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Abstract: A total of 32 synthetic proteins designed by Michael Hecht and co-workers was investigated
using standard bioinformatics tools for the structure and function modeling. The dataset consisted
of 15 artificial α-proteins (Hecht_α) designed to fold into 102-residue four-helix bundles and
17 artificial six-stranded β-sheet proteins (Hecht_β). We compared the experimentally-determined
properties of the sequences investigated with the results of computational methods for protein
structure and bioactivity prediction. The conclusion reached is that the dataset of Michael Hecht
and co-workers could be successfully used both to test current methods and to develop new ones
for the characterization of artificially-designed molecules based on the specific binary patterns of
amino acid polarity. The comparative investigations of the bioinformatics methods on the datasets
of both de novo proteins and natural ones may lead to: (1) improvement of the existing tools for
protein structure and function analysis; (2) new algorithms for the construction of de novo protein
subsets; and (3) additional information on the complex natural sequence space and its relation to
the individual subspaces of de novo sequences. Additional investigations on different and varied
datasets are needed to confirm the general applicability of this concept.
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1. Introduction

Proteins are molecules fundamental to life, and their biological function is driven by their
structure [1,2]. The modeling of the protein structure and function relationship is important and
challenging [1,2]. Recent progress in protein biochemistry and biophysics has enabled the construction
of artificial (de novo) proteins with specific properties [1–3]. The predominant part of the possible
protein sequences and structures not tested by evolution may be evaluated by de novo protein design,
which could provide solutions to new protein-structure/function targets [2–6]. The goal of designing
de novo proteins is to construct the molecules that structurally and functionally mimic natural proteins
and to discover new structure-function relationships compared with those found in nature [2,6].

The sequence space of proteins is huge and complex [1,2]. It has evolved in time influenced by the
evolutionary processes of selection and mutation [1,2]. By contrast, the subsets of de novo designed
protein sequences, including the one tested in this research, are limited, internally consistent, of high
sequence identity and artificially designed for a specific purpose. There is no standardized dataset of
artificial proteins for the testing of bioinformatics algorithms, in contrast to the naturally-occurring
proteins [7]. However, there are several sets of well-characterized artificial proteins that may be
used for the testing of algorithms concerning protein structure and function [1–6]. In our research,
we tested standard bioinformatics methods using the de novo protein subset of Hecht et al. [3,6,8–12].
It represents a well-characterized and sufficiently large subset of 15 synthetic α- and 17 β-proteins
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(Hecht_α and Hecht_β) [3,6,8–13]. A dataset of this size was sufficient for this study due to the
small number of variables analyzed in comparison to the number of members of each class (Hecht_α
and Hecht_β) [14]. For the structural characterization of the dataset, Hecht and co-workers used:
size-exclusion chromatography, NMR and circular dichroism spectroscopy (CD), X-ray crystallography,
electrospray mass spectrometry (ESMS), differential scanning calorimetry (DSC) and several other
methods [3,6,9,12,15–21].

Michael Hecht and his co-workers [8–10,22] were the first to design functional de novo protein
structures, as well as simple algorithms based on binary polar(p) and nonpolar(n) amino acid
patterning. They showed that complex molecular structures could be made using amino acid
polarity patterns pnppnnp and pnpnpnp that define stable α-helices and β-strands, respectively [8–10].
Hecht_α proteins were not explicitly designed to be functional, but recent studies have shown that they
also provide the biological functions necessary to maintain cell growth where genes encoding enzymes
essential for amino acid biosynthesis have been deleted [6,11]. They have been named SynRescue
proteins [3,6,11].

The existing methodology for protein structure-function analysis has been derived and tested
using natural proteins, so that, as a rule, the construction patterns for different de novo protein
subsets have been extracted from the natural sequence space [1,2]. Until recently, due to the small
number of non-natural proteins, it was not possible to analyze or test the standard bioinformatics
methods on sufficiently large datasets. The overall goal of the paper is to investigate whether the
use of standard bioinformatics algorithms is applicable for efficient and accurate structure-function
modeling of the synthetic proteins subsets Hecht_α and Hecht_β. The applicability of the presented
methodology will be discussed considering de novo protein subsets recently reported by Woolfson
and co-workers [4,5,23–25] and Baker and co-workers [1,26].

2. Results and Discussion

The de novo protein design of Hecht et al. [9,10,12] is based on the empirical observation that
the second base of the nucleotide triplet of the genetic code (Table A1) specifies amino acid polarity,
i.e., the second U/T of the codon specifies nonpolar amino acids in the selected protein α-strands and
β-sheets, while the second A of the codon specifies polar amino acids (Section 3.1). The dataset of
32 newly-designed α- and β-proteins (Hecht_α and Hecht_β) consisting of well-defined and stable
structures is the first sufficiently large subset of synthetic sequences that can be used for the testing of
standard bioinformatics models and algorithms, derived from the natural protein sequences (Tables S1
and S2) [3,6,9,12,13].

First, we will investigate:

1. computational techniques to detect periodicity in Hecht_α helices and Hecht_β sheets and
hydrophobicity values assigned to the individual amino acids along different protein structural
segments [27,28];

2. secondary structure elements of Hecht_α and Hecht_β proteins, surface accessibility, antigenicity
and solubility [29–36].

We will also analyze specific functional aspects of the artificial α-protein sequences that arise
from the ligand-receptor interplay of their 3D structure and the reactive patterns of their natural
ligands (heterogens) [37–39]. This second aspect of the protein structure-function relationship will be
inspected utilizing:

1. the protein virtual spectroscopy technique, i.e., the informational spectrum method (ISM),
based on the amino acid electron-ion interaction potential (EIIP) [40–44];

2. the 3DLigandSite method that uses predicted Hecht_α and Hecht_β protein structures and the
ligands present in homologous natural structures to predict ligand binding sites [38,39].
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2.1. Spectral Analysis of Hecht_α and Hecht_β Proteins

We inspected the periodicity in Hecht_α (Table S1) and Hecht_β (Table S2) protein structures
using the method of Cornette et al. [27], which is based on the results of 38 published hydrophobicity
scales compared for their ability to identify the characteristic 3.6 residue period of α-helices (Table A2).
As suggested by the authors, we applied the normalized PRIFT scale since this technique maximizes the
amphipathic index of the Fourier transform [27]. In addition to the Fourier sequence analysis, we also
performed an alternative least-squares spectral analysis (LSSA) that, for short peptide components,
provides a more reliable estimate of periodicity [27].

Both techniques of spectral analysis led to the same result and confirmed that one pronounced
frequency peak at the position x = 0.28 characterizes all Hecht_α proteins (Table 1). Hecht_β proteins
are characterized by another pronounced frequency peak at a different position, x = 0.45, which enables
simple and accurate virtual spectroscopy screening of both artificial protein classes. Moreover, the peak
positions of both artificial protein classes presented in Table 1 and Figure 1 are in marked agreement
with previously-published results for natural proteins [27,45].

The value of 0.28 (i.e., 101◦) that we measured for Hecht_α proteins is identical to the finding of
Eisenberg et al. [45] that 157 segments of α-helix exhibited a peak at 100◦. The α-structural repeat of
3.6 residue/turn, approximated by polar and nonpolar residue patterns pnppnnp [9], is obtained from
the dominant peak value at 360◦/101◦ ∼= 3.6 (calculated according to Cornette et al. [46]). For Hecht_β
proteins, we identified one distinct frequency peak at 0.45 (i.e., 162◦), which is confirmed by the
maximum peak at 160◦ reported by Eisenberg et al. [45] for the average of 220 strands of β-structure.
Therefore, it is not surprising that the methods of Eisenberg et al. [45] and Cornette et al. [27] predict
the same peak positions for the tested proteins.

Figures A1 and A2 show that several de novo α-helical and β-sheet peptides reported by Woolfson
and co-workers [23–25], Quinn et al. [47], Schneider et al [48], Griffioen et al. [49] and Baker and
co-workers [26] exhibit almost identical frequency peaks when compared to the Hecht_α and Hecht_β
dataset (Table 1, Figure 1). These distinct α-helical and β-sheet frequency peaks are within the range
predicted by Eisenberg et al. [45] for α helices (mean = 0.28, range from 0.25–0.31) and β strands
(mean = 0.44, range from 0.39–0.50).

Table 1. Spectral analysis of Hecht_α and Hecht_β proteins (method by Cornette et al. [27]).

Synthetic Proteins Frequency Peak 1 Amino Acid/No.

Hecht_α proteins (SynRescue)

SynSer (B1 to B4) 0.28 Q58
SynGltA1 0.28 Q58

SynIlvA (1 and 2) 0.28 Q58
SynFes (1 to 8) 0.28 Q58

Hecht_β-proteins

#4, #7, #23, #43 0.45 E57
#66, #68, #69, #75 0.45 E57
#8, #10, #12, #16 0.45 D57

#17, #19, #24, #71, #78 0.45 D57
1 Fourier and least-squares spectral analyses.

It is worth mentioning that although large datasets of natural proteins may be used to extract
characteristic peaks for α- and β-structures, the procedure may not always work well for the natural
proteins on an individual basis [27,45]. The absence of distinct peaks in one natural α- and one natural
β-protein (of experimentally-determined structure [13,22]) is shown in Figure A3 (proteins 1cc5 and
1amg-2-AS, respectively). By contrast, all Hecht_α and Hecht_β proteins can be predicted individually
(Table 1 and Figure 1), which enables fast structural screening by means of the computational techniques
presented and the testing of new bioinformatics methods and algorithms for structural predictions.
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This is because distinct polarity patterns encode the well-defined artificial structure of all Hecht_α and
Hecht_β proteins [3,9].
Information 2017, 8, 29 4 of 31 
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Figure 1. Characteristic peaks of Hecht_α protein SynSerB3 and Hecht_β protein #17 were 

determined using the method of Cornette et al. [27]. (a) Hecht_α protein SynSerB3 exhibits the peak 

at x = 0.28 (Fourier spectral analysis); (b) SynSerB3 exhibits an identical peak (x = 0.28) with the 

least-squares spectral analysis; (c) Hecht_β protein #17 exhibits the peak at x = 0.45 (Fourier spectral 

analysis); (d) #17 exhibits an identical peak (x = 0.45) with the least-squares spectral analysis. The 

amino acids belonging to the detected hot spots are marked in red.  

2.2. Hydropathy Analyses of Hecht_α and Hecht_β Proteins 

The hydropathy of Hecht_α and Hecht_β proteins was investigated using a sliding block based 

on the Kyte–Doolittle scale (Table A2) [50]. This method sums up the hydrophobicity values of 

amino acid residues. It is often used for identifying surface-exposed regions, as well as 

transmembrane regions, depending on the size of the sliding block used, e.g., a short window of 7–9 

is used for the exposed regions and a large window of 19–21 is for the transmembrane regions 

[28,50,51]. 

Figure 2 shows the position of three predicted surface-exposed regions (P1, P2 and P3) of 

Hecht_α and Hecht_β proteins based on three-point moving average values of the nine amino acid 

sliding block. 

Detected peaks of Hecht_α proteins predict combinatorial turn positions and possible antigenic 

sites. Figures 2a and 3a,b show that out of three predicted sites, the first and the third sites (P1 and 

P3) locate two important amino acids, 25 and 77, which precede residues at positions 26 and 78; 

these latter presumably stabilize the dimeric structure of Hecht_α SynRescue proteins with charged 

or hydrogen bonding groups [3]. This is valid for all 15 Hecht_α SynRescue proteins presented in  

Figure 2a and confirms the results of Murphy, Greisman and Hecht regarding Hecht_α-protein 

structure [3]. The presumed interactions between P1 and P3 regions indicate that there could be an 

antigenic site of SynRescue proteins accessible at the interaction-free P2 position, which is predicted 

by several methods to be in the vicinity of region 53–59 (Figure 3a–c), i.e., near the turn between 

helix 2 and helix 3 [3,6], while the amino acids at or near positions 26 and 78 could influence 

dynamic structures that fluctuate between monomeric and dimeric states [3]. Hydropathy analyses 

Figure 1. Characteristic peaks of Hecht_α protein SynSerB3 and Hecht_β protein #17 were determined
using the method of Cornette et al. [27]. (a) Hecht_α protein SynSerB3 exhibits the peak at x = 0.28
(Fourier spectral analysis); (b) SynSerB3 exhibits an identical peak (x = 0.28) with the least-squares
spectral analysis; (c) Hecht_β protein #17 exhibits the peak at x = 0.45 (Fourier spectral analysis);
(d) #17 exhibits an identical peak (x = 0.45) with the least-squares spectral analysis. The amino acids
belonging to the detected hot spots are marked in red.

2.2. Hydropathy Analyses of Hecht_α and Hecht_β Proteins

The hydropathy of Hecht_α and Hecht_β proteins was investigated using a sliding block based
on the Kyte–Doolittle scale (Table A2) [50]. This method sums up the hydrophobicity values of amino
acid residues. It is often used for identifying surface-exposed regions, as well as transmembrane
regions, depending on the size of the sliding block used, e.g., a short window of 7–9 is used for the
exposed regions and a large window of 19–21 is for the transmembrane regions [28,50,51].

Figure 2 shows the position of three predicted surface-exposed regions (P1, P2 and P3) of Hecht_α
and Hecht_β proteins based on three-point moving average values of the nine amino acid sliding block.

Detected peaks of Hecht_α proteins predict combinatorial turn positions and possible antigenic
sites. Figures 2a and 3a,b show that out of three predicted sites, the first and the third sites (P1 and
P3) locate two important amino acids, 25 and 77, which precede residues at positions 26 and 78;
these latter presumably stabilize the dimeric structure of Hecht_α SynRescue proteins with charged
or hydrogen bonding groups [3]. This is valid for all 15 Hecht_α SynRescue proteins presented
in Figure 2a and confirms the results of Murphy, Greisman and Hecht regarding Hecht_α-protein
structure [3]. The presumed interactions between P1 and P3 regions indicate that there could be an
antigenic site of SynRescue proteins accessible at the interaction-free P2 position, which is predicted
by several methods to be in the vicinity of region 53–59 (Figure 3a–c), i.e., near the turn between
helix 2 and helix 3 [3,6], while the amino acids at or near positions 26 and 78 could influence dynamic
structures that fluctuate between monomeric and dimeric states [3]. Hydropathy analyses of Hecht_α
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and Hecht_β proteins based on the PRIFT scale of Cornette et al. [27] predicted the same bioactive
sites as the Kyte–Doolittle scale (Figure 2).
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methods: Line 1 = Kyte–Doolittle (ExPASy-ProtScale); Line 2 = eight-class secondary structure 

prediction (SCRATCH-SSpro8, H = α-helix, T = turn, C = the rest); Line 3 = protein surface 

accessibility (NetSurfP, E = exposed, B = buried); Line 4 = protein antigenicity (SCRATCH-COBEpro); 

(b) 3D SynSer3 structure model using the Phyre2 method, 100% residues modeled at >90% accuracy; 

(c) prediction of SynSer3 linear B-cell epitopes (LBtope, BepiPred). 

Figure 2. (a) Surface-exposed regions (P) of 15 Hecht_α proteins identified using the Kyte–Doolittle
scale; (b) surface-exposed regions (P) of 17 Hecht_β proteins identified using the Kyte–Doolittle scale.
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Figure 3. (a) Surface-exposed regions of Hecht_α rescue protein SynSer3 identified using different
methods: Line 1 = Kyte–Doolittle (ExPASy-ProtScale); Line 2 = eight-class secondary structure
prediction (SCRATCH-SSpro8, H = α-helix, T = turn, C = the rest); Line 3 = protein surface accessibility
(NetSurfP, E = exposed, B = buried); Line 4 = protein antigenicity (SCRATCH-COBEpro); (b) 3D SynSer3
structure model using the Phyre2 method, 100% residues modeled at >90% accuracy; (c) prediction of
SynSer3 linear B-cell epitopes (LBtope, BepiPred).
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A typical 3D structure of Hecht_β protein (#17) is presented in Figure 4. The analysis of Hecht_β
proteins suggests the existence of three surface exposed regions corresponding to turn 1 (P1), turn 4
(P2) and turn 5 (P3). These positions are predicted to be antigenic regions (Figure 4b). The predicted
probability of antigenicity [31] and solubility upon overexpression in Escherichia coli [35,36] for all
Hecht_α and Hecht_β proteins is presented in Table A3. Those methods enable fast and simple
virtual screening for desirable properties [31,35,36]. All 17 Hecht_β proteins and 13 of 15 Hecht_α
proteins were predicted to be soluble, using the SOLpro and Periscope methods (Table A3) [35,36].
As for Hecht_α SynRescue proteins, the SOLpro method predicted that two of them, that is SynIlvA2
and SynFes2, were insoluble (Table A3). Periscope, a recently-published method for the quantitative
prediction of soluble protein expression in the periplasm of Escherichia coli, predicted SynIlvA2 and
SynFes2 to be soluble. Regarding the solubility-function relationship, there was no significant difference
in the bioactivity between the SynIlvA2 and SynIlvA1 (Table A3, data by Fisher at al. [6]). The same is
valid for the SynFes2 and SynFes6, since both of them accumulated iron successfully [6]. The given
data imply that the solubility prediction should be used with caution.
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(2D7PA template) [52]; (b) surface-exposed regions of Hecht_β protein #17 identified using different 

methods: Line 1 = Kyte–Doolittle (ExPASy-ProtScale); Line 2 = eight-class secondary structure 
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#4, #17 and #23 (SOLpro) with the increase of β-structure content (von Bertalanffy growth function). 

Figure 4. (a) 3D structure of Hecht_β protein #17 according to the FOLDpro prediction method (2D7PA
template) [52]; (b) surface-exposed regions of Hecht_β protein #17 identified using different methods:
Line 1 = Kyte–Doolittle (ExPASy-ProtScale); Line 2 = eight-class secondary structure prediction
(SCRATCH-SSpro8, E = extended strand, T = turn, S = bend and C = the rest); Line 3 = protein
surface accessibility (NetSurfP, E = exposed, B = buried); Line 4 and graph = protein antigenicity
(SCRATCH-COBEpro); (c) nonlinear drop of predicted solubility for Hecht_β proteins #4, #17 and #23
(SOLpro) with the increase of β-structure content (von Bertalanffy growth function).
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The negative correlation between SOLpro predicted solubility and ANTIGENpro predicted
antigenicity was significant for Hecht_α SynRescue proteins (r = −0.596, p = 0.019), but it was
insignificant for Hecht_β proteins (r = 0.242, p = 0.349). A very similar result was observed for
the correlation between Periscope predicted solubility and ANTIGENpro predicted antigenicity,
significant for Hecht_α SynRescue proteins (r = −0.795, p = 0.0004) and insignificant for Hecht_β
proteins (r = 0.095, p = 0.717). Solubility has an impact on antigenicity, because low soluble or insoluble
antigens tend to form aggregates [53]. Large, insoluble aggregates are more immunogenic than
small, soluble molecules [53]. Specific modifications of the analyzed molecules may be obtained by
amino acid mutations [6,20]. For example, when lysine mutations are introduced at the ends of the
Hecht_β protein #45 in order to disfavor fibrillar structure formation and prevent oligomerization [20],
the predicted solubility increases slightly, and the spectral peak indicates a small shift (Figure A4).

2.3. Virtual Spectroscopy and 3D Ligand Binding Prediction of Hecht_α (SynRescue) Proteins

The key goal in synthetic biology is to design and produce novel proteins with a specific structure
and function [3]. Screening of the third-generation computational libraries for de novo sequences
that function in vivo yielded several Hecht_α sequences, termed SynRescue proteins [3,6], that rescue
conditionally lethal mutants of Escherichia coli (auxotrophs) [3,6,11]. From a practical standpoint,
it would be desirable not only to construct and test a large number of structural patterns in proteins,
but also to predict the functional characteristics of the newly-designed molecules. To address this
problem, we analyzed 15 SynRescue protein sequences using the informational spectrum method
(ISM) [40–44]. This is a virtual spectroscopy method for structure-function analysis of proteins based on
the amino acid electron-ion interaction potential (EIIP) in the Rydberg energy units [40–44]. According
to the underlying theory, the highest peaks found using this type of analysis represent hot spots, i.e.,
bioactive parts, of the protein molecule [40–44].

Table 2 presents the results of virtual spectroscopy for seven Hecht_α SynRescue proteins
that save Escherichia coli auxotrophs with disrupted amino acid enzyme pathways for serine (SerB),
glutamate/glutamic acid (GltA) and isoleucine (IlvA).

Table 2. Prediction of the bioactive hot spots in the Hecht_α SynSer, SynGlt and SynIlv rescue proteins.
LSSA, alternative least-squares spectral analysis.

Synthetic Protein Spectral Analysis 1

(Fourier Single Series)
Spectral Analysis 1

(LSSA) Amino Acid/No. Activity 2

(Cell Growth)

SynSerB3 0.15 and 0.45 0.15 and 0.45 L30 and F92 ++
SynSerB1 0.15 and 0.45 0.15 and 0.45 L30 and L92 ++
SynSerB4 0.45 0.45 M92 +
SynSerB2 - - - +
SynGltA1 0.16 and 0.34 0.16 and 0.34 M33 and N69 +
SynIlvA1 0.13 and 0.43 0.13 and 0.43 E26 and Q88 +
SynIlvA2 0.13 and 0.43 0.13 and 0.43 E26 and Q88 +

1 Dominant frequency peak (informational spectrum method (ISM)); - = without a dominant frequency peak;
2 moderate = ++, low = + (Fisher et al. [6]).

2.3.1. SynSerB Rescue Proteins

In their recent study, Digianantonio and Hecht [11] describe the mechanism by which SynSerB3
(Figure 5), a novel regulatory protein discovered in a library of Hecht_α SynRescue sequences,
rescues knockout strains of Escherichia coli. The newly-constructed protein SynSerB3 provides the
necessary function to maintain bacterial cell growth under conditions of serB gene deletion, which
encodes phosphoserine phosphatase, an enzyme essential for serine biosynthesis [6,11]. The important
conclusion made by Digianantonio and Hecht is that de novo proteins, based on the binary coding
patterns of the amino acid polarity and a library of Escherichia coli sequences, can be used to
drive adaptive changes in the gene expression [11]. However, to ensure the rescue function of the
artificially-designed SynSerB protein sequences, Hecht and co-workers transformed a large library of
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1.5 × 106 binary patterned de novo sequences into strains of Escherichia coli containing survival gene
deletions [6,11].

Our results in Table 2, Figures 5 and 6 show that higher growth rates of auxotrophic/SerB knockout
Escherichia coli strains [6] exerted by SynSerB3 and SynSerB1 Hecht_α proteins are characterized by
two dominant frequency peaks at positions 0.45 (F/L92) and 0.15 (L30), of the periodograms and
cross-amplitude (Figure 5a,b and Figure 6). By contrast, lower growth rates of auxotrophic/SerB
knockout Escherichia coli strains [6] exerted by SynSerB4 and SynSerB2 proteins are characterized
by the absence of one or both of the frequency peaks and both cross-amplitude peaks, respectively
(Figure 5c,d and Figure 6).

The frequency peaks, i.e., hot spots, of SynSerB3 correspond to the first nonpolar residue of helix 2
(L30) and the central nonpolar residue of the helix 4 (F92) [3]. The same results were obtained by least
square spectral analysis (LSSA), as presented in Table 2. Consequently, ISM analysis of de novo protein
sequences might be a useful supplementary procedure for the evaluation of potential bioactive sites
and selection/virtual screening of novel protein nano-building blocks possessing specific functional
characteristics [21].

Additional information related to the possible bioactive sites of the SynRescue protein may
be obtained with 3DLigandSite. The method uses predicted de novo protein structures and the
ligands present in homologous natural structures to predict ligand binding sites [38,39]. The reactive
patterns of the presumed natural ligands (heterogens) may be particularly useful for reconstructing
the biochemical pathways of the auxotrophs that the novel proteins could rescue. As an example,
the predicted ligand binding sites of the higher activity rescue protein SynSerB3 are given in Figure 7.
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Figure 5. Analysis of de novo SynSerB proteins using the informational spectrum method (ism).
Frequency peaks in the periodograms of SynSerB sequences were determined using single series
Fourier analysis: (a) SynSerB3; (b) SynSerB1; (c) SynSerB4; and (d) SynSerB2.
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peaks for the bioactive SynSerB3/SynSerB1rescue proteins at positions 0.15 (L30) and 0.45 (F/L92).
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Figure 7. Heterogens present in the predicted binding sites of SynSerB3 protein using the 3DLigandSite
method. (a) Binding site 1: heterogens are SF4, HEM (heme) and Fe2+; (b) binding site 2: heterogens are
SF4 and Mg; (c) binding site 3: the heterogen is Zn; (d) binding site 4: the heterogen is ATP; (e) binding
site 5: the heterogen is NAD.

When the binding sites of the higher activity rescue protein SynSerB3 in Figure 7 are compared to
the lower activity SynSerB2 mutant, Figure 9 clearly shows that:
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• in the SynSerB2 mutant heterogen, FMN binds to binding site 2 instead of SF4/Mg (this region is
located between structurally-important stabilizing amino acid positions 26 and 78 [3] of SynRescue
proteins, Figure 9a,b);

• FMN interaction with binding site 2 shifts the binding of SF4 to binding site 1, but the additional
interaction with HEM (heme) and Fe2+ is missing (region 16–31, Figure 9c,d);

• the heterogen B12 in the SynSerB2 mutant disrupts the binding of ATP at binding site 4 (amino acid
positions 4–7, Figure 8a,b);

• the heterogen FAD in SynSerB2 mutant disrupts the binding of NAD at binding site 5 (amino acid
positions 82–102, Figure 8c,d).

Hecht and co-workers showed that their de novo α-helical proteins frequently exhibit biological
functions including the heme binding and peroxidase, esterase and lipase activities [6,10,54,55]. In addition
to enzymes, some specific cofactors are involved in metabolic reactions, e.g., adenosine triphosphate
(ATP), nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide-5-phosphate
(NAPD), flavin adenine dinucleotide (FAD), and Fe-protoporphyrin IX (HEM, i.e., heme) [56,57].
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Figure 8. Heterogens present in the predicted binding sites 4 and 5 of the SynSerB3 and SynSerB2
proteins using the 3DLigandSite method. (a) SynSerB3 binding site 4: the heterogen is ATP;
(b) SynSerB2 binding site 4: heterogens are B12 and ATP; (c) SynSerB3 binding site 5: the heterogen is
NAD; (d) SynSer2 binding site 5: the heterogen is FAD.
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Figure 9. Heterogens present in the predicted binding site 1 of the SynSerB3 and SynSerB2 proteins
using the 3DLigandSite method. (a) SynSerB3 binding site 2: heterogens are SF4 and Mg; (b) SynSerB2
binding site 2: the heterogen is FMN; (c) SynSerB3 binding site 1: heterogens are SF4, HEM (heme) and
Fe2+; (d) SynSerB2 binding site 1: the heterogen is SF4.

The binding assays determined that nearly 66% of the Hecht_α protein sequences of the third
generation library bind heme (approximately half at a relatively high level) [10,54]. Of the 80% of
the proteins bound that exhibited peroxidase activity, 60% exhibited hydrolase activity and 36%
lipase activity [54]. The enzyme activity was up to 106-times faster than the uncatalyzed reaction
for peroxidase and up to 103-times faster than the uncatalyzed reaction for hydrolase and lipase [54].
Hydrolase activities rely on the protein alone, i.e., the enzymatic activity may be found in the absence
of a cofactor, as well [10,54]. It is important to note that nearly 30% of heme-binding proteins exhibited
some level of enzymatic activity for all functions [54]. In the absence of heme cofactor, esterase and
lipase activities were reported in 30% and 20% of the third generation of Hecht_α de novo proteins,
respectively, although at lower rates than for natural (evolved) enzymes [10,54].

Using the 3DLigandSite prediction method, the specific binding site was located for several of the
cofactors (ATP, NAD, FAD, HEM, SF4). Heme binding is relatively easy to achieve with the de novo
design since many peptides and proteins have been designed to bind heme [54]. The interaction of
the SynSer3 with heme and Fe2+ in the aa region 16–31 was predicted by the COBEpro method
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(the epitope/exposed region NDRKNLH, aa 25–31) and by ISM (L30); Scheme S3 and Table 2,
respectively. The list of predicted continuous epitopes for all Hecht_α proteins is shown in the
Schemes S1–S15, using the COBEpro method [32]. It remains to be determined whether the binding
of a specific heterogen (e.g., heme) to a stabilizing region (e.g., P1) may destabilize and modify
the SynSer3 structure and make other sites of the molecule available to other bioactive heterogens.
According to Hecht et al., moderately active de novo heme proteins can serve as starting points for the
laboratory-based enzyme evolution and the development of molecules with improved activity [55].

As shown in Table 2 and Figures 7–9, different mutations at the specific positions of the SynSerB
rescue protein may account for the bioactivity of SynSerB3 and the inactivity of SynSerB2.

Metabolic enzymes and transcription cofactors participate in transcriptional regulation and
represent a direct link between cellular metabolism and regulated gene expression [56,57]. They play
an important role in the production of the proteins that are necessary for cellular function, metabolism
and gene expression. The variety of biological functions exerted by the SynRescue protein group in
Escherichia coli auxotrophs may derive from the ability of these synthetic proteins to bind different
cofactors. The results presented demonstrate that the combining of ISM and 3DLigandSite methods
might be a useful filter for the virtual selection of molecules with desirable properties.

IS-based phylogenetic analysis (ISTREE) [58] of the SynSerBRescue protein clustering and
standard phylogenetic analysis of the protein sequences [59,60] provided the same information
regarding the directed in vitro evolution of Escherichia coli synthetic rescue proteins for serine, i.e.,
SynSerBRescue (Figure A5). The evolution of synthetic rescue proteins is visualized in Figure A5, from
the least active member SynSerB2 (closely related to the parent WA20 structure) to the most active
members SynSerB3 and SynSerB1, distant from WA20.

This result confirms that at the level of phylogenetic/molecular evolution analysis, two different
analytical methods, amino acid electron-ion interaction potential (ISTREE) and amino acid molecular
homologies (TreeDyn), render identical conclusions.

2.3.2. SynIlvA Rescue Proteins

Another important example of further synthetic biology investigation is the auxotrophic/IlvA
knockout Escherichia coli strains that have disrupted encoding of threonine deaminase. This enzyme
catalyzes the first step in the production of isoleucine from threonine. Fisher et al. [6] report that
functional SynIlvA1 rescue proteins lose the ability to save auxotrophs upon K to A mutation at
the amino acid position 42. The A42 mutants of SynIlvA1 lose the ability to rescue Escherichia coli
auxotrophs despite the fact that there is no clear difference in the information spectrum changes
(Figure 10; EIIP values of K and A are almost identical at 0.0371 and 0.0373, respectively). 3D and
secondary structures, as modeled by the Phyre2 and 3DLigandSite methods are also identical (Figure 11,
Figure A6, respectively). In A42 mutants, the iron/sulfur cluster-SF4 [61] necessary for the deaminase
function remains intact at positions E26, S27 and L71, i.e., in the vicinity of the structurally important
stabilizing region E26 and K78 (Figure 11b) [3]. However, the 3DLigandSite method shows marked
differences in heterogen Fe binding at the amino acid positions 9, 96 and 12, which is present in
biologically-active SynIlvA1 (Figure 11c,d) and absent in the inactive A42 mutants of SynIlvA1.
This seems to be in line with the reported functional promiscuity of SynIlvA1, “which was originally
selected for its ability to rescue the isoleucine auxotroph ∆ilv but also rescues the ∆fes auxotroph,
which is essential for the accumulation of iron” [3]. Therefore, the lack of iron heterogen at specific
positions of the molecule could be relevant for the loss of A42 mutant function in SynIlvA1. At this
point, it seems reasonable to investigate further the use of the 3DLigandSite method for evaluating the
impact of individual mutations on protein function and the directed evolution of novel SynRescue
proteins [55].
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Figure 10. Analysis of Hecht_α SynIlvA1 and SynIlvA1-K42A rescue proteins using the informational
spectrum method (ISM) based on EIIP. Cross-amplitude values and individual periodogram values
have identical frequency peaks at positions 0.13 (E26) and 0.43 (Q88).Information 2017, 8, 29 14 of 31 
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Figure 11. Heterogens present in the predicted binding sites of SynIlvA1 rescue protein using the
3DLigandSite method. (a) Binding site 1: the heterogen is FMN; (b) binding site 2: the heterogen is SF4;
(c) binding site 3: the heterogen is Fe2+; (d) binding site 4: the heterogen is Fe. The K42→ A42 mutant
does not have binding sites 3 and 4.

2.3.3. SynFes and SynGltA Rescue Proteins

Fes gene is not involved in biosynthetic pathways. It functions in iron acquisition by encoding
enterobactin esterase, which cleaves the iron-bound enterobactin siderophore [6]. This allows cells
to acquire iron in iron-limited environments [6]. Fisher et al. report that cells expressing the SynFes6
and SynFes2 rescue proteins accumulate six- and 10-fold more iron than control cells, respectively [6].
The difference in SynFes6 and SynFes2 iron accumulation could be ascribed to three facts detected by
the 3DLigandSite method:

• in addition to the positions 13 (Fe/Fe2+) and 49 (Fe2+) shared by SynFes6 and SynFes2, SynFes2
has two extra Fe heterogen binding positions at amino acid sites 64 and 96;

• at position Q49 in SynFes6, FAD and B12 could disrupt the binding of other heterogens (Fe2+, ATP,
NAD, GAL, MAN and GLC), which is not the case for SynFes2;

• SynFes2 has two additional binding sites for heterogen Ca at positions 1 and 49.

Table 3 shows the results of analysis for SynFesRescue proteins using EIIP information spectrum
(ISM) analysis. The SynFes2 and SynFes6 rescue proteins that accumulate iron show two distinct
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frequency peaks at positions 26 (turn 1) and 37 (helix 2), Table 3 and Figure 12a. Position 26 belongs to
the structurally important stabilizing part of SynRescue proteins [3]. SynFes1 protein does not have
the second peak at position 37, i.e., in the molecular EIIP spectrum; the peak of a nonpolar residue
close to the central part of helix 2 is missing.

Table 3. Prediction of bioactive hot spots in Hecht_α SynFes rescue proteins.

SynFesRescue Spectral Analysis 1 Amino Acid/No.

SynFes2 0.13 and 0.18 K26 and L37
SynFes6 0.13 and 0.18 S26 and L37
SynFes1 0.13 N26
SynFes3 0.09 Q18
SynFes5 0.09 Q18
SynFes7 0.29 Q59
SynFes8 0.29 Q59
SynFes4 0.33 M68

1 Fourier spectral analysis/LSSA (ISM).Information 2017, 8, 29 15 of 31 
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Figure 12. Analysis of SynFes proteins using the informational spectrum method (ISM). Frequency
peaks and periodogram values of SynSerB sequences were determined using cross-spectrum (bivariate
Fourier) (a) and single series Fourier analysis (b).

Other members of the SynFesRescue family, SynFes3-5 and SynFes7/8, have one distinct peak at
different positions: SynFes3 and SynFes5 at the helix 1 position and SynFes4 and SynFes7/8 at the helix
3 position (Table 3, Figure 12). In a similar way to SynSerBRescue (Figure A5), ISM-based phylogenetic
analysis of the SynFesRescue clustering is comparable to standard phylogenetic/molecular evolution
in the results for homologous sequences (Figure A7). This suggests that that a combined application of
the 3DLigandSite and ISM methods is a useful step in the characterization of synthetic proteins.

The solubility parameter presented in Table A3 might also influence the structural-functional
behavior of the artificial sequences, e.g., bioactive and less soluble SynFes2 was reported as forming an
extended dimer similar to WA20, which was not the case for the more soluble SynGltA1 that forms
a very weakly-associating dimer or an extended monomer [3].

Hecht et al. [62] have recently shown that SynGltA protein acts as a rescuer of Escherichia coli cells
deleted for gltA gene. Deletion of this gene disables the citric acid cycle, and the rescue protein SynGltA
restores it [62]. ISM virtual spectroscopy, based on electron-ion interaction potential, predicted multiple
bioactive sites located in all four helices of the SynGltA rescue protein (Figure 13). Another method,
3DLigandSite prediction in Figure 14, locates binding sites in SynGltA for several metabolic cofactors
(ATP, NAD, FAD) that are of importance for the citric acid cycle [57]. These findings are in line with
the observation of Hecht et al. [62] that non-natural rescue proteins recover energy metabolism by
activating alternative metabolic pathways.
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Figure 13. Analysis of rescue SynGltA1 protein using the informational spectrum method (ISM).
Frequency peaks in the periodograms of the SynGltA1 sequence were determined using single series
Fourier analysis.Information 2017, 8, 29 16 of 31 
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Figure 14. Heterogens present in the predicted binding sites of SynGltA1 protein using the
3DLigandSite method. (a) Binding site 1: heterogens are B12 and ATP; (b) binding site 2: the heterogen
is SF4; (c) binding site 3: the heterogen is FMN; (d) binding site 4: heterogens are NAD, ADP and Mg;
(e) binding site 5: heterogens are FAD and Ca.

2.4. Virtual Spectroscopy and 3D Structure Prediction of Hecht_β Proteins

Like the Hecht_α dataset, the Hecht_β dataset of de novo protein sequences was analyzed
using the informational spectrum method (ISM). This virtual spectroscopy method is useful for
structure/function analysis of proteins and the identification of functional protein domains [40–44].
The method is also applicable for the assessment of biological effects of mutations. Frequency peaks
of the EIIP periodograms denote the important parts of the molecules. ISM analysis of the Hecht_β
dataset, presented in Figure 15, shows that the sequences cluster into five different subgroups, each of
them having a distinct peak at a different part of the β-protein. Those peaks identify important regions
that predict bioactive epitopes (Figures 2b and 4a,b, Table A4 and Schemes S16–S32).
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Figure 15. Analysis of Hecht_β proteins with the informational spectrum method (ISM). Frequency
peaks of the periodograms denote important functional parts of the molecules related to continuous
epitopes. (a) Cross amplitudes of Hecht_β proteins: #4 and #8, #7 and #19; (b) Cross amplitudes of
Hecht_β proteins: #17 and #23, #66 and #69; (c) Characteristic peaks of Hecht_β protein #16; (d) Cross
amplitude of Hecht_β proteins #71 and #75; (e) Cross amplitudes of Hecht_β proteins: #10 and #12,
#24 and #68, #43 and #78.

The hydropathy of Hecht_α and Hecht_β proteins was also investigated using the sliding block
based on the Kyte–Doolittle scale. Figure 2b shows that Hecht_β proteins are characterized by
N-terminus and C-terminus epitopes and that the central part in the vicinity of turn 3 is buried
(Figures 2b and 4a,b). ISM analysis in Figure 15 complements the Kyte–Doolittle method for the
epitope detection (e.g., for N-terminus P1 detection in Figure 2b) and offers two simple rules for the
antigenic site location, as follows:

If there are two N-terminus epitopes, then the peak 1 (0.11/aa14) and the peak 2 (0.21/aa26)
are in the vicinity of the epitope 1 and epitope 2 ends, respectively. If Hecht_β protein has only one
N-terminus epitope, peak 1 (0.11/aa14) is the central part of the antigenic site, and peak 2 (0.21/aa26)
is at the epitope end.

At the C-terminal end, there are also two possible epitopes. The peak 0.42 (aa53) is located within
epitope 1, situated at the very end of the protein sequence (Figure 15, Table A4 and Schemes S16–32).
It corresponds to the antigenic region P3 (aa53–56) determined by the Kyte–Doolittle method
(Figure 2b). The peaks 0.32 (aa40) and 0.37 (aa47) are within C-terminus epitope 2 and correspond to
the region P2 (aa42–45) predicted by the Kyte–Doolittle method (Figure 2b).
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A typical example for the epitope location is protein #17 presented in Figure 4b. The results of ISM
spectral analysis of Hecht_β proteins were tested by COBEpro detection of continuous epitopes given
in Schemes S16–S32 and Table A4. The results are consistent with the fact that ISM virtual spectroscopy
detects bioactive protein regions [40–44].

The 3D structure model of a typical Hecht_β protein #17 is presented in Figure 4a. The FOLDpro
method was used for β-protein fold recognition and template-based 3D structure prediction, since the
Phyre2 server could not predict the 3D structure and ligand binding with sufficient precision [37,52].
The FOLDpro method extracted human filamin C template protein 2D7PA in 12 Hecht_β proteins
(#4, #7, #8, #16, #17,#19, #23, #24, #66, #71, #75, #78; Scheme S33) and human filamin C protein 2D7NA
in four Hecht_β proteins (#12, #43, #68, #69). For protein #10, the template is the 2A4CA protein
(mouse cadherin-11).

2.5. Structural and Functional Characterization of Hecht_α and Hecht_β Proteins

As discussed by Woolfson et al. [2,5], de novo protein design is closely related to the synthetic
biology approach to producing standard sets of polypeptide components, which are designed to solve
problems across different biological systems. If properly standardized, those components can be
applied in a modular manner to different biochemical problems [5].

The results of virtual spectroscopy, hydropathy analysis and structure-function modeling based
on the Hecht_α and Hecht_β protein dataset imply that the proposed methods could be used for the
virtual screening of artificial proteins. Additional investigations on different and varied datasets are
needed to confirm the general applicability of this concept. The structure elucidation of proteins using
NMR and crystallography is a slow and expensive process. It is estimated that the cost of determining
each new structure is in the order of $100,000 [63]. The number of known protein sequences is about
400-times larger than the number of experimentally-determined structures, and the number of new
sequences grows much faster than the number of structures [64]. However, the cost of computer
modeling is much lower (on average $10 per compound [63]), which explains why the computational
methods for protein structure and function prediction are important.

Our analysis of the structural-functional relationships and directed evolution of Hecht_α and
Hecht_β proteins in Escherichia coli is in line with the new approach of Petoukhov [65] “for modeling
genetically specified structures and processes in living organisms using mathematical tools of the
theory of resonances”. The analysis of the physico-chemical properties of amino acids related to
the codon information values and transition-probability distributions in short-term evolution, as
discussed by Jiménez-Montano et al. [66], could additionally contribute to a better understanding of
how de novo-designed proteins can drive adaptive changes in gene expression in order to provide
life-sustaining regulatory functions [11].

3. Materials and Methods

3.1. Protein Datasets

The α-protein dataset consisted of 15 de novo artificial proteins constructed by Hecht et al.
(Hecht-α) [6], using a combinatorial library of Escherichia coli sequences designed to fold into 102-residue
4-helix bundles (Table S1). The synthetic genes were made using degenerate DNA codons [3,6]:

• VAN (V = A, C, G) was used to encode six polar residues (H, Q, N, K, D, E) and
• NTN (N = A, T, C, G) was used to encode five nonpolar residues (F, L, I, M, V).

Neutral amino acids, with the exception of alanine (A) and cysteine (C), were occasionally used,
according to the specificity of the helix/turn protein design [9]. The amino acid septapeptide pattern
pnppnnp, consisting of polar (p) and nonpolar (n) residues, served to approximate an α-structural
repeat of the 3.6 residue/turn [9]. The list of α-sequences is given in Table S1.
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The β-protein dataset consisted of 17 de novo 6-stranded β-sheet proteins designed by Hecht and
coworkers (Hecht_ β) [9,12] using a combinatorial library of synthetic genes. The list of β-sequences is
given in Table S2. As with the α-sequences, the combinatorial diversity of the 63-residue-long synthetic
β-proteins was achieved by allowing degenerate codons to specify 6 polar (H, Q, N, K, D, E) and
4 nonpolar residues (F, L, I, V) [12]. Each β-protein consisted of 6 polar(p) and nonpolar(n) amino acid
septapeptide patterns pnpnpnp [9,12]. The 6 strands were punctuated by 5 turns, made up of 4 amino
acid residues each [12].

3.2. Spectral Analysis

The periodicity in de novo α-helical and β-sheet protein structures presented in Table 1 was
investigated using the normalized PRIFT method of Cornette et al. [27], which is based on the results of
38 published hydrophobicity scales compared for their ability to identify the characteristic periods of
helices/turns (Table A2). The informational spectrum method (ISM) based on electron-ion interaction
potential (EIIP) was used to analyze the bioactivity of de novo α- and β-proteins (Tables 2 and 3) [40–44].
The values of EIIP for 20 amino acids are given in Table A2.

Primary amino acid sequences of 15 de novo α-proteins and 17 de novo β-proteins, presented in
Tables S1 and S2, were converted into a numerical series by assigning the normalized PRIFT and EIIP
value to each amino acid [27,40–44]. The PRIFT and EIIP spectrum (ISM) of each protein sequence was
calculated by means of a Fourier spectral analysis and least-squares spectral analysis (LSSA) in order to
obtain the highest frequency peaks of the periodogram [27,40–44]. These peaks, i.e., hot spots, denote
the structural or bioactive part of the molecule, according to the theoretical concepts of PRIFT and
ISM, respectively [27,40–44]. Peak position = 2 × frequency × sequence length. Software STATISTICA
for Windows Version 7.0 was used for the Fourier analysis [67] and PAST software Version 3.14 for
least-squares analysis [68].

Least-squares spectral analysis (LSSA) estimates a frequency spectrum using a least squares fit
of sinusoids to data samples [68–70]. The method gives similar results as Fourier spectral analysis,
but is more resistant to noise and appropriate if the time series is long enough to contain at least four
cycles [68]. The frequency axis is in units of 1/(x unit). The power axis is in units proportional to the
square of the amplitudes of the sinusoids present in the data [68,69].

3.3. Bioinformatic Software Tools Used for Sequence Analyzes

3.3.1. Hydrophobicity Profiles

Surface-exposed regions of de novo α- and β-proteins presented in Figure 2 were identified using
the Kyte–Doolittle scale (Table A2) [28,50]. The analyses were based on 3-point moving average values
of the 9 amino acid sliding blocks (Figure 2) [28,67,68]. The ExPASy-ProtScale software tool of the
ExPASy SIB Bioinformatics Resource Portal was used to compute and represent the amino acid profiles
produced by the scale [28].

3.3.2. Solubility, Antigenicity, Surface Accessibility, 2D/3D and Tree Structure Predictions

• The protein 2D structure prediction in Figure 3a was carried out using the SSpro8 server, which
adopts the full DSSP 8-class output classification [29]: H = α-helix, G = 3–10-helix, I = pi-helix
(extremely rare), E = extended strand, B = β-bridge, T = turn, S = bend and C = the rest.

• The surface/solvent accessibility of amino acids in an amino acid sequence was predicted with
the NetSurfP server (E = exposed, B = buried, Figure 3a) [30].

• The probability of protein antigenicity was determined by ANTIGENpro, a sequence-based,
alignment-free and pathogen-independent predictor of the protein antigenicity (Table A3) [31].
Prediction of linear B-cell epitopes was carried out using COBEpro, BepiPred and LBotope servers
(Figure 3c) [32–34].
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• Solubility upon overexpression in Escherichia coli was calculated with the SOLpro and Periscope
methods (Table A3) [35,36].

• Coupled Phyre2 and 3DLigandSite servers were used to predict 3D structures and protein binding
sites, respectively (Figures 3b, 7, 9 and 8, Figures 11 and 14) [37–39]. One hundred percent of
Hecht_α protein residues was modeled at >90% confidence.

• The Phyre2 server could not predict the 3D structure of the Hecht_β proteins because the
models were insufficiently valid. The confidence was considered too low (<70%) for submission
to 3DLigandSite [37]. The FOLDpro method was used for protein fold recognition and
template-based 3D structure prediction (Figure 4a, Figure A4) of all β-proteins [52]. The protein
2D and 3D structures were presented using Unipro UGENE software [71]. PDB files of the #17
and #45 models are supplied as Schemes S33–S37.

• The informational spectrum-based phylogenetic analysis in Figures A5a and A7a was done with
the ISTREE web service tool [58] and the phylogenetic analysis in Figures A5b and A7b with the
Phylogeny.fr platform (TreeDyn) [59,60].

4. Conclusions

De novo proteins designed by Hecht and co-workers [6,9,12] represent structurally and
functionally well-characterized subset of α-helical and β-sheet proteins. This dataset may be
successfully used both for testing the current methods for the analysis of artificially-designed molecules
based on the specific binary patterns of amino acid polarity and for developing the new ones.

The comparative investigations of the bioinformatics methods on the datasets of both de novo
and natural proteins may lead to:

1. improvement of the existing tools for protein structure and function analysis,
2. new algorithms for the construction of de novo protein subsets and
3. additional information on the complex natural sequence space and its relation to the individual

subspaces of de novo sequences.
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protein SynSerB1 using the COBEpro method [32]; Scheme S2: Predicted epitopes of Hecht_alpha protein
SynSerB2 using the COBEpro method [32]; Scheme S3: Predicted epitopes of Hecht_alpha protein SynSerB3
using the COBEpro method [32]; Scheme S4: Predicted epitopes of Hecht_alpha protein SynSerB4 using the
COBEpro method [32]; Scheme S5: Predicted epitopes of Hecht_alpha protein SynGltA1 using the COBEpro
method [32]; Scheme S6: Predicted epitopes of Hecht_alpha protein SynIlvA1 using the COBEpro method [32];
Scheme S7: Predicted epitopes of Hecht_alpha protein SynIlvA2 using the COBEpro method [32]; Scheme S8:
Predicted epitopes of Hecht_alpha protein SynFes1 using the COBEpro method [32]; Scheme S9: Predicted
epitopes of Hecht_alpha protein SynFes2 using the COBEpro method [32]; Scheme S10: Predicted epitopes of
Hecht_alpha protein SynFes3 using the COBEpro method [32]; Scheme S11: Predicted epitopes of Hecht_alpha
protein SynFes4 using the COBEpro method [32]; Scheme S12: Predicted epitopes of Hecht_alpha protein SynFes5
using the COBEpro method [32]; Scheme S13: Predicted epitopes of Hecht_alpha protein SynFes6 using the
COBEpro method [32]; Scheme S14: Predicted epitopes of Hecht_alpha protein SynFes7 using the COBEpro
method [32]; Scheme S15: Predicted epitopes of Hecht_alpha protein SynFes8 using the COBEpro method [32];
Scheme S16: Predicted epitopes of Hecht_beta protein #4 using the COBEpro method [32]; Scheme S17: Predicted
epitopes of Hecht_beta protein #7 using the COBEpro method [32]; Scheme S18: Predicted epitopes of Hecht_beta
protein #8 using the COBEpro method [32]; Scheme S19: Predicted epitopes of Hecht_beta protein #10 using the
COBEpro method [32]; Scheme S20: Predicted epitopes of Hecht_beta protein #12 using the COBEpro method [32];
Scheme S21: Predicted epitopes of Hecht_beta protein #16 using the COBEpro method [32]; Scheme S22: Predicted
epitopes of Hecht_beta protein #17 using the COBEpro method [32]; Scheme S23: Predicted epitopes of Hecht_beta
protein #19 using the COBEpro method [32]; Scheme S24: Predicted epitopes of Hecht_beta protein #23 using the
COBEpro method [32]; Scheme S25: Predicted epitopes of Hecht_beta protein #24 using the COBEpro method [32];
Scheme S26: Predicted epitopes of Hecht_beta protein #43 using the COBEpro method [32]; Scheme S27: Predicted
epitopes of Hecht_beta protein #66 using the COBEpro method [32]; Scheme S28: Predicted epitopes of Hecht_beta
protein #68 using the COBEpro method [32]; Scheme S29: Predicted epitopes of Hecht_beta protein #69 using
the COBEpro method [32]; Scheme S30: Predicted epitopes of Hecht_beta protein #71 using the COBEpro
method [32]; Scheme S31: Predicted epitopes of Hecht_beta protein #75 using the COBEpro method [32];
Scheme S32: Predicted epitopes of Hecht_beta protein #78 using the COBEpro method [32]; Scheme S33:
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Hecht_beta #17.pdb; Scheme S34: Hecht_beta #45.pdb; Scheme S35: Hecht_beta #45mutF82.pdb; Scheme S36:
Hecht_beta #45mutV5.pdb; Scheme S37: Hecht_beta #45mutV5&F82.pdb.
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Appendix

Table A1. The genetic code. Twenty amino acids and three stop codons for the protein synthesis are
specified by 64 nucleotide triplets. Polar (p) and nonpolar (n) amino acid groups for the de novo design
of Hecht-α and Hecht-β protein structures are shown in red and blue, respectively [9,72].

First (5') Letter
Second Letter

Third (3') Letter
U/T C A G

U/T

Phe (F) Ser (S) Tyr (Y) Cys (C) U/T
Phe (F) Ser (S) Tyr (Y) Cys (C) C
Leu (L) Ser (S) stop stop A
Leu (L) Ser (S) stop Trp (W) G

C

Leu (L) Pro (P) His (H) Arg (R) U/T
Leu (L) Pro (P) His (H) Arg (R) C
Leu (L) Pro (P) Gln (Q) Arg (R) A
Leu (L) Pro (P) Gln (Q) Arg (R) G

A

Ile (I) Thr (T) Asn (N) Ser (S) U/T
Ile (I) Thr (T) Asn (N) Ser (S) C
Ile (I) Thr (T) Lys (K) Arg (R) A
Met (M) Thr (T) Lys (K) Arg (R) G

G

Val (V) Ala (A) Asp (D) Gly (G) U/T
Val (V) Ala (A) Asp (D) Gly (G) C
Val (V) Ala (A) Glu (E) Gly (G) A
Val (V) Ala (A) Glu (E) Gly (G) G

Table A2. The hydrophobicity scales of Cornette et al. [27], Kyte–Doolittle [50] and amino acid
electron-ion interaction potential (EIIP) [40–44] used for bioinformatic analyses.

Amino Acid Abbreviation Cornette Scale 1 Kyte–Doolittle Scale EIIP (Ry)

Phenylalanine Phe (F) 0.140 2.8 0.0946
Leucine Leu (L) 0.000 3.8 0.0000
Valine Val (V) 0.114 4.2 0.0057

Isoleucine Ile (I) 0.102 4.5 0.0000
Methionine Met (M) 0.164 1.9 0.0823

Serine Ser (S) 0.699 −0.8 0.0829
Proline Pro (P) 0.903 −1.6 0.0198
Alanine Ala (A) 0.622 1.8 0.0373

Threonine Thr (T) 0.865 −0.7 0.0941
Cysteine Cys (C) 0.182 2.5 0.0829

Tryptophan Trp (W) 0.528 −0.9 0.0548
Arginine Arg (R) 0.485 −4.5 0.0959
Glycine Gly (G) 0.648 −0.4 0.0050
Tyrosine Tyr (Y) 0.278 −1.3 0.0516
Histidine His (H) 0.595 −3.2 0.0242

Glutamine Gln (Q) 0.970 −3.5 0.0761
Glutamic acid Glu (E) 0.854 −3.5 0.0058

Asparagine Asn (N) 0.701 −3.5 0.0036
Aspartic acid Asp (D) 1.000 −3.5 0.1263

Lysine Lys (K) 0.995 −3.9 0.0371
1 Normalized PRIFT.
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Table A3. Predicted probability of antigenicity and solubility upon overexpression in Escherichia coli
for 32 Hecht_α and Hecht_β proteins.

Synthetic Proteins Predicted Antigenicity 1 Predicted Solubility 2 Predicted Solubility 3

Hecht_α

SynSerB1 0.65 Soluble (0.94) Medium (15.28)
SynSerB2 0.65 Soluble (0.78) Medium (15.34)
SynSerB3 0.56 Soluble (0.93) Medium (14.75)
SynSerB4 0.45 Soluble (0.97) Medium (15.30)
SynGltA1 0.52 Soluble (0.92) Medium (15.17)
SynIlvA1 0.75 Soluble (0.51) Medium (16.86)
SynIlvA2 0.78 Insoluble (0.51) Medium (16.38)
SynFes1 0.83 Soluble (0.90) Medium (15.42)
SynFes2 0.57 Insoluble (0.58) Medium (15.37)
SynFes3 0.63 Soluble (0.62) Medium (15.91)
SynFes4 0.81 Soluble (0.50) Medium (16.85)
SynFes5 0.55 Soluble (0.75) Medium (15.29)
SynFes6 0.57 Soluble (0.92) Medium (15.14)
SynFes7 0.42 Soluble (0.98) Medium (15.40)
SynFes8 0.84 Soluble (0.69) Medium (16.70)

Hecht_β

#4 0.84 Soluble (0.93) Medium (17.76)
#7 0.71 Soluble (0.90) Medium (20.04)
#8 0.66 Soluble (0.82) Medium (18.71)

#10 0.58 Soluble (0.90) Medium (16.49)
#12 0.66 Soluble (0.94) Medium (16.91)
#16 0.71 Soluble (0.96) Medium (16.32)
#17 0.79 Soluble (0.92) Medium (18.24)
#19 0.80 Soluble (0.84) Medium (17.33)
#23 0.74 Soluble (0.82) Medium (19.57)
#24 0.66 Soluble (0.91) Medium (16.49)
#43 0.65 Soluble (0.88) Medium (20.50)
#66 0.59 Soluble (0.93) Medium (18.71)
#68 0.32 Soluble (0.94) Medium (19.18)
#69 0.47 Soluble (0.87) Medium (18.27)
#71 0.38 Soluble (0.78) Medium (15.72)
#75 0.51 Soluble (0.80) Medium (17.58)
#78 0.75 Soluble (0.92) Medium (21.33)

1 ANTIGENpro: probability [31]; 2 SOLpro: solubility (probability) [35]; 3 Periscope: expression level value (mg/L) [36].

Table A4. Predicted continuous epitopes of the Hecht_α and Hecht_β proteins.

Hecht_β Protein Predicted Epitopes N-Terminus 1 Predicted Epitopes Central 1 Predicted Epitopes C-Terminus 1

#4 2 0 1 ‡

#7 2 0 2
#8 1 0 2

#10 2 0 1 †

#12 1 0 1 †

#16 2 0 1 †

#17 2 0 2
#19 2 0 1 †

#23 2 0 2
#24 2 0 1 †

#43 2 0 2
#66 2 0 2
#68 2 0 2
#69 1 0 2
#71 2 0 2
#75 2 0 2
#78 2 0 2

1 COBEpro [32]; † 1st terminal epitope; ‡ 2nd terminal epitope.
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Figure A1. Characteristic peaks of three de novo α-proteins (a–c) (CC-Hex-T, GCN4-pIL, cWza [23–25])
and three de novo β-proteins (d–f) (β-sandwich, MAX1, β-pep-25 [47–49]) were determined using the
PRIFT/LSSA method of Cornette et al. [27].
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Figure A2. Characteristic frequency peaks of de novo genetically-encodable disulfide-rich peptides
and mutants designed by Baker and co-workers [26] were determined using the PRIFT/LSSA method
of Cornette et al. [27]. (a) α-peptide HHH_06 and its mutants exhibited α-peak at the position 0.25;
(b) β-peptide EEE_EEE_02 and its mutants exhibited β-peak at the position 0.45; (c) mixed class
peptide EEHE_02 exhibited two small peaks at positions 0.09 and 0.44. Its mutants EEHE_02_0005
and EEHE_02_0008 were characterized by an additional peak at the position 0.5. Mixed class
structures/mutants (c) had different distribution of the peaks than when compared to all α-peptides
(a) and all β-peptides (b).Information 2017, 8, 29 25 of 31 
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Figure A3. Characteristic peaks of one natural α-protein and one natural β-protein were determined
using the PRIFT method of Cornette et al. [27]. (a) Natural α-protein 1cc5 did not exhibit the typical
α-peak at x = 0.28 (Fourier spectral analysis); (b) α-protein 1cc5 did not exhibit the typical α-peak at
x = 0.28 when the alternative method of least-squares spectral analysis was used; (c) natural β-protein
1amg-2-AS did not exhibit the typical α-peak at x = 0.45 (Fourier spectral analysis); (d) natural β-protein
1amg-2-AS did not exhibit the typical α-peak at x = 0.45 when the alternative method of least-squares
spectral analysis was used.
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Figure A4. The Spectral analyses and 3D structures of Hecht_β protein #45 and its mutants according to
Cornette et al. LSSA [27] and the FOLDpro prediction method (1I58A template, Schemes S34–S37) [52].
Distinct β-peaks at position D77/G78 of turn 7 are located within the most probable epitope predicted
using COBEpro. (a) #45 oligomer with the distinct β-peak at 0.45/D77; (b) #45 mutant F82→ K82,
oligomer with the distinct β-peak at 0.45/D77; (c) #45 mutant V5→ K5, monomer-oligomer with the
distinct β-peak at 0.46/G78; (d) #45 mutant V5 and F82→ K5 and K82, monomer with the distinct
β-peak at 0.46/G78.
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Figure A5. (a) Informational spectrum-based phylogenetic analysis of SynSerB1–4 rescue proteins
(ISTREE, UPGMA method); (b) standard phylogenetic analysis of SynSerB1–4 rescue proteins using
the Phylogeny.fr platform.
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