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Nitrates are among the most common groundwater contaminants worldwide, and the same situation is present within the Zagreb
aquifer. The Zagreb aquifer presents the only source of potable water for inhabitants of the City of Zagreb and part of Zagreb
County. Isotopic composition of water (δ2H and δ18O) and nitrates (δ15N and δ18O), groundwater chemistry, and molar ratios,
in combination with correlation and multivariate statistical methods, have been used for the estimation of nitrate origin. Nitrate
stable isotopes excluded synthetic fertilizer as the main source of nitrate contamination. They showed insignificant influence of
denitrification on nitrate concentrations but could not define the main source of nitrate contamination. The usage of molar
ratios, especially NO3

−/K+, helped to clarify this issue. Waste water has been defined as the main source of nitrate
contamination. All results indicate that nitrogen in a large extent enters the aquifer in the form of ammonium ion, which is
transformed to nitrates by the process of nitrification.

1. Introduction

Groundwater nitrate contamination presents one of the
main environmental problems in the world [1–5]. The most
important issue related to the effective management of
nitrate contamination is the definition of its origin and the
understanding of fate and transport of nitrates through the
aquifer. Nitrate is negatively charged and very soluble. It
has high mobility and potential for loss from the unsaturated
zone, generally through leaching [6, 7]. Nitrate leaching
through the unsaturated zone is the consequence of a com-
plex interaction between many different factors, which vary
in time [1]. When nitrates reach groundwater, their move-
ment mainly depends on transport processes, mostly advec-
tion and dispersion. Additionally, geochemical processes,
such as denitrification, as well as aerobic and anaerobic con-
ditions, play a very important role in the stability of different
nitrogen compounds. Nitrates are dominantly found in an
aerobic environment where they have high mobility. Identi-
fication of a nitrate source can be very difficult. Nitrates can
occur naturally but also can be the consequence of anthro-
pogenic sources. Major anthropogenic sources are synthetic
fertilizers, manure, and different types of waste water, i.e.,

municipal waste water and septic tanks in the rural areas.
Although different indicators of aerobic and anaerobic
conditions exist in aquifers, dissolved oxygen concentrations
are the most important one. The boundary between
aerobic and anaerobic conditions is close to 1mg/l of
dissolved oxygen [8].

Within the Zagreb aquifer system, good positive, statisti-
cally significant correlation between nitrates and dissolved
oxygen concentrations has been observed [9]. Furthermore,
it has been shown that aerobic conditions prevail in the
Zagreb aquifer, except in the eastern part of the City of
Zagreb and Zagreb County, where the aquifer deepens
[10]. Anthropogenically caused, elevated nitrate concentra-
tions have been determined in the groundwater of the
Zagreb aquifer [10–12], which presents the only source of
potable water for the citizens of the City of Zagreb and part
of Zagreb County. Nitrates have been recognized as one of
the five major contaminants in the Zagreb aquifer system
[11], and two main areas with elevated nitrate concentra-
tions were identified [10, 12]. In addition, descending nitrate
concentration trends have been established in almost all
parts of the Zagreb aquifer system [13]. Although the
presence of nitrate contamination in the Zagreb aquifer is
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undoubtedly confirmed, previous research did not deal with
the estimation of nitrate origin.

Determination and evaluation of nitrate stable isotope
composition, i.e., δ15N and δ18O from nitrates, present
one of the main tools for the identification of nitrates
sources, as well as for defining the significance of denitri-
fication on nitrate concentrations. The frequent use of
nitrate stable isotopes started at the beginning of the 21st

century by development of analytical techniques which
enabled accurate, precise, fast, and inexpensive analysis:
“ion-exchange” method [14, 15], “bacterial denitrification
method” [16–18], and “cadmium reduction method” [19].
Although the use of δ15N-NO3

− in the identification of
nitrate sources dates back to the 1970s [20], development
of these methods has enabled an extensive, successful
application in a large number of studies [4, 21–27].
However, the application of nitrate stable isotopes has
limitations, mostly due to overlap of the isotope composi-
tion of nitrates from waste water and manure. It has been
shown that both waste water and manure are enriched in

15N relative to other types of nitrogen sources, mostly
ranging from +7‰ to +15‰ [3]. Even though evaluation
of δ18O-NO3

− can distinguish nitrate from precipitation,
synthetic fertilizer, or nitrification process, it cannot help
in discerning nitrates from manure and waste water. To
overcome this issue, δ11B is very often used in the combi-
nation with δ15N-NO3

− [25, 28–30]. Unfortunately, due to
the absence of B concentration data in groundwater of the
Zagreb aquifer, this isotopic technique could not be used
in this research.

Groundwater geochemistry and different statistic tools,
especially multivariate statistical analysis, in combination
with nitrate stable isotope composition, can be very useful
in the estimation of the nitrate origin. Different research
[31, 32] showed very good correlation between NO3

−, Na+,
and Cl−, related to urban contamination sources, for
example, to leaking sewage system or municipal waste, while
other research [33, 34] linked the existence of these correla-
tions to animal waste. When statistical correlation of these
parameters is not significant, it can be assumed that the
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Figure 1: Research area and spatially grouped observation wells.

2 Geofluids



presence of nitrogen is related to different sources [32].
According to some authors, very good correlations between
NO3

−, Ca2+, and Mg2+ indicate that nitrate concentrations
originate from a unique source, generally synthetic fertilizers
and/or manure [21]. Also, it was shown that exploration of
molar ratios between NO3

−, Cl−, and K+ could be useful in
the determination of nitrate origin [23]. Higher Cl− concen-
trations are more characteristic for urban sources, while a
higher NO3

−/K+ molar ratio is more likely associated with
the manure application, and a lower molar ratio is possi-
bly related to urban sewage effluent. The molar ratio of
NO3

− to K+ characteristic for synthetic fertilizer should
be much lower with regard to manure but higher with
regard to waste water [35, 36]. Correlation and multivari-
ate statistical analysis, especially factor and cluster analysis,
are also very often used in the research of groundwater
chemistry [31, 33, 37–39].

The main goal of the research presented in this paper
was to estimate nitrate origin and to evaluate the significance

of the denitrification process in the groundwater of the
Zagreb aquifer system. For this purpose, multi-isotope data
and groundwater geochemistry data including ion molar
ratios, as well as correlation and multivariate statistical
analyses, were used.

2. Site Description

The Zagreb aquifer system is located in the northwest part
of the Republic of Croatia, covering approximately
350 km2 (see Figure 1).

It is designated as a part of the country’s strategic water
reserves, which emphasizes the necessity of its protection
from different anthropogenic influences. The wide region is
characterized by great variability in land use, pedology,
topology, lithology, and hydraulic properties of the aquifer.

The Zagreb aquifer system consists of Quaternary sedi-
ments deposited during the Middle and Upper Pleistocene
and Holocene. Pleistocene deposits belong to lacustrine-
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Figure 2: Potential contaminants in the area of the Zagreb aquifer system.
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marshy deposits, while Holocene deposits are alluvial [40,
41]. The Middle and Upper Pleistocene sediments consist of
gravel, sand, and clay. Clasts in coarse grained sediments
are mostly of siliciclastic composition due to the local source
of sediments from nearby mountains. Holocene sediments
are somewhat more coarse grained than Pleistocene sedi-
ments and have a significant amount of carbonate clast. This
was the result of the change in the source of the material
which was transported by the Sava River from the Alps
[42]. Hydrogeologically, the Zagreb aquifer system consists
of an overburden, shallow, and deep aquifer layer. The thick-
ness of the unsaturated zone, generally disturbed by the
anthropogenic influence, varies from 2 to 8m and is highly
permeable in some parts, especially under humid conditions
[43, 44]. This allows transport of contaminants to the
groundwater. The thickness of the shallow Holocene aquifer
is from 5 to 40m, while deeper Pleistocene aquifer thickness
can be up to 60m, which means that maximum aquifer depth
can reach up to 100m [45]. Holocene and Pleistocene aquifer
layers are hydraulically connected. The Holocene part of the

aquifer system is in direct contact with the Sava River.
Stream-aquifer interaction is more pronounced in the vicin-
ity of the Sava River [46]. Regional groundwater flow is from
W–NW to E–SE, which coincides with the Sava River flow,
while local groundwater flow changes frequently, strongly
depending on the Sava River fluctuations, i.e., duration and
intensity of hydrological conditions. Geochemical stratifica-
tion of the Zagreb aquifer system is recognized along the
depth and in time and space, which mostly depends on the
proximity of the Sava River [47].

Due to industrial and agricultural development, and
growth of the City of Zagreb and Zagreb County, anthropo-
genic influence on groundwater quality has significantly
increased in the last decades. Nitrates are recognized as
one of the main groundwater contaminants [11], while
descending nitrate concentration trends have been observed
in almost all parts of the Zagreb aquifer system, studied at
different observational scales [13]. Two main parts of the
Holocene aquifer are contaminated with nitrates. One area
is located on the left bank of the Sava River, in the urban
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Figure 3: Location of sampled observation wells in the area of the Zagreb aquifer system (“Yes”: sampled in the first and second phases; “No”:
sampled only in the first phase).
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area, while the other is located on the right bank of the Sava
River, in the dominantly agricultural and rural area. Lower
nitrate concentrations are observed near the Sava River
and in the eastern part of the aquifer, where aquifer thick-
ness increases [10, 12]. Considering potential sources of
contamination, it can be assumed that on the left bank of
the Sava River, urban sources prevail, while on the right
bank, a mix of different contamination sources is present.
From land cover [48], location of farms, and spatial distribu-
tion of the sewage network (see Figure 2), it can be seen that
most of the farms and agricultural areas are located on the
right bank of the Sava River. Nitrate contamination in the
urban part of the City of Zagreb is mostly related to leaching
from the permeable sewage network and/or septic tanks.

3. Materials and Methods

In this research, two data sets were used. The first data set is
based on all available groundwater chemistry data from the
national monitoring programme of Croatian Waters and
from the monitoring programme of the Jakuševec landfill.
Data from 1991 until the end of 2015 was used, in sum more
than 16,000 chemical analyses from 153 observation wells.
Observation wells have different sampling intervals, from
monthly to yearly, and different chemical parameters have
been measured. Considering the above, it was decided that
only major ions and most frequently measured chemical
parameters, in sum 13 chemical parameters (average values),
will be used for the evaluation of groundwater chemistry of
the Zagreb aquifer (groundwater temperature, pH,
oxidation-reduction potential (ORP), electrical conductivity
(EC), dissolved oxygen (O2), NO3

−, Cl−, SO4
2−, HCO3

−,
Ca2+, Mg2+, Na+, and K+). Concentrations of NH4

+ and
NO2

− were not included in the analysis due to very rare
occurrence of these nitrogen species, in sum about 4% of
all analysis [10].

The second data set is represented by groundwater and
river samples, which were sampled for determining the
nitrate origin during one hydrologic year. The data set

consists of 12 chemical parameters (groundwater tempera-
ture, pH, oxidation-reduction potential (ORP), electrical
conductivity (EC), NO3

−, Cl−, SO4
2−, HCO3

−, Ca2+, Mg2+,
Na+, and K+). Concentrations of NO2

− were determined in
two samples and NH4

+ in three samples and were not used
in further analysis. Groundwater sampling was carried out
in two phases and two areas. Areas were determined based
on the results from previous research related to definition
of spatial and temporal distribution of highest nitrate con-
centrations [10, 12]. One area is located on the left part of
the Sava River bank and the other on the right bank (see
Figure 3). Preliminary sampling was done at 56 observation
wells from the end of year 2015 (November and December)
to the beginning of the year 2016 (January).

Results of nitrate stable isotope composition conducted
in the first phase were used to define locations and frequency
of sampling in the year 2016. First results did not show
many deviations in isotopic composition, so the main
criteria for the determination of observation wells which
were sampled in the next phase were nitrate concentration
and their location. Finally, 30 observation wells (see
Figure 3) were chosen for sampling in the second phase, while
three samples from the Sava River were provided by the
Ruđer Bošković Institute. In total, 149 samples were taken
and processed. For nitrate stable isotope analysis, samples
were filtered on field and placed into HDPE Nalgene bottles.

Nitrate stable isotope composition, i.e., δ15N-NO3
− and

δ18O-NO3
−, was determined by the Isotope Science Labora-

tory at the University of Calgary (Alberta, Canada) using a
mass spectrometer (DeltaV+PreCon+ConfloIV) and denitri-
fier technique [17] with uncertainty of ±0.3‰ for δ15N and
±0.7‰ for δ18O. Water stable isotope composition (δ2H-
H2O and δ18O-H2O), as well as all other analyses, was deter-
mined by the Faculty of Mining, Geology and Petroleum
Engineering at the University of Zagreb (laboratory for
spectroscopy), using a Liquid Water Isotope Analyzer
(LWIA-45-EP) by Los Gatos Research Inc., with uncertainty
of ±0.16‰ for δ2H and ±0.1‰ for δ18O. All values are
reported in the usual delta notation as permil relative to
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AIR and VSMOW (Vienna Standard Mean Ocean Water).
Water stable isotopes were used for testing the water ori-
gin, while δ18O-H2O values were additionally used for
the estimation of the interval characteristic for nitrates
derived from nitrification [5, 24, 49], where a value of
+23.5‰ was used for δ18O-O2 [49]. In that sense, they
were compared to all available data for the Zagreb, Lju-
bljana, and Jesenice na Dolenjskem stations, from GNIP
and GNIR (Global Networks of Isotopes in Precipitation
and Rivers) within the WISER (Water Isotope System for
Data Visualization, Analysis and Electronic Retrieval)
database [50]. A laboratory information management
system (LIMS) [51] was used for the preparation, process-
ing, and data interpretation. Major ions were determined
by Ion Chromatography System (ICS-90), while for hydro-
gencarbonate determination, titration was used. EC was
measured by instrument “Cond 3110” (WTW company),
while pH, ORP, and groundwater temperature were
measured using instrument “pH 315” (WTW company)
and pH/ORP tester (Hanna instruments).

Average molar ratios of NO3
−/Cl−, NO3

−/Na+, and
NO3

−/K+ were calculated for each observation well for both

data sets and used for the estimation of the molar ratio slope
in the spatially grouped observation wells, which in most
cases coincide with the well field’s inflow areas (Sašnjak
and Žitnjak, Petruševec, Ivanja Reka, Mala Mlaka, Velika
Gorica, Zapruđe, and Kosnica; see Figure 1). The same
spatial analogy was used in the interpretation of nitrate
stable isotope composition.

Statistical analyses were made in Statistica 64 [52].
Normal distribution of all parameters from the first and
second data sets was tested using the Kolmogorov-Smirnov
test. Pearson and Spearman correlation coefficients were
used to test correlation between all used parameters before
usage of multivariate statistical analyses. Principal compo-
nent analysis (PCA; default extraction method under factor
analysis in Statistica 64) was used to extract parameters that
are related to anthropogenic influence, which were then used
in cluster analysis, in combination with nitrate stable
isotopes and ion molar ratios, to identify nitrate origin at
selected observation wells. Varimax rotation was used for
the interpretation of final principal components (PC), while
loadings higher than 0.6 were selected as significant, which is
consistent with guidelines provided in statistical literature
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[53], with regard to the number of data and desired statisti-
cal significance (α=0.05). Although there are different rules
of thumb considering usage of minimum data in factor anal-
ysis, a minimum requirement of 100 cases [54], and a 5 : 1
case-to-variable ratio [53], was satisfied. Cluster analysis
was conducted using Ward’s method and squared Euclidean
distances. Due to different measure units of selected param-
eters, all data was standardized to Z values. All maps were
made in ArcMap 10.1, while a georeferenced orthophoto
image was obtained from the geoportal of the Croatian Geo-
detic Administration. All maps are presented in the official
coordinate system of the Republic of Croatia (HTRS96/TM).

4. Results and Discussion

Water isotopic composition showed that groundwater from
the Zagreb aquifer system is isotopically most similar to
water from the Sava river at the “Jesenice na Dolenjskem”
station, located at the Slovenian-Croatian border, and to
precipitation from the City of Ljubljana (Local Meteoric
Water Line (LMWL) Ljubljana). Isotopic composition of
groundwater is less similar to precipitation from the City
of Zagreb (LMWL Zagreb, see Figure 4). This is consistent
with previous researches [11, 55]. Values of δ18O-H2O gen-
erally vary from −9.89 to −8.51‰ and were used for the esti-
mation of interval characteristic for nitrification (see
Figure 5), ranging from +1.24 to +2.16‰ of δ18O-NO3

−.
Nitrate stable isotopes showed that nitrates in groundwater
of the Zagreb aquifer system are mostly related to an input
of anthropogenic organic matter (derived from manure
and/or waste water, see Figure 5(a)), while synthetic
fertilizers were excluded as the main source of nitrate

contamination. In Figure 5(a), it can also be seen that
nitrates are not related to nitrates from precipitation, which
agrees with the fact that groundwater isotopic composition
is less associated with precipitation that falls in the area of
the Zagreb aquifer system. Nitrate stable isotopes, measured
in the samples from the Sava River, have very similar
isotopic composition as those from groundwater, which
confirms the existing stream-aquifer relationship. Values of
δ15N-NO3

− generally range from +6.08‰ to 16.1‰, while
δ18O-NO3

− values range from −1.16‰ up to +5.44‰, with
one sample being excluded from further data processing,
which was considered to be subject of subsequent
denitrification. Nitrate stable isotopes were also evaluated at
the level of two Sava River banks (see Figure 5(b)). It can
been seen that values from the right bank are slightly more
enriched in δ15N-NO3

− and δ18O-NO3
− values. If that is

evaluated at the level of spatially grouped observation wells
(see Figure 5(c)), it can be seen that enriched values are
mostly related to the groundwater from the Sašnjak-Žitnjak
area. If the importance of the denitrification process on
nitrate concentrations is considered, it can been seen that its
influence is negligible (see Figure 5(d)), except in maybe the
Sašnjak-Žitnjak area. On the other hand, most of the
samples fall near the estimated interval of δ18O-NO3

−

values characteristic for the process of nitrification.
Average molar ratios of NO3

−/Cl−, NO3
−/Na+, and

NO3
−/K+ and their slope lines were spatially grouped and

evaluated based on the data from historical analysis (see
Figures 6(a)–6(c)) and the data from sampled water (see
Figures 6(d)–6(f)). When considering calculated molar
ratios, based both on historical and sampled data, the most
important thing which can be seen is that molar ratios from
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Figure 6: Molar ratios of (a) nitrates and chlorides in the historical data set, (b) nitrates and sodium in the historical data set, (c) nitrates and
potassium in the historical data set, (d) nitrates and chlorides in the sampled water, (e) nitrates and sodium in the sampled water, and (f)
nitrates and potassium in the sampled water.
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Table 1: Correlation result matrices (statistically significant correlation coefficients are marked in italics): (a) Pearson coefficients on
historical groundwater analysis, (b) Spearman coefficients on historical groundwater analysis, (c) Pearson coefficients on sampled water,
and (d) Spearman coefficients on sampled water.

(a)

Parameter Water temperature pH ORP O2 NO3
− Ca2+ Mg2+ Na+ K+ Cl− SO4

2− HCO3
− EC

Water temperature 1.00

pH −0.21 1.00

ORP −0.15 0.24 1.00

O2 −0.19 −0.64 −0.05 1.00

NO3
− 0.11 −0.77 −0.13 0.75 1.00

Ca2+ 0.13 −0.90 −0.23 0.55 0.77 1.00

Mg2+ 0.09 −0.77 −0.21 0.48 0.74 0.85 1.00

Na+ 0.49 −0.79 −0.25 0.33 0.64 0.78 0.63 1.00

K+ 0.46 −0.54 −0.17 0.17 0.35 0.37 0.25 0.66 1.00

Cl− 0.40 −0.69 −0.20 0.30 0.59 0.75 0.61 0.90 0.49 1.00

SO4
2− 0.37 −0.77 −0.23 0.22 0.58 0.80 0.74 0.80 0.51 0.74 1.00

HCO3
− 0.12 −0.91 −0.23 0.56 0.70 0.93 0.80 0.69 0.49 0.65 0.75 1.00

EC 0.26 −0.95 −0.28 0.57 0.79 0.94 0.81 0.88 0.56 0.84 0.85 0.92 1.00

(b)

Parameter Water temperature pH ORP O2 NO3
− Ca2+ Mg2+ Na+ K+ Cl− SO4

2− HCO3
− EC

Water temperature 1.00

pH −0.21 1.00

ORP −0.15 0.24 1.00

O2 −0.19 −0.64 −0.02 1.00

NO3
− 0.02 −0.78 −0.07 0.78 1.00

Ca2+ 0.12 −0.91 −0.22 0.56 0.76 1.00

Mg2+ 0.02 −0.79 −0.24 0.50 0.73 0.86 1.00

Na+ 0.44 −0.87 −0.31 0.50 0.65 0.81 0.64 1.00

K+ 0.47 −0.76 −0.16 0.40 0.55 0.60 0.48 0.83 1.00

Cl− 0.35 −0.87 −0.25 0.62 0.76 0.83 0.67 0.93 0.73 1.00

SO4
2− 0.23 −0.86 −0.24 0.44 0.63 0.84 0.72 0.79 0.69 0.80 1.00

HCO3
− 0.12 −0.92 −0.21 0.54 0.69 0.94 0.80 0.77 0.62 0.79 0.84 1.00

EC 0.22 −0.97 −0.27 0.62 0.80 0.94 0.80 0.89 0.73 0.92 0.89 0.93 1.00

(c)

Parameter Water temperature pH ORP NO3
− Ca2+ Mg2+ Na+ K+ Cl− SO4

2− HCO3
− EC

Water temperature 1.00

pH −0.23 1.00

ORP −0.13 0.15 1.00

NO3
− 0.34 −0.40 −0.03 1.00

Ca2+ 0.47 −0.48 0.17 0.53 1.00

Mg2+ 0.36 −0.42 0.18 0.57 0.91 1.00

Na+ 0.57 −0.41 0.13 0.40 0.83 0.73 1.00

K+ 0.57 −0.11 0.12 0.24 0.65 0.55 0.73 1.00

Cl− 0.59 −0.48 −0.05 0.55 0.82 0.74 0.90 0.65 1.00

SO4
2− 0.68 −0.36 −0.15 0.46 0.78 0.68 0.77 0.64 0.86 1.00

HCO3
− 0.27 −0.30 0.36 0.47 0.87 0.85 0.70 0.56 0.62 0.58 1.00

EC 0.55 −0.52 0.11 0.54 0.96 0.88 0.91 0.69 0.90 0.84 0.84 1.00
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the central part of the City of Zagreb are most similar to
those from the Mala Mlaka and Velika Gorica areas, which
are located in the mainly agricultural and rural area. These
results indicate that there is a very similar dominant source
of nitrate contamination in the both the left and right Sava
River banks.

The Kolmogorov-Smirnov test showed that in general,
average values calculated from historical data did not satisfy
the condition of normal distribution, while those from sam-
pled water did. However, the correlation analysis showed
very similar results on both data sets and with both correla-
tion coefficients (see Table 1, marked in italics are statistically
significant correlation coefficients). When evaluating both
data sets, it can be seen that almost all parameters are well
positively correlated, except pH and ORP. Generally, ORP
does not show any significant correlation with other param-
eters, while pH shows negative correlation with almost all
parameters. Hence, pH and ORP were excluded from the
multivariate statistical analysis. Correlation results suggest
that microbial oxidation of ammonium causes acidity along

with nitrates in soils, which can be buffered by the dissolution
of a carbonate aquifer matrix [56]. Also, it has been shown
that in aquifers with different lithological composition,
nitrates can have effect on the biogeochemical processes that
influence water-rock interactions [57], which can in the end
lead to an overall increase in mineralization [58].

The results of PCA are shown in Table 2. Both analyses
resulted in two principal components, with about 80% of
explained variance. In the data set related to historical analy-
sis, 64.3% and 15.4% of variance were explained by PC 1 and
PC 2, respectively, while in the data set related to sampled
water, 70.77% and 10.43% of variance were explained by PC
1 and PC 2, respectively. It can be seen that results obtained
with both data sets are very similar. In both cases, groundwa-
ter temperature and K+ concentration are not significant in
PC 1 but are significant in PC 2. Also, in the PCA related to
historical analysis, loading of SO4

2− concentration is signifi-
cant in PC 2 and very close to threshold loading in PC 2,
while in the case of the sampled water, loading is significant
only in PC 2. In addition, Cl− and Na+ concentrations are sig-
nificant in PC 1 and PC 2, while NO3

− concentration is only
significant in PC 1. All results suggest that primary indicators
of anthropogenic influence are separated in PC 2 (Na+, K+,
Cl−, and SO4

2−), even though part of their concentrations
are also the consequence of natural processes that take place
in the Zagreb aquifer system. Results of PCA suggest that
NO3

− concentrations are more related to natural processes,
due to existence of dominantly aerobic conditions in themost
of the Zagreb aquifer. Although nitrates originate in ground-
water from waste water and/or manure, a large part of nitro-
gen is introduced into the aquifer in the form of NH4

+ and
consequently transformed to NO3

− due to the presence of
dissolved oxygen concentrations and associated nitrification.

Based on the results of PCA analysis, for the purpose of
defining the nitrate origin on each observation well, average
concentrations of NO3

−, Cl−, SO4
2−, Na+, and K+, average

values of stable nitrate isotope composition, and the average
molar ratios of NO3

− to Cl−, SO4
2−, Na+, and K+ were used

(see Table 3). Only observation wells from which groundwa-
ter was sampled in time were considered in this analysis.

Table 2: Results of PCA (significant loadings are marked in italics).

Parameter

Historical
groundwater
analysis

Sampled water

PC 1 PC 2 PC 1 PC 2

Water temperature −0.08 0.85 0.11 0.88

O2 0.78 −0.30 — —

NO3
− 0.88 0.08 0.67 0.11

Ca2+ 0.92 0.25 0.87 0.43

Mg2+ 0.87 0.15 0.91 0.27

Na+ 0.66 0.68 0.64 0.67

K+ 0.30 0.70 0.38 0.73

Cl− 0.65 0.60 0.65 0.66

SO4
2− 0.68 0.57 0.54 0.73

HCO3
− 0.89 0.25 0.90 0.19

EC 0.90 0.42 0.82 0.55

(d)

Parameter Water temperature pH ORP NO3
− Ca2+ Mg2+ Na+ K+ Cl− SO4

2− HCO3
− EC

Water temperature 1.00

pH −0.26 1.00

ORP −0.17 0.23 1.00

NO3
− 0.34 −0.37 −0.05 1.00

Ca2+ 0.55 −0.46 0.12 0.58 1.00

Mg2+ 0.40 −0.42 0.07 0.60 0.93 1.00

Na+ 0.63 −0.43 0.07 0.43 0.84 0.75 1.00

K+ 0.59 −0.16 0.12 0.25 0.67 0.55 0.75 1.00

Cl− 0.64 −0.53 −0.08 0.61 0.86 0.79 0.90 0.67 1.00

SO4
2− 0.70 −0.40 −0.22 0.54 0.81 0.72 0.78 0.66 0.88 1.00

HCO3
− 0.35 −0.22 0.33 0.49 0.84 0.81 0.72 0.55 0.68 0.63 1.00

EC 0.61 −0.52 0.07 0.59 0.96 0.88 0.91 0.69 0.92 0.83 0.84 1.00
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Cluster analysis resulted in the formation of four clusters
(see Figure 7; see Table 4). If clusters are evaluated spatially
(see Figure 8), it can be seen that observation wells from
Clusters 1 and 3 are located both on the left and right banks
of the Sava River, while observation wells from Cluster 2 are
located on the right bank, and observation wells from
Cluster 4 on the left bank of the Sava River. Average concen-
trations of NO3

− are highest in Clusters 2 and 3 indicating
two main sources of nitrate contamination (see Table 4).
All other concentrations mostly increase from Cluster 1 to
Cluster 4. Nitrates are isotopically enriched at the observa-
tion wells from Cluster 4, which are all located in the area
of Sašnjak and Žitnjak, near the boundary of the Zagreb
aquifer system where the thickness of the unsaturated zone
is slightly larger and concentrations of dissolved oxygen
slightly lower. In all other clusters, values of δ15N-NO3

−

and δ18O-NO3
− range from +7.71 to +9.43‰ and +0.37 to

+1.17‰, respectively. These results show how small are the

Table 3: Average values of parameters at observation wells.

Observation well/
parameter

NO3
−

(mg/l)
Cl−

(mg/l)
Na+

(mg/l)
K+

(mg/l)
SO4

2−

(mg/l)
δ15N-NO3

−

(‰)
δ18O-NO3

−

(‰)
NO3

−/
Cl−

NO3
−/

Na+
NO3

−/
K+

NO3
−/

SO4
2−

A-2-1 11.51 19.69 5.26 1.34 18.11 9.92 −0.30 0.34 0.86 5.32 0.99

B-15 32.83 81.88 37.86 5.25 52.55 9.62 0.78 0.24 0.32 4.66 0.97

B-5 30.97 83.84 38.86 5.22 49.98 10.33 0.34 0.21 0.30 3.76 0.96

Čp-23 27.52 45.32 12.72 1.94 22.77 7.70 0.10 0.35 0.80 9.62 1.87

D-3 29.08 81.56 36.02 5.12 41.32 9.65 0.07 0.20 0.29 3.54 1.08

D-6 34.99 97.47 36.93 5.18 52.42 9.97 0.38 0.21 0.35 4.28 1.03

Lg-1 27.41 12.92 7.19 2.13 15.97 7.39 1.45 1.20 1.42 8.37 2.60

Mm-311 17.71 26.63 14.84 2.54 19.68 8.35 2.13 0.38 0.44 4.41 1.38

Mm-319 25.97 70.44 28.67 1.84 24.99 9.02 0.32 0.22 0.34 9.84 1.60

Mm-32 15.12 14.36 4.15 1.22 12.39 7.08 1.61 0.60 1.53 7.98 1.89

Mm-320 24.08 64.14 31.33 3.99 22.16 7.66 0.20 0.21 0.28 3.83 1.66

Mm-322 26.40 49.99 27.24 2.85 19.52 7.60 0.27 0.31 0.36 6.02 2.10

Mm-325 19.27 38.74 18.31 4.26 24.41 8.28 −0.20 0.28 0.39 2.87 1.21

Mm-330 13.62 34.24 19.43 3.09 28.12 8.51 2.01 0.23 0.26 2.87 0.75

Mm-333 22.96 84.86 47.04 5.09 23.28 8.48 0.24 0.16 0.18 2.91 1.54

Mm-49 24.95 61.83 28.18 4.66 29.13 9.04 0.30 0.23 0.33 3.61 1.30

Ph-12 24.61 72.15 37.07 5.65 37.54 9.58 0.01 0.20 0.25 2.79 1.02

Pzo-8 6.53 21.14 20.45 3.66 16.24 11.22 2.04 0.18 0.12 1.15 0.62

Sava 6.44 10.37 6.85 1.62 12.89 5.76 1.69 0.36 0.34 2.43 0.76

Sk-16/2 20.07 129.35 55.52 5.67 61.94 11.68 2.78 0.09 0.14 2.24 0.50

Sk-18 18.87 98.03 42.17 5.70 66.93 12.56 3.19 0.11 0.17 2.13 0.44

V-3 36.58 81.53 35.55 4.19 57.92 9.96 0.62 0.25 0.38 5.52 0.98

Vg-10/2 20.72 13.27 6.59 1.94 17.62 7.10 1.18 0.88 1.18 6.99 1.81

Vg-11 14.87 39.42 21.06 3.40 25.36 7.91 0.58 0.23 0.26 3.22 0.91

Vg-4 25.29 59.81 25.55 1.91 26.53 8.09 1.14 0.24 0.38 8.53 1.44

Vg-9 15.40 39.43 16.39 2.66 27.03 8.01 0.46 0.24 0.35 4.36 0.87

Z-10 11.13 29.71 22.40 2.74 22.51 9.27 1.59 0.23 0.22 2.69 0.78

Z-13 10.31 19.38 13.22 2.79 21.42 8.05 1.68 0.30 0.29 2.35 0.74

Z-4 22.11 120.24 48.37 5.29 76.51 12.40 2.71 0.10 0.17 2.66 0.45

Z-7 28.72 81.75 38.68 5.22 48.95 10.01 0.77 0.20 0.28 3.50 0.91

Ž-8 13.28 106.01 44.04 4.98 66.40 14.70 4.24 0.07 0.11 1.68 0.31
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Figure 7: Results of the cluster analysis.
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changes in nitrate isotopic composition at selected observa-
tion wells and that in this case, they cannot be used for the
identification of clusters where influence of waste water or
manure prevail. However, evaluation of molar ratios, espe-
cially NO3

− to K+, has given much clearer results. It can be
seen that all values of molar ratios are highest in Cluster 2,
which is most prominent when evaluating the NO3

− to K+

molar ratio. Also, all molar ratios are very similar in the other
three clusters indicating the same source of nitrate contami-
nation. If regional groundwater flow, locations of potential
contamination sources, and all presented results are taken

into account, it is evident that manure presents the main
source of nitrate contamination in Cluster 2. On the other
side, waste water is responsible for nitrate concentrations in
the other three clusters and can be defined as the main source
of nitrate contamination in the Zagreb aquifer system.

5. Conclusions

Nitrates present one of the main contaminants in the Zagreb
aquifer system, while the highest concentrations are observed

Table 4: Average values of parameters in defined clusters.

Cluster
NO3

−

(mg/l)
Cl−

(mg/l)
Na+

(mg/l)
K+

(mg/l)
SO4

2−

(mg/l)
δ15N-NO3

−

(‰)
δ18O-NO3

−

(‰)
NO3

−/
Cl−

NO3
−/

Na+
NO3

−/
K+

NO3
−/

SO4
2−

1 12.68 27.88 15.82 2.81 21.58 8.53 1.17 0.28 0.35 3.17 0.90

2 24.06 38.02 16.02 1.98 19.97 7.71 0.87 0.54 0.86 8.19 1.90

3 28.98 79.10 36.75 4.96 41.52 9.43 0.37 0.21 0.30 3.84 1.14

4 18.58 113.41 47.52 5.41 67.94 12.83 3.23 0.10 0.15 2.18 0.42
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in two areas, one dominantly urban and the other dominantly
agricultural and rural. Although elevated, nitrate concen-
trations are below the limits of 50mg/l NO3

− and have
descending trends in almost all areas. The Zagreb aquifer
system is declared as a vulnerable area to nitrates from
agriculture as presented in the Croatian River Basin
Management Plan [59], due to existence of agricultural
activity, especially on the right bank of the Sava River.
However, research presented in this paper has shown that
nitrate concentrations are not only a consequence of
agricultural inputs. Nitrate stable isotope composition
excluded synthetic fertilizers as the main source of nitrate
contamination. It has been observed that nitrate origin is
organic. Waste water has been defined as the main source
of nitrate concentrations. Nitrate isotopic composition was
not able to discern which source of nitrate contamination,
waste water or manure, is dominant in the particular area
of the Zagreb aquifer system. In addition, nitrate stable
isotope composition showed that the denitrification pro-
cess is negligible in the Zagreb aquifer and that most of
δ18O-NO3

− values fall into, or very near, the estimated
interval characteristic for the nitrification process. Detailed
inspection of groundwater chemistry, in a combination
with results of multivariate statistical analysis, has resulted
in a much more detailed determination of nitrate origin.
Evaluation of molar ratios, especially nitrates to potassium,
has proved to be crucial in nitrate source determination. It
has been shown that most observation wells have detected
nitrates that originate from waste water, i.e., sewage net-
work and septic tanks. Results suggest that a large quantity
of nitrogen is introduced into the aquifer in the ammo-
nium ion form, while aerobic conditions allow nitrification
to occur. All results suggest that groundwater protection
measures should be more focused on the determination
and repair of permeable parts of the sewage network and
septic tanks, while future research should be related to
detail quantification of agricultural activity on groundwa-
ter quality and biogeochemical processes, especially those
that take place in the unsaturated zone.
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