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Summary

Legacy codes in computational science and engineering have been very successful in providing

essential functionality to researchers. However, they are not capable of exploiting the massive

parallelism provided by emerging heterogeneous architectures. The lack of portable performance

and scalability puts them at high risk, ie, either they evolve or they are destined to be executed

on older platforms and small clusters. One example of a legacy code which would heavily bene-

fit from a modern redesign is FLEUR, a software for electronic structure calculations. In previous

work, the computational bottleneck of FLEUR was partially reengineered to have a modular

design that relies on standard building blocks, namely, BLAS and LAPACK libraries. In this paper,

we demonstrate how the initial redesign enables the portability to heterogeneous architectures.

More specifically, we study different approaches to port the code to architectures consisting of

multi-core CPUs equipped with one or more coprocessors such as Nvidia GPUs and Intel Xeon

Phis. Our final code attains over 70% of the architectures' peak performance, and outperforms

Nvidia's and Intel's libraries. On JURECA, the large tier-0 cluster where FLEUR is often executed,

the code takes advantage of the full power of the computing nodes, attaining 5× speedup over the

sole use of the CPUs.
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1 INTRODUCTION

Modern software is typically designed with modularity, portability, and scalability in mind. Following these three principles allows codes to run effi-

ciently on a variety of large parallel clusters. At the other end of the spectrum, many legacy codes present a rigid structure that often is the result of

the direct implementation of mathematical formulas. Such a structure limits the efficient execution of these codes on emerging computing architec-

tures and constitutes a substantial portability challenge. One example of such legacy codes is FLEUR, a software for electronic structure calculations

developed during the last three decades at the Forschungszentrum Jülich (Germany).1 In FLEUR, the generation of the Hamiltonian and Overlap

matrices depends on a complex series of operations originally encoded in multiple nested loops distributed over a number of separate routines. In a

recent work, it was shown how these operations can be rearranged in terms of matrix linear algebra kernels opening the way to a greatly enhanced

performance portability of the code.2 In this paper, we close the gaps still open in the previous work, and demonstrate that restructuring a complex

mathematical formulation in terms of simple linear algebra algorithms indeed facilitates quick performance portability to complex heterogeneous

architectures consisting of multi-core shared-memory CPUs in combination with either GPUs or Phi co-processors.

Nowadays, massively-parallel heterogeneous architectures have become ubiquitous, and legacy code must be re-engineered and modernized

to make an efficient use of such architectures. A critical factor in writing long-lasting scientific code is to have a modular design where, at the

bottom layers, the computational bottlenecks are written in terms of efficient kernels.3-5 Examples of such kernels are fast Fourier transforms,

matrix-matrix products, and eigensolvers, which are provided by a number of commercial and academic libraries, such as Intel MKL,6 MAGMA,7

cuBLAS,8 cuFFT, and ELPA,9,10 just to name a few. Over time, standardized libraries include routines implementing the most critical kernels,
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which are highly-optimized for a variety of computing platforms. Applications codes designed to rely of such routines can automatically benefit

from them across distinct architectures. The most outstanding example is the Basic Linear Algebra Subprograms (BLAS) library. In reality, BLAS is an

interface that defines a number of common building blocks (including matrix-matrix products and linear systems solves), which was born after the

realization that standardization was critical to increase productivity and portability. Today, BLAS is the first library ported and optimized for each

new architecture, and is used as a building block for many other higher-level libraries. Therefore, writing software on top of BLAS is a guarantee for

performance portability and scalability.

In order to demonstrate the benefits of modern engineering and portability, Di Napoli et al underwent a major effort to reformulate one of the

computational bottlenecks of the FLEUR code,2 ie, the construction of the so-called Hamiltonian and Overlap matrices. The concepts of abstraction

and encapsulation were lacking in the original code, and the different modules were tightly coupled. Before re-writing the code from scratch, the

authors analyzed the mathematical model behind the code and rewrote the formulas at a higher level, resulting in a series of simple matrix-based

linear operations. These matrix operations were then cast into kernels provided by the BLAS and LAPACK libraries. The resulting new algorithm

(HSDLA) attains speedups ranging from 1.5× to 2.5× with respect to the corresponding FLEUR code on multi-core CPUs despite it executes one

order of magnitude more FLOPs. More importantly, the new code enables performance portability with limited programming effort which was

demonstrated in our previous work.11 In the latter, we analyzed the performance portability of the HSDLA algorithm on heterogeneous archi-

tectures consisting of multi-core shared-memory CPUs and one or more Graphical Processing Units (GPUs). In particular, we showed that the

implementation of the HSDLA algorithm can be ported to emerging architectures with minor or relatively straightforward code changes by employ-

ing highly-optimized libraries such as NVIDIA's CUBLASXT or Intel's MKL. However, this approach attained only up to 69% of the theoretical

system's peak performance, thus still significantly underutilizing the available resources.

In this paper, we close the performance gaps and demonstrate the worth of the initial HSDLA algorithm by porting it to complex heteroge-

neous architectures consisting of multi-core shared-memory CPUs together with GPUs or Xeon Phi co-processors. We first attempt a (almost)

plug-and-play solution and quantify the benefits and limitations to make the best of these architectures. Then, we study alternative approaches to

leverage existing optimized BLAS kernels for each component to obtain efficient hybrid routines. Finally, we identify some scalability bottlenecks

in sequential and poorly-scalable sections of the HSDLA algorithm and propose solutions to limit their impact in the overall scalability. Our exper-

imental tests, obtained on a number of distinct architectures, illustrate that the resulting code makes an efficient use of the computing resources

and has the potential to provide a consistent boost for the FLEUR code.

1.1 Contributions

Our main contributions can be divided in few steps. First, once rewritten in terms of a standardized interface, we perform a portability study of

the code and isolate a number of remaining issues limiting a successful port to heterogeneous architectures. In order to overcome these limita-

tions and quantify the improvements, several different approaches are considered, implemented, and tested. Finally, we assembled an improved

high-performance and scalable implementation of the HSDLA code and tested it to compute Hamiltonian and Overlap matrices derived from

realistic Density Functional Theory problems.

1.2 Organization of this paper

The remainder of this paper is organized as follows. Section 2 provides the background on Density Functional Theory and the math behind the

computation to generate the Hamiltonian and Overlap matrices. Section 3 gives an overview of the HSDLA algorithm for the generation of these

matrices and Section 4 provides overview of the related work. The improvements of the HSDLA algorithm as well as our implementation on the

heterogeneous architectures are described in Section 5. Section 6 presents experimental results for a collection of test cases and hybrid architec-

tures. Finally, Section 7 draws conclusion and discusses future research directions.

2 COMPUTING THE HAMILTONIAN AND OVERLAP MATRICES IN FLEUR

FLEUR is a scientific computing code, well-known in the community of condensed matter physicists, for calculating ground-state and excited-state

properties of solids. This is one of few Density Functional Theory (DFT) codes, which computes the electron structure of an atomic compound using

the Full-potential Linearized Augmented Plane Wave (FLAPW) discretization approach. In this section, we give a brief introduction of the fundamen-

tal mathematical aspects of DFT, and its practical realization by the FLAPW method. The material presented does not require a special background

knowledge in quantum physics and allows the non-specialist to understand the origin of one of the most computational intensive parts of the FLEUR

code; the construction of the Hamiltonian and the Overlap matrices.

2.1 DFT and the FLAPW method

In the last two decades, DFT12,13 has become the “standard model” in Materials Science. Within the DFT framework, it is possible to simulate the

physical properties of complex quantum mechanical systems made of few dozens up to few hundreds of atoms. The core of the method relies on the
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simultaneous solution of a set of partial differential equations. These equations are determined by a Hamiltonian operator Ĥ containing a so-called

effective potential V0[n], where n(r) is a function of the radial coordinate r known as the one-particle electron density.

In turn, the solutions of the equations𝜓 i(r)determine the one-particle electron density n(r)used in calculating the effective potential V0. Because

of the dependence of the Hamiltonian on the set of𝜓 i(r) through n(r), the governing equations are highly non-linear and cannot be solved directly

Ĥ𝜓i(r) =
(
− ℏ2

2m
∇2 + V0(r)

)
𝜓i(r) = 𝜖i𝜓i(r) ; 𝜖1 ≤ 𝜖2 ≤ …

n(r) =
∑N

i
fi|𝜓i(r)|2.

(1)

In practice, the equations above, also known as Kohn-Sham (KS),14 are solved by self-consistent iteration; an initial guess for n0(r) is used to

calculate the effective potential V0 which, in turn, is inserted in Equation (1) whose solutions,𝜓 i(r), are used to compute a new charge density n1(r).
Convergence is checked by comparing the new density to the starting one. When convergence is not reached, an opportune mixing of the two

densities is selected as a new guess, and the process is repeated.

In principle, the theory only requires as input the quantum numbers and the positions of the atoms that are part of the investigated system.

In practice, there is a plethora of DFT methods, which depends on the discretization used to parameterize the KS equations. The discretization in

the Full-potential Linearized Augmented Plane Wave (FLAPW) method15,16 is based on a plane wave expansion of 𝜓k,𝜈(r), where the momentum

vector k and the band index 𝜈 replace the generic index i. The k-point wave function 𝜓k,𝜈(r) =
∑|G+k|≤Kmax

cG
k,𝜈
𝜑G(k, r) is expanded in terms of a finite

basis set 𝜑G(k, r) indexed by the vectors G lying in the lattice reciprocal to configuration space up to a chosen cut-off value Kmax. In FLAPW, the

physical (configuration) space of the simulation cell is divided into spherical regions, called Muffin-Tin (MT) spheres, centered around atomic nuclei,

and interstitial areas between the MT spheres. The basis set𝜑G(k, r) takes a different expression depending on the region

𝜑G(k, r) ∝
⎧⎪⎨⎪⎩

ei(k+G)r Interstitial∑
l,m

[
Aa,G

l,m
(k)ua

l
(r) + Ba,G

l,m
(k)u̇a

l
(r)

]
Yl,m(r̂a) ath Muffin Tin,

(2)

where the coefficients Aa,G
l,m

(k) and Ba,G
l,m

(k) are determined by imposing continuity of𝜑G(k, r) and its derivative at the boundary of the MTs. Due to this

expansion, the KS equations naturally translate to a set of generalized eigenvalue problems
∑

G′ [HG,G′ (k) − 𝜆k𝜈SG,G′ (k)]cG′

k,𝜈
= 0 for the coefficients of

the expansion cG′

k,𝜈
, where the Hamiltonian and Overlap matrices H and S are given by multiple integrals and sums

{H(k), S(k)}G,G′ =
∑

a
∫∫ 𝜑∗

G(k, r){Ĥ, I}𝜑G′ (k, r)dr. (3)

Since the set of basis functions in Equation (2) is implicitly labeled by the values, the variable k takes in the Brillouin zone, there are multiple

Hamiltonian and Overlap matrices, one for each independent k-point.

2.2 Building H and S

Without loss of generality, we can abstract from the k-point index and recover an explicit formulation of the HG,G′ and SG,G′ matrices by substituting

Equation (2) in Equation (3) and carrying out the multiple integration. The computation is particularly complex within the MT regions where the

initialization of the Hamiltonian and Overlap matrices is by far the most computationally intensive task. By exploiting the properties of the basis

functions, the H and S matrices are directly expressed as functions of the set of A and B coefficients

(S)G′ ,G =
NA∑

a=1

∑
l,m

(
Aa,G′

l,m

)∗
Aa,G

l,m
+
(

Ba,G′

l,m

)∗
Ba,G

l,m
‖‖u̇a

l
‖‖2 (4)

(H)G′ ,G =
NA∑

a=1

∑
L′ ,L

((
Aa,G′

L′

)∗
T[AA]

L′ ,L;a Aa,G
L

)
+
((

Aa,G′

L′

)∗
T[AB]

L′ ,L;a Ba,G
L

)
+
((

Ba,G′

L′

)∗
T [BA]

L′ ,L;a Aa,G
L

)
+
((

Ba,G′

L′

)∗
T [BB]

L′ ,L;a Ba,G
L

)
. (5)

Notice that, in Equation (5) for convenience, we have compacted the indexes l,m into L, and expressed the range of the index a over all the distinct

atom types NA. The new matrices T[· · · ]
L′ ,L;a ∈ CNL×NL are dense and their computation involves multiple integrals between the basis functions and the

non-spherical part of the potential V0 (See appendix A.2 in the work of Di Napoli et al2 for details). Due to the non-orthornormality of the basis

function set (2), the matrix S is non-diagonal, dense, and generically positive definite with the exception of having few very small singular values.

On the opposite, H is always non-definite and both matrices are either complex Hermitian or real symmetric.

3 THE HSDLA ALGORITHM

In the original FLEUR code, the construction of matrices H and S was a direct implementation of mathematical formulae with the focus on the func-

tionality rather than scalability. The performance scalability was significantly improved in the HSDLA algorithm,2 in which the authors reformulated
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Equations (4) and (5) in terms of the coefficients A and B. As a result, the entire construction of matrices H and S is now cast in terms of matrix

operands, as shown in Equations (6) and (7)

H =
NA∑

a=1

AH
a T[AA]Aa
⏟⏞⏞⏟⏞⏞⏟

HAA

+ AH
a T[AB]Ba + BH

a T[BA]Aa + BH
a T[BB]Ba

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
HAB+BA+BB

(6)

S =
NA∑

a=1

AH
a Aa + BH

a UH
a UaBa, (7)

where Aa and Ba ∈ CNL×NG , T[...]
a ∈ CNL×NL , H and S ∈ CNG×NG are Hermitian, and U ∈ CNL×NL is a diagonal matrix. Typical values for the matrix sizes are

NA ∼ (100), NG ∼ (1000) to (10000), and NL ∼ (100).
The HSDLA algorithm2 takes advantage of the matrix formulation to cast the computation in terms of the highly optimized and portable BLAS

and LAPACK libraries. The algorithm is illustrated in Algorithm 1. The main ideas behind it are 1) exploiting the symmetries in the operations to

reduce the computational cost, 2) casting the computation in terms of efficient BLAS and LAPACK kernels, and 3) combining multiple operations

on small matrices together to increase performance and scalability. Although the algorithm exploits symmetry in matrices to reduce computational

costs, extra flops are introduced compared to the original version. However, these are fast flops, run in highly-optimized BLAS-3 kernels, leading to

significantly lower execution time when compared to the original code.

For implementation purposes, the computation of H is split into two parts, HAB + BA + BB and HAA (Equation (6), which can be cast completely in terms

of BLAS-3 operations. The key idea behind the calculation of HAB + BA + BB (lines 3 to 9) is to rewrite the expression as

NA∑
a=1

BH
a

(
T[BA]Aa

)
+
(

AH
a T[AB])Ba +

1
2

BH
a

(
T[BB]Ba

)
+ 1

2

(
BH

a T[BB])Ba,

where T[BA] is the Hermitian transpose of T[AB], and T[BB] is Hermitian. By doing so, the common expressions in parentheses can be grouped together

and substituted with

Za = T[BA]Aa +
1
2

T[BB]Ba,
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FIGURE 1 Stacking of multiple small matrices Za and Ba into larger matrices A and B, respectively. As a result, multiple small matrix products are
combined into a larger better performing product

for each atom a (lines 3 to 5). The matrices Za and Ba are then stacked together into larger matrices A and B (lines 6 and 7), allowing the remaining

computation

NA∑
a=1

BH
a Za + ZH

a Ba

to be performed as one single large matrix product (line 9), as depicted in Figure 1.

To compute the second part of the matrix H (lines 16 to 28), the algorithm again takes advantage of the existing symmetries in HAA. Since the T[AA]

matrix is Hermitian positive definite (HPD), HSDLA first attempts to compute the Cholesky factorization of T[AA] (CaCH
a = T[AA]) (line 18), which is

then substituted in HAA yielding

HAA =
NA∑

a=1

AH
a T[AA]Aa ⇒

NA∑
a=1

(
CH

a Aa

)
⏟⏟⏟

Za

H (
CH

a Aa

)
.

However, while in theory T[AA] is HPD, in practice, due to numerical considerations, the factorization may fail. The algorithm thus divides the compu-

tation of HAA in two parts. In case the factorization succeeds, the matrix Za is computed (line 20) and stacked at the top part of B (BT) (line 21). If, on

the other hand, the factorization fails, the matrix Za (line 23) is stacked at the bottom of matrix B (BB), and the matrix Aa stacked in A. At the comple-

tion of the loop, H is updated with the operation BH
T

BT +AHBB (lines 27 and 28), where the first term (BH
T

BT ) exploits the symmetry and computes only

half of the output via the BLAS routine herk, while the second term (AHBB) is computed via the BLAS routine gemm, which computes a full matrix.

Finally, the computation of S (lines 12 to 14) is more straightforward. First, the product AHA is computed as one single large product. Then, B is

updated with the norms stored in U and then second large product BHB completes the computation of S.

4 RELATED WORK

Nowadays, there is an abundance of BLAS-like computational libraries. However, up to our knowledge, none of these libraries does implement BLAS

kernels capable of automatically redistribute the computational load between different computational units, such as CPU, GPU and/or Phi. The most

popular multi-GPU commercial BLAS library, CUBLASXT, supports hybrid CPU-GPU computation, but so far, only gemm kernels are implemented

as fully hybrid, thus capable of concurrently divide the computational load between the CPUs and GPUs. An academic alternative to CUBLASXT,

called BLASX,17 requires minor changes to the calls to the BLAS routines, and similar to the CUBLASXT library, takes care of data transfers between

CPU and GPU transparently. The BLASX developers reported a significant speedup and a communication volume decrease compared to CUBLASXT,

MAGMA, and some other libraries. Despite such gains, only the dgemm routine is genuinely hybrid, ie, it has the possibility to schedule and share

execution on both CPUs and GPUs. In fact, upon a closer inspection of the BLASX library, one finds that some kernels, which are essential for our

algorithm (eg, zherk), are implemented by calling the corresponding CUBLASXT kernels. The remaining kernels pertinent to this work have either

CPU-only or (multi)GPU-only implementations; only of the two can be exclusively selected at runtime.
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In the work of Blas et al,18 the authors reported recent work focused on porting Matlab applications on CPU/GPU system for which they used

Armadillo and ArrayFire libraries. Similar to our approach, the authors rely on calling the GPU and CPU optimized kernels implemented in libraries

such as Intel MKL, OpenBLAS and NVBLAS. In contrast with our solutions, they select the opportune GPU or CPU kernels at runtime, based on the

problem size. Depending on such choice, the resulting computation is executed exclusively on either CPUs or GPUs and not on all available resources.

Further research in hybridization of codes has been done in the work of Haidar et al19 in which authors developed a lightweight scheduler to

offload tasks between different computational units inside a single compute node. The schedule is based on task parallelism and, as was demon-

strated in the case of Cholesky, the factorization tasks are executed on the CPU while updating is done on the GPUs. The authors also demonstrated

the portability and the scalability of their approach across different accelerators, including multi-GPU and multi-Phi systems. However, there is no

report on hybrid BLAS-3 kernels required by HSDLA.

At the time of writing this paper, only one research20 reported on hybrid GPU-based algorithms for the generation of Hamiltonian and Overlap

matrices in FLAPW methods. In that work, the authors aimed at 1000+ atoms systems, too large to be executed on a single compute node thus a

distributed block-cyclic setup and distribution of the Hamiltonian and Overlap matrices were implemented. However, the authors based the gener-

ation of H and S only on distributed versions of zgemm and did not exploit symmetries to decrease computational cost. In addition, the generation is

a task-based heterogeneous implementation where particular tasks are scheduled between CPU and the GPUs. In our approach to heterogeneity,

we aim at further exploiting data parallelism, not task parallelism.

5 HSDLA ON HETEROGENEOUS ARCHITECTURES

In this section, we concentrate on the behavior of the algorithm when executed on hybrid architectures consisting of shared-memory CPUs and one

or more graphic processor units (GPUs) or Intel Xeon Phi coprocessors. As discussed in the work of Di Napoli et al,2 once HSDLA is cast in terms of

BLAS and LAPACK routines, it attains high performance on multi-core architectures by simply linking to a multi-threaded implementation of these

libraries. However, as we demonstrate in this section, attaining such performance levels on hybrid architectures is not straightforward.

We first refine the original HSDLA algorithm, and significantly reduce its computational cost as well as its memory footprint. Then, we identify

the limitations of a straightforward port to hybrid architectures and the shortcomings of the existing solutions, and study alternative approaches to

attain satisfactory performance levels on such architectures.

5.1 HSDLA refined

In the effort of exploiting symmetries from the problem, the designers of HSDLA overlooked the fact that matrix H is Hermitian and used thezgemm

routine (general matrix-matrix product) in Algorithm 1 (line 28) instead of a routine that takes advantage of the symmetry and computes only one

triangle of the output matrix. As a result, the algorithm performs 4¬HPDNANLN2
G

redundant flops for computing the upper triangle of the matrix.

With that in mind, and given that some vendor libraries such as NVIDIA's CUBLASXT and Intel's MKL provide a specialized routine to compute

only one half of a general matrix product, lines 16 through 28 can be greatly simplified, avoiding the Cholesky factorization altogether, by replacing

them with the computation in Algorithm 2. As a result, the total cost of computing HAA is significantly reduced and is dominated by the specialized

routine with a cost of 4NANLN2
G

.

By further examining Algorithm 1 one observes two sequential steps, a backup and a restore of matrices A and B, lines 1 and 11, respectively.

Since A and B are overwritten (lines 3 to 9), one copy of each are stored in two additional storage spaces Â and B̂ (line 1) and reused to compute

S (lines 12–14) and the rest of H (HAA) (lines 16 to 28). However, the need for additional storage spaces Â and B̂ can be significantly reduced by

simply reordering the execution flow as described in Algorithm 3. The computation of S, which only requires one temporary buffer, is moved to the

beginning of the algorithm (lines 2 to 4); the result of computing UB is stored in the temporary buffer X, and the original values A and B and are so

far preserved. The buffer X is then reused as auxiliary storage in the computation of HAB + BA + BB for stacking Za (line 9); note that overwriting B now

in line 10 is harmless since its original contents are not needed anymore. Finally, in the computation of HAA, the result of line 15 is also stacked in X,

and A is compressed in the A buffer itself. Since all of A, B, and X are of size 16NANLNG bytes (in the order of gigabytes), cutting this requirements in

half has a major impact on the memory footprint of the entire algorithm.

5.2 Limitations of the straightforward approach

As we reported in our previous work,11 with very limited effort, HSDLA can be easily ported to various computing architectures such as multi-core

and multi-GPU systems. To achieve that goal, wrappers have to be implemented around calls to optimized architecture-specific libraries such as

cuBLAS, CUBLASXT, or Intel MKL, and function calls changed with those of the optimized libraries for a particular architecture. Although this

straightforward approach can quickly bring reasonable performance, it cannot utilize the underlying computational system at their full potential.

For example, if CUBLASXT is used on a multi-GPU system, most of the BLAS operations will be offloaded to the GPUs while the CPUs remain idle.

Thus, simply using the existing optimized libraries cannot yield the performance increase that is expected by combining the computational power

of all CPUs and GPUs of a system.
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In order to overcome this issue, we developed heterogeneous BLAS kernels for the routines zher2k, zherk, and zgemm/zherkx that can

efficiently divide the workload between the CPUs and the accelerators (GPUs and Phis).

In the rest of this section, we describe two different designs on how to implement the BLAS kernels on heterogeneous architectures, required by

the refined HDSLA. We denoted these two approaches as follows.

• Static - The computation between the CPUs and GPUs is divided by pre-computing the number of rows/columns that will be offloaded to the

GPUs and then a highly-tuned multi-GPU library is used to compute it.

• Dynamic - The computation is based on dynamic scheduling depending on available on-device memory to determine block size and per-device

task queuing.

5.3 Static

This approach targets hybrid architectures with one or more CUDA-based GPU devices, but can be easily extended to Intel Xeon Phi as well as other

accelerators, as long as optimized BLAS libraries for these architectures exist. The key idea of this approach is to re-use the existing, highly optimized

multi-GPU and multi-threaded libraries in building the hybrid code, with the goal to significantly reduce the programming effort. As such, the code

can be quickly tuned for new and emerging GPU architectures, thus improving performance portability on different platforms, while at the same

time explores concurrent execution on all available CPUs and GPUs of the system.

For the sake of simplicity, only the zher2k routine will be described in details, while the same approach can be easily extended to the other two

routines. The zher2k performs the Hermitian rank 2k update of the given matrix C in one of the following operations:

C ∶= 𝛼ABH + 𝛼BAH + 𝛽C,

C ∶= 𝛼AHB + 𝛼BHA + 𝛽C,

where 𝛼 and 𝛽 are scalars, C ∈ Rn× n is a Hermitian matrix, and A and B are general matrices of size n × k in the first case and k × n in the second

case. Hereafter, we will observe only the first case; the same algorithm applies for the second, but with A and B of transposed dimensions.

Matrix C is split into four blocks and updated as described in Figure 2. The workload is divided such that the principal submatrix C00 with dimension

ng × ng is updated on the GPU(s), while the blocks C10 and C11 (C01 is not required since C is Hermitian) are updated on the CPU. The entire update

of C can then be performed with only 4 function calls

C00 = 𝛼A0BH
0 + 𝛼B0AH

0 + 𝛽C00 −→ zher2k (GPU)

C11 = 𝛼A1BH
1 + 𝛼B1AH

1 + 𝛽C11 −→ zher2k (CPU)

C10 = 𝛼B1AH
0 + 𝛽C10 −→ zgemm (CPU)

C10 = 𝛼A1BH
0 + C10 −→ zgemm (CPU).
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FIGURE 2 Rank 2k update of matrix C (zher2k). The blocks are statically split between the CPUs (dark gray) and GPUs (light gray). ng is the size of
principal submatrix offloaded to the GPUs

Since these operations are independent from each other, they can be performed in parallel. For scheduling the workload between CPU and GPU

devices, OpenMP with nested parallelism is used. Two OpenMP threads are created, ie, one manages the computation on the CPU and invokes

multi-threaded MKL kernels, the other manages the computation on the GPU and invokes CUBLASXT kernels on the GPU.

Although this approach is simple, the main challenge that remains is how to optimally set the size of the principal submatrix that will be offloaded

to the GPU. In the ideal case, the CPU and GPU execution times should be completely overlapped. Thus, knowing that the total number of flops for

zher2k is 8kn2, with n the number of rows and columns of C and k number of columns of matrices A and B, ng, the size of the principal submatrix C00,

may be computed as

timegpu = timecpu

flopsgpu

Gflopsgpu
=

flopscpu

Gflopscpu

8kn2
g + 4

Gflopsgpu
=

8k(n − ng)2 + 4 + 16kng(n − ng)
Gflopscpu

.

Note that the updating block C10 requires two additional calls to zgemm which adds extra flops to the count. If m = Gflopsgpu

Gflopscpu
, then the size of matrix

offloaded to the GPU is

n2
g = mn2 + 4m

m + 1
.

As we illustrate in Section 6, the optimal offload between CPU and GPU devices can be computed analytically using this approach or the

performance ratio between CPU and GPU can be estimated on smaller problem sizes.

5.4 Dynamic

While a static split of the matrices and a static assignment of blocks to devices leads to the lowest overheads and highest efficiency, it lacks the flex-

ibility to adapt easily to new circumstances. An alternative is the use of a dynamic scheduling that queries the devices to determine the available

on-device memory, calculates appropriate block sizes, and uses per-device queues to distribute the work. To maximize portability, the implementa-

tion is split into a device-specific and a device-independent part. This allows the dynamic code to target both the Xeon Phi coprocessor and CUDA

GPUs. The device-independent part contains all the workload distribution, scheduling, the BLAS operation and hybrid calculation logic. As for the

device-dependent code, the Xeon Phi implementation builds on the hStreams library and MKL, while the GPU implementation relies on CUDA and

cuBLAS.

The device-independent logic works as follows. First, each matrix is split into square blocks. The block size is chosen to split the matrices evenly,

fit multiple blocks into GPU memory, and follow vendor recommendations (eg, for the first generation Xeon Phi accelerators the block size should

be divisible by 64 but not 256). Next, the scheduler determines the individual operations to be performed on each of the submatrices, and schedules

them to the devices in a round-robin fashion. Each block is packed into contiguous buffers and streamed to the devices; the results are unpacked

once the calculation and the reverse transfer complete. The packing of the blocks is necessary for the Xeon Phi, since it lacks support for copies

from 2D arrays, but it is avoided on GPUs. If the scheduler notices that a device is not yet ready to accept work because its queue is full, it skips that

devices. Once the memory of the devices are filled up, and the CPU is not needed to drive the devices, the CPU starts computing block operations

using its own computational resources.

The remaining challenge is to improve utilization at the very start of a calculation, and at the very end. There, it is desirable to reduce block

sizes and sacrifice kernel efficiency for load balance. However, implementing such a scheme requires sophisticated models of transfer and compute

efficiency, and it is left to future work.
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TABLE 1 Problem sizes for NaCl, AuAg, and TiO2, for a variety of Kmax values. The
value of NG varies with Kmax

Test case NA NL NG: Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

NaCl 512 49 2 256 3 893 6 217 9 273

AuAg 108 121 3 275 5 638 8 970 13 379

TiO2 384 81 7 094 12 293 19 553 29 144

6 EXPERIMENTAL RESULTS

We turn now our attention to experimental results. We compare the performance of the original multi-core (CPU only) HSDLA algorithm2 against

our refined CPU implementation from Section 5.1 and the two hybrid CPU-GPU implementations based on that refined algorithm. As mentioned in

Section 5, these include an implementation that offloads large matrix-matrix products to the multi-GPU using CUBLASXT, an implementation using

static work assignment (Section 5.3), and an implementation using dynamic work assignment (Section 5.4). Since the implementation using dynamic

work assignment supports offloading to Intel Xeon Phi accelerators, we also present results on that platform.

As test cases, we use three input systems that describe distinct physical systems. We refer to them as NaCl, AuAg, and TiO2, respectively. These

systems represent a heterogeneous sample (including both insulators and conductors) with different physical properties. In our tests, the code

generates the matrices H and S for one single k-point, and different Kmax values. The actual problem sizes, ie, the values for NA, NL, and NG for each

case are given in Table 1.

6.1 Experimental setup

We ran our experiments on a range of compute nodes. We used two computed nodes hosted by the IT center of the RWTH Aachen University.

One of these nodes (RWTH-GPU) consists of two eight-core Sandy Bridge E5-2680 processors, running at a frequency of 2.7 GHz. The node is

equipped with 64 GBs of RAM and 2 Nvidia Tesla K20Xm GPUs. The peak performance of the 16 CPU cores in double precision is 345 GFlops/s, while

the peak performance of each GPU is 1.3 TFlops/s, for a combined peak of almost 3.0 TFlops/s. The second RWTH node (RWTH-Phi) consists of two

eight-core Sandy Bridge E5-2650 processors, running at a frequency of 2.0 GHz. The node is also equipped with 64 GBs of RAM and 2 Intel Xeon Phi

5110p accelerators (Knight's Corner), The peak performance of the 16 CPU cores in double precision is 256 GFlops/s, while the peak performance

of each Xeon Phi is (about) 1 TFlops/s, for a combined peak of 2.3 TFlops/s.

We also ran experiments on the JURECA supercomputer at the Jülich Supercomputing Centre (JSC). More specifically, we used one JURECA

node consisting of two twelve-core Haswell E5-2680v3 processors, running at a nominal frequency of 2.5 GHz, and 2 NVIDIA K80 GPUs (each

of which consists of two GK210 devices). The node is equipped with 128 GBs of RAM. The combined peak performance for the 24 CPU cores in

double precision is 960 GFlops/s, while the theoretical peak performance in double precision of each GPU device is about 1.45 TFlops/s, for a total

of 6.7 TFlops/s.

In the following sections, when presenting efficiency of the achieved system with a varying number of accelerators, we take as reference value the

peak performance corresponding to the same number of accelerators. For example, when presenting the results on JURECA with 1, 2 and 3 GPUs,

the system peak performance is 2.4, 3.8, and 5.3 TFlops, respectively.

We compare several different improved HSDLA versions. We refer to the base HSDLA algorithm, as implemented in the work of Di Napoli et al,2

with original. Our algorithmically refined multiCPU HSDLA version is denoted as refined, while the same version but for multi-GPU system is named

cuBlasXt. The accelerated versions, denoted as static and dynamic, are the version described in Sections 5.3 and 5.4, respectively. In all cases, the code

was linked to Intel MKL version 11.3.2 for the BLAS routines on the CPU and Xeon Phis; the GPU code was linked to NVIDIA CUBLASXT version

7.5 and 8.0 on the RWTH-GPU nodes and on the JURECA nodes, respectively.

FIGURE 3 Speedup on RWTH-GPU for all implementations, relative to original code
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FIGURE 4 Performance on RWTH-GPU for all implementations, for the AuAg test case

TABLE 2 GFlops/s and efficiency (in parentheses) for the AuAg test
case and Kmax = 4.0. Results for the RWTH node using 2 GPUs

Implementation zherk zher2k zherkx/zgemmt

CPU 358 (11.93%) 304 (10.13%) 343 (11.43%)

cuBlasXt 2041 (68.30%) 2012 (67.06%) 2021 (67.07%)

Dynamic 2332 (77.73%) 2367 (78.90%) 2302 (76.73%)

Static 2337 (77.91%) 2315 (77.16%) 2315 (77.16%)

6.2 RWTH-GPU

We provide two experiments for the RWTH-GPU system. Figure 3 presents the speedup over the original HSDLA algorithm attained by the refined,

cuBlasXt, dynamic, and static implementations, for each of the different test cases (showed on x-axis) sorted by the increasing number of floating

point operations (in TFLOPS) required by each of them. The results show an average speedup of 1.13 of the refined algorithm over the original, when

run on the CPU only. That clearly demonstrates how small changes in the code, such as exploiting symmetries and reordering of the execution flow

(requiring limited programming effort), can lead to higher performance, even without using the accelerators.

In addition, the figure illustrates how the GPU-based codes (cuBlasXt, static, and dynamic) achieve seizable speedups no matter how large the

the problem size is. The speedup obtained by using only the GPUs is up to 7X for larger problems (the theoretical peak performance of both GPUs is

7.5X higher than those of CPUs). Furthermore, in most cases, our custom hybrid implementations outperform the cuBlasXT, thanks to both better

tuning of block sizes and especially a heavier usage of the host CPU computational power by offloading a part of the cuBlasXT computation to the

CPUs. The dip at the end of the dynamic code is due to TiO2 case run out of memory when 2 GPUs are used; instead result using 1 GPU is presented.

Figure 4 showcases the total performance achieved by the different implementations for the AuAg test case and a range of values for Kmax. Again,

the advantages of enabling the use of the entire compute nodes (CPU + GPUs) become apparent. There is a clear separation between CPU-only

and accelerated code, and also between GPU-only cuBlasXt and the hybrid static and dynamic codes. Both our hybrid codes outperform GPU-only

(cuBlasXt), for large enough problems, by more than 200 Gflops, which is very close to the peak performance of the CPU-only version, Table 2. This

clearly demonstrates that the all CPUs are fully utilized in our hybrid approach.

Furthermore, for large problems that allow for a reasonable utilization of the multiple GPUs, we achieve about 2 TFlops/s compared to a peak

performance of 3 TFlops/s, ie, 66% efficiency. The efficiency is even higher for larger problems such as TiO2 with Kmax = 4.0, where our code attains

about 2.5 TFlops/s (83% of the peak).

The presented results include timings from the CPU-only parts of the code (Algorithm 3 lines 6 to 11 and 14 to 18), during which the GPUs are

in idle state, thus decreasing total performance and efficiency. The efficiency attained by our hybrid BLAS routines is even higher, as presented in

Table 2. The attained efficiency of the BLAS-only kernels is up to 79% for AuAg case and slightly better for TiO2 case, up to 81% of the peak system

performance.

6.3 RWTH-Phi

For the RWTH-Phi system, we again present a speedup plot (Figure 5) and a performance plot (Figure 6). In this case, we present results for the

refined algorithm and the dynamic version of the hybrid code, which is the only one with current support for the Xeon Phi (through the hStreams

API). While MKL can offload calculations automatically to the device, this is only true for the GEMM operation. Therefore, the automatic offload is

not applicable to our algorithm, which is dominated by the zherk, zher2k, and zherkx routines.

Figure 5 shows how our hybrid code consistently achieves a speedup between 4 and 5 with respect to the original HSDLA algorithm. This is

consistent with both the relative computational power of the two accelerator cards and the CPU, as well as the expectation that the Phi accelerators

do not get as close to their theoretical peak performance as GPUs do.
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FIGURE 5 Speedup on RWTH-Phi for the refined and the hybrid dynamic implementations, relative to original code

FIGURE 6 Performance on RWTH-Phi for the original, refined, and dynamic implementations, for the AuAg test case

FIGURE 7 Speedup on JURECA for all implementations, relative to original code

In Figure 6, we illustrate the performance of the original, refined, and dynamic codes for AuAg test case. For the larger case (Kmax = 4.0), the

dynamic versions attain about 700 GFlops/s, using one Phi, and 1200 GFlops/s, using two Phis, which correspond to 55% and 52% of the system

peak performance, respectively. For the TiO2 test case, we observed even higher performances of up to 950 GFlops/s (one Phi) and 1600 GFlops/s

(two Phis) corresponding to an efficiency of 75% and 69%.

Similar to the previous experiments in the RWTH-GPU system, the larger the problem size, the larger the efficiency attained, which shows that

even higher efficiency is to be expected when larger systems are simulated.

6.4 JURECA-GPU

The JURECA-GPU nodes comprise two NVIDIA K80 GPUs, each of which consists of two devices. This allows us not only to not evaluate speedups

(Figure 7) and performance (Figure 8), but also scalability of the different implementations (Figure 9). Figure 7 illustrates the speedup of the various

GPU implementations relative to the original HSDLA. The speedup ranges most of the times between 3.5 and 5.5 (starting from a maximum of

about 7). The fact that the speedup of the dynamic code varies widely indicates that the scheduler struggles to fully utilize all four GPUs. With

regards to the comparison among the three GPU-hybrid implementations, there is again a clear separation between the static code and the cuBlasXt

implementation.
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FIGURE 8 Performance on JURECA for all implementations, for the AuAg test case

(A) (B)

FIGURE 9 Scalability of the hybrid BLAS routines on JURECA going from one to many GPUs, for both codes, for the AuAg (A) and TiO2

(B) 3.5 test case

The performance plot in Figure 8 illustrates the flop rates achieved by each implementation. The clear separation between the static and the

cuBlasXt implementation is again very pronounced. However, as observed in Figure 7, the dynamic implementation struggles to utilize many GPUs.

It seems like further improvements would be necessary to properly adapt it to this use case. Overall, our static implementation achieves up to 3.2

TFlops/s for the AuAg test case, ie,, a 15% higher performance than the cuBlasXt implementation. Similar results are achieved for the TiO2 case, in

which we observe a performance of up to 4.3 TFlops/s on 4 GPUs, resulting in 16% higher performance compared to the cuBlasXt implementation.

As the system has a peak performance of 6.7 TFlops/s (4 GPU included), the results for AuAg and TiO2 cases correspond to 47% and 61% peak

performance utilization, respectively. These much lower results compared to RWTH-GPU are the result of the surprisingly low performance of the

CUBLASXT implementations (only 55% utilization) of the key BLAS-3 kernels, on which our accelerated HSDLA versions depend on.

The plot in Figure 9 captures the scalability behavior of our code for the AuAg and TiO2, Kmax = 3.5 case, for 1, 2, 3, and 4 GPUs. In this plot, we

focus solely on our hybrid implementation of the off-loaded BLAS routines, and consider only this part of the runtime. We extract three important

messages from the graph. First, the measurements for static and dynamic code nearly coincide. This is not surprising, since both codes aim to achieve

the same goal, ie, hybrid execution. Second, the measurements for all three implementations roughly share the same slope. This indicates that all

codes utilize the GPUs similarly well as additional devices are added. Third, there is a gap between the hybrid codes and the GPU-only code of almost

1 TFlop/s, which is roughly the computational power of the CPU. This reflects that not only the hybrid codes reach a utilization of the GPUs similar

to the vendor optimized CUBLASXT, but they also fully utilize the CPU cores. This is particularly of interest because modern CPUs provide high

computational power (eg, 960 GFlops on JURECA per node), even when compared to that of the coprocessors, and thus should not be neglected nor

underutilized. Table 3 shows that the performance gain of combining CPUs with GPUs in the BLAS-3 kernels in the HSDLA algorithm can improve

performance up to 19% compared to the state-of-the-art cuBlasXt implementations using 4 GPUs.

TABLE 3 GFlops/s and speedup (in parentheses) for static and
dynamic implementations compared to cuBlasXt for the TiO2 test
case and Kmax = 3.5 on JURECA using 4 GPUs

Implementation zherk zher2k zherkx/zgemmt

cuBlasXt 3439 (5.72×) 3258 (6.64×) 3257 (5.89×)

Dynamic 3862 (1.12×) 3590 (1.11×) 3266 (1.01×)

Static 4012 (1.19×) 3832 (1.19×) 3686 (1.13×)
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7 CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated how legacy codes, such as the FLEUR code, can be modernized in order to exploit the massive parallelism of

modern computing architectures, and to improve code performance as well as portability and scalability. The starting point of our work was the

HSDLA algorithm. HSDLA encodes the computation of the Hamiltonian and the Overlap matrices (H and S), one of the two computational bottle-

necks of the FLEUR code, in terms of multi-dimensional operations that map well onto BLAS-3 operations. However, the straightforward porting

of these BLAS operations to heterogeneous architectures consisting of multi-core CPU and one or more GPUs or Phi accelerators does not attain

expected performances. The reason behind the limited performance is that vendor optimized BLAS libraries do not provide support for such hybrid

architectures and exploit either the CPUs or the accelerators, but not both.

We used the original BLAS-based HSDLA code as a starting point to explore both existing and custom implementations in order to take advantage

of the accelerators. First, we improved the original HSDLA algorithm by introducing changes in the execution flow; the result was a much lower

memory footprint and a reduced computational cost. Then, we showed that custom hybrid implementations can boost performance compared to

accelerator-only implementations, especially when CPUs themselves provide large computational power.

We presented two approaches to implement hybrid BLAS, ie, a dynamic approach that schedules chunks of calculation on the devices using buffers

and queues, and a static approach that splits matrices based on prescribed ratios. The dynamic approach is more generic, as demonstrated by tar-

geting both GPUs and Phis. Because the static code needs to be tuned through the ratios, it gives better control for tuning. Both implementation

strategies considerably boost performance due to their hybrid nature.

However, there is still room for improvement. By using mathematical equalities, the objects A and B can be compressed into smaller objects, lead-

ing to less but more complex computations. More specifically, the compressed form of A and B leads to tensor contractions that do not naturally map

ontogemm-like operations and require the development of specialized routines. If efficient mappings and implementations of new kernels are found,

speedups of up to one order of magnitude may be achieved. Furthermore, in order to solve even larger problems (systems of up to 1000 atoms), the

presented approaches present certain limitations such as the memory requirements and the limited size of the on-device memory. To efficiently solve

larger problems, new memory and communication-avoiding approaches on distributed multi-CPU and multi-GPU systems are required, including

the redesign of the most time-consuming kernels.
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