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Abstract: Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro
compounds using readily available and cheap ammonium formate as the hydrogen source is
demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and
selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad,
as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy,
carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully
integrated with other types of chemical reactions previously carried out mechanochemically, such as
amide bond formation by coupling amines with acyl chlorides or anhydrides and click-type coupling
reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical
ingredients Procainamide and Paracetamol could be synthesized from the respective nitro-precursors
on milligram and gram scale in excellent isolated yields.

Keywords: mechanochemistry; catalytic transfer hydrogenation; aromatic nitro derivatives;
ammonium formate; aging; ball milling; synthesis

1. Introduction

Catalytic hydrogenation is one of the most significant functional group transformation reactions in
organic synthesis and numerous procedures and reagents have been developed for that purpose [1,2].
As such, the hydrogenation reaction plays one of the key roles in many industrially important
processes, for example hydrogenation of carbon monoxide to methanol or in food industry for
the conversion of unsaturated vegetable oils into saturated triglycerides [3]. From a variety of
available protocols, we have selected to use of formic acid salts as the source of hydrogen as a
particularly appealing methodology [4–6]. In the presence of a catalytic amount of palladium on
carbon, ammonium formate undergoes decomposition to carbon dioxide, ammonia and hydrogen [7].
This type of hydrogenation reaction is typically performed in a solvent by stirring a heterogenous
mixture until the reaction is complete. Following the emergence of new greener methods for chemical
synthesis, ammonium formate promoted hydrogenation has been attempted under microwave
irradiation [8,9] and in ionic liquids [10]. Mechanochemistry by ball milling has attracted much
attention in the chemistry community as a promising methodology that meets many of the green
chemistry criteria [11–15]. Its effectiveness is reflected in often quantitative reaction yields and
short reaction times, high product purity, low energy consumption and cost. Simple sample
preparation that avoids bulk solvent and bench-top operation mode make it suitable for research and
educational laboratories [16], whereas the application of twin extrusion allows large scale solid-state
synthesis of compounds [17–19]. Novel methodological concepts, such as resonant acoustic mixing,
enable an efficient solid-state synthesis of pharmaceutical cocrystals [20] while technical solutions
like multiposition jars/adapters and ball milling compatible LED reactors and glass jars, assist in

Molecules 2018, 23, 3163; doi:10.3390/molecules23123163 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-7139-0881
https://orcid.org/0000-0002-1039-6569
https://orcid.org/0000-0003-2166-9259
http://dx.doi.org/10.3390/molecules23123163
http://www.mdpi.com/journal/molecules
http://www.mdpi.com/1420-3049/23/12/3163?type=check_update&version=3


Molecules 2018, 23, 3163 2 of 18

broadening the utility of mechanochemistry in high-throughput parallel synthesis [21] and solid-state
visible light photocatalysis [22].

Therefore, one can envisage that hydrogenation reaction might also be transferred into the arena
of mechanochemically-assisted organic synthesis [23–27]. Significant progress has been made over the
last several years in this respect, with mechanochemistry securing its place in organic chemistry areas
like organocatalysis [28–30] and metal-catalysis [31], C–H functionalization [32,33], multicomponent
reactions [34] and so forth. Considering the expansion of literature on utilising solid-state milling as a
synthetic tool, the mechanochemical hydrogenation still remains one of the underexplored areas with
only a few papers published (Scheme 1).
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For example, Delogu reported hydrogenation of carbon monoxide over solid
(Co50Fe50)0.2(TiO2)99.8 and Ni40(ZrO2)60 catalysts under ball milling conditions [35], while
Mack et al. developed a mechanochemical approach for the hydride reduction of esters to alcohols
using NaBH4/LiCl system [36]. An example of catalytic hydrogenation reaction using Pd/C as
the catalyst under a pressure of hydrogen gas (unpublished results) was provided in a review by
Kaupp [37], who described the gas-solid synthesis of norbornane-endo-2,3-dicarboxylic anhydride
from the norbornene derivative in 200 g batches. The product was easily sublimed off from the
catalyst but milling was not applicable if volatile liquids had to be constantly pumped off or if the
products had become liquid or sticky. A few literature sources report on the mechanochemical
reductive dehalogenation [38–40], for example catalytic hydrodechlorination of aromatic chlorinated
compounds such as hexachlorobenzene by using calcium hydride, sodium hypophosphite or
borohydride as the hydride donors in a ball mill [41]. Sawama reported on an interesting example
of hydro- and deuterogenation of unsaturated substrates by H2O or D2O as H2 or D2 sources in a
planetary ball mill. Chromium and nickel, as structural components of SUS304 stainless steel jars and
balls used in experiments, reduce H2O/D2O generating H2/D2 in situ under rather harsh milling
conditions [42,43]. In their latest report, in-situ generation of hydrogen gas from alkanes or even
diethyl ether was demonstrated [44]. Hapiot et al. described gold nanoparticles-catalysed (AuNPs)
reduction of several o-, m- and p-halogenated nitrobenzene derivatives by ball milling. With sodium
borohydride as the reducing agent, cyclodextrin-stabilised AuNPs were employed as catalysts to
achieve nitro-group reduction [45]. Most recently, Moores and Li employed milling for the catalytic
transfer hydrogenation (CTH) of ketones and aldehydes to alcohols using polymethylhydrosiloxane
with either tetrabutylammonium fluoride/silica or potassium fluoride/18-crown-6 mixtures as
additives [46]. The authors demonstrated a successful reduction of the carbonyl group in the presence
of potentially reactive functionalities such as alkenes or alkynes, carboxylic, cyano and nitro groups.

The reduction of aromatic nitro-group is a well-documented organic transformation [47–54].
Traditionally, the reaction is carried out in a suitable solvent under an atmosphere of hydrogen in
the presence of a catalyst. Hydrogen gas can also be generated by the action of an acid (HCl or
acetic acid) on metals such as zinc, iron or indium where electron transfer produces reduced radical
species or indirectly from hydrogen transfer reagents (donors), for example formate salts or hydrazine.
Except for the AuNP-catalysed reduction of halogenated nitrobenzenes using NaBH4 [45], it seems
that mechanochemical approach has otherwise not been employed for the conversion of nitroaromatics
to substituted anilines.

Here, we opted for easy-to-handle crystalline ammonium formate as a cheap, water soluble and
low hazard hydrogen source which, in combination with Pd-C catalyst and silica as the only additive,
allows for an environmentally-friendly mechanochemical catalytic transfer hydrogenation (CTH) of
aromatic compounds containing the nitro functionality (Scheme 1). This method also avoids working
with pressurized hydrogen gas which requires a special experimental setup and enables simple and
easy-to-implement procedure in research laboratories but also in organic chemistry education as
a model mechanochemical reduction reaction. Still, precautions are advised since aromatic nitro
derivatives are toxic and potentially explosive.

In this paper, we demonstrate how simple milling of the reactant mixture in a ball mill provides
an environment for efficient synthesis of a series of aromatic amines by CTH of nitro derivatives,
particularly targeting biologically active compounds such as procainamide and paracetamol. Selected
reactions have also been carried out on 1.0 g scale, whose efficiency matched the milligram scale ones.

2. Results and Discussion

Initially, all reactions were carried out by grinding a mixture of a nitroarene, ammonium formate
and palladium on carbon (10 wt%) under solvent-free or neat grinding (NG) conditions. While CTH
reactions in solution typically require 1.5–2.0 equivalents of ammonium formate as hydrogen source
and extensive solvent extraction purification [55,56], solid-state milling approach allowed the loading
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to be decreased to 10 mol% excess with simple filtration-based work-up. However, a practical problem
of diminished isolated yields was encountered in all cases due to inefficient mixing and recovery of
the crude product caused by its sticky nature. For that reason, we employed silica as an inert solid
support, which improved the appearance of the crude mixture to fine powder, enabling quantitative
recovery of the material from the grinding jar. Due to build-up of pressure during the reaction, the jars
were carefully opened in a well ventilated fume hood to allow safe release of gaseous by-products
(CO2 and strong odour of NH3).

The advantage of performing the solid state ammonium formate promoted hydrogenation reaction
is revealed in Figure 1b. The rate of 3-nitrobenzonitrile (1a) reduction as a model reaction (Figure 1a)
in methanol (solution reaction) at room temperature using the same molar quantities of reactants as in
milling reaction (1.1 eq of formate, 2 mol% of Pd/C (10 wt%)) shows partial conversion to product
2a (ca. 70% after 90 min) monitored by HPLC. In the case of mechanochemical synthesis, the LAG
reaction reaches quantitative conversion in 60 min [57]. We note that 3-nitrobenzonitrile reduction
under neat grinding conditions is much less efficient in comparison with LAG reaction, reaching only
ca. 55% conversion after 90 min. As previously demonstrated for mechanochemical amination of
thiocarbamoyl benzotriazoles, the physico-chemical interaction of in situ formed gases and liquids
used in LAG can have a profound effect on the outcome of milling reactions [58].
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Figure 1. (a) Mechanochemical CTH model reaction; (b) Conversion of 3-nitro-benzonitrile during
CTH determined by HPLC analysis. Reaction conditions: 3-nitrobenzonitrile (1.0 mmol), ammonium
formate (3.3 mmol, 1.1 equivalent), 10 wt% Pd/C (21 mg, 2 mol%). In milling experiments, a 10 mL
grinding jar containing one 12 mm stainless steel ball was charged with silica (175 mg) as an additive
and 137 µL of methanol (LAG). The solution reaction was performed in methanol (10 mL) with stirring
(1000 rpm) at 22 ◦C.

Surprisingly, we note that the model reaction did not take place under aging conditions in open
air, that is, without an extensive mechanical agitation. For example, when the reaction mixture
was gently homogenized by brief manual grinding (ca. 2–3 min) in a mortar and left open at room
temperature (25 ◦C) for 3 days, TLC, FTIR-ATR and 1H NMR analyses indicated complete absence of
3-cyanoaniline (2a) (Figure 2a–d). IR analysis also revealed quantitative decomposition of ammonium
formate where only the characteristic absorption bands of the reactant 1a (3079, 2236, 1617, 1529,
1353, 734 and 668 cm−1) and silica (1068 cm−1) were identified. Quantitative decomposition of
HCOONH4 rapidly took place (2 h) in air when the nitro-substrate was left out. On the other hand,
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milling Pd/C-silica-HCOONH4 mixture without 1a for 60 min resulted in partial decomposition of
ammonium formate under neat or LAG conditions (ca. 20% conversion, Figure 2g) [59]. Comparison
of IR spectra showed complete disappearance of the characteristic HCOONH4 absorption bands
(2794, 1704, 1585, 1342 and 773 cm−1) on aging these mixtures overnight in air (Figure 2h), which is
consistent with the observations in attempted aging of the model reaction. We conclude from these
experiments that in open air ammonium formate undergoes Pd-catalysed decomposition to hydrogen
(H2), carbon dioxide (CO2) and ammonia (NH3) gases, without affecting the reduction of the nitro
substrate when present.
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Figure 2. FTIR-ATR monitoring of aging reactions in open air. Reaction mixture after (a) gentle
manual grinding for 2–3 min; (b) aging for 3 days; (c) 3-nitrobenzonitrile (1a); (d) 3-cyanoaniline (2a);
(e) ammonium formate; (f) silica; (g) LAG for 60 min without substrate 1a; (h) LAG-mixture under (g)
after aging for 2 h in air.

Next, the 1a-Pd/C-silica-HCOONH4 mixture (0.5 mmol scale) was left undisturbed in a sealed
10 mL milling jar for 3 days. 1H NMR analysis showed 59% yield of aniline 2a, suggesting that
the reaction could take place even by aging but in a closed system. To verify this hypothesis, an
experiment was designed where the model reaction mixture (0.5 mmol scale) underwent aging in glass
vials of different volume, that is, 2, 5, 10, 20 and 50 mL. The 50 mL vial simulated an “open system”
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whereas smaller vials represented “closed systems” (Figure S2, ESI). In this way, by decreasing the
reactor volume from 50 to 2 mL, the effect of internal pressure increase was achieved. After 3 days of
aging, 1H NMR analyses confirmed that the model reaction did not proceed in the largest 50 mL vial.
On contrary, the product yield in 20 mL vial averaged at 15% and levelled off at around 60% in 2, 5 and
10 mL vials (Figure 3a). The solid reaction mixtures were then left undisturbed in open air for 24 h and
analysed by IR and NMR spectroscopy. As expected, IR spectra showed complete disappearance of
ammonia formate absorption bands, initially present upon opening the vials (Figures S4 and S5) while
1H NMR revealed no or only minor changes in the composition of the reaction mixtures (Figure S3).
These results indicate a strong correlation between the product yield and pressure but also provide
some insight into the possible reaction mechanism outlined in Figure 3b.
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room temperature; (b) Proposed reaction mechanism with preferred reaction paths in open and
closed systems.

Previous studies postulate the adsorption of formate ion on the surface of Pd-catalyst as the first
step (Pd(HCOO–)ad) [60–62]. Upon release of CO2 molecule and formation of activated Pd-hydride
species (labelled as Pd(H–)ad), ammonium cations acting as Brønsted acid protonate these hydride
species, generating hydrogen and ammonia gases. Alternatively, substrate molecules compete
with NH4

+ ions for Pd(H–)ad sites and following the hydride transfer to NO2-group, the resulting
intermediate is protonated by NH4

+ with the release of NH3 molecule. These species then re-enter the
catalytic cycle and eventually afford the aniline product (which explains the required substrate:donor =
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1:3 stoichiometry). While Pd-catalysed HCOONH4 decomposition generates 3 equivalents of gaseous
products (H2, CO2 and NH3) per 1 equivalent of the salt, during CTH reaction 2 equivalents are
released (CO2 and NH3). The respective reaction volume changes are denoted as ∆rV1 and ∆rV2,
whereas ∆rV1 > ∆rV2 [63]. This implies that the former reaction (∆rV1) is more susceptible to pressure
changes than the latter one (∆rV2). In particular, in accordance with Le Chatelier’s principle an increase
in the internal pressure should suppress the reaction with larger ∆rV, in our case ammonium formate
decomposition. However, this reaction pathway is preferred in an open system (large reactor volumes
or completely exposed to air) where gases freely escape the reaction mixture and due to irreversibility
of this process, the reduction of NO2-group does not occur. In a closed system, the preferred reaction
path would be CTH as it is less sensitive to higher internal pressure. The competition between these
two possible reaction channels is best reflected in higher conversion of 1a and increased yield of 2a on
reducing the reactor volume (Figure 3a). When the 1a-Pd/C-silica-HCOONH4 mixture (0.5 mmol scale)
was briefly ball milled in a 10 mL jar for only 2 min, prior to aging for 3 days at room temperature,
the yield of 2a reached 88%. This also illustrates the importance of ball milling for the efficiency of
CTH since the introduction of mechanical agitation into the aging system alleviates the 60% yield
plateau and facilitates effective mixing, mass transfer and fresh surface exposure, thus allowing for a
quantitative synthesis of 2a and a number of other aromatic derivatives in 90 min (Table 1). Finally,
the dual reactivity was exploited in the isolation procedure where a slight excess of HCOONH4 is
efficiently removed from the crude reaction mixture by allowing it to stand in air overnight and
decompose to gaseous by-products.

In the studied system, an important consideration is the effect of milling on the particle size
and their morphology. Samples of commercial and milled Pd/C catalyst, as well as the catalyst
milled in the presence of silica were analysed by scanning electron microscopy (SEM) as shown in
Figure 4. Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized
into aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8).
On milling for 60 min, their size and morphology drastically change and the sample becomes more
homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7
and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved
after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 µm. Analysis of the
catalyst milled with silica under solvent-free conditions reveals similar average particle size range,
suggesting that LAG has no influence on particle size in this system.
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CTH of 3-nitrobenzonitrile.
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Table 1. The scope of mechanochemical catalytic transfer hydrogenation 1.
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o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

o-2b, 99% (99%)
m-2b, 98% (96%)
p-2b, 95% (96%)
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2n-S, n.r. (X=S)
2n-O, 96% (X=O)
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

o-2c, 99%
m-2c, 94%
p-2c, 99%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2o, 95% 3
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

o-2d, 98%
m-2d, 99%
p-2d, 97%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

p-2p, 17%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2e, 99%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

o-2p, 42%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2f, 99%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2q, 37%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2g, 94%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

m-2r, 99% (R=Ph)
p-2r, 99% (R=Ph)
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2h, 93%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 

2s, 95%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 

m-2d, 99% 

p-2d, 97% 

 

p-2p, 17% 

 

2e, 99% 

 

o-2p, 42% 

 

2f, 99% 

 

2q, 37% 

 

2g, 94% 

 

m-2r, 99% (R=Ph) 

p-2r, 99% (R=Ph) 

 

2h, 93% 

 

2s, 95% 

 

2i, 99% 

 

2t, 95% (R=H) 

2u, 84% (R=Me) 2i, 99%
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the presence of silica were analysed by scanning electron microscopy (SEM) as shown in Figure 4. 

Energy-dispersive X-ray spectroscopy (EDS) analysis indicates that palladium is organized into 

aggregates of different sizes adsorbed on the surface of carbon particles (Figures S6 and S8). On 

milling for 60 min, their size and morphology drastically change and the sample becomes more 

homogeneous with palladium distribution more uniform as suggested by EDS analysis (Figures S7 

and S9). Similar effect is observed in Pd/C milled with silica where the average particle size achieved 

after 60 min of LAG (methanol, 12 mm ball size, 30 Hz) is estimated at ca. 0.1–1.0 μm. Analysis of the 

catalyst milled with silica under solvent-free conditions reveals similar average particle size range, 

suggesting that LAG has no influence on particle size in this system. 

Table 1. The scope of mechanochemical catalytic transfer hydrogenation. 1. 

 
Product Yield 2 Product Yield 

 

o-2b, 99% (99%) 

m-2b, 98% (96%) 

p-2b, 95% (96%) 
 

2n-S, n.r. (X=S) 

2n-O, 96% (X=O) 

 

o-2c, 99% 

m-2c, 94% 

p-2c, 99% 
 

2o, 95% 3 

 

o-2d, 98% 
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were ground in a 10 mL jar using one 12 mm stainless steel ball at 30 Hz for 90 min. Methanol was 

used for LAG (η 0.25 μL mg−1). 2 For 2b isomers, yields in the parentheses refer to CTH of the 

respective dinitrobenzenes on 0.75 mmol scale. 3 For compounds 2l-Phe, 2l-Val, 2o and 2w, 2.2 eq of 

HCOONH4 and 5 mol% of Pd/C were required, while for 2j, p-2p and o-2p, blue colour indicates the 

position of the reduced nitro group. Other details can be found in the Supplementary Materials. 

Following the initial studies on the reduction of 3-nitrobenzonitrile (1a) to 3-cyanoaniline (2a), 

we focused our efforts on investigating the scope of mechanochemical CTH reaction (Table 1). Simple 

nitroaromatic derivatives such as o-, m- and p-nitroanilines and phenols gave the respective 

phenylenediamines (o-, m- and p-2b) and aminophenols (o-, m- and p-2c) in almost quantitative 

yields. 1,2-, 1,3- and 1,4-dinitrobenzenes also smoothly underwent the reduction and led to excellent 

isolated yields of phenylenediamines (o-, m- and p-2b). The same results were obtained with o-, m- 

and p-nitrobenzoic acids, 3,5-dinitrobenzoic acid and 2-nitroterephthalic acid as the carboxylic group 

containing substrates, which all efficiently gave aminobenzoic acids 2d–f. Next, we wanted to 

investigate the compatibility of our mechanochemical approach with different protecting groups, for 

example acetyl, ethyl carbamoyl, tert-butoxycarbonyl (Boc) and 9-fluorenylmethyloxycarbonyl 

(Fmoc). Gratifyingly, in all cases the protecting group survived the reduction conditions and afforded 

substituted anilines 2g–j in high yields. In the case of amino acid derivatives, the Boc-protection in 

alanine compound 2k, as well as Fmoc-protection present in phenylalanine compound 2l-Phe and 

valine product 2l-Val did not interfere with the reduction of the nitro group which proceeded in a 

straightforward and clean fashion. This result is in contrast to the reported Fmoc-deprotection of 

amino acids which was accomplished under relatively mild conditions by hydrogenation (1 atm, 

baloon) in methanol solution using 10 wt% of Pd/C catalyst [64]. 4-Nitrophthalimide (1m), as a model 

compound containing the imide functionality, was also quantitatively converted to 4-amino-

phthalimide (2m). 

Expectedly, N-(3-nitrophenyl)-N'-phenylthiourea (1n-S) did not react as it is known from 

literature that sulphur is not compatible with this type of hydrogenation reaction due to catalyst 

poisoning [65,66]. On the other hand, the presence of an oxygen atom in the analogous N-(3-

nitrophenyl)-N'-phenylurea (1n-O) did not affect the catalyst activity and led to an excellent 96% 

isolated yield of aminophenylurea 2n-O in 90 min. 3-Nitroacetophenone 1o only partially reacted 
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example acetyl, ethyl carbamoyl, tert-butoxycarbonyl (Boc) and 9-fluorenylmethyloxycarbonyl 
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alanine compound 2k, as well as Fmoc-protection present in phenylalanine compound 2l-Phe and 

valine product 2l-Val did not interfere with the reduction of the nitro group which proceeded in a 

straightforward and clean fashion. This result is in contrast to the reported Fmoc-deprotection of 

amino acids which was accomplished under relatively mild conditions by hydrogenation (1 atm, 

baloon) in methanol solution using 10 wt% of Pd/C catalyst [64]. 4-Nitrophthalimide (1m), as a model 
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Expectedly, N-(3-nitrophenyl)-N'-phenylthiourea (1n-S) did not react as it is known from 

literature that sulphur is not compatible with this type of hydrogenation reaction due to catalyst 
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literature that sulphur is not compatible with this type of hydrogenation reaction due to catalyst 
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compound containing the imide functionality, was also quantitatively converted to 4-amino-

phthalimide (2m). 
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Following the initial studies on the reduction of 3-nitrobenzonitrile (1a) to 3-cyanoaniline (2a),
we focused our efforts on investigating the scope of mechanochemical CTH reaction (Table 1).
Simple nitroaromatic derivatives such as o-, m- and p-nitroanilines and phenols gave the respective
phenylenediamines (o-, m- and p-2b) and aminophenols (o-, m- and p-2c) in almost quantitative
yields. 1,2-, 1,3- and 1,4-dinitrobenzenes also smoothly underwent the reduction and led to excellent
isolated yields of phenylenediamines (o-, m- and p-2b). The same results were obtained with o-,
m- and p-nitrobenzoic acids, 3,5-dinitrobenzoic acid and 2-nitroterephthalic acid as the carboxylic
group containing substrates, which all efficiently gave aminobenzoic acids 2d–f. Next, we wanted
to investigate the compatibility of our mechanochemical approach with different protecting groups,
for example acetyl, ethyl carbamoyl, tert-butoxycarbonyl (Boc) and 9-fluorenylmethyloxycarbonyl
(Fmoc). Gratifyingly, in all cases the protecting group survived the reduction conditions and afforded
substituted anilines 2g–j in high yields. In the case of amino acid derivatives, the Boc-protection in
alanine compound 2k, as well as Fmoc-protection present in phenylalanine compound 2l-Phe and
valine product 2l-Val did not interfere with the reduction of the nitro group which proceeded in a
straightforward and clean fashion. This result is in contrast to the reported Fmoc-deprotection of amino
acids which was accomplished under relatively mild conditions by hydrogenation (1 atm, baloon) in
methanol solution using 10 wt% of Pd/C catalyst [64]. 4-Nitrophthalimide (1m), as a model compound
containing the imide functionality, was also quantitatively converted to 4-amino-phthalimide (2m).

Expectedly, N-(3-nitrophenyl)-N’-phenylthiourea (1n-S) did not react as it is known from literature
that sulphur is not compatible with this type of hydrogenation reaction due to catalyst poisoning [65,66].
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On the other hand, the presence of an oxygen atom in the analogous N-(3-nitrophenyl)-N’-phenylurea
(1n-O) did not affect the catalyst activity and led to an excellent 96% isolated yield of aminophenylurea
2n-O in 90 min. 3-Nitroacetophenone 1o only partially reacted under standard 1.0 mmol scale
conditions. This reduction resulted in 11% conversion to the product 2o in 90 min but increasing
the ball-to-reactant ratio [67] from 10.6 to 21.1 by lowering the scale to 0.5 mmol, as well as
increasing the HCOONH4 and Pd/C loadings to 2.2 eq and 5 mol%, proved beneficial providing
3-aminoacetophenone (2o) in 95% isolated yield after 6 h milling.

In the case of halogen-substituted nitroarenes, for example 2-chloro-4-nitroaniline (p-1p)
and 4-chloro-2-nitroaniline (o-1p), CTH with 1.1 eq of ammonium formate gave a mixture of
the hydrogenation and dehalogenation products after 90 min of LAG, as established by GC
analysis. Following chromatographic separation, 2-chloro-1,4-phenylenediamine (p-2p) (17%) and
4-chloro-1,2-phenylenediamine (o-2p) (42%) were isolated. Interestingly, MS analysis of polar
fractions (MeOH as eluent) from the reduction of 4-chloro-2-nitroaniline (o-1p) indicated the presence
of compounds with m/z values 212 and 246, which correspond to 2,2′-diaminoazobenzene and
2,2′-diamino-4-chloroazobenzene, respectively (Figure S10, ESI). According to the generally accepted
mechanism of NO2 to NH2 reduction [51,53], azobenzene species have been proposed as reactive
intermediates, implying that in our case the CTH reaction was not complete despite almost quantitative
conversion of the starting nitro derivatives p-1p and o-1p, as shown by GC analyses (Figures
S11–S13). This is the result of HCOONH4 being consumed for the cleavage of carbon-chlorine
bond, which disrupts the stoichiometry required for a quantitative reduction to the amino product.
Unfortunately, increasing the amount of the hydrogen donor to 2.2 eq (6.6 mmol) or catalyst loading
to 5.0 mol% again led to dehalogenation as the primary reaction pathway. Similarly, a selective
NO2-reduction in the presence of O-benzyl protecting group in compound 1q failed with only 37%
yield of the desired amino-derivative 2q after chromatographic purification. Here, the cleavage of
O–Bn bond competes with the reduction of NO2 group leading to a mixture of unreacted 1q, 2q, p-1c
and p-2c (4-nitro- and 4-aminophenol).

As examples of α,β-unsaturated carbonyl compounds, m- and p-nitrochalcones m-1r and p-1r
were subjected to mechanochemical reduction. While the respective aminochalcones m-2r and p-2r
were isolated in quantitative yields, we did not observe reduction of the carbonyl groups in these
reactions, which makes the proposed synthetic protocol complementary to the recently published CTH
of aldehydes and ketones [46]. The quantitative conversion was also observed for 4-nitrotoluene (1s)
which gave 95% of p-toluidine (2s) after isolation. CTH of the corresponding nitro substrates 1t, 1u and
1v efficiently afforded 5-aminoquinoline (2t), 5-amino-4-methylquinoline (2u) and 8-aminoquinoline
(2v) as representatives of pyridine-fused nitroaromatics.

The most challenging substrates were found to be polyaromatic nitro derivatives, for example
1-nitronaphthalene (1x), 9-nitroanthracene (1y) and 1-nitropyrene (1z) where GC analysis showed
only traces of 9-aminoanthracene after 6 h of milling and no reaction with the pyrene compound.
Naphthalene derivative 1x displayed some reactivity based on NMR analysis of the crude reaction
mixture. Under standard conditions (1.0 mmol, 90 min), 18% of 1-aminonaphthalene (2x) was obtained
while prolonging the reaction time to 6 h increased the yield to 37% [68]. Interestingly, 6-nitrotetralin
(1w) was more reactive and afforded 40% of 6-aminotetralin (2w) after 90 min. Still, quantitative
conversion to 2w required 2.2 eq of HCOONH4 (6.6 mmol), 5 mol% of Pd/C and 3 h of milling.

Finally, we wanted to demonstrate the utility of mechanochemical CTH reaction in the multi-step
milling syntheses of two active pharmaceutical ingredients (API) and two structural analogues of
urea-type anion sensors. The first example describes a successful two-step preparation of an API
procainamide (5). Procainamide is classified as a sodium channel blocker used in treatment of cardiac
arrhythmia, administered orally or intravenously [69]. Previously, there have been several attempts
at utilizing mechanochemistry for the synthesis of biologically active compounds and APIs [70],
for example teriflunomide [71], Leu-enkephalin [72], atorvastatin [73] and several sulfonylureas [74].
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Here we wish to extend the list of useful marketed drugs amenable to mechanochemical milling
synthesis (Scheme 2).Molecules 2018, 23, x FOR PEER REVIEW  11 of 18 
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Scheme 2. Two-step mechanochemical synthesis of active pharmaceutical ingredients (a) procainamide
(5); (b) paracetamol (6) by coupling mechanochemical nitro-group reduction, amide formation and
acetylation; (c) Integration of CTH with amine-iso(thio)cyanate coupling for the mechanochemical
three-step synthesis of bis (thio)ureas 7a–b. For details, see Supplementary Materials.

Excellent conversion of 4-nitrobenzoic acid to 4-aminobenzoic acid (p-2d) was further explored
in CTH reaction of 4-nitrobenzoyldiethylethylenediamine (4) which is a precursor for procainamide
on the industrial scale synthesis. A two-step procedure, consisting of amide coupling followed by
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catalytic transfer hydrogenation, was employed to prepare 5 by solid state ball milling. The formation
of amide 4 in the first step was accomplished through mechanochemical K2CO3–assisted coupling of
solid 4-nitrobenzoylchloride (3) (1.1 eq) with N,N-diethylethylenediamine in the presence of silica as
the milling auxiliary [75,76]. Simple extraction with ethyl acetate furnished the pure nitro intermediate
4 in 88% yield. In the next step, 4 was subjected to CTH under LAG conditions using methanol to
afford procainamide (5) quantitatively in 90 min (Scheme 2a). As in previous examples, the crude
reaction mixture was suspended in methanol, followed by filtration and evaporation of the solvent,
yielding the target drug 5. The CTH of nitro-precursor 4 can be scaled-up to 5.0 mmol, affording 1.18 g
of procainamide (5) in quantitative yield after 6 h of milling.

Furthermore, 4-aminophenol (p-2c) obtained by mechanochemical hydrogenation of p-nitrophenol
(p-1c) was successfully utilized for the rapid and quantitative solvent-free synthesis of paracetamol
(6), a widely used analgesic and antipyretic active pharmaceutical ingredient (API) (Scheme 2b).
Acetylation of the amino group was in this case accomplished by milling an equimolar mixture of p-2c
and acetic acid anhydride for 30 min with silica as the milling auxiliary. To avoid using stainless steel
in a corrosive environment and also potential contamination of the sample with iron by the action of
acetic acid, all experiments were carried out in Teflon jars charged with a single 10 mm Teflon ball.
The product was separated from silica by simply suspending the crude mixture in methanol, filtration
and evaporation of the filtrate. To the best of our knowledge, this is the first example of paracetamol
synthesis aided by milling mechanochemistry. NMR and IR analyses of the product 6 confirmed
quantitative reaction and exclusive acetylation at the nitrogen atom. Each step (hydrogenation and
acetylation) was also done on a gram scale producing p-2c (10 mmol, 1.09 g) and 6 (6.6 mmol, 0.99 g) in
near quantitative isolated yields (99%). Paracetamol is known to crystallise in three polymorphic forms
(form I, II and III) with distinctive physical properties important to pharmaceutical application [77–79].
Powder X-ray diffraction (PXRD) analysis showed that paracetamol synthesised mechanochemically
by this route adopts the structure of form I (CSD refcode HXACAN01), which is the thermodynamically
most stable polymorph (Figure S36, ESI).

In our previous studies, the solid state ball milling approach was established as the
superior method for the synthesis of (thio)ureas by coupling amines with iso(thio)cyanates [80,81].
Particularly interesting feature of this method is the ability to quantitatively desymmetrise
1,2-phenylenediamine (o-2b) by reacting it with an equimolar amount of iso(thio)cyanate
electrophile [82]. Sterically less demanding 1,4-phenylenediamine (p-2b) proved to be much more
difficult substrate in this respect, resulting in a successful desymmetrisation reaction only with less
reactive 4-methoxyphenyl isothiocyanate. For the same reason, milling 1,3-phenylenediamine (m-2b)
with highly reactive phenyl isocyanate failed to selectively afford aminourea 2n-O (21%) [83]. With the
optimised mechanochemical CTH reaction conditions in hands, we now envisaged a three-step route
to bis(urea) and hybrid urea-thiourea derivatives 7a,b based on a 1,3-phenylene spacer group by
integrating the solid state click-type amine-isocyanate coupling with the mechanochemical CTH
of nitroarenes as the key "indirect" desymmetrization step (Scheme 2c). This approach produced
the desymmetrized amino-urea 2n-O in 88% yield (over two steps), which was then in the third
step successfully transformed into bis(urea) 7a (98%). Also, the introduction of a privileged
3,5-di(trifluoromethyl)phenyl structural motif in 7b was accomplished in 93% yield, resulting in
isolated yields for 7a,b over three steps of 87% and 82%, respectively.

3. Materials and Methods

In a typical experiment, a mixture of nitroarene (1.0 mmol), ammonium formate (3.3 mmol, 208 mg,
1.1 equivalent based on the donor:substrate = 3:1 stoichiometry required for a quantitative reduction of
the NO2 to NH2 functional group), 10 wt% palladium on carbon (21.0 mg, 2 mol%) and silica (175 mg)
was loaded into a 10 mL stainless steel grinding jar along with one 12 mm diameter grinding ball.
The mixture was ground in the presence of methanol as the grinding liquid (η = 0.25 µL mg−1) for
90 min, unless otherwise stated (see Table 1). The crude product was scraped off the walls of the jar,
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left in air overnight to allow excess ammonium formate to completely decompose and suspended in
10 mL of methanol. The suspension was filtered over a Büchner funnel and the filtrate was evaporated
to afford amino derivatives. If necessary, the products were purified by column chromatography.
Experimental details, spectroscopic and electron microscopy characterization data can be found in the
Supplementary Materials.

4. Conclusions

We have successfully demonstrated that an efficient catalytic transfer hydrogenation of
aromatic nitro compounds using readily available ammonium formate as hydrogen donor and
palladium on carbon as the catalyst can be accomplished under solid-state mechanochemical milling
conditions. The synthetic protocol, which is very simple and straightforward, tolerates a variety
of functional groups, including amino, hydroxyl, carboxyl, carbamate, amide, imide, urea, acetyl,
α,β-unsaturated carbonyl and fused heterocycles such as pyridine. The presence of halogen or
O-benzyl substituents results in diminished yields, while polyaromatic substrates are not compatible.
The mechanochemical approach has also been applied for the two-step synthesis of pharmaceutically
important procainamide and paracetamol drugs, both on milligram and gram scale. We have also
shown that the mechanochemical CTH can be coupled with the previously developed concept of
click-mechanochemistry, to enable a multi-step synthesis of (thio)urea hybrid molecules as potential
scaffolds in anion sensor and organocatalyst design.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/23/12/3163/
s1. General procedure for the mechanochemical reduction of nitroarenes, spectroscopic data for compounds 2a–x
and 4–7, catalytic transfer hydrogenation of 3-nitrobenzonitrile under aging conditions, SEM and EDS analysis
of the commercial and milled Pd/C catalyst samples, MS and GC analysis of CTH of 4-chloro-2-nitroaniline
(o-1p) and 2-chloro-4-nitroaniline (p-1p), 1H and 13C NMR spectra of selected compounds and PXRD analysis of
mechanochemically-synthesized paracetamol (6). Figure S1: 1H NMR spectrum of the crude reaction mixture
after 6 h of milling under standard conditions (1.0 mmol scale, 1.1 eq HCOONH4, 2 mol% Pd/C) for the catalytic
transfer hydrogenation of 1-nitronaphthalene (1x) to 1-aminonaphthalene (2x). Integration of the corresponding
signals revealed the ratio 1x:2x = 63:37, Figure S2: Aging experiments in vials of different volume. Each vial
contained a mixture of 0.5 mmol of 3-nitrobenzonitrile (1a), 1.65 mmol of HCOONH4 (104 mg, 1.1 eq), 2 mol% of
Pd/C catalyst (10.5 mg) and 87.5 mg of silica. This mixture was prepared by gentle manual grinding of 1a, Pd/C
and silica in a mortar, the resulting fine powder was then transferred to a vial, pre-ground ammonium formate
was stirred in and quickly sealed. The final mixture was gently shaken in the vial for ca. 10 s and left undisturbed
for 3 days, Figure S3: Representative 1H NMR spectra of the mixture taken from the 10 mL vial immediately after
opening and 24 h in air. The spectra were recorded in CDCl3. Notably, there is no significant change in the amount
of 3-cyanoaniline (2a), confirming that upon exposure to air ("open system") the NO2-reduction stops and the
primary reaction path becomes Pd-catalysed decomposition of HCOONH4, Figure S4: Representative IR spectra of
the aging mixture from 10 mL vial immediately after opening, 4 h and 24 h in air. Ammonium formate decomposes
in air revealing the absorption bands of 1a, 2a and silica after 24 h, Figure S5: Representative IR spectra of the
aging mixture from 20 mL vial immediately after opening, 4 h and 24 h in air. Ammonium formate decomposes in
air revealing the absorption bands of 1a and silica after 24 h, Figure S6: SEM analysis of commercial Pd/C catalyst
(10 wt%). (a–c) Typical morphology of carbon particles (ca. 10–100 µm) with palladium aggregates (shown in
light grey to white) of different sizes (from ca. 100 nm to several µm) distributed on carbon surface (500× and
5000×). (d) A close-up view of one Pd aggregate (50,000×). Each aggregate is composed of many nanometre-sized
Pd particles, Figure S7: SEM analysis of commercial Pd/C catalyst (10 wt%) milled for 60 min at 30 Hz using
a single 12 mm (7.0 g) stainless steel ball. Morphology of the samples a–d (500×–10,000×) is characteristic for
homogenization and pulverization of carbon particles during ball milling resulting in particle sizes ca. 0.5–5 µm,
Figure S8: SEM-EDS analysis of commercial palladium on carbon (10 wt%). A distinctive feature of the catalyst as
determined by SEM is the organization of palladium into aggregates (seen as small light particles) on the surface
of larger carbon particles. (a) Analysis of the selected area on a large carbon particle shows traces of Pd, (b) point
analysis on the same carbon particle identifies the palladium aggregate, (c) analysis of the selected area comprising
both carbon particles and Pd aggregates, Figure S9: SEM-EDS analysis of (a) commercial Pd/C catalyst (10 wt%)
milled for 60 min at 30 Hz using a single 12 mm (7.0 g) stainless steel ball shows a homogeneous distribution
of Pd over the entire selected area, (b) Pd/C catalyst milled in the presence of silica under LAG conditions for
60 min, (c) a post-workup sample of the mixture containing Pd/C and silica after LAG reduction of 1a to 2a
for 60 min. The intensity of Pd signal in EDS spectra under (b) and (c) is reduced because of dilution effect by
added silica. All samples contain iron contamination (Fe*) due to abrasion of stainless steel jar walls and the ball
during milling, Figure S10: MS analysis of the methanol fraction after CTH of 4-chloro-2-nitroaniline (o-1p) under
standard conditions. 2,2′-Diaminoazobenzene (Mr = 212) and 2,2′-diamino-4-chloroazobenzene (Mr = 246) were
identified as intermediates in the reaction mixture, which was consistent with the observed diminished yield (42%)
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of 4-chloro-o-phenylenediamine (o-2p) due to dehalogenation side reaction, Figure S11: GC analysis of the crude
mixture after CTH of 4-chloro-2-nitroaniline (o-1p). o-Phenylenediamine (tR = 4.18 min) and o-nitroaniline (tR =
5.06 min) are the by-products of dehalogenation side reaction. The reactant was consumed completely while the
signal at tR = 5.22 min corresponds to 4-chloro-o-phenylenediamine (o-2p) product, Figure S12: GC analysis of the
crude mixture after CTH of 2-chloro-4-nitroaniline (p-1p). p-Phenylenediamine (tR = 4.41 min) and p-nitroaniline
(tR = 5.77 min) are the by-products of dehalogenation side reaction. The reactant (tR = 6.06 min) was not
consumed completely while the signal at tR = 5.16 min corresponds to 2-chloro-p-phenylenediamine (p-2p) product,
Figure S13: GC analysis of the crude mixture after CTH of 2-chloro-4-nitroaniline (p-1p) with 2.2 eq of ammonium
formate (6.6 mmol). p-Phenylenediamine (tR = 4.41 min) and small amount of 2-chloro-p-phenylenediamine
(p-2p) were found as the only products, suggesting that dehalogenation became the primary reaction pathway,
Figures S14–35: 1H and 13C NMR spectra of 2g–2r, 2t–2w, 5 and 7a–b, Figure S36: PXRD analysis shows that
mechanochemically-synthesized paracetamol (6) adopts the crystal structure of the thermodynamically most
stable polymorph, form I.
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25. Tan, D.; Friščić, T. Mechanochemistry for Organic Chemists: An Update. Eur. J. Org. Chem. 2018, 18–33.

[CrossRef]
26. Colacino, E.; Porcheddu, A.; Halasz, I.; Charnay, C.; Delogu, F.; Guerra, R.; Fullenwarth, J. Mechanochemistry

for “no solvent, no base” preparation of hydantoin-based active pharmaceutical ingredients: Nitrofurantoin
and dantrolene. Green Chem. 2018, 20, 2973–2977. [CrossRef]

27. Andersen, J.; Mack, J. Mechanochemistry and organic synthesis: From mystical to practical. Green Chem.
2018, 20, 1435–1443. [CrossRef]

28. Chauhan, P.; Chimni, S.S. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach.
Beilstein J. Org. Chem. 2012, 8, 2132–2141. [CrossRef]

29. Rodríguez, B.; Rantanen, T.; Bolm, C. Solvent-Free Asymmetric Organocatalysis in a Ball Mill. Angew. Chem.
Int. Ed. 2006, 45, 6924–6926. [CrossRef]

30. Rantanen, T.; Schiffers, I.; Bolm, C. Solvent-Free Asymmetric Anhydride Opening in a Ball Mill. Org. Process
Res. Dev. 2007, 11, 592–597. [CrossRef]
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80. Štrukil, V.; Igrc, M.D.; Eckert-Maksić, M.; Friščić, T. Click Mechanochemistry: Quantitative Synthesis of
“Ready to Use” Chiral Organocatalysts by Efficient Two-Fold Thiourea Coupling to Vicinal Diamines.
Chem. Eur. J. 2012, 18, 8464–8473. [CrossRef] [PubMed]
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