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Abstract: The adamantane moiety is widely applied in design and synthesis of new drug delivery
systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and
dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane
as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted
drug delivery and surface recognition. The results reported here encourage the development of
novel adamantane-based structures and self-assembled supramolecular systems for basic chemical
investigations as well as for biomedical application.
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1. Introduction

Adamantane, a polycyclic cage molecule with high symmetry and remarkable properties [1], is the
smallest representative of diamondoids—hydrogen-terminated hydrocarbons with a diamond-like
structure [2,3]. It was first isolated in 1933 from crude oil [4], and the first synthesis of adamantane was
accomplished in 1941 by Prelog and Seiwerth [5]. However, only after Schleyer discovered the favorable
Lewis-acid catalyzed rearrangement procedure leading to the adamantane cage (Scheme 1) [6,7],
did adamantane become a widely available scaffold for numerous transformations [8,9]. Studies
of biological activity of adamantane derivatives emerged almost parallel to the rapid development
of adamantane chemistry. The first adamantane compound applied in medicinal chemistry was
amantadine (1-aminoadamantane) that displayed potent anti-Influenza A activity [10,11], marking the
beginning of adamantane-based drug discovery [12,13]. The adamantane moiety is nowadays usually
introduced into structures of already active drugs in order to increase their lipophilicity and improve
their pharmacological properties.
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The uniqueness of the adamantyl scaffold for biological application is due to its lipophilicity
and ability to ensure drug stability, resulting in enhanced pharmacokinetics of the modified drug
candidates [14,15]. The rigid cage moiety protects nearby functional groups from metabolic cleavage
and thereby enhances the stability and distribution of the drug in blood plasma [13]. Additionally,
the adamantyl moiety can, because of its dimensions and bulkiness, serve as an ideal fit for cavities
of various host molecules—e.g., cyclodextrins [16,17]—or act as a blocking agent for cellular ion
channels [18–20]. Adamantane can also be incorporated into a lipophilic part of the lipid bilayer that
constitutes membranes [21], which is an important first step for drug transfer through cell membranes.
The mechanisms of these phenomena are still not fully understood and we will here analyze recent
studies dealing with these processes.

The focus of this review will be only on adamantyl derivatives used for surface recognition
and drug delivery since excellent recent reviews covering the vast area of medicinal application of
adamantane derivatives already exist [12,13]. We will therefore give an overview of recent studies
dealing with the incorporation of adamantane compounds in liposomes and cyclodextrins and cover
the topic of adamantyl dendrimers. We will also provide an outlook towards the relevance of these
systems for drug delivery and their possible medical application.

2. Adamantane Derivatives in Liposomes

Molecular nanotechnology includes different and powerful new tools for understanding biological
processes and treatment of human diseases [22]. Multidisciplinary investigations in the fields of
chemistry, biology, and medicine contribute to our fundamental knowledge of biomaterials and create
novel hybrid materials with practical biomedical applications [23]. Lipids are powerful tools for
nanotechnology due to their amphiphilicity and diversity of head and tail chemistry [24]. Liposomes
are biodegradable and non-toxic assemblies which can encapsulate both hydrophilic and hydrophobic
molecules and are utilized as drug carriers in drug delivery systems [25]. Development of methods for
facile control of lipid self-assembly enabled an advancement in the design of new lipid-based drug
delivery systems and biomaterials with improved properties [26]. The most effective approach to date
is the use of targeted liposomes with surface-attached ligands capable of recognizing and binding
to cells of interest, thus increasing liposomal drug accumulation in the desired tissues and organs
through passive and active targeting.

Introduction of adamantane into drug molecules often enhances their biological activity and
studying the mechanisms of their action broadens our understanding of particular pharmacological
profiles. The finding that amantadine is involved in interruption of viral-host fusion in the case of
influenza virus and that it inhibits H+ ion channel functions of the viral M2 protein [27] initiated
numerous studies of interaction of adamantane compounds with liposomes serving as models for a
cell membrane. Several early published papers deal with investigation of partitioning and localization
of adamantane and related amantadine within lipid bilayers [21,28–30]. Neutron and X-ray studies
were undertaken in order to locate amantadine in multilayers of dioleoylphosphatidylcholine (DOPC).
The results revealed two populations of amantadine within the bilayer. One site was close to the
bilayer surface and the other was much deeper in the hydrophobic core of the bilayer. However,
the majority of amantadine occupied the surface site. It was shown that occupancy is dependent upon
the initial protonation state of the compound. Under the experimental conditions and with the lipid
used no perturbation of bilayer was observed. In order to find out how adamantane compounds are
accommodated within a lipid bilayer, other experimental models and different methods were used,
including electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic simulations.

Results from recent work in our laboratory—including the studies of adamantyl tripeptides,
adamantyl glycopeptides, and adamantyl guanidines, their incorporation into liposomes and
interaction with the liposome bilayer as an artificial biological membrane [31,32]—prompted us
to review the use of the adamantyl group in designing new targeted drug delivery systems and their
application in drug-membrane interaction studies.
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2.1. Adamantyl Peptides and Adamantyl Glycopeptides in Liposomes

Adamantyl tripeptides belong to a group of compounds originating from bacterial
peptidoglycans [33]. The peptidoglycan fragments of disaccharide pentapeptide were isolated
from cultures of penicillin-treated B. divaricatum, with a structure consisting of a repeating unit of
uncross-linked monomer of the peptidoglycan macromolecule. The disaccharide part is composed of
N-acetylglucosamine and N-acetylmuramic acid, which is a very specific sugar appearing exclusively
in bacterial peptidoglycans [34]. Short peptide chains attached to muramic acid via an amide
bond through L-alanine also have very characteristic composition of altering L- and D-amino
acids. A minimal structure essential for immunostimulating activity is N-acetylmuramyl-L-alanyl-
D-isoglutamine (also called muramyl dipeptide or MDP), which can be recognized as a part of the
mentioned peptidoglycan monomer, PGM [35]. It was shown that PGM has versatile biological
activity, including antimetastatic and antitumor activity, and that it stimulates immune response in
experimental animals [36]. In order to find out how structural modifications of parent PGM molecule
affect the biological activity in vivo, adamantyl acetic acid was coupled to PGM [37]. Unfortunately,
this molecule showed comparable biological activity to the parent compound. Another line of research
was directed toward synthesis of a new type of compounds in which the adamantyl residue was
coupled to a short synthetic peptide [38]. The chosen peptide had a composition equivalent to a portion
of natural peptidoglycan, L-alanyl-D-isoglutamine. The adamantyl moiety was not coupled directly to
the peptide, but via a glycine molecule to L-alanine end amino group. Since adamantyl glycine was
attached to L-alanine by an amide bond, two diastereoisomers, differing in the configuration of the
glycine molecule, were formed (Figure 1). Since the diastereoisomers were separated and characterized,
it was possible to study the effect of chirality on biological activity. It was shown that, in most models,
both isomers exhibited respective activity, but in some models to a different extent [39].

Interactions of immunostimulating compounds AdTP1 and AdTP2 (Figure 1) with phospholipids
in liposomal bilayers were investigated by EPR spectroscopy [40]. The liposomal bilayer was made
of egg-phosphatidylcholine (egg-PC), cholesterol, and dicetylphosphate and spin labelled fatty acids
(n-doxyl stearic acid) with paramagnetic nitroxide moiety positioned at different carbon atoms (namely
at 5, 7, and 16 carbon atoms). In the described system, adamantyl tripeptides incorporated in liposomes
affected the motional properties of all spin labeled lipids used in the study, even the 16-doxyl stearic
acid placed in the hydrophobic core of the liposomes.
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In several studies reported earlier, different compounds comprising the elements of a peptidoglycan
structure were incorporated into liposomes. Most of these studies concern the synthetically
prepared derivatives of muramyldipeptide such as muramyltripeptide phosphatidylethanolamine
and 1-adamantylamide-L-alanyl-D-isoglutamine [41,42]. The prepared liposomal formulations of the
examined compounds were evaluated in vivo and some of them have shown an improved biological
activity in the model used. Data about interactions of examined compounds with the lipid bilayer in
liposome formulations have not been reported.

In continuation of our interest in the influence of chemical modification of carbohydrates on
biological activity, we synthesized mannose derivatives of 1-aminoadamantane and adamant-2-yl-
tripeptides (Figure 2). The mannose conjugates of adamantyl tripeptides have been prepared in order
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to target the mannose receptors present on the cell surface of different immunocompetent cells such
as macrophages and dendritic cells, which are considered to be pattern recognition receptors [43–45].
Mannosylated adamantyl tripeptides were tested in vivo and their influence on specific immune
responses was evaluated. Furthermore, the compounds were incorporated in liposomes and the
prepared liposomes were then characterized by using complementary physicochemical methods
such as dynamic light scattering (DLS) and atomic force microscopy (AFM) [31]. We showed that
the adamantyl moiety, due to its lipophilic properties, was accommodated in the lipid core of the
bilayer while the hydrophilic part of the molecule with mannose was exposed on the liposome
surface. To confirm this finding we used concanavalin A (ConA), a lectin which specifically binds
to the α-D-mannosyl residue. ConA tied the liposomes together and, as a result, an increase in
vesicle size and aggregation of liposomes was observed (Figure 3). The described liposomal system
with incorporated adamantyl glycoconjugates provided a useful approach to preparation of versatile
carbohydrate-decorated targeted drug delivery system where the adamantyl moiety was a membrane
anchor for different carbohydrate molecules of interest. In addition, this approach might be a useful
model for investigation of specific protein interactions with membrane receptors.
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2.2. Adamantyl Aminoguanidines in Liposomes

We recently reported a successful entrapment of adamantyl aminoguanidine derivatives in
liposomes that were acting as model membrane systems [32]. Our goal was to combine, in the same
molecule, a highly polar functional group (the guanidine moiety) and a lipophilic anchoring scaffold
(the adamantane moiety). The guanidine group represents an important structural motif contained in
hydrophilic cell-penetrating peptides. Several studies have shown that interaction of the guanidinium
group of arginine, which is part of the examined peptides, with phosphate groups of the membrane’s
phospholipids allows their translocation across a cell membrane [46,47]. The prepared adamantyl
aminoguanidines (Figure 4) had desirable membrane compatibility features since their adamantyl part
served as an effective lipophilic anchor for the lipid bilayer. As the molecules were encapsulated into
multilamellar liposomes, the guanidine subunit remained on the outer side of the bilayer pointing
outward and thus was enabling the formed vesicle to engage in surface recognition. Supramolecular
binding mediated with these guanidine sites is feasible since it is known from the literature that
guanidine forms parallel hydrogen bonds with oxoanions [48] and the same is true for the studied
adamantyl aminoguanidines [49].
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Figure 4. Structures of adamantyl aminoguanidines incorporated into liposomes [32].

When examining the entrapment efficacy of the studied series of compounds, a correlation
between overall lipophilicity of the molecule (expressed as ClogP value) and encapsulation percentage
becomes apparent [32]. Although all compounds in the series are constituted of the same key subunits
(adamantyl and guanidyl), structural arrangement and spatial distribution of the fragments affects
the liposome incorporation. Bis-aminoguanidine compounds are therefore less effective in their
incorporation in the lipid bilayer due to an alternating polar-lipophilic character of the molecule.
On the other hand, mono-aminoguanidine derivatives possess both a sharply defined charged and
a non-polar region and can easily adapt to the requirements of the lipid bilayer. The presence of
heteroatoms, in this case hydroxyl groups, also decreases the entrapment efficacy as expected [32].

Liposomes containing incorporated adamantyl aminoguanidines were similar in size to empty
liposomes, however, surface charge of guest-containing liposomes was significant, further confirming
the anchor-recognition site model. The proof-of-principle for molecular recognition action of such
encapsulated adamantyl aminoguanidines came from probing liposome interaction. When liposomes
containing only phosphate groups and liposomes with studied guest molecules were mixed together,
on-surface guanidines successfully interacted with the phosphates of complementary liposomes,
resulting in a liposomal recognition and subsequent aggregation event (Figure 5). The resulting
multicompartment structures demonstrate membrane fusion processes between vesicles initiated by
surface group recognition and are of interest for further intracellular delivery exploration.
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3. Adamantyl Cyclodextrin Complexes

Nano-devices can also be made of organic polymers, colloids, or biomolecules—including
DNA, proteins, and lipids. This alternative approach is known as soft nanotechnology [24]. Special
attention was paid to the research of carbohydrates, particularly polysaccharides, and multifunctional
characteristics of cyclodextrins (CDs) have enabled them to be used in a variety of drug delivery
system, either oral, transdermal, or ocular drug delivery [50]. The commercial viability of CD-based
oral formulations has been established with the marketing of more than 20 products worldwide [51,52].

Cyclodextrins are cyclic α(1-4)oligoglucopyranosides and the cyclodextrin family consists of three
well-researched and utilized classes of oligosaccharides, composed of six, seven, or eight glucose
units known as α-, β-, and γ-CD (Figure 6) [53]. CDs can be prepared by enzymatic degradation of
starch using the enzyme glucosyl transferase (CGTase) [54]. CGTase is produced by many organisms
including Bacillus maverans. The most stable three-dimensional molecular configuration of CDs takes
the form of a hollow truncated cone (torus), which is often also called a doughnut shaped structure.
In this structure, the primary hydroxyl groups are orientated at the upper rim of the truncated cone,
whereas the secondary hydroxyl groups are orientated at the lower rim. A narrowing of the cone is
observed towards the upper rim because of the free rotation of the primary OH group. Due to the
presence of hydroxyl groups, the external surface of CD is hydrophilic whereas the cavity containing the
glycosidic oxygen is hydrophobic (Figure 6). Because of this hydrophobic nature of the cavity, CDs can
serve as host molecules for organic and inorganic compounds (guests). These guest molecules can be
included or partly encapsulated without any covalent bond formation. The ability of complex forming
can alter the solubility of guest molecules [55] and these inclusion abilities are well-investigated and
described in different research areas [56,57]. However, the application of most CDs in pharmaceutics is
still restricted since CDs lack cell membrane permeation due to their large size and hydrophilic nature.
Additionally, CDs do not bind well enough to drug molecules which are then lost from the CD cavity
before they can be delivered to the intended destination. To optimize their applications, natural CDs
are usually derivatized [58]. Over the past decade, several groups have reported that amphiphilic CDs
can self-assemble to form a variety of aggregates—e.g., bilayers, micelles, and bilayer vesicles [59–61].
These aggregates, especially bilayer vesicles, have a potential to overcome the above-mentioned
problems. Moreover, these bilayer vesicles could act as drug delivery systems for both hydrophobic
and hydrophilic drug molecules. CDs can form inclusion complexes with a wide variety of guest
molecules, such as drugs, surfactants, and polymers [23,62–64]. This strong interaction of cyclodextrins
with different guest molecules is the basis of new drug delivery concepts, based on supramolecular
recognition of nanoparticles comprised of an amphiphilic cyclodextrin and a guest molecule. Among
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various organic groups which are able to interact with cyclodextrins, the adamantyl moiety represents
a highly interesting model of a guest since adamantane fits perfectly into the β-cyclodextrin cavity
with a high association constant of the order of 103–105 M−1 [65].

Taking advantage of this strong interaction and facile host-guest complex formation between
adamantane and cyclodextrins, a variety of cyclodextrin-based self-assembled systems for drug
and gene delivery—as well as fluorescent sensing and bioimaging—were developed [66–69].
Furthermore, carbohydrates are recognized as efficient ligands for cellular receptors such as
lectins, enhancing molecular transport through biological membranes. It has been shown that
adamantylated monosaccharides represent a new class of compounds which can be used for efficient
surface decoration of cyclodextrins [70]. Special attention was paid to chemical synthesis of new
carbohydrate-adamantane conjugates and studies of their complexes with cyclodextrins as well as
interaction with specific lectins. Amphiphilic β-cyclodextrin vesicles decorated with maltose and
lactose through host–guest interactions with the adamantane molecule were prepared. The artificial
glycocalix on the surface of amphiphilic β-cyclodextrin vesicles was used for studies with specific
lectines, concanavalin A (ConA) in the case of maltose and peanut agglutinin (PNA) in the case of
lactose (Figure 7) [71,72]. Amphiphilic cyclodextrins were also incorporated into liposomes as artificial
receptor units [73].Molecules 2017, 22, 297 7 of 15 
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Great stability of cyclodextrin-adamantane complexes was utilized in preparation of tubular
vesicles of β-cyclodextrin and adamantyl-modified hyperbranched poly(ethylene imine) which were
self-assembled with the corresponding modified fluorescent dye calcein (Figure 8) [74]. The structures
of tubular vesicles were examined by fluorescence microscopy, cryo-transmission electron microscopy
(cryo-TEM), and dynamic light scattering. The tubular structure was confirmed and it was shown
that CD-polyethylenimine (CD-PEI) orientates towards the aqueous phase, enclosing the hydrophobic
adamantyl fluorescent dye in the interior of the hyperbranched CD-PEI. On the contrary, adamantyl
PEI is incorporated into the hydrophilic CD-calcein, giving a double layer of fluorescent dye (Figure 8).
The described supramolecular organization had a long-term stability and was stable over a wide range
of pHs, providing a great potential for engineering of new materials with improved properties.
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4. Adamantyl Dendrimers

Dendrimers are highly branched macromolecules that display a large number of functional
groups on the dendritic framework [75,76]. They are globular polymeric materials with a series of
chemical shells built on a core; each shell is called a generation and each branch a dendron (Figure 9).
Poly(amidoamine) (PAMAM) dendrimers were the first dendrimer family to be synthesized and
characterized [77]. Based on their specific structure and properties, dendrimers are recognized as
a unique class of synthetic nanostructures. Dendrimers contain three architectural domains: the
multivalent surface, the interior shells surrounding the core, and the core to which dendrons are
attached. Dendrimer cores of higher generation of dendrimers, which are protected from the outside
by the dendrimer surface, represent special nano-environments that are well-suited for encapsulation
of guest molecules. A large number of functional groups on the surface of dendrimers can be further
modified and in that way properties of dendrimers can be tuned [78].
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Dendrimers containing polyethylenimine (PEI) and polyamidoamine (PAMAM) are the most
efficient nonviral transfection agents besides cationic liposomes [79]. They have the ability to
successfully deliver genetic material into the cell, but they unfortunately show some undesirable
dose-dependent cytotoxicity effects [80]. With the aim of reducing cytotoxicity, a novel type of
polycationic dendron was designed and new strategies for the synthesis of different generation
Hydra-like dendrons that were based on tetra-functionalized adamantane were developed [81].
Polycationic adamantane-based dendrons of different generations were investigated and preliminary
results have confirmed a high cellular uptake of the examined compounds without triggering
cytotoxicity [82]. As we mentioned above, chemical and physical properties of dendrimers can
be modified by introducing appropriate terminal functional groups as well as by changing the group
in the dendrimer core. Adamantane again proves to be an ideal building block since it can form four
dendritic arms which are tetrahedrally oriented into space. For example, in adamantyl dendrimers 18
and 19, peripheral ammonium or guanidinium groups are connected to the adamantane core with
short ethylene glycol chains (Figure 10).

In vitro investigations showed that cellular uptake was dependent on the generation of the
dendrons used, on the nature of the peripheral groups as well as of the cell type used. Polyammonium
and polyguanidinium dendrons were further investigated and used for complexation with plasmid
DNA and their transfection activities were evaluated [83]. The size and zeta-potential of the formed
hydraplexes were determined using dynamic light scattering (DLS). The optimal N/P ratio, hydramer
cationic charge per pDNA negative charge, was determined based on DLS results as well as on
agarose gel retardation assay. It was shown that hydramers with periplanar guanidinium groups
were able to form smaller and more positively charged hydraplexes compared to the ones with
polyammonium dendrons. Additionally, they were able to bring pDNA into the cell and induce gene
transfer without triggering significant cytotoxicity effects. There was still a series of parameters that
needed to be adjusted for control of hydramer morphology and better pDNA delivery into the cell,
but it was undoubtedly demonstrated that polycationic adamantane-based dendrons are promising
gene delivery carriers.

Another example of adamantyl-functionalized glycodendrimers taking part in host–guest
supramolecular systems with cyclodextrins was described [84]. Modification of a dendrimer surface
with carbohydrates greatly diminishes the toxicity of polypropylenimine (PPI) dendrimers and makes
them applicable for drug delivery. A new class of hybrid PPI dendrimers of fourth and fifth generation
decorated on their surface with adamantyl moieties (hydrophobic guest groups) and maltose or
maltotriose units (biocompatible groups) were synthesized. The interactions of hybrid PPI dendrimers
with β-CD (host molecules) were studied by NMR and it was shown that the host−guest interaction
in the formed supramolecular complexes depends on the number of adamantyl groups on the surface
of the glycodendrimer. Further application of adamantane-based dendrons includes their use as
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carrier systems and scaffolds for multipresentation of bioactive peptides [85,86]. The interaction
and binding affinity of conjugated therapeutic P140 peptides on the adamantane-dendron and the
target HSPA8 protein was measured by using the surface plasmon resonance (SPR) technique and
their activity was tested in vivo as well. It was demonstrated that covalent binding of P140 on
adamantane-dendrons does not impair its biological activity. The mentioned examples illustrate a high
potential of adamantane-based poly-functional dendritic complex structures for biomedical application.
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5. Conclusions and Outlook

The unique structural and chemical properties of adamantane provide exceptional opportunities
in design of various adamantane-based scaffolds or carrier systems for drug delivery. Adamantane
can be used in two ways, as a building block to which different functional groups are covalently
bonded (adamantane based dendrimers) or as a part of self-assembled supramolecular systems where
the adamantane is accommodated on the basis of its lipophilicity (liposomes) and strong host-guest
interaction (cyclodextrins). It should be stressed that adamantane emerged as a suitable scaffold for
drug delivery systems because of its biocompatibility and non-toxicity, as well as its low cost and
facile accessibility.

Since liposomes are often used as artificial biological membranes, incorporation of adamantane
derivatives into these bilayers provides great opportunities in the study of cell recognition due to the



Molecules 2017, 22, 297 11 of 14

possibility of attaching different ligands to the adamantane moiety. As a result, adamantane plays a
significant role in understanding interactions of prepared nano vesicles with specific cell receptors and
helps illuminate the receptor targeting process in living cells. Preparation and testing of new derivatives
of adamantane and other diamondoids therefore remains a highly relevant topic in nanomedicine,
especially in the design of safe and selective drug delivery systems and molecular carriers.

Acknowledgments: We acknowledge the financial support of Croatian Science Foundation (HrZZ, Project
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