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Abstract

Three novel water-soluble ruthenium complexes having differently bound alliin ligand were 

prepared by solution synthesis and characterized by chemical analysis, infrared, mass, nuclear 

magnetic resonance and electron paramagnetic resonance spectroscopies. The reaction of 

(de)protonated alliin with cis,fac-[RuCl2(dmso-S)3(dmso-O)] in the presence of silver triflate 

afforded cationic [RuII(dmso-S)2(alliin-NS)2]2+ (1) and neutral [RuII(dmso-S)(OH2)(alliin-

NO)2] (2), while [RuIII(NH3)5(alliin-O)]2+ (3) was prepared starting from [RuCl(NH3)5]Cl2. 

The interaction of the complexes with bovine serum albumin and apo-transferrin was 

investigated by spectrofluorimetry. Complexes showed higher affinity toward BSA compared 

to apo-transferrin. Deeper insight into the nature of the binding forces between the complexes 

and BSA was provided from the thermodynamic measurements, synchronous and 3D 

emission spectra. Different coordination modes of alliin in complexes (1) – (3) affect the type 

of the binding forces between the complexes and BSA. Complexes having O-bound alliin, (2) 

and (3), predominantly interact with the BSA through hydrogen bonding and van der Walls 

interactions, while the hydrophobic forces govern the interaction of (1) with BSA. In vitro 

antiproliferative and antimicrobial activity of the complexes and alliin was also tested. 

Key words: ruthenium, alliin, S-Allyl-L-cysteine sulfoxide, coordination modes, BSA.
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1. Introduction

Solutions to the challenges posed to inorganic chemists by modern scientific era are often 

sought in the chemistry of coordination compounds. The predictability of the properties 

grounded on the chemical portrait of compounds, coupled with the very wide variety of metal 

centers, donor atoms and versatile stereochemistry of ligands represent an enormous potential 

in designing the exceedingly specific and highly active coordination compounds toward pre-

defined target or chemo-physical process. In light of this, coordination chemistry offered 

brilliant solutions in fields ranging from catalysis to medical applications. 

Platinum group metals, especially platinum and very attractive alternative ruthenium, are the 

most extensively studied due to their potential therapeutic applications in treatment of the 

malignant diseases.1-4 Due to the empirically established fact that the coordination of organic 

molecules to metal ions regularly results in improved activity of the metal complexes, very 

commonly immanently biologically active ligands are the choice for the coordination to the 

metal ions in designing the new metal-based therapeutics.5-11 A very tempting option is alliin. 

Alliin, namely S-Allyl-L-cysteine sulfoxide, is an unsaturated cysteine-derived amino acid 

naturally occurring in garlic bulbs.12 Many health-beneficial properties of garlic are attributed 

to alliin and allicin, a highly active thiosulfinate compound that is produced by alliinase-

mediated alliin decomposition.13 Allicin is relatively unusable compound and any therapeutic 

use of allicin should include its generation in situ from more stable alliin. Production rate of 

allicin and the kinetic control of its release at targeted place could be controlled by 

complexation. Additionally, alliin’s water-solubility, biological recognizability along with 

predispositions for strong biological activity coupled with diversity of coordination properties 

inspired the synthesis of palladium(II)14 and platinum(II)15 complexes. Also, complexes of 

deoxyalliin and other alliin-like ligands were prepared.16-21 

As stereochemically flexible ligand, having several potentially donor- atoms, including 

nitrogen, sulfur and oxygen, alliin can coordinate metal ions in different fashions as mono, bi 

and tridentate neutral or monobasic ligand. The different coordination modes of the ligand 

affect chemical and physical properties of corresponding complex.22-25 This opens the 

possibility for controlling the properties of complexes with alliin including those relevant for 

biological application such as inertness-lability, water-solubility, lipophilicity, charge etc.
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Important targets of alliin – metal complexes might be proteins, the most abundant 

bimolecular targets in blood. Their importance is a reflection of the fact that alliin is absorbed 

directly to blood26 and that the action mode of allicin is related to S-containing proteins.27 

Also, many biologically active ruthenium complexes bind proteins.28-30

Inspired by the above mentioned facts, we prepared and characterized three new heteroleptic 

water-soluble ruthenium - alliin complexes emphasizing the different coordination abilities of 

alliin. Also, we investigated their interaction with apo-transferrin and bovine serum albumin 

and tested their in vitro antiproliferative and antimicrobial activity.  

2. Experimental

2.1. Chemicals

All chemicals were supplied from commercial sources and used as received without further 

purification unless otherwise indicated. L-Cysteine (p.a.) was obtained from Sigma and allyl 

bromide from Merck and it was distilled twice prior the use. Cis,fac-[RuCl2(dmso-S)4(dmso-

O)] and [Ru(NH3)5Cl]Cl2 were prepared by published procedures.31, 32 Lyophilized powder of 

bovine serum albumin (≥ 96%) and human apo-transferrin (≥ 97%) were purchased from 

Sigma.

2.2. Physical measurements 

Elemental analysis was carried out using Perkin Elmer 2400 Series CHNS/O analyzer. 

Ruthenium content was determined by published procedure.33 Mass spectra were recorded 

using 4800 Plus MALDI TOF/TOF analyzer in the positive ion reflector mode in 10 – 2000 

Da region using α-cyano-4-hydroxycinnamic acid matrix. 1H and 13C NMR spectra were 

collected using NMR Bruker Avance 600 instrument from D2O or MeOH-d4 solution at 600 

and 150 MHz, respectively using Me4Si as internal standard. Infrared spectra were recorded in 

4000 – 400 cm-1 region as KBr pallets using Perkin Elmer BX FTIR. Fluorescence 

measurements were done using Perkin Elmer LS 55 Luminescence. The X-band ESR 

measurements have been performed on a Bruker Elexsys 580 FT/CW spectrometer in the 

range from liquid nitrogen to room temperature. The microwave frequency was around 9.7 

GHz, the magnetic field modulation amplitude 0.5 mT and the modulation frequency 100 

kHz.
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2.3. Interaction with proteins

Interaction with proteins was carried out in 10 mM Tris-HCl buffer solution at pH 7.42. In the 

case of apo-transferrin, solution additionally contained 25 mM NaHCO3. Stock solutions of 

proteins (~ 1 µM) were prepared prior measurements and were not used longer than 2 days. 

Protein concentrations were determined spectrophotometrically using extinction coefficient of 

43 824 M-1 cm-1 for BSA and 83 800 M-1 cm-1 for apo-transferrin. Stock solutions of 

complexes and alliin (~ 0.4 mM) were prepared in water.

Titration experiments were carried out at controlled temperature (± 0.1°C) by adding the 

microliters amounts (10 – 60 µL) of stock solution of complex to protein solution (2.000 mL) 

with equilibration time of 2 minutes. 

Emission spectra were recorded in 290 – 420 nm range for BSA and 300 – 400 nm range for 

apo-transferrin with excitation wavelength at 278 nm in both cases. Synchronous fluorescence 

spectra of BSA in the absence and presence of an increasing concentrations of complexes 

were recorded in 250 – 310 nm range at Δλ = 15 nm and Δλ = 60 nm. Three-dimensional 

fluorescence spectra were recorded in 200 – 500 nm emission range with 200 – 350 nm 

excitation range. 

2.4. In vitro biological activity

Antiproliferative activities of complexes and ligand were tested at several cell lines including 

HeLa (cervical carcinoma), SW620 (colorectal adenocarcinoma, metastatic), MCF-7 (breast 

adenocarcinoma), CFPAC-1 (ductal pancreatic adenocarcinoma) and HFF-1 (foreskin 

fibroblasts). The cell growth rate was evaluated by performing the MTT assay.34 The IC50 

values for each compound were calculated from dose-response curves using linear regression 

analysis. More details is given in Supplement. 

Antimicrobial activity was tested on Gram-positive bacteria Staphylococcus aureus, Gram-

negative bacteria Pseudomonas aeruginosa, Escherichia coli and fungi Candida albicans. 

The diameter of the inhibition zone of bacterial growth was measured after applying an 

aliquot (50 μL) of aqueous solution of the tested agent (2 mg mL−1) into the drilled wells and 

incubating it for 24 h at 37°C. Vancomycin, gentamicin, and nystatin were used as positive 

controls and water as negative control.
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2.5. Synthesis

2.5.1. Synthesis of ligand

L-Deoxyalliin and (±)-L-Alliin were prepared by reported procedures with slight 

modifications.35-37 

Synthesis of L-Deoxyalliin (S-Allyl-L-cysteine)

Ethanol-water mixture (240 mL; 5/1, v/v) was placed in a 500 mL Erlenmeyer flask equipped 

with gas purging inlet and magnetic stir bar. Potassium hydroxide (18.52 g; 0.33 mol) was 

dissolved in ethanol-water mixture after which a clear solution was deaerated by purging the 

argon gas. To thus obtained solution L-cysteine (20 g; 0.165 mol) was added portion wise and 

the mixture was stirred until complete dissolution, after witch allyl bromide (19.96 g; 0.165 

mol) was added drop wise. A clear solution was stirred at ambient temperature for next 24 

hours after which was acidified by glacial acetic acid to pH 5.5. A white powder of L-

deoxyalliin was filtered through fritted glass funnel B4, washed with ice-cold ethanol (40 mL) 

and dried under reduced pressure. Yield: 20.33 g (76%). 

Synthesis of (±)-L-Alliin (S-Allyl-L-cysteine sulfoxide) - HL

The suspension of deoxyalliin (6.00 g; 0.037 mol) in water (40 mL) was magnetically stirred 

at room temperature for one hour after which hydrogen peroxide (30% w/v, 4.22 g; 0.037 

mol) was added drop wise within one hour. The ivory white suspension was stirred for 24 

hours at room temperature, after which the volume was reduced by vacuum distillation up to 

20 mL. The solution was acidified with few drops of acetic acid and poured to a vigorously 

stirred acetone (200 mL). The white bulky product was filtered through fritted glass funnel 

B2, thoroughly washed with acetone and vacuum dried. Purification was carried out from 

saturated aqueous solution by addition of acetone. Yield: 4.42 g (64%).

2.5.2. Synthesis of complexes

Synthesis of complex [RuII(DMSO-S)2(HL-NS)2](OTf)2 (1)

To methanol solution (10 mL) of cis-dichloridotetrakis(dimethylsulfoxide)ruthenium(II) (100 

mg; 0.206 mmol) silver triflate (106 mg; 0.413 mmol) dissolved in methanol (10 mL) was 

added and the resulting mixture was magnetically stirred for an hour at reflux temperature. 
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After cooling to room temperature silver chloride was filtered off. Alliin (77 mg; 0.413 mmol) 

was added to the yellow filtrate and resulting mixture was refluxed for five hours changing its 

color to light brown. After cooling to room temperature reaction mixture was filtered through 

blue ribbon and yellow filtrate was evaporated till dryness. Thus obtained orange-yellow 

gluey mass was dissolved in acetone (10 mL), filtered and product (1) was precipitated by 

slow addition of diisopropyl ether (25 mL). The bulky yellow precipitate was filtered off, 

washed with diethyl ether (10 mL) and recrystallized from acetone – diisopropyl ether 

mixture (1/1, v/v). 

Bis(2-amino-κN-3-[(S)-prop-2-enylsulfinyl-κS]propanoic acid)bis(dimethylsulfoxide-κS)

ruthenium(II) trifluoromethanesulfonate (1). Yield: 50 mg (27 %). Anal. Calc. (%) for 

C18H34F6N2O14RuS6 (Mr = 909.92): C, 23.76; H, 3.77; N, 3.08; Ru, 11.11; Found (%): C, 

23.56; H, 3.67; N, 3.59; Ru, 11.01. IR (KBr) ν (cm-1), intensity: 1738 m νs(COOH), 1640 s 

νs(C=C), 1565 m δ(NH2), 1404, 1386 w δ(CH3), 1277 s νa(S=O), 1089, 1032 m νa(S-O), 948 

w νs(C-N). HR MALDI-TOF/TOF MS for C16H34N2O8RuS4 Found (Calc.): 612.0247 

(612.0260) [M]+. 1H NMR (600 MHz, Methanol-d4) δ / ppm: 5.98 – 5.91 (m, H5), 5.71 – 5.66 

(m, H5, 2 H6a), 5.53 – 5.48 (m, 2 H6b), 3.84 – 3.78 (m, H4a), 3.73 – 3.68 (m, H4a, H4b), 

3.63 – 3.58 (m, H4b), 3.43 – 3.34 (m, 9 H(DMSO-S)), 3.24 – 3.19 (m, 4 H3), 3.02 – 2.94 (m, 

H2), 2.91 – 2.84 (m, H2), 2.66 (s, 3 H(DMSO)). 13C NMR (151 MHz, MeOD) δ / ppm: 

168.36 (s, C1), 125.11 (s, C5), 123.95 (s, C6), 120.33 (q, J = 318.4 Hz, CF3SO3), 57.61 (s, 

C3), 55.76 (s, C4), 55,23 (s, C2), 47.62 (hept, J = 42.8, 21.4 Hz, C-DMSO).

Synthesis of [RuII(DMSO-S)(H2O)(L-NO)2] × 3H2O (2)

Acetone solution (10 mL) of silver triflate (106 mg; 0.413 mmol) was added to a stirred 

solution of cis-dichloridotetrakis(dimethylsulfoxide)ruthenium(II)  (100 mg; 0.206 mmol) in 

acetone (15 mL) and the resulting mixture was refluxed for two hours, cooled to room 

temperature and silver chloride was filtered off. The yellow filtrate was mixed with earlier 

prepared well-stirred methanol (25 mL) solution of alliin (77 mg; 0.413 mmol) deprotonated 

by aqueous potassium hydroxide (23 mg; 0.413 mmol in 0.10 mL) and the mixture was 

refluxed for two hours changing its color to light brown. After standing overnight at ambient 

temperature reaction mixture was filtered through blue ribbon. The volume of the yellow 

brown filtrate was reduced to 5 mL under vacuum and diisopropyl ether (15 mL) was added 

drop wise. The light brown substance was filtered off, washed with acetone (5 mL) and 
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vacuum dried. Recrystallization was carried out from dimethylsulfoxide-water mixture (2 mL, 

1/1, v/v) by slow addition of the acetone (5 mL). 

bis(2-amino-κN-3-[(S)-prop-2-enylsulfinyl]propanoato-κO) (aqua )(dimethylsulfoxide-κS) 

ruthenium(II) trihydrate (3). Yield: 60 mg (48%). Anal. Calc. (%) for C14H34N2O11RuS3 (Mr = 

603.69): C, 27.85; H, 5.68; N, 4.64; Ru, 16.74; Found (%): C, 27.62; H, 4.49; N, 4.38; Ru, 

16.41. IR (KBr) ν (cm-1), intensity: 1632 s νas(COO-)+νs(C=C), 1585 m δ(NH2), 1405, 1383 w 

δ(CH3), 1072, 1021 m νa(S-O), 943 m νs(C-N). HR MALDI-TOF/TOF MS for 

C14H30N2O8RuS3 Found (Calc.): 553.1760 (553.0300) [M+H]+. 1H NMR (600 MHz, 

Methanol-d4) δ / ppm: 6.05 – 5.91 (m, H5), 5.72 – 5.65 (m, H5), 5.62 – 5.41 (m, 4 H6a,b), 

4.27 – 4.11 (m, 2 H4a), 4.10 – 3.94 (m, 2 H4b), 3.78 (s, 4 H(NH2)), 3.52 – 3.33 (m, 6 

H(DMSO-S)), 3.32 – 3.17 (m, 4 H3a,b), 2.68 (s, 1 H(DMSO)), 2.60 – 2.10 (m, 2 H2).

Synthesis of [RuIII(NH3)5(L-O)](OTf)2 (3)

Aqueous solution (10 mL) of silver triflate (351 mg; 1.367 mmol) was added to a suspension 

of pentamminechloridoruthenium(III) chloride (200 mg; 0.684 mmol) in water (10 mL) and 

the resulting mixture was magnetically stirred for half an hour after which silver chloride was 

filtered off. An aqueous solution (30 mL) of alliin (127 mg; 0.684 mmol) deprotonated by 

potassium hydroxide (38 mg; 0.684 mmol) was added to the filtrate. The mixture was 

magnetically stirred and heated in open air flask at 65°C for ten hours with concomitant 

reduction of the volume to 5 mL changing its color over cyclamen red to brown. Methanol (20 

mL) was added to the brown solution and mixture was kept in ice for an hour to complete 

precipitation, after which black substance was filtered off, washed with methanol (5 mL) and 

dried under vacuum. 

Pentaammine(2-amino-3-[(S)-prop-2-enylsulfinyl]propanoato-κO)ruthenium(III) 

trifluoromethanesulfonate (3). Yield: 119 mg (26%). Anal. Calc. (%) for C8H25F6N6O9RuS3 

(Mr = 660.58): C, 14.55; H, 3.81; N, 12.72; Ru, 15.30; Found (%): C, 14.72; H, 4.27; N, 

12.05; Ru, 15.25. IR (KBr) ν (cm-1), intensity: 1629 vb s νas(COO-)+νs(C=C)+δd(NH3), 1387  

νs(COO-), 1287 m δd(NH3), 1279 s νa(S=O), , 1032 m νa(S-O), 998 m νs(C-N). HR MALDI-

TOF/TOF MS for C6H25N6O3RuS Found (Calc.): 364.0596 (364.0840) [M+H]+. 1H NMR 

(600 MHz, D2O) δ / ppm: 6.00 – 5.96 (m, H5), 5.55 – 5.52 (m, H6a), 5.46 (dt, J = 16.7, 8.4 

Hz, H6b), 4.16 – 4.10 (m, H4a), 4.04 – 3.98 (m, H4b), 3.80 (dd, J = 13.6, 7.7 Hz, H2), 3.57 – 

3.39 (m, 2 H3a,b), 3.22 (s, 2 H(NH2)), 2.44 – 2.13 (m, vb, 15 H(NH3)). 13C NMR (151 MHz, 
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Deuterium Oxide) δ / ppm: 175.07 (s, C1), 125.43 (s, C5), 124.84 (s, C6), 119.56 (q, J = 

317.4 Hz, CF3SO3), 63.11, 62.86 (s, C2), 61.25, 60.85 (s, C3), 56.51, 56.08 (s, C4).

3. Results and Discussion

3.1. Synthesis

Ligand (±)-L-Alliin was prepared by oxidation of deoxyalliin in aqueous solution by 

hydrogen peroxide and precipitated by acetone (Fig. 1). Deoxyalliin was prepared by the 

condensation reaction of deprotonated L-cysteine and allyl bromide in ethanol-water mixture 

under inert atmosphere at room temperature. Precipitation of the product was induced by 

acidifying the reaction mixture with acetic acid until pH 5.50 was reached.

NH2
HO

O

SH + Br

NH2
HO

O

SEtOH:H2O 5/1 v/v
1) 2eq NaOH; stirring 24 h, Ar

2) HOAc, pH = 5.50

NH2
HO

O

S

NH2

HO

O

S

O

+

1) 1 eq 30% H2O2;
stirring 24 h, rt

2) precip. Me2CO

(±)-L-AlliinL-Deoxyalliin

NH2

HO

O

S

O

Figure 1. Preparation of deoxyalliin and alliin.

Ruthenium complexes with alliin (1) – (3) were prepared by several step solution synthesis. 

Complexes (1) and (2) were prepared starting from cis-[RuCl2(dmso)4], while complex (3) 

was prepared from [RuCl(NH3)5]Cl2. Complexes (1) and (2) have diamagnetic octahedrally 

coordinated Ru(II) metal center with two bidentate alliin molecules and two monodentate 

solvent molecules, while complex (3) has paramagnetic octahedrally coordinated Ru(III) with 

five ammonia molecules and one monodentate anionic O-bonded alliin ligand (Fig. 2).

Complexes (1) and (2) were prepared by silver triflate assisted substitution of chlorido ligands 

from cis-[RuCl2(dmso)4], after which alliin was added to the reaction mixture in molar ratio 

1:2. In the case of complex (2) alliin was deprotonated by aqueous potassium hydroxide prior 

the addition to tempt complexation of Ru(II) through carboxylate oxygen. Cationic complex 

(1), having two alliin molecules bound as bidentate neutral N,S-donor ligands and two S-

bonded dimethyl sulfoxide molecules as coligands, was isolated as triflate salt from methanol 

by addition of diisopropyl ether. In neutral complex (2) two alliin ligands are bound to Ru(II) 

as bidentate anionic O,N-donor ligands, while water and one S-bonded dimethyl sulfoxide 
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molecule occupy fifth and sixth coordination position. Complex (2) was recrystallized from 

DMSO-water mixture and consequently isolated as hydrate. 

Complex (3) was prepared substituting the chlorido ligand from [RuCl(NH3)5]2+ by 

deprotonated alliin in aqueous solution. Two anionic chlorides from [RuCl(NH3)5]Cl2 were 

precipitated as silver salt prior the addition of alliin. Cationic complex (3) was precipitated as 

triflate salt after addition of methanol and cooling the reaction mixture. 

Synthetic procedures for complexes (1) – (3) were carefully design to show that protonation 

state of alliin and the presence of different coligands bound to ruthenium center can result in 

different coordination modes of alliin. This is particularly important from the aspect of the 

possible control of the properties of the complex compounds since it is well documented that 

different coordination modes of the ligand can affect chemical or physical properties of the 

complex.22-25 

All three isolated complexes are highly soluble in water. Complexes (1) and (2) are also 

soluble in most of the organic polar solvents. Complexes (1) and (2) are yellow to light brown 

substances, while complex (3) is black powder. All three complexes have distinctive garlic-

like flavor when grinded.  

S

NH2

O

O
O RuH3N

NH3H3N

NH3

NH3

2+

S
NH2

OHO

O

Ru
SO(CH3)2

SO(CH3)2
S

H2N
HO

O O

2+
S

H2N
O

O

O
Ru

OH2

SO(CH3)2

(1) (2) (3)

S
O

NH2

OO

Figure 2. Different binding modes of alliin in ruthenium complexes (1) – (3).

3.2. Characterization

The formulation and characterization of ruthenium – alliin complexes (1) – (3) was made by 

elemental analysis, mass spectrometry, infrared, 1H and 13C NMR and EPR spectroscopy.

The results of the chemical analysis of C, H, N and Ru content confirms proposed formulation 

and good purity of new ruthenium – alliin complexes. The mass spectra of complexes (1) – 

(3) showed typical isotopic ruthenium distribution for anticipated molecular ions. Molecular 

ions, [M]+ for (1) and [M+H]+ for (2) and (3), were observed at 612.03, 553.18 and 364.06 
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Da, respectively which is consistent with [Ru(alliin)2(dmso)2] entity for (1), 

[Ru(alliin)2(dmso)(H2O)] for (2) and [Ru(NH3)5(alliin)] entity for (3) (Fig. S1 – S6).

Different coordination modes of alliin in ruthenium complexes (1) – (3) were indicated by 

infrared spectra. Alliin is a stereochemically flexible ligand having several potentially donor 

atoms and thus it can coordinate metal ions in several fashions. Due to the presence of 

nitrogen, sulfur and three oxygen atoms and the fact that carboxylic group can be 

deprotonated alliin can bind metal ions as neutral or anionic mono-, bi- and tridentate ligand 

(Inset in Fig. 3). 

In the solid state alliin exists as a zwitterion35 exhibiting typical vibrations corresponding to 

asymmetric and symmetric stretching of deprotonated carboxylic group and bending of 

protonated amine group at 1611, 1391 and 1525 cm-1, respectively. Upon coordination to 

ruthenium through amine or carboxylic group these bands experience shifting. If the 

coordination occurs through nitrogen band corresponding to bending of ammonium group 

(1525 cm-1) disappears in spectrum of complexes14, 15 while band corresponding to C-N 

stretching (993 cm-1) is shifted toward lower wavenumber (~945 cm-1) due to weakening of 

C-N bond as a consequence of Ru-N bond formation. In spectrum of complex (3), where no 

amine coordination was observed, this band is not significantly affected and it is found at 998 

cm-1. Another coordination site of alliin is carboxylate group which coordinates metal ions in 

unidentate or bidentate fashion. Distinction between these coordination modes can be made 

by comparing the difference between asymmetric (νasym) and symmetric (νasym) stretching 

modes in ligand and complex.38 If the difference Δ(COO-) in complex is larger compared to 

pristine ligand than carboxylate is coordinated as unidentate ligand. On the other hand, 

reduction in Δ(COO-) upon coordination indicates bidentate coordination of carboxylate. In 

case of complexes (2) and (3) the difference Δ(COO-) is 249 and 243 cm-1, respectively which 

is larger compared to 220 cm-1 as observed in spectrum of alliin. This clearly indicates 

unidentate coordination of carboxylate to ruthenium in complexes (2) and (3). As for the 

complex (1) a new band at 1738 cm-1 corresponding to protonated carboxylic group was 

observed, thus confirming that no coordination of alliin through carboxylic oxygen took a 

place.15 This finding is consistent with the fact that the same band is found in the spectrum of 

alliin hydrochloride at 1740 cm-1. 

The third potential coordination site of alliin is sulfoxide group. Sulfoxides are ambidentate 

ligands that can coordinate metal ions through sulfur or oxygen atom. If the coordination is 

achieved through oxygen atom this gives rise to higher polarization of S-O bond thus 
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wakening S=O bond and causing shifting of ν(S=O) to lower wavenumbers.39 Oppositely, 

coordination through sulfur atom strengthens S=O bond shifting the ν(S=O) to higher 

wavenumbers upon coordination. Considering ruthenium – alliin complexes (1) – (3) only in 

complex (1) coordination through sulfoxide group was found. In spectrum of alliin  ν(S=O) is 

observed at 1021 cm-1 and upon coordination to Ru(II) in (1) it is shifted to 1032 cm-1 hence 

confirming coordination through sulfur atom of sulfoxide group. 

Presence of S-bonded dimethyl sulfoxide to Ru(II) in complexes (1) and (2) is confirmed by 

bands appearing in 1060 – 1100 cm-1 region, which is consistent with S-bonded DMSO in 

[RuCl2(dsmo-S)3(dmso-O)].31 Bands at 1275 cm-1 appearing in spectra of (1) and (3) arise 

from S=O stretching in triflate.40

1H and 13C NMR spectra provide useful insights in composition and coordination modes of 

alliin in ruthenium – alliin complexes (1) – (3). 1H NMR spectrum of complex (1) with atom 

numbering scheme of alliin is shown in Figure 3. In complexes (1) and (2) two alliin 

molecules are coordinated to ruthenium metal center. Due to the absence of any symmetry 

operation that interconverts hydrogen atoms of two alliin molecules all hydrogens are in 

magnetically nonequivalent environments hence resonating at close but different frequencies. 

The broad and the most downfield shifted signal in spectrum of complex (1) arises from the 

carboxylic proton (-COOH) and is found at 8.3 ppm. Absence of this signal in spectra of 

complexes (2) and (3), where coordination of alliin to ruthenium is achieved through 

carboxylic oxygen, confirms deprotonation of carboxylic group and its involvement in 

coordination.

Signals of vinyl hydrogens (H5 and H6) are not significantly affected by coordination of alliin 

to ruthenium due to their relative distance from the coordination sites. The signal of H5 in 

spectrum of alliin is found at 5.9 ppm and in spectra of complexes (1) – (3) it appears in 5.6 – 

6.0 ppm region.14, 37 The position of H6 signal in alliin and corresponding complexes (1) – (3) 

is basically unchanged appearing in all cases in 5.4 – 5.6 ppm region.

The signals of other alliin hydrogen atoms (H2, H3 and H4) experiences shifting upon 

coordination due to their proximity to metal center.14, 15 Coordination of alliin typically cause 

downfield shifting of these signals as previously observed in metal complexes with alliin and 

alliin-like ligands.14, 15, 18, 21 The largest downfield shifting is found for H4. The signal of H4 

in spectrum of alliin is observed in 3.6 – 3.8 ppm and upon coordination is shifted to 3.6 – 4.3 

ppm region in spectra of complexes (1) – (3). Multiplets of H3 are found in spectra of (1) – 

(3) in 3.2 – 3.6 ppm region while appearing in the spectrum of alliin in 3.2 – 3.4 ppm region. 
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The coordination of alliin through nitrogen atom in (1) and (2) causes significant upfield shift 

of H2 from 4.2 ppm in spectrum of alliin to below 3 ppm in spectra of complexes. On the 

other hand, in case of (3), where alliin is monodentatly bound to ruthenium through 

carboxylate oxygen, this shift is significantly smaller and the corresponding signal is found at 

3.8 ppm. 

Figure 3. 1H NMR spectrum of complex (1). Inset: Atom numbering scheme for alliin. 

Several signals corresponding to dimethyl sulfoxide hydrogen atoms are found in spectra of 

complexes (1) and (2) where DMSO is bound to ruthenium as coligand. The signals at 3.3 – 

3.5 ppm arise from S-bonded DMSO, as previously observed for other ruthenium – DMSO 

complexes.41 The presence of sharp singlet in spectra of (1) and (2) at 2.7 ppm, corresponding 

to free or O-bonded DMSO, indicates that DMSO undergoes substitution or linkage 

isomerism in solution. The presence of O-bonded isomers was not observed in solid state. The 

sum of the integer values of the DMSO signals (free and S-bonded) match the number of the 

DMSO molecules present per molecular unit of (1) and (2).

13C NMR spectra of alliin and corresponding ruthenium complexes (1) – (3) can be seen as 

three sets of resonances (Fig. 4). The first set consists of only one resonance around 170 ppm 
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corresponding to carboxylic carbon (C1), the second set (near 125 ppm) involves two signals 

of C5 and C6, while three signals participate in the third set comprising the C2, C3 and C4 

atoms and are found in upfield region (50 – 65 ppm). 

Carboxylic carbon (C1) shows chemical shift at 171.4 ppm in spectrum of alliin and upon 

coordination it is found at 168.4 ppm in spectrum of (1). However, upfield shifting is not 

associated with its involvement in coordination. This shifting is also observed in platinum(II) 

complex with alliin and it is consistent with N,S-coordinaiton.15 On the other hand, downfield 

shifted signal of C1 in spectrum of (3), appearing at 175 ppm, clearly indicates coordination 

of alliin through carboxylic oxygen.14 Vinyl carbon atoms associated with positions 5 and 6, 

do not show any shifting upon coordination which is consistent with their 1H NMR spectra. 

Figure 4. 13C NMR spectrum of complex (2).

Three signals in low frequency region appearing at 54.7, 50.2 and 49.7 ppm in spectrum of 

alliin arise from C4, C2 and C3, respectively.14 Due to their proximity to the coordination 

sites of alliin the positions of these signals are the most affected by coordination. Typically, 

coordination results in their downfield shifting with the chemical shift being dependent on the 

coordination mode of alliin.14, 15 In case of complex (1), where NS coordination is found, 

these signals appear at 57.6 (C3), 55.8 (C4) and 55.2 (C2) resembling to Pt(II)-alliin 

complex.15 In the spectrum of the ruthenium-ammine complex (3) these signals are observed 

at 63.1 (C2), 61.2 (C3) and 56.1 (C4).  

Well defined septet at 47.6 ppm in spectra of complexes (1) and (2) arise from DMSO carbon 

atoms. Additionally, cationic complexes (1) and (3) exhibit quartet near 120 ppm with 

coupling constant J ~ 317 Hz hence confirming presence of triflate (CF3SO3) as counter ion.42

Page 15 of 53 New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 15 of 28

Polycrystalline ruthenium – alliin complexes (1) – (3) were investigated by electron 

spin/paramagnetic resonance (ESR/EPR) spectroscopy. The complex (1) was ESR silent i.e. 

no ESR signal was detected in the investigated temperature range, as it is expected for 

diamagnetic Ru(II) ions.43, 44 The complex (3) with paramagnetic Ru(III) ions exhibits strong 

ESR signal presented in Fig. 5. The complex (2) with Ru(II) ions shows weak ESR signal 

with intensity comparable to the background signal of ESR cavity. The comparison of (2) 

signal with (3) signal could be seen in Fig. S12. 

Figure 5. The temperature dependence of ESR spectra of (3). Inset shows experimental (red line) and simulated 

(black line) spectra of (3) at room temperature.

The spectral simulation was obtained using EasySpin software.45 Ru(III) ions (4d5 

configuration) could be satisfactory described with low-spin states S = 1/2 and reduced form 

of the spin-Hamiltonian:45

𝐻 = µ𝐵 × 𝐵 × 𝑔 × 𝑆   (1)

In Eq. (1), the constant µB is Bohr magneton, g is the g-tensor, B is the magnetic field vector 

and S is the spin operator. Hyperfine interactions between electron spin S = 1/2 and nuclear 

spin I = 5/2 for two isotopes 99Ru (natural abundance 12.76%) and 101Ru (natural abundance 

17.06%)46 were not detected i.e. the hyperfine splittings were covered by total spectral 

linewidth. The spectra were simulated assuming anisotropic g-tensor and Lorentzian 
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lineshape. The obtained principal values of g-tensor are [2.29 2.13 1.93]. Here obtained 

results for g-values are in agreement with the g-values for Ru(III) complexes that can be 

found in the literature.43, 44, 47 The simulated spectrum at room temperature is shown in the 

inset of Fig. 5.

3.3. Protein binding studies

Interaction of small molecules with proteins is of the great importance regarding their 

biological availability, distribution and transport.48-50 One of the important targets of alliin – 

metal complexes might be proteins since it is known that alliin is absorbed directly to blood 

and the most abundant bimolecular targets in blood are proteins, especially albumin and 

(apo)transferrin. Taking into account that the mechanism of allicin action is related to its 

reactivity toward S-containing proteins27 and the fact that many ruthenium complexes bind 

proteins, the first reasonable step in evaluating the biological potential of ruthenium – alliin 

complexes is their interaction with proteins. 

The interaction of ruthenium – alliin complexes (1) – (3) and alliin with proteins was 

investigated by spectrofluorimetry. The intrinsic fluorescence of the most proteins arises from 

the tryptophan, tyrosine and phenylalanine hindered amino acid residues.51 In bovine serum 

albumin (BSA) two tryptophan residues, Trp-134 in first domain and Trp-212 in the second 

domain, show strong intrinsic fluorescence that dominates the emission spectrum of BSA.52 If 

the conformation of the protein is changed the microenvironment around these two residues 

changes hence altering the fluorescence intensity. This allows to investigate interaction of 

BSA with small molecules simply by measuring the changes of the fluorescence in presence 

of different complex to BSA ratios.

Typical changes of the BSA fluorescence in the presence of an increasing complex 

concentrations are shown in Fig. 6a. The linear decrease of the fluorescence with the increase 

of quencher concentrations was observed for all ruthenium complexes (1) – (3) and alliin. It 

was found that the decrease obeys to Stern – Volmer equation53 (Eq. 2):
𝐼0

𝐼 = 1 + 𝐾𝑞𝜏0[𝑐𝑜𝑚𝑝𝑙𝑒𝑥] = 1 + 𝐾𝑆𝑉[𝑐𝑜𝑚𝑝𝑙𝑒𝑥] (2)

where I0 and I are fluorescence intensities in absence and presence of complex, respectively 

and Kq is quenching rate constant, τ0 is average lifetime in the absence of the quencher (τ0 = 
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10-8 s) and [complex] is the concentration of complex and KSV is the quenching constant. 

Plotting the I0/I versus [complex] gives KSV values. 

The KSV values are 103 – 104 M-1 thus suggesting that the noticeable interaction between BSA 

and complexes occurs (Table 1). More precisely, KSV values larger than 104 M-1 indicate there 

is a significant conformational change of the protein.54 The KSV values decrease in order (3) > 

(1) > (2) > alliin, regardless to temperature. The decrease of the KSV with the increase of the 

temperature for individual complexes suggest that the quenching occurs through static 

mechanism.51 Two main mechanism by which fluorescence can be quenched are static and 

dynamic. In case of the static quenching fluorophore and the quencher form adduct in the 

ground state, while in the case of the dynamic quenching energy transfer occurs in the excited 

state.55 Since the temperature increases the number of the individual collision between BSA 

and complex the quenching constant also increases. This is typical for dynamic quenching. On 

contrary, increase in temperature destabilizes the BSA-complex adduct thus decreasing the 

quenching constant in the case of static quenching56. Another valuable evidence that 

ruthenium complexes with alliin (1) – (3) quench BSA fluorescence through static quenching 

is quenching rate constant that has values of 1011 – 1012 M-1 s-1 (Table 1). The maximal 

constant rate for the dynamic quenching is 2 × 1010 M-1 s-1.51 

Figure 6. Interaction of (3) with BSA: a) quenching the BSA fluorescence in presence of increasing 

concentrations of (3), b) graphical determination of the binding constant, c) van't Hoff plot. 
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The binding constant (Kb) and number of the binding sites (n) per albumin molecule can be 

graphically obtained (Fig. S20 – S23) using Eq 3:54

𝑙𝑜𝑔
𝐼0 ― 𝐼

𝐼 = 𝑙𝑜𝑔𝐾𝑏 + 𝑛 𝑙𝑜𝑔[𝑐𝑜𝑚𝑝𝑙𝑒𝑥] (3)

The binding constant were measured at three temperatures (291, 298 and 305 K) in order to 

determine the thermodynamic parameters of the interaction (vide infra). The binding 

constants for all three complexes are 104 M-1 magnitude and are 4 – 30 times higher compared 

to alliin. However the same trend of Kb change with temperature increase was not found for 

each complex. The Kb value for complexes (2) and (3) decreases with an increase of 

temperature. On contrary, for complex (1) and pristine alliin the Kb values are greater at 

higher temperatures. This clearly indicates that the same binding forces do not govern the 

interaction of ruthenium – alliin complexes in all cases. The number of the binding sites was 

not affected by the change of the temperature and in all cases is near 1. The number of 

binding sites close to 1 often indicates that the complexes are bound to BSA in hydrophobic 

pocket of IIA or IIIA subdomain.57 Substantial evidences on the types of the forces that drive 

the interaction of complexes with BSA can be provided from thermodynamic data.

Table 1. Interaction of complexes (1) – (3) and alliin with BSA.

# T /
K

KSV /
104 M-1

[conc]50 /
10-4 M

k q /
1011 M-1 s-1

Kb /
104 M-1 n ΔH /

kJ mol-1
ΔS /

J mol-1 K-1
ΔG /

kJ mol-1

291 1.25 0.80 12.5 1.68 1.03 -23.52
298 0.89 1.12 8.93 1.98 1.07 -24.61(1)
305 0.79 1.27 7.88 2.56 1.10

22.03 156.44
-25.71

291 0.99 1.01 9.94 1.77 1.05 -23.78
298 0.75 1.33 7.49 1.46 1.06 -23.56(2)
305 0.70 1.43 6.99 0.94 1.03

-33.03 -31.79
-23.33

291 2.73 0.37 27.3 3.53 1.03 -25.32
298 2.15 0.47 21.5 2.26 1.01 -24.90(3)
305 2.24 0.45 22.4 1.57 0.97

-42.82 -60.08
-24.48

291 0.37 2.68 3.72 0.12 0.89 -16.88
298 0.31 3.19 3.13 0.13 0.92 -18.17HL
305 0.34 2.91 3.44 0.23 0.96

36.92 184.78
-19.46

Enthalpy change (ΔH) and entropy change (ΔS) can be obtained graphically from van’t Hoff 

plot (lnK vs 1/T) using equation (4): 

𝑙𝑛𝐾 = ―
∆𝐻
𝑅𝑇 +

∆𝑆
𝑅  (4)
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where R is the gas constant. Over the small temperature range enthalpy change can be 

considered constant and Gibbs energy change can be calculated using equation (5):

∆𝐺 = ∆𝐻 ― 𝑇∆𝑆 (5)

Data on thermodynamic parameters are summarized in Table 1. Different types of interactions 

between BSA and complexes cause different changes of thermodynamic parameters:58, 59 (i) 

ΔG > 0, ΔS < 0, ΔH < 0 indicate partial immobilization, (ii) ΔG < 0, ΔS > 0, ΔH > 0 indicate 

hydrophobic interactions, (iii) ΔG < 0, ΔS > 0, ΔH ~ 0 indicate electrostatic interaction, (iv) 

ΔG < 0, ΔS < 0, ΔH < 0 indicate van der Walls interactions and hydrogen bonding, (v) ΔH > 

120 kJ mol-1 indicate covalent biding. 

Results indicate that the interaction of ruthenium – alliin complexes with BSA are 

spontaneous under investigated conditions i.e. Gibbs energy change is negative. No 

significant differences in ΔG value was observed among complexes. On the other side, 

significant changes were observed in ΔH and ΔS values among complexes. Positive values of 

enthalpy and entropy change were found for interaction of complex (1) and alliin with BSA. 

This clearly indicates that the same type of binding forces are responsible for interaction of 

alliin and complex (1) with BSA. Here, the nature of these forces is predominantly 

hydrophobic.58 Negative values of enthalpy and entropy change were found for the interaction 

of (2) and (3) with BSA hence indicating that van der Waals forces and hydrogen bonding 

govern the interaction.58 From structural point of view these differences in the type of binding 

forces of complexes (1) – (3) with BSA can be addressed to different coordination modes of 

alliin. For pristine alliin and complex (1) the most obvious mutual structural feature is free 

carboxylic group. At pH 7.42 BSA exist in anionic form (pI ~ 4.8).60 Also, carboxylic group 

of alliin and complex (1) is susceptible to deprotonation i.e. the pKa values of the most amino 

acids are close to 2.61 These negative charges are aggravating factor in interaction of small 

molecules with bimolecular anions such proteins or DNA. In complexes (2) and (3) 

coordination of alliin to ruthenium is achieved through deprotonated carboxylate oxygen and 

in complex (2) additionally through amine nitrogen. Stronger biding to BSA was found for 

complex (3) which can be attributed not only to van der Waals forces and hydrogen bonding 

but also to electrostatic interactions since (3) is cationic complex compared to neutral (2). The 

obvious differences in interaction of (1) and (2) with BSA clearly indicate that the 

coordination mode of alliin can alert interaction of complex specie with BSA. Different 

binding forces that drive the interaction of complexes with BSA are obvious in perturbation of 
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the order in which the Kb value decreases with temperature. At 291 K the Kb decreases in 

order (3) > (2) > (1), while at 305 K the order changes and Kb decreases as (1) > (3) > (2). 

This means that the resulting adduct of complex – BSA interaction is weakened in case of (2) 

and (3) as the temperature increases. Oppositely, stronger interaction with BSA is observed 

with temperature increase in case of (1) and alliin. This suggest that the number of collisions 

between BSA and complex (1) or alliin in excited state is highly competitive and can prevail 

lower efficiency in energy transfer due to the decreased stability of BSA – complex adduct in 

ground state. 

The distance between fluorophore and complex at which the energy transfer occurs can be 

determined by Forster’s theory. The efficiency of the energy transfer is dimensionless and can 

be calculated from fluorescence intensities of BSA in presence (I) and absence (I0) of 

complex using equation (6):62

𝐸 = 1 ―
𝐼
𝐼0

=
𝑅6

0

𝑅6
0 + 𝑟6 (6)

The parameter r is the distance between the donor and acceptor and R0 is the critical distance 

when the transfer efficiency is 50%. The critical distance can be calculated from 

experimentally determined overlapping integral value (J) by equation (7):62

𝑅6
0 = 8.8 × 10 ―25𝐾2𝛷𝐽𝑁 ―4   (7)

where K2 = 2/3, N = 1.336 and φ = 0.118 are constants for BSA. The overlapping integral 

value was calculated from luminescence intensity of the fluorescent donor (F(λ)) at the 

wavelength λ and the extinction coefficient (ε(λ)) using equation (8):63

𝐽 =
∑𝐹(𝜆)𝜀(𝜆)𝜆4∆𝜆

∑𝐹(𝜆)∆𝜆
   (8)
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Figure 7. Overlap of the absorption spectrum of (3) and emission spectrum of BSA.

The overlapping between absorption spectrum of (3) and emission spectrum of BSA is given 

in Figure 7. The distance values (r) lower than 8 nm (2.46 – 2.64 nm) confirm that the non-

radiative energy transfer took a place.51 The critical distance increases in order aliin < (1) ~ 

(2) < (3) (Table 2). 

Table 2. Data on energy transfer and synchronous spectra of BSA and ruthenium complexes (1) – (3) and alliin.

Intensity decrease# J / cm3 L mol-1 E Ro / nm r / nm Δλ = 15 nm Δλ = 60 nm
(1) 1.00 × 10-15 0.096 1.67 2.43 8% 10%
(2) 1.06 × 10-15 0.097 1.69 2.45 5% 10%
(3) 4.74 × 10-15 0.232 2.16 2.64 18% 24%
HL 5.64 × 10-16 0.050 1.52 2.48 10% 6%

Synchronous spectra can give information on the microenvironment changes of tyrosine and 

tryptophan, two amino acids that show intrinsic fluorescence in BSA.64 Consideration criteria 

include intensity and position changes of the emission maximum when difference between 

emission and excitation wavelength is fixed (Δλ = λem – λex). The synchronous fluorescence 

maximum of tyrosine is observed when Δλ = 15 nm and tryptophan when Δλ = 60 nm (Fig. 

8).65 No obvious or regular change in the position of the emission maximum of tyrosine or 

tryptophan was observed in neither the one case when synchronous measurements were done. 

Yet conformational change of the BSA is evident since the intensity of the synchronous 

fluorescence of both amino acids is affected (Table 2). Complexes showed stronger quenching 

of tryptophan fluorescence while alliin rather quench tyrosine fluorescence. This could 

suggest that alliin and complexes (1) – (3) have different biding sites on BSA. 
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Figure 8. Decrease of the fluorescence in synchronous spectra of BSA in presence of increasing concentration of 

(3) at: a) Δλ = 15 nm and b) Δλ = 60 nm.

Deeper insight in the conformational change of BSA and changes of the microenvironment 

around tryptophan and tyrosine in presence of complexes and alliin was provided from 3D 

fluorescence measurements. Typical three-dimensional fluorescence spectra of BSA in 

absence and presence of complexes (3) are shown Figure 9 (see also Fig. S18). Two peak are 

found in 3D spectra of BSA. Peak I corresponds to intrinsic fluorescence of tyrosine and 

tryptophan while Peak II is associated with conformational changes of the polypeptide 

backbone.51 The intensity of both peaks decreased in presence of complexes (1) – (3) and 

alliin. The larger decrease was observed for Peak II (22 – 30 %) compared to Peak I thus 

suggesting that the conformational change of the BSA polypeptide chain is the prevalent 

result of its interaction with ruthenium – alliin complexes (1) – (3). The values of the Stokes 

shift for peak I are lower for BSA – complexes adducts compared to native BSA thus 

suggesting that the hydrophobicity around tryptophan and/or tyrosine has changed (Table 3). 

Slight increase of Stokes shift was observed for peak II in presence of complexes (1) and (3). 

Three-dimensional fluorescence spectroscopy confirmed the results acquired by classical 

fluorescence measurement (vide supra): complexes having alliin bound through carboxylate 

oxygen to ruthenium show more similarity in interaction with BSA and bind it more tightly 

compared to species having ionized carboxylate group (alliin and (1)).
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Figure 9. Three-dimensional fluorescence spectrum of BSA (a) and BSA in presence of complex (3) (b) at 

[BSA] = 1.71 µM and [complex] = 12.5 µM. 

Table 3. Three-dimensional fluorescence spectra data on interaction of complexes (1) – (3) and alliin with BSA.

Peak I Peak II
#

λex / nm λem / nm Δλ / nm Intensity decrease λex / nm λem / nm Δλ / nm Intensity decrease
BSA 280 350 70 - 230 347 117 -
(1) 280 348 68 16% 230 349 119 22%
(2) 280 349 69 24% 230 347 117 30%
(3) 280 348 68 28% 230 348 118 30%
HL 280 349 69 15% 230 346 116 15%

The interaction of ruthenium – alliin complexes (1) – (3) and alliin with apo-transferrin was 

investigated by spectrofluorimetry. Apo-transferrin and transferrin are considered as potential 

natural ruthenium-based drug carriers since there is a hypothesis that ruthenium compounds 

could be more selectively delivered to target malignant cells by using transferrin receptor 

overexpression route.66 

Measurements showed that quenching constants are 103 M-1 order except for complex (3) 

where constant has 104 M-1 magnitude (Table 4). Similarly to interaction with BSA, 

quenching constant rates indicate static mechanism and formation of adduct in ground state. 

Generally, measurements showed that complexes have lower affinity for apo-transferrin 

compared to BSA and more detail studies were not undertaken. Lower affinity of ruthenium 

complexes to apo-transferrin compared to BSA is often encountered.29  
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Table 4. Interaction of complexes (1) – (3) and alliin with apo-transferrin. 

# KSV / 103 M-1 [conc]50 / 10-4 M kq / 1011 M-1 s-1 Kb / 103 M-1 n
(1) 9.49 1.05 9.49 10.8 1.01
(2) 8.66 1.15 8.66 2.97 0.90
(3) 19.60 0.51 19.6 62.9 1.10
HL 2.97 3.36 2.97 0.23 0.77

3.3. In vitro biological activity

The antiproliferative testing was aimed to screen the effects of complexes (1) – (3) and alliin 

on human tumor cell lines, as well as on normal (diploid) human fibroblasts (control cell line) 

in order to find potential candidates for further pre-clinical evaluation. Substances showing a 

differential anti-proliferative effect at micromole concentrations are suited for further 

biological studies and optimization. 

Results of antiproliferative testing are summarized in Table S2. All compounds exerted high 

cytotoxicity on HFF-1 (fibroblast cells) and no antiproliferative effects on tumor cells (IC50 

>100 µM). Compound (3) has showed strange effect on HeLa, SW620 and HFF-1 cells. Its 

effects on cells were particularly difficult to evaluate as it acted antiproliferatively (20-40%) 

on CFPAC-1 and in SW620 (33-64%) in all tested concentrations. The growth-response 

curves for (3) were unusual and did not follow the rule of dose-response. Ruthenium – alliin 

complexes (1) – (3) did not show significant in vitro anticancer activity, however their in vivo 

activity can be substantially different as previously observed with ruthenium complexes 

having antimetastatic activity.67, 68 Similarly, palladium(II) and platinum(II) complexes with 

alliin did not show significant anticancer activity except moderate activity toward HeLa.14, 15

Antimicrobial activity of complexes and alliin was evaluated on strains of Gram-positive 

Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa, Escherichia coli and fungi 

Candida albicans. Complexes (1) – (3) and alliin did not show any antimicrobial activity at 

tested concentrations. Although some papers report antibacterial activity of complexes with 

alliin-like ligands at high concentrations20 (e. g. 0.1% w/v) we did not took experiments to test 

it at such high doses since they do not have practical applicability. Further testing will focus 

on the antimicrobial activity of complexes in presence of alliinase, an enzyme that catalyzes 

the conversion of alliin to allicin, unsaturated thiosulfinate compound that showed high 

potency as antimicrobial agent. 
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4. Conclusion

Solution synthesis afforded three novel heteroleptic water-soluble ruthenium complexes 

featuring alliin structural moiety bound to metal center in different manners. All three 

complexes are low-spin having octahedrally coordinated ruthenium with: (1) two S-bonded 

DMSO molecules and two bidentate neutral N,S-donor alliin ligands, (2) one water, one S-

bonded DMSO and two bidentate monobasic O,N-donor alliin ligands and (3) five ammine 

ligands and one monodentate monobasic O-donor alliin ligand. Complexes (1) and (2) have 

diamagnetic ESR silent 4d6 Ru(II) center while complex (3) is ESR active showing 

paramagnetism corresponding to one unpaired electron of 4d5 Ru(III) metal center. 

Complexes showed considerable affinity to bind apo-transferrin and BSA with slightly higher 

preferences for albumin. Complexes quench fluorescence of both proteins by static 

mechanism hence forming complex – protein adduct in ground state. It appears that the nature 

of the binding forces between complexes and BSA is related to the coordination mode of 

alliin. Complexes having O-bound alliin predominantly interact with BSA through hydrogen 

bonding and van der Waals interactions, while the hydrophobic forces govern the interaction 

of species having ionized carboxylate group. Synchronous and three-dimensional 

fluorescence spectra revealed that complexes alter polypeptide chain conformation in BSA 

without substantial change in the polarity around tryptophan or tyrosine. Complexes did not 

show any notable in vitro anticancer or antimicrobial activity at tested concentrations and will 

be subjected to further testing under different experimental conditions. Nevertheless, results 

provide evidences that by controlling the coordination mode of the ligand, the desired 

reactivity of the complex toward specific target, such as proteins, can be addressed. 
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Figure S1. Theoretical isotopic distribution for molecular ion of complex (1). 

Figure S2. Measured isotopic distribution for molecular ion of complex (1).
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Figure S3. Theoretical isotopic distribution for molecular ion of complex (2).

Figure S4. Measured isotopic distribution for molecular ion of complex (2).

Page 33 of 53 New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5 / 24

355.0000 360.0000 365.0000 370.0000 375.0000
0.0

20.0

40.0

60.0

80.0

100.0

120.0

36
5.

08
40

35
8.

08
40

36
2.

08
40 36

3.
08

40

36
6.

08
40

36
4.

08
40

Figure S5. Theoretical isotopic distribution for molecular ion of complex (3).

Figure S6. Measured isotopic distribution for molecular ion of complex (3).
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Figure S7. 1H NMR spectrum of complex (2).
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Figure S8. 1H NMR spectrum of complex (3).
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Figure S9. 13C NMR spectrum of complex (2).

Figure S10. 13C NMR spectrum of complex (3).
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Figure S11. Infrared spectra of alliin at different protonation of amine nitrogen and carboxylate 
oxygen, ruthenium – alliin complexes (1) – (3) and starting ruthenium compounds. 
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Table S1. Positions of the bands in infrared spectra of complexes (1) – (3), starting Ru compounds and alliin.

νs(S=O)

En
tr

y

Compound

ν s
(C

O
O

H
)

ν s
 (C

=C
)

ν s
(C

O
O

- )

δ d
(N

H
3)

δ(
N

H
2)

δ(
N

H
3+ )

ν s
(C

O
O

- )

δ(
C

H
3)

δ d
(N

H
3)

ν s
(S

=O
) 

tr
ifl

at
e

S-bonded fr
ee O
- ν s

(C
-N

)

ρ r
(N

H
3)

1. Alliin 164
1

161
1

158
5

152
5

139
1

102
1

99
3

2. Alliin 
hydrochloride

174
0

164
0

151
4

100
8

3. Potassium 
alliinate

162
0

162
0

158
7

148
8

140
8

101
5

4. (1) 173
8

164
0

156
5 - 140

4
138

6
127

7
108

9
103

2
94
8

5. (2) 163
2

163
2

158
5 - 138

3
140

5
138

3
107

2
102

1
94
3

6. (3) 162
9
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9 - 138

7
128

7
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9
103

2
99
8

84
3

7. [Ru(NH3)5Cl]Cl2
163

0
130

0
80
4

8. Dimethyl sulfoxide 143
6

140
7

102
3

9. cis-
[RuCl2(DMSO)4]

142
6
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1
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7
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6
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Figure S12. The comparison of ESR signals of (2) and (3).
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Figure S13. Quenching of the apotransferrin fluorescence in the absence and presence of an 
increasing concentrations of (1) – (3) (a – c) and alliin (d) at 298 K. 
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Figure S14. Quenching of BSA fluorescence in the absence and presence of an increasing 
concentrations of (1) – (3) (a – c) and alliin (d) at 291 K.
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Figure S15. Quenching of BSA fluorescence in the absence and presence of an increasing 
concentrations of (1) – (3) (a – c) and alliin (d) at 298 K.
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Figure S16. Quenching of BSA fluorescence in the absence and presence of an increasing 
concentrations of (1) – (3) (a – c) and alliin (d) at 298 K.
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Figure S17. Synchronous fluorescence spectra of BSA in the absence and presence of increasing 
concentrations of complexes (1) (a, b), (2) (c, d), (3) (e, f) and alliin (g, h); Δλ = 15 nm (left column) 
and Δλ = 60 nm (right column).
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Figure S18. 3D fluorescence spectra of BSA in absence (a) and presence of complex (1) – (3) (b – d) 
and alliin (e). [BSA] = 1.71 µM and [complex] = 12.5 µM.
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Figure S19. Overlap of fluorescence emission spectrum of BSA and absorption spectrum of: a) (1), b) 
(2), c) (3) and d) alliin.

Page 47 of 53 New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 / 24

Figure S20. Graphical determination of the binding constant (Kb) and number of binding sites (n) of 
complex (1) to BSA at three temperatures: a) 291 K, b) 298 K, c) 305 K and d) van't Hoff plot. 
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Figure S21. Graphical determination of the binding constant (Kb) and number of binding sites (n) of 
complex (2) to BSA at three temperatures: a) 291 K, b) 298 K, c) 305 K and d) van't Hoff plot.
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Figure S22. Graphical determination of the binding constant (Kb) and number of binding sites (n) of 
complex (3) to BSA at three temperatures: a) 291 K, b) 298 K, c) 305 K and d) van't Hoff plot.
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Figure S23. Graphical determination of the binding constant (Kb) and number of binding sites (n) of 
alliin to BSA at three temperatures: a) 291 K, b) 298 K, c) 305 K and d) van't Hoff plot.

Page 51 of 53 New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23 / 24

Figure S24. Graphical determination of the binding constant (Kb) and number of binding sites (n) of 
complexes (1) – (3) (a – c) and alliin (d) with apotransferrin.
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Proliferation assays

The panel cell lines were inoculated onto a series of standard 96-well microtiter plates on day 0, at 

5000 cells per well according to the doubling times of specific cell line. Test agents were then added 

in five, 10-fold dilutions (0,01 to 100 µM) and incubated for further 72 hours. Working dilutions were 

freshly prepared on the day of testing in the growth medium. After 72 hours of incubation, the cell 

growth rate was evaluated by performing the MTT assay: experimentally determined absorbance 

values were transformed into a cell percentage growth (PG) using the formulas proposed by NIH. This 

method directly relies on control cells behaving normally at the day of assay because it compares the 

growth of treated cells with the growth of untreated cells in control wells on the same plate – the 

results are therefore a percentile difference from the calculated expected value. 

The IC50 values for each compound were calculated from dose-response curves using linear 

regression analysis by fitting the mean test concentrations that give PG values above and below the 

reference value. If, however, all of the tested concentrations produce PGs exceeding the respective 

reference level of effect (e.g. PG value of 50) for a given cell line, the highest tested concentration is 

assigned as the default value (in the screening data report that default value is preceded by a ">" 

sign). Each test point was performed in quadruplicate in two individual experiments. The results were 

statistically analyzed (ANOVA, Tukey post-hoc test at p < 0.05). Finally, the effects of the tested 

substances were evaluated by plotting the mean percentage growth for each cell type in comparison 

to control on dose response graphs.

Table S2.  IC50 values for complexes (1) – (3) and alliin. 
MCF-7 CFPAC-1 HeLa SW620 HFF-1

Compound
IC50 / μM

(1) >100 >100 >100 >100 0.74
(2) >100 >100 >100 >100 0.08
(3) >100 >100 33.82* >100* 89*
HL >100 >100 >100 >100 19.58

*Unusual growth response curve.
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