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Smoothness and singularities of the perfect form

and the second Voronoi compactification of Ag

Mathieu Dutour Sikirić, Klaus Hulek and Achill Schürmann

Abstract

We study the cones in the first Voronoi or perfect cone decomposition of quadratic
forms with respect to the question which of these cones are basic or simplicial. We then
deduce that the singular locus of the moduli stack APerf

g , the toroidal compactification
of the moduli space of principally polarized abelian varieties of dimension g given by this
decomposition, has codimension 10 if g > 4. Moreover, we describe the non-simplicial
locus in codimension 10. We also show that the second Voronoi compactification AVor

g

has singularities in codimension 3 for g > 5.

1. Introduction

Reduction theory of quadratic forms is a classical topic. This leads to interesting admissible
GLg(Z)-invariant tessellations of the rational closure of the space of positive-definite real quadra-
tic forms in dimension g, also known as admissible rational polyhedral decompositions or fans. In
algebraic geometry these give rise to toroidal compactifications of the moduli space Ag of prin-
cipally polarized abelian varieties. This theory was first developed by Ash, Mumford, Rapoport
and Tai [AMRT75] and has since been used by numerous authors in geometric studies of moduli
of abelian varieties, where it is often essential not only to consider the non-compact spaces Ag,
but also to work with good projective models. More precisely, such a decomposition defines both
a variety and a stack (see [FC90, SB06]). Toroidal compactifications have the property that the
boundary is “big”, that is, has codimension 1. All toroidal compactifications map surjectively
onto the Satake compactification ASat

g , which is set-theoretically given by

ASat
g = Ag t Ag−1 t · · · t A0 . (1.1)

In the literature three different types of decompositions have been studied in detail: the first
Voronoi or perfect cone decomposition, the second Voronoi decomposition and the central cone
decomposition, leading to the corresponding toroidal compactifications APerf

g , AVor
g and AIgu

g ,
respectively; see [Nam80] for more details. In recent years the meaning of these various toroidal
compactifications has been clarified. The central cone compactification has been identified with
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Perfect form compactifications

the Igusa compactification, a blow-up of the Satake compactification ASat
g . The second Voronoi

compactification AVor
g has a meaningful interpretation in terms of moduli of abelian varieties.

Its boundary points correspond to degenerate abelian varieties, more precisely to semi-abelic va-
rieties. For details the reader is referred to work by Alexeev [Ale02] and Olsson [Ols08]. Finally,
the first Voronoi or perfect cone compactification is a good model to work with from the point of
view of the classification theory of higher-dimensional algebraic varieties. Shepherd-Barron [SB06]
has proved that APerf

g has canonical singularities and that its canonical bundle is ample if g > 12.

Thus APerf
g is a canonical model in the sense of the minimal model program if g > 12.

The construction of toroidal compactifications of the moduli space Ag very roughly works as
follows. One first has to choose an admissible rational polyhedral decomposition of the rational
closure of the space of positive definite symmetric g×g matrices. This defines a compactification
Ator

g of Ag as a compact analytic space by adding a stratum to each cone in the chosen decom-
position (where strata of GLg(Z)-equivalent cones will be identified). The codimension of the
stratum which is added equals the dimension of the cone. In the cases we have mentioned above
the compactification Ator

g is in fact a projective variety. Naturally, the geometric properties of
Ator

g depend essentially on the properties of the chosen decomposition.

In this note we are especially interested in the singularities of toroidal compactifications. The
singularities of the variety given by a fan arise in two different ways. First of all, the symplectic
group Sp(2g,Z) has torsion (different from ± id). This gives rise to finite quotient singularities
in Ag (unless the torsion element is a reflection, which happens only in genus g = 2). Similarly,
such quotient singularities can arise in the boundary of a toroidal compactification due to non-
neatness of Sp(2g,Z). Such quotient singularities are well behaved from an algebraic-geometric
point of view and can for many considerations be neglected: if one replaces the group Sp(2g,Z)
by a principal congruence subgroup Γ(`) = {g ∈ Sp(2g,Z) | g ≡ 1 mod `}, then for ` > 3
this group is neat and in particular torsion free. Hence the corresponding level cover Ag(`),
respectively Ator

g (`), will not acquire such singularities. A second type of singularities arises from
“bad” behavior of cones σ in the chosen decomposition. Recall that a cone σ whose general
element has rank g is called basic if the reduced integral generators of its 1-dimensional faces can
be completed to a Z-basis of Sym2(Zg). By an integrally reduced generator we mean a generator
whose entries have gcd equal to 1. Whenever we speak about integral generators we will from now
on assume them to be integrally reduced. A cone is called simplicial if its rational generators
can be completed to a Q-basis, in other words, if the generators are linearly independent. If
a cone σ is basic, then its corresponding stratum lies in the non-singular locus of Ator

g (`) for
` > 3, whereas simplicial cones give rise to finite quotient singularities by abelian groups, the
group being the quotient of the lattice Sym2(Zg) by the lattice spanned by the integral generators
of the cone. Non-simplicial cones give rise to more general singularities. Taking a level cover will
not remove singularities which arise from non-basic cones; these are then singularities of the
corresponding stack. We thus obtain open substacks Ator

g,smooth ⊂ Ator
g,simp ⊂ Ator

g given by the
partial compactification defined by the basic and simplicial singularities, respectively.

Knowledge of the singularities of a toroidal compactification Ator
g and its level covers is

obviously of geometric interest. One reason is that singularities are crucial for the understanding
of the birational geometry of these varieties; another is that they are also important in order
to understand topological properties. One example for the latter is the work by Grushevsky,
Tommasi and the second author [GHT] on stable cohomology of APerf

g . The relevance of APerf
g,smooth

(and also APerf
g,simp) in this context is that Poincaré duality holds here. For g 6 3 the first and

second Voronoi decomposition as well as the central cone decomposition all coincide and all cones
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are basic. Hence the stacks are smooth in genus 6 3. This changes in genus 4. All cones in the
second Voronoi decomposition are still basic, but this is no longer the case in the first Voronoi
or perfect cone decomposition, which in genus 4 coincides with the central cone decomposition.
Here, there is one non-basic cone, namely the perfect cone of the root lattice D4, which has
dimension 10 and 12 rays, hence is neither basic nor simplicial. This defines the unique singular
point in the 10-dimensional stack APerf

4 . This also means that for g > 4 the stack APerf
g will

always be singular in codimension 10 (or less). There is no a priori reason that the codimension
of the singular locus of APerf

g could not be less than 10 for g > 4. Our aim is to show that this
is not the case. We shall also classify the non-simplicial locus in codimension 10; as it turns out,
it all comes from the root lattice D4.

From the point of view of tessellations of the rational closure of the cone of positive-definite
real quadratic forms, our results show the following: with respect to the properties basic and sim-
plicial, the perfect cone decomposition is much more uniform up to dimension 9 than one might
hope for in view of the explosion of arithmetically inequivalent perfect forms from dimension 6
onwards. The only exception to this in dimension 10 is given by the cone of the root lattice D4,
which emphasizes once more the extraordinary importance of this root lattice.

Theorem 1.1. (i) Every cone of dimension at most 9 in the perfect cone decomposition is
basic, so the integral generators can be completed to a Z-basis of Sym2(Zg).

(ii) With the exception of the cone of the root lattice D4, every cone in the perfect cone
decomposition of dimension at most 10 is simplicial, so its integral generators can be completed
to a Q-basis of Sym2(Qg).

Form this we immediately obtain the following result.

Corollary 1.2. The stack APerf
g is smooth for g 6 3 and the codimension of both the singular

and the non-simplicial substack of APerf
g is 10 if g > 4.

Before we give the proof of Theorem 1.1 we note the following consequence for the intersection
cohomology of the variety APerf

g .

Corollary 1.3 ([GHT]). In degree k 6 10 the intersection cohomology of the variety APerf
g is

isomorphic to its singular cohomology:

IHk
(
APerf

g

) ∼= Hk
(
APerf

g

)
for k 6 10 .

We also answer the same question for the second Voronoi compactification.

Theorem 1.4. (i) For g 6 4 every cone in the second Voronoi compactification is basic.

(ii) For g > 5 there are non-simplicial cones in dimension 3, thus for these dimensions AVor
g is

singular in codimension 3.

Our results lead to natural further questions which we will pose as problems at the end of
Sections 3, 4 and 5.

2. Proof of Theorem 1.1

Background on perfect cones. Let us start with some background on the perfect cone decom-
position. For a vector v ∈ Zg we write p(v) = vvt for the corresponding rank 1 matrix. Any cone σ
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of the perfect cone decomposition is of the form
∑M

i=1R+p(vi), where v1, . . . , vM ∈ Zg. More pre-
cisely, perfect cones arise in this way if and only if the vi are coordinate vectors (with respect to
a lattice basis) of all the minimal vectors for some g-dimensional lattice. Here, minimal vectors
come in pairs±vi and because p(vi) = p(−vi), it suffices to consider one coordinate vector for each
of them. Moreover, by the minimal vector property the gcd of the coordinates is 1 for each vi. So
the corresponding generators p(v1), . . . , p(vM ) of the perfect cone σ are integrally reduced (that
is, their gcd is 1, too). For further details on perfect cones (which are sometimes called Voronoi
domains) and the associated theory of perfect quadratic forms, we refer to [Mar03] and [Sch09].

By dimσ we denote the dimension of a cone σ in Sym2(Zg), that is, the dimension of its linear
hull. The faces of perfect cones (intersections with a supporting hyperplane) are perfect cones
of lower dimensions themselves. For a given g, the perfect cones give a face-to-face tessellation
of the rational closure of the space of real, positive-definite g × g matrices. This tessellation is
invariant with respect to the action M 7→ UMU t of the group GLg(Z) on this space. Two perfect
cones are called GLg(Z)-equivalent if they are in the same orbit with respect to this group action.
By a classical theorem due to Voronoi, we know that there exist only finitely many perfect cones
up to equivalence for every fixed g. For a given g it is therefore possible, at least in principle, to
classify all perfect cones σ of a given dimension dimσ = N . However, for a classification of all
perfect cones of dimension N , hence in spaces Sym2(Zg) with varying g, we need an additional
argument.

Reduction to finitely many perfect cones. Let us take a cone σ of dimension N of the perfect
cone decomposition, generated by p(v1), . . . , p(vM ). Denote by d the dimension of the lattice
L = Zv1+· · ·+ZvM in Zg. Then L is a finite index sublattice of the lattice L′ = (L⊗R)∩Zg having
the same affine span. The lattice L′ has a Z-basis {w1, . . . , wd} that can be extended to a Z-basis
{w1, . . . , wg} of Zg. Thus, by applying a suitable GLg(Z)-mapping (base change for Zg), we may
assume that L′ is equal to Zd. As a consequence, the properties that concern us, namely that the
family (p(vi))16i6M is extensible to a Z- or Q-basis, can be considered by assuming d = g. That is,
we may assume that L is a full-dimensional, finite-index sublattice of Zg. Since p(v1), . . . , p(vg) are
linearly independent if v1, . . . , vg are linearly independent, we may assume g 6 dimσ. This leaves
only a finite number of cases to consider when classifying all perfect cones of a given dimension N .

Proof of Theorem 1.1(i). Unfortunately, we are not aware of a general method for proving
basicness of perfect cones without a full enumeration. So for the proof of (i) we have to get a
hand on all 9-dimensional perfect cones for all g 6 9 and check for each one of the cones that
it is basic. Note that given the reduced integral generators p(v1), . . . , p(vM ) of a fixed perfect
cone, we can easily check basicness computationally, for instance by considering the generators
themselves as vectors and checking whether their Gram matrix has determinant 1.

We split the needed classification of 9-dimensional perfect cones into three parts:

• For g 6 7 all perfect cones have been classified up to GLg(Z)-equivalence in [EVGS13].

• For g = 8 we computationally classify all 9-dimensional cones in Lemma 4.1 below.

• For g = 9 the perfect cones of dimension 9 have to be simplicial, as we show in Lemma 3.1
in the next section. Therefore, these perfect cones are in 1-to-1 correspondence with sets
of linearly independent vector pairs ±v1, . . . ,±v9 ∈ Z9 that are coordinates (with respect
to a lattice basis) of all minimal vectors for some 9-dimensional lattice. Such vector con-
figurations were classified in [KMS12], giving us 31 perfect cones of dimension 9 for g = 9,
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corresponding to the entries with s = r = s′ = 9 of Tables 2, 3 and 7 in [KMS12].

In addition to the summarized information given here, we provide a complete list of all 9-
dimensional perfect cones in electronic form on the webpage [DS]. Representatives of the cones σ
of the perfect decomposition of dimension at most 10 and genus g 6 9 are given there. The
classification in genus g = 8, 9 and dimension 10 was obtained by extensions of the method of
Section 4. Table 1 gives the number of orbits of cones.

Table 1. Number of orbits of cones in the perfect cone decomposition for g 6 9 and dimension
at most 10.

g↓, dim→ 4 5 6 7 8 9 10

4 1 3 4 4 2 2 2

5 2 5 10 16 23 25

6 3 10 28 71 162

7 6 28 115 467

8 13 106 783

9 44 759

Proof of Theorem 1.1(ii). For our proof of assertion (ii) we “only” have to consider the 10-
dimensional perfect cones, because from (i) we know that all cones of dimension at most 9 are
simplicial (as they are basic, which is stronger). It seems quite challenging to classify all 10-
dimensional perfect cones, so our proof relies on a combination of mathematical reasoning and
computer assisted checks:

• For g 6 7 we can use the previously known classification of perfect cones again. Accor-
ding to [EVGS13] there are 656 inequivalent 10-dimensional perfect cones and we checked
computationally that all of them are simplicial, except the one of the root lattice D4.
On the webpage [DS] we provide a complete list of all 10-dimensional perfect cones with
g 6 7.

• For g = 8, g = 9 and g = 10 there is no complete classification of 10-dimensional perfect
cones known so far. Here, we use our Lemma 3.1 below. It shows for general g, that all
perfect cones of dimension g, g + 1 and g + 2 are necessarily simplicial.

Classifying 10-dimensional perfect cones? A complete classification of 10-dimensional per-
fect cones appears to be highly challenging, if not out of reach at the moment. Although an
extension of our method to prove Lemma 4.1 could possibly be feasible (to deal with the case
g = 9), the necessary extension of the work in [KMS12] to the case g = 10 seems computationally
hardly realizable. A slightly simpler task could be the case g = 8. More generally, enumerating the
number of inequivalent (8 + k)-dimensional perfect cones for small k could be feasible for g = 8.
Lemma 4.1 shows that there are 106 classes for k = 1. Since this number is much less than the
10916 classes of full-dimensional perfect cones for g = 8, which have been classified in [DSSV07],
one may hope to obtain a complete list for k = 2 as well.

Note that only with the help of our Lemma 3.1 below could we avoid this very difficult
(currently impossible) classification of 10-dimensional perfect cones, in order to prove part (ii)
of the theorem. On the other hand, for part (i) of the theorem, our proof relies on the complete
classification of all 9-dimensional perfect cones, which would have been extremely painful (if not
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impossible) without computer assistance. So, it is just this special combination of mathematical
reasoning and computer assistance which allowed us to obtain the results of this paper.

3. Low-dimensional perfect cones are simplicial

Perfect cones for g = 2 and g = 3 are known to be simplicial. In fact, in these two cases there
exists only one class of top-dimensional perfect cones of dimension 3 and 6, respectively. Both
are associated with the root lattice Ag and are known to be simplicial. Since all perfect cones are
faces of top-dimensional perfect cones and since faces of simplicial cones are simplicial, we see
that perfect cones of any dimension N are simplicial for g = 2 and g = 3. This argument does
not work for g > 4 as, for instance, the top-dimensional perfect cones associated with the root
lattices Dg are not simplicial in these cases. The following lemma shows, however, that perfect
cones are simplicial for any g in case their dimension is sufficiently small, namely at most g + 2.

Lemma 3.1. Let σ = R+p(v1) + · · · + R+p(vM ) be a cone of the perfect cone decomposition of
Sym2(Zg). Assume that (v1, . . . , vM ) span Rg and that dimσ = g, g + 1 or g + 2. Then σ is
simplicial.

Proof. As mentioned above, the cases g = 2 and g = 3 are known by classical results. So we may
assume g > 4 and that the lemma is true for all dimensions less than g.

Among the generators of σ we can find g linearly independent vectors (vi)16i6g that determine
a basis of Qg. By using this basis, the vector space spanned by (p(vi))16i6g can be identified with
the space of diagonal g × g matrices. That is, after a suitable base change, we may assume that
the vi are the standard basis vectors. Given an arbitrary vector v =

∑g
i=1 αivi, we see that p(v)

is linearly independent of the generators p(vi) if and only if αi 6= 0 for at least two indices i1 6= i2,
since the non-diagonal entry (i1, i2) is non-zero in that case.

Suppose dimσ = g. Then any additional generator p(v) of a perfect cone would belong to
the vector space spanned by the (p(vi))16i6d. Therefore, by the argument above, v =

∑g
i=1 αivi

with αi 6= 0 for just one αi. Hence, v is a multiple of one vi in that case, and therefore p(v) is
a multiple of p(vi) as well, showing that p(v) is not an additional generator.

Suppose dimσ = g + 1. Then we can find a vector v in L = Zv1 + · · · + Zvg with p(v)
a generator of σ linearly independent of the p(vi). After suitable scaling of the vectors vi we
may assume without loss of generality that v =

∑r
i=1 vi with 2 6 r 6 g. Suppose now that

w =
∑g

i=1 αivi with p(w) ∈ σ. Then there exist γ and βi such that p(w) = γp(v) +
∑g

i=1 βip(vi)
and we obtain the equation (

g∑
i=1

αixi

)2

= γ

(
r∑

i=1

xi

)2

+

g∑
j=1

βix
2
i (3.1)

for the corresponding quadratic forms. From this it follows that we cannot have αiαj 6= 0 for
some i > r+1 and i 6= j. This implies that either (i) αi0 6= 0 for only one i0 > r+1 or (ii) αi = 0
for all i > r + 1.

(i) In the first case we deduce w = αi0vi0 from (3.1). Hence p(w) is a multiple of p(vi0) in
that case and therefore p(w) cannot be an additional generator of σ.

(ii) In the second case we deduce from (3.1) that αiαj = γ for all i, j 6 r with i 6= j. In
particular, αi 6= 0 for all i 6 r.

In the case r = 2 we have βi = 0 for i > 3 because of αi = 0 for all i > 3. Thus the
putative generator p(w) is actually in the 3-dimensional vector space spanned by the generators
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p(v), p(v1), p(v2). We know from the already solved case of dimension g = 2 that p(w) must be
a multiple of one of the other three generators if they span a perfect cone themselves. Every face
of a perfect cone is a perfect cone, so it remains to verify that p(v), p(v1), p(v2) span a face of the
perfect cone σ. That is, we have to check whether or not there exists a linear form on Sym2(Zg)
that evaluates to 0 on the three generators and is positive on the remaining ones. Taking the
inner product with p(v3) + · · ·+ p(vg) gives such a linear form.

So suppose r > 3. Then at least two of the αi with i 6 r are of the same sign and so γ > 0.
So, all αi with i 6 r are of the same sign, which we may assume to be positive. For all sub-
sets S = {i1, i2, i3} of {1, . . . , r} with distinct indices i1, i2, i3 the equations αi1αi2 = αi1αi3 =
αi2αi3 = γ have the unique solution αi1 = αi2 = αi3 =

√
γ. So w is actually a multiple of v,

showing again that p(w) cannot be an additional generator of σ.

Suppose dimσ = g + 2. By a suitable scaling of the vi we can find vectors of the form
v =

∑r
i=1 vi and v′ =

∑g
i=1 λivi such that the set {p(v1), . . . , p(vg), p(v), p(v′)} consists of gener-

ators of σ which form a basis of the rational vector space spanned by σ. Assume that p(w) is an
element of this vector space and let w =

∑g
i=1 µivi. Then there exist αi, β, γ such that in terms

of quadratic forms we have

g∑
i=1

αix
2
i + β

(
r∑

i=1

xi

)2

+ γ

(
g∑

i=1

λixi

)2

=

(
g∑

i=1

µixi

)2

. (3.2)

By the arguments for the case dimσ = g + 1 we may assume β 6= 0 and γ 6= 0. We distinguish
two cases: (i) r < g and (ii) r = g.

(i) Assume r < g. Then (3.2) implies γλiλg = µiµg for all i < g.

If λg = 0, then µiµg = 0. If µg 6= 0, then µi = 0 for all i < g and w is a multiple of vg.
If µg = 0, then we have necessarily αg = 0 and the problem is reduced to a lower-dimensional
one.

If λg 6= 0, then (3.2) implies µg 6= 0. So λi = µiκ with κ = µg/(γλg) for i < g. Hence, the
quadratic forms p(v′) and p(w) are multiples of each other, showing that p(w) cannot be an
additional generator of σ.

(ii) Assume r = g. Then from (3.2) we deduce the equality β + γλiλj = µiµj for all i 6= j.
We may assume that all λi and µi are non-zero, since otherwise we can permutate between v, v′

and w and reduce to the preceding case (i). By a suitable scaling of the vi we may assume µg = 1.
So we get µi = β + γλiλg and for 1 6 i < j < g,

0 = µiµj − β − γλiλj = (β + γλiλg)(β + γλjλg)− β − γλiλj
= β2 − β + βγλg(λi + λj) + γ

(
γλ2g − 1

)
λiλj = a+ b(λi + λj) + cλiλj .

If ac 6= b2, then there exists a fractional function φ : P1(R)→ P1(R) such that λi = φ(λj) and
φ ◦φ = Id. It follows that there are one or two possible values for λi, and in case of two different
values, we find for any pair (i, j) with 1 6 i < j < g that λi is equal to one value and λj is equal
to the other. The restriction g > 4 implies that λi takes only one value in this case.

If ac = b2, then we have c 6= 0 and (λi + b/c)(λj + b/c) = 0. So, no two λi with i < g can be
different from −b/c. If there is one index i0 < g with λi0 6= −b/c and if λg 6= −b/c as well, we may
choose a different special index than g and obtain a contradiction too. Otherwise, if λg = −b/c,
we may choose i0 as this special index. So we may assume λi = −b/c for all i < g. If all the λi
are equal (hence also λg = −b/c), then v and v′ are multiples of each other, contradicting the
assumption that p(v) and p(v′) are linearly independent.
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So, we have λg 6= −b/c, λi = λ1 and µi = µ1 for i < g. As we assume g > 4, setting∑g−1
i=1 xi = 0 in (3.2) yields αi = 0 for i < g. Using the two variables y1 =

∑g−1
i=1 xi and y2 = xg,

we see that (3.2) is actually a relation between forms of two variables. Therefore, the putative
generator p(w) of σ is in the 3-dimensional vector space spanned by the generators p(vg), p(v),
p(v′). We know from the already solved case of dimension g = 2 that p(w) must be a multiple
of one of the other three generators if these span a perfect cone themselves. As in the proof for
the case dimσ = g + 1 (subcase (ii) with r = 2), this follows if we show that p(vg), p(v), p(v′)
span a face of the perfect cone σ. To see this we may construct a linear form on Sym2(Zg) that
evaluates to 0 on the three generators and is positive on the remaining ones. Such a form is for
instance obtained by considering the inner product with the projection of p(v1) + · · · + p(vg−1)
onto the linear space orthogonal to the span of the three generators p(vg), p(v) and p(v′).

Based on the enumeration results that we have obtained, it seems plausible that simpliciality
also occurs in case dimσ = g + 3 or g + 4.

4. Classification of 9-dimensional perfect cones

As mentioned in Section 2, for a complete classification of 9-dimensional perfect cones, we need
to obtain the full list of all such cones for the case g = 8.

Lemma 4.1. There are 106 orbits of 9-dimensional cones in the perfect cone decomposition for
g = 8.

Proof. Our classification is based on a computer-assisted case distinction. The full list can be
obtained from the webpage [DS]. Here, we briefly describe the necessary ingredients and our
computational steps.

Using our simplicity lemma. By Lemma 3.1 all 9-dimensional perfect cones for g = 8 are
necessarily simplicial, that is, of the form R+p(v1) + · · · + R+p(v9), with linearly independent
generators p(v1), . . . , p(v9). As we assume g = 8, without loss of generality we may assume that
(v1, . . . , v8) are linearly independent too.

Knowing a priori that the 9-dimensional perfect cones are simplicial is a quite strong condi-
tion. It in particular implies that all its facets (codimension 1 faces) are simplicial 8-dimensional
perfect cones. Thus we may assume that ±v1, . . . ,±v8 ∈ Z8 are the coordinates (with respect to
a lattice basis) of all minimal vectors for some 8-dimensional lattice. Such sets of eight minimal
vector pairs have been classified by Martinet in [Mar01] (see entries satisfying n = s = r = s′ = 8
in Tableau 11.1). Up to GL8(Z)-equivalence there are 13 such sets of vectors and we may assume
that (v1, . . . , v8) is a representative for one of these 13 orbits.

Reduction to a finite enumeration. If L denotes the sublattice spanned by the vectors (v1,
. . . , v8) in Z8, then from Martinet’s classification [Mar01] we know that the index i(L) in Z8

satisfies 1 6 i(L) 6 5. We may assume that (v1, . . . , v8) is of maximal index among all possible
8-subsets of (v1, . . . , v9).

Given a fixed set of vectors (v1, . . . , v8), we derive some restrictive conditions for the additional
vectors v9 ∈ Z8 from this maximality assumption. For j = 1, . . . , 8 we define the lattice

Lj = Zv1 + · · ·+ Zvj−1 + Zvj+1 + · · ·+ Zv8 + Zv9 .
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If Lj is full-dimensional, then its index i(Lj) in Z8 is at most i(L) by our maximality assumption
for L. Thus

|det(v1, . . . , vj−1, vj+1, . . . , v8, v9)| ∈ {0, 1, . . . , i(L)} , (4.1)

with the determinant being 0 if and only if Lj is not full-dimensional. By using the exterior
product, we can rewrite these determinant conditions as −i(L) 6 〈wj , v9〉 6 i(L) with wj a fixed
integral vector, depending only on the vectors v1, . . . , vj−1, vj+1, . . . , v8 (orthogonal to it). Thus
for a fixed set of vectors (v1, . . . , v8) we obtain eight pairs of linear inequalities for the possible
additional integral vector v9. Geometrically, these conditions define a parallelepiped and we can
use for instance the program zsolve from [4ti2] to enumerate its integral points.

Note that the eight determinant conditions (4.1) have altogether (1 + 2i(L))8 possible values.
It is easy to see that the matrix (wj)j=1,...,8 is the adjugate matrix of (vi)i=1,...,8, and so is of
determinant i(L)7. This implies that the number of integral solutions v9 is actually reasonable,
allowing zsolve to find all solutions. So the condition that the lattice spanned by {v1, . . . , v8}
be of maximal index is a key assumption for the enumeration to work.

Exploiting symmetry. We are left with a finite number of possible sets {v1, . . . , v9}. Using
Algorithm 1 of [KMS12], we can test for each such set whether it defines a 9-dimensional perfect
cone or not. However, each of these tests is computationally very expensive and it is therefore
advisable to consider further reductions beforehand, in order to finish the classification.

A large reduction of cases can be obtained from using the symmetry within a given configu-
ration V = (±v1, . . . ,±v8). We only need to consider vectors v9 up to the automorphism group
(a subgroup of GL8(Z)) of the configuration V. Once we have this integral automorphism group
of V, we identify orbits of possible extensions v9 and choose only one representative for each
orbit to proceed.

To compute the automorphism group, we first consider the group G2 of rational automor-
phisms of V, which is the hyperoctahedral group of size 288!. In order to obtain the integral auto-
morphisms of V, we first determine a subgroupG1 formed by transpositions (i, j) and sign changes
(vi 7→ −vi) which induce integral automorphisms. The full automorphism group within GL8(Z)
is then obtained by iterating over double cosets G1hG1 and keeping the ones that preserve V.

Treatment of the remaining tuples. For each set {v1, . . . , v9} that remains we check whether
each of its 8-subsets is integrally equivalent to one of the 13 orbits classified by Martinet in
[Mar01]. This is a necessary condition, as every facet of the potential perfect cone has to be a
perfect cone itself. If all these checks are positive, we test whether the candidate {v1, . . . , v9}
defines a 9-dimensional perfect cone by using Algorithm 1 of [KMS12].

We thus get 131 systems of 9 vectors to test for unimodular equivalence. This gives 106
systems, respectively orbits, under GL8(Z)-equivalence.

The computation was dominated by the realizability tests using Algorithm 1 of [KMS12].

Open problem. There are examples of cones which are simplicial but not basic. One such
example is given by the shortest vectors of the dual root lattice E∗7 (the index of the corresponding
sublattice of Sym2(Z7) is 384). Our classification of 9-dimensional perfect cones shows that perfect
cones are simplicial and basic in low dimensions. Note, however, that this is not the case for
general polyhedral cones. If we take v1 = (1, 1) and v2 = (1,−1) for instance, then the relation

1
2 (p(v1) + p(v2)) = p((1, 0)) + p((0, 1))
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shows that the cone spanned by {p(v1), p(v2)} is simplicial but not basic, since the two generators
cannot be extended to a Z-basis of Sym2(Z2). Of course, {±v1,±v2} cannot be realized as the
set of shortest vector of a 2-dimensional lattice, so {p(v1), p(v2)} does not generate a perfect
cone. In contrast, for perfect cones and g 6 9, our classification shows that if {v1, . . . , vg} are
independent vectors of Zg such that {p(v1), . . . , p(vg)} are the generators of a perfect cone, then
the cone is simplicial and basic. Is this true for general g?

5. Proof of Theorem 1.4

Here we consider the singularities of the second Voronoi compactification AVor
g . The second

Voronoi decomposition is described in detail in [Sch09]. It is known only up to dimension 5
(see [Eng00]). For g 6 5, a complete system of GLg(Z)-inequivalent polyhedral cones in Sym2(Zg)
can be accessed electronically using the program [SV], for instance.

For the proof of Theorem 1.4(i) one can simply check whether or not all polyhedral cones
for g 6 4 are basic. For this it is even enough to check whether the top-dimensional cones
of the second Voronoi decomposition are basic. There is only one such cone each for g = 2
and g = 3 and there are three cones for g = 4, as already observed by Voronoi (see [Vor08,
Vor09]). We do not know whether Voronoi checked them for basicness, but he could certainly
have done so. Recall that basicness of a cone follows if the Gram matrix of its generators has
determinant 1.

All cones of dimension 1 or 2 are spanned by one or two extremal rays and are thus trivially
simplicial. Thus for the proof of statement (ii) of Theorem 1.4, it suffices to find a non-simplicial
cone of dimension 3 for g > 5. Using [Eng00] we find two cones of dimension 3 that are spanned
by 4 generators and so are non-simplicial. They are:

4 −2 −2 0 −2
−2 4 0 −1 1
−2 0 4 −1 1

0 −1 −1 3 −1
−2 1 1 −1 3

 ,


2 −1 −1 0 −1
−1 2 0 0 0
−1 0 2 −1 1

0 0 −1 2 −1
−1 0 1 −1 2

 ,


2 −1 −1 0 −1
−1 2 0 −1 1
−1 0 2 0 0

0 −1 0 2 −1
−1 1 0 −1 2

 ,


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 1


and 

3 −1 −1 −1 −1
−1 4 −1 −1 0
−1 −1 3 1 −1
−1 −1 1 3 −1
−1 0 −1 −1 4

 ,


6 −2 −2 −2 −2
−2 6 −1 −1 0
−2 −1 4 1 −1
−2 −1 1 4 −1
−2 0 −1 −1 6

 ,


2 0 −1 −1 −1
0 2 −1 −1 0
−1 −1 2 1 0
−1 −1 1 2 0
−1 0 0 0 2

 ,


5 −1 −2 −2 −2
−1 4 −1 −1 0
−2 −1 3 1 0
−2 −1 1 3 0
−2 0 0 0 4

 .
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The two polyhedral cones spanned by these generators can be extended to spaces Sym2(Zg) for
any g > 5 and so the result follows.

Open problem. We note that we did not find any polyhedral cone of index greater than 1 in
the second Voronoi decomposition. It appears to be an open problem whether or not for every g,
all cones in the second Voronoi decomposition have generators of its 1-dimensional faces that
generate an integral lattice in Sym2(Zg) of index 1.
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Sch09 A. Schürmann, Computational geometry of positive definite quadratic forms: polyhedral re-
duction theories, algorithms, and applications, Univ. Lecture Ser., vol. 48, Amer. Math. Soc.,
Providence, RI, 2009; http://dx.doi.org/10.1090/ulect/048.
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