

Direct observation of bulk and surface effects caused by SHI impacts

J. O'Connell¹, V. Skuratov², R. Rymzhanov²

CHRTEM, NMU, Port Elizabeth (South Africa) ₂FLNR, JINR, Dubna (Russia)

UNIVERSITY

RBI Zagreb – March 2019

HRTE

- Double Cs corrected JEOL ARM 200F
 - TEM resolution 110 pm (65 pm)
 - HAADF STEM resolution 80 pm (65 pm)
 - Gatan GIF Quantum EELS spectrometer
 - Large area EDS detector (Oxford) (simultaneous EDS – EELS)
- JEOL 2100
 - EDS
 - EELS
- FEI Helios Dual beam (TEM specimen prep)
- JEOL 7001F
 - EDS, WDS, EBSD, TKD

NELSON MANDELA

TEM: Only technique with sufficient spatial resolution for single track investigation

Only if you are careful!

- Projection, projection, projection... $z \approx 300 1000$ times lateral resolution!
- Low statistics
- Extremely sensitive to specimen preparation (artefacts?)
- Difficult to produce high quality foils less than ~30 nm in thickness

RBI Zagreb – March 2019

RI

Periodic crystal

Black magic

Detector

NELSON MANDELA

UNIVERSITY

RBI Zagreb – March 2019

Typical x-section FIB lamella (1x10¹¹ cm⁻²)

10 um

Through focal series (1 nm step)

CHRTE

NELSON MANDELA

UNIVERSITY

Reconstructing exit electron wave

W.M.J. Coene, A. Thust, M. Op de Beeck, D. Van Dyck, Ultramicroscopy 64 (1996) 109 A. Thust, W.M.J. Coene, M. Op de Beeck, D. Van Dyck, Ultramicroscopy 64 (1996) 211

Til Bartel, March 27th, 2006

Reconstructed electron exit wave (phase)

CHRTEM

UNIVERSITY

Latent tracks in rutile

CHRTEM

NELSON MANDELA

Pre-thinned 2x10¹⁰ Xe 167 MeV

Pre-thinned 2x10¹⁰ Xe 167 MeV

Thickness dependent amorphization

Pre-thinned 2x10¹⁰ Xe 167 MeV X-section

Near surface damage enhancement

Distance (nm)

Defective crystalline tracks

 AI_2O_3

NELSON MANDELA

UNIVERSITY

RBI Zagreb – March 2019

UNIVERSITY

RBI Zagreb – March 2019

167 MeV Xe in Al₂O₃ (2x10¹²/cm²)

CHRTEM

NELSON MANDELA

UNIVERSITY

Saturated track density in Al₂O₃

UNIVERSITY

Nuclear Inst. and Methods in Physics Research B 435 (2018) 121–125

BI Zagreb – March 2019

CHRTEM

UNIVERSITY

HRSTEM ABF micrographs of 167 MeV Xe ion tracks in amorphizable materials

UNIVERSITY

RBI Zagreb – March 2019

IRTFI

220 MeV Xe ion tracks in YIG

NELSON MANDELA

UNIVERSITY

RBI Zagreb – March 2019

Track interaction in YIG

Track interaction in YAG

Track interaction in YAP

UNIVERSITY

RBI Zagreb – March 2019

Scientific Reports volume 9, Article number: 3837 (2019)

RBI Zagreb – March 2019

AFM view of a surface hillock

220 MeV Xe 700 °C

Slip {110} & **{101}**

CHRTEM

UNIVERSITY

Seeing is believing!

Unless you're seeing artefacts...

UNIVERSITY

RBI Zagreb – March 2019

