauendorf, F. Dönau, R. V. F. Janssens, and M. P. Carpenter, "Detailed angular correlation analysis with 4π spectrometers: Spin determinations and multipolarity mixing measurements in ¹²⁸Ba," Phys. Rev. C 58, 721–728 (1998).
 - E2/M1 Multipole Mixing Ratios of the Gamma Transitions in ¹¹⁰Cd," Phys. Rev. C 2, 724–734 (1970).
 - K. S. Krane, R. M. Steffen, and R. M. Wheeler, "Directional correlations of gamma radiations emitted from nuclear states oriented by nuclear reactions or cryogenic methods," At. Data Nucl. Data Tables 11, 351 - 406 (1973).
 - [53]A. Linnemann, Das HORUS-Würfelspektrometer und Multiphononanregungen in ¹⁰⁶Cd, Ph.D. thesis, Universität zu Köln (2006).
 - L. Bettermann, C. Fransen, S. Heinze, J. Jolie, A. Linnemann, D. Mücher, W. Rother, T. Ahn, A. Costin, N. Pietralla, and Y. Luo, "Candidates for the onephonon mixed-symmetry state in ¹³⁰Xe," Phys. Rev. C **79**, 034315 (2009).
 - S. Kumar, A. K. Jain, Alpana Goel, S. S. Malik, R. Palit, [55]H. C. Jain, I. Mazumdar, P. K. Joshi, Z. Naik, A. Dhal, T. Trivedi, I. Mehrotra, S. Appannababu, L. Chaturvedi, V. Kumar, R. Kumar, D. Negi, R. P. Singh, S. Muralithar, R. K. Bhowmik, and S. C. Pancholi, "Band structure and shape coexistence in ¹³⁵₅₆Ba₇₉," Phys. Rev. C 81, 067304 (2010).
 - [56]S. Chanda, T. Bhattacharjee, S. Bhattacharyya, S. K. Basu, R. K. Bhowmik, S. Muralithar, R.P. Singh, B. Mukherjee, N.S. Pattabiraman, S.S. Ghugre, and M. B. Chatterjee, "High spin spectroscopy of ¹³⁷La," Nucl Phys. A 775, 153 – 174 (2006).
 - [57]T. Yamazaki, "Tables of coefficients for angular distribution of gamma rays from aligned nuclei," Nucl. Data, Sect. A **3**, 1 – 23 (1967).

- 1477[58] Y. Khazov, A. A. Roionpv, S. Sakharov, and B. Singh, 15411478"Nuclear data sheets for A = 132," Nucl. Data Sheets 15421479104, 497 (2005).
- 1480 [59] M. Kortelahti, A. Pakkanen, M. Piiparinen, T. Komppa, 1544 [73]
- 1481 and R. Komu, "Medium-spin levels and a 360 ns $I^{\pi} = 1545$ 1482 $19/2^{-}$ isomer in the N = 80 nucleus ¹³⁷La," Nucl Phys. 1546 1483 A **376**, 245–272 (1982). 1547
- ¹⁴⁰³ ¹⁴⁰⁵ ¹
- NuShellX@MSU," Nucl. Data Sheets 120, 115 118 (2014).
- ¹⁴⁸⁷ [61] N. Shimizu, "Nuclear shell-model code for massive paral¹⁴⁸⁸ lel computation, "KSHELL"," (2013), arXiv:1310.5431
 ¹⁴⁸⁹ [nucl-ph].
- Lago [62] E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, "The shell model as a unified view of nuclear structure," Rev. Mod. Phys. 77, 427–488 (2005).
- ¹⁴⁹³ [63] E. Caurier, F. Nowacki, A. Poves, and K. Sieja, "Collectivity in the light xenon isotopes: A shell model study," Phys. Rev. C 82, 064304 (2010).
- ¹⁴⁹⁶ [64] E. Caurier, F. Nowacki, and A. Poves, "Shell Model ¹⁴⁹⁷ description of the $\beta\beta$ decay of ¹³⁶Xe," Phys. Lett. B **711**, ¹⁴⁹⁸ 62 - 64 (2012).
- 1499 [65] R. Machleidt, F. Sammarruca, and Y. Song, "Nonlocal nature of the nuclear force and its impact on nuclear structure," Phys. Rev. C 53, R1483–R1487 (1996).
- L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T.T.S. Kuo, "Effective shell-model hamiltonians from realistic nucleon-nucleon potentials within a perturbative approach," Annals of Physics **327**, 2125 – 2151 (2012).
- L. Coraggio, A. Covello, A. Gargano, N. Itaco, and
 T.T.S. Kuo, "Shell-model calculations and realistic effective interactions," Progress in Particle and Nuclear
 Physics 62, 135 182 (2009).
- ¹⁵¹⁰ [68] L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, and ¹⁵¹¹ N. Itaco, "Calculation of gamow-teller and two-neutrino ¹⁵¹² double- β decay properties for ¹³⁰Te and ¹³⁶Xe with a ¹⁵¹³ realistic nucleon-nucleon potential," Phys. Rev. C **95**, ¹⁵¹⁴ 064324 (2017).
- 1515 [69] E. Teruya, N. Yoshinaga, K. Higashiyama, and A. Oda1516 hara, "Shell-model calculations of nuclei around mass
 1517 130," Phys. Rev. C 92, 034320 (2015).
- 1518 [70] K. Higashiyama and N. Yoshinaga, "Pair-truncated shell1519 model analysis of nuclei around mass 130," Phys. Rev. C
 1520 83, 034321 (2011).
- ¹⁵²¹ [71] B. A. Brown, N. J. Stone, J. R. Stone, I. S. Towner, and ¹⁵²² M. Hjorth-Jensen, "Magnetic moments of the 2_1^+ states ¹⁵²³ around ¹³²Sn," Phys. Rev. C **71**, 044317 (2005).
- ¹⁵²⁴ [72] L. Kaya, A. Vogt, P. Reiter, M. Siciliano, B. Birken¹⁵²⁵ bach, A. Blazhev, L. Coraggio, E. Teruya, N. Yoshinaga,
- K. Higashiyama, K. Arnswald, D. Bazzacco, A. Bracco,
 B. Bruyneel, L. Corradi, F. C. L. Crespi, G. de Ange-
- lis, J. Eberth, E. Farnea, E. Fioretto, C. Fransen, B. Fu,
- 1529 A. Gadea, A. Gargano, A. Giaz, A. Görgen, A. Gottardo,
- 1530 K. Hadyńska-Klęk, H. Hess, R. Hetzenegger, R. Hirsch,
- ¹⁵³¹ N. Itaco, P. R. John, J. Jolie, A. Jungclaus, W. Korten,
- 1532 S. Leoni, L. Lewandowski, S. Lunardi, R. Menegazzo,
 D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montag-
- D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montag noli, D. Montanari, C. Müller-Gatermann, D. Napoli, Zs.
- Podolyák, G. Pollarolo, A. Pullia, M. Queiser, F. Rec-
- chia, D. Rosiak, N. Saed-Samii, E. Sahin, F. Scarlassara,
- ¹⁵³⁷ D. Schneiders, M. Seidlitz, B. Siebeck, J. F. Smith, P.-
- ¹⁵³⁸ A. Söderström, A. M. Stefanini, T. Steinbach, O. Ste-
- ¹⁵³⁹ zowski, S. Szilner, B. Szpak, C. Ur, J. J. Valiente-Dobón,
- 1540 K. Wolf, and K. O. Zell, "High-spin structure in the tran-

sitional nucleus ¹³¹Xe: Competitive neutron and proton alignment in the vicinity of the n = 82 shell closure," Phys. Rev. C **98**, 014309 (2018).

73] Y. Utsuno, T. Otsuka, N. Shimizu, M. Honma, T. Mizusaki, Y. Tsunoda, and T. Abe, "Recent shellmodel results for exotic nuclei," EPJ Web of Conferences 66, 02106 (2014).