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Abstract

The response of bacteria in terms of abundance, production and community structure to 

changes induced by the discharge of primary treated sewage waters was investigated 

combining microbiological, chemical and molecular tools. The primary treatment did not 

affect substantially the bacterial community structure in wastewaters and did not reduce the 

concentrations of fecal indicators. The spatial distribution of the sewage plume was governed 

by vertical stratification and currents. Bacterial abundance and production in the sea receiving 

waste waters depended predominantly on environmental conditions. In the waters with the 

highest concentration of fecal pollution indicators the bacterial community was characterized 

by allochthonous bacteria belonging to Epsilonproteobacteria, Firmicutes, 

Gammaproteobacteria and Bacteroidetes. The latter two taxa were also present in unpolluted 

waters but had a different structure, typical for oligotrophic environments. Although the 

impact of primary treated sewage waters was limited, a sanitary risk persisted due to the 

relevant presence of potentially pathogenic bacteria.

Key words: sewage waters, coprostanol, fecal indicator bacteria, bacterial community 

structure, next-generation sequencing, potentially pathogenic bacteria
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1 1. Introduction

2 Untreated sewage waters consisting of high nutrient loads, chemicals, pharmaceuticals and 

3 fecal waste present severe challenges to coastal ecosystems. Among these pollutants, fecal 

4 waste poses the most acute risk to human health due to its high content of pathogens. In urban 

5 environments, both sewage and storm waters serve as common delivery routes for fecal 

6 matter to aquatic ecosystems (Aragonés et al. 2016; Al Aukidy and Verlicchi 2017).

7 Sanitary quality of waters is generally assessed by using fecal indicator bacteria (FIB) such as 

8 fecal coliforms and fecal streptococci. This approach has unfortunately some serious 

9 limitations as it depends on the survival and growth of those bacteria. Thus, a complementary 

10 set of chemical indicators based on the concentrations of fecal sterols has been introduced in 

11 the last decades (Isobe et al., 2002; Isobe et al., 2004; Carreira et al. 2004; Mudge and Duce 

12 2005). Coprostanol (COP), the main fecal sterol, is produced by the microbial degradation of 

13 cholesterol in the human intestine (Martins et al., 2007) and comprises 40%-60% of total 

14 sterols present in human waste (Leeming and Nichols, 1996). COP has persistence in the 

15 marine environment longer than FIB (Leeming and Nichols, 1996), with a half-life of 

16 approximately 10 days at 20 °C under aerobic conditions (Isobe et al., 2002). Generally, the 

17 presence of COP in aquatic environments is taken as an indication of relatively fresh fecal 

18 pollution (Savichtcheva and Okabe, 2006).

19 More recently, DNA based molecular methods have been increasingly employed for the 

20 profiling of the microbial community composition in waste water treatment plants (McLellan 

21 et al., 2010) and the source tracking of sewage in the environment (Sauer et al., 2011; Newton 

22 et al., 2013). To date, most studies have focused on sludge and pilot scale bioreactors 

23 (Sanapareddy et al., 2009; Xia et al., 2010; Wang et al., 2012) or treated effluents (Ye and 

24 Zhang, 2011), while others have provided important clues about the composition of untreated 

25 sewage microbial communities (Shanks et al., 2013). A phylogenetic microarray analysis of 

26 marine water and sewage samples collected during a sewage spill indicated that sewage 

27 communities differ significantly from marine water, even when the marine water is mixed 

28 with small amounts of sewage (Dubinsky et al., 2012). Pyrosequencing of samples from 

29 wastewater influent revealed that the microbial community consists of microorganisms 

30 coming from human feces, soil, and ambient water (introduced through gray water, rainwater, 

31 and stormwater). Some of these microbes can be considered as typical residents of sewage 

32 systems (McLellan et al., 2010; VandeWalle et al., 2012). Published reports have been mainly 

33 focused on describing complex communities in sludge and within bioreactors while only 
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34 marginally focusing on the effect of sewage output on the structure of autochthonous 

35 microbial communities and their temporal dynamics.

36 The majority of sewage waters released in the Mediterranean are generally untreated or 

37 subjected only to primary processing, i.e. mechanical removal of solids, fats and sand (EC, 

38 2006). Our study site (town of Rovinj, northeastern Adriatic coast) represents a typical urban 

39 Mediterranean area characterized by intense tourism in summer months when the population 

40 triples. Around 80% of urban waste waters, that include domestic sewage and storm runoff, 

41 are discharged in a coastal bay, very close to the most important marine recreational areas. 

42 The aim of this study was to assess the response of bacteria in terms of abundance, production 

43 and community structure to the changes induced by the discharge of primary treated sewage 

44 waters. To achieve this purpose, molecular methods were combined with microbiological and 

45 chemical indicators. To our knowledge this is the first report where the temporal response of 

46 the marine bacterial community exposed to primary treated wastewaters has been 

47 investigated.

48

49 2. Materials and methods

50 2.1. Study site and samplings 

51 Cuvi bay occupies an area of 2 km2 with an average depth of 27 m. The sewage treatment 

52 plant (STP), installed in 1984 accepts sewage and storm water runoff from the major part of 

53 Rovinj’s urban area. Sewage and storm water runoff arrived combined to the STP. The waste 

54 water treatment includes the removal of solids, fats and sand. Afterwards, the treated waters 

55 are temporarily stored in a retention basin, exposed to air but without mechanical mixing or 

56 air bubbling. Depending on the quantity of the waste waters arriving to the system the 

57 retention in the basin lasts between 15 minutes to one hour before flushing the basin content 

58 through an 800 m long submarine pipe in the sea at a depth of 27 m. In the investigated period 

59 (2010/2011; municipal service of Rovinj, pers. comm.) the bay received the highest amount of 

60 urban waste waters in August (189,216 m3) and October (127,925 m3) when the population 

61 was 44000 and 20000, respectively (touristic office of Rovinj, pers. comm.), the lowest in 

62 February (73,533 m3) and March (81,105 m3) when the population was 14000 (only local 

63 residents), while May (17000 residents) was close to the monthly average (104,878 m3).

64 The sampling stations were located at the sewage outfall (C0) and around it along four 

65 directions (NW, NE, SW, and SE) at a distance of 50 m (1), 150 m (3) and 300 m (4) (Fig. 1). 

66 Seawater samples were taken with 5 L horizontal Niskin bottles at three depths (5 m, 10 m 
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67 and 20 m). The bacterial community structure was determined at the stations C0, SE1 and 

68 SE3. All sampling was done in August and October 2010 and in February, March and May 

69 2011, except for the STP where samples were taken in February 2016. The purpose of the 

70 STP sampling was to have an insight into the bacterial community structure before and after 

71 the treatment.

72

73 2.2. Environmental parameters

74 Temperature (T) and salinity (S) were measured continuously throughout the water column 

75 during the downcast of a SEABIRD SBE 25 CTD probe.  Water samples were collected with 

76 5 l PVC Niskin samplers. Inorganic nutrients; nitrate (NO3), nitrite (NO2), ammonia (NH4) 

77 and orthophosphate (PO4) were analyzed in unfiltered water immediately after collection 

78 (Parsons et al., 1984; Ivančić and Degobbis, 1984). Dissolved inorganic nitrogen (DIN) was 

79 calculated as the sum of nitrate, nitrite and ammonia. Total chlorophyll a concentrations (Chl 

80 a) were determined by filtration of 500 ml on Whatmann GF/C filters. Filters were frozen 

81 (−18 °C) and analyzed within a few days by fluorometric procedure after Parsons et al. 

82 (1984). 

83

84 2.3. Heterotrophic bacteria (HB) abundance and production

85 For determining HB abundance, 2 ml of each sample was stained with 4,6-diamidino-2-

86 phenylindol (DAPI; 1 μg ml−1 final conc.) for 10 min, and then passed through 0.2 μm black 

87 polycarbonate filters (Nuclepore, Whatman, UK). HB abundance was determined by 

88 epifluorescence microscopy (Leitz Laborlux D) according to Porter and Feig (1980). From the 

89 total number of counted prokaryotes the number of cyanobacteria was subtracted in order to 

90 obtain the number of HB.  

91 Prokaryotic bulk production was estimated by measuring incorporation of two different 

92 substrates: 3H-thymidine (TdR; specific activity: > 70 Ci mmol−1; 20nM final concentration) 

93 and L- [3,4,5-3H] leucine (Leu; specific activity > 100 Ci mmol−1; 20 nM final concentration) 

94 according to Fuhrman and Azam (1982) and Smith and Azam (1992), respectively. 

95 Radioactivity was measured with a liquid scintillation counter (Canberra Packard Tricarb 

96 2900 TR, Perkin Elmer Packard, USA). Specific leucine (Leu cell−1) and thymidine (TdR 

97 cell−1) incorporation rates were obtained by dividing the rates per liter by bacterial abundance.

98



4

99 2.4. Fecal indicator bacteria (FIB)

100 Fecal coliforms (FC) and fecal streptococci (FS) were quantified using the membrane 

101 filtration method (WHO, 1994). Sample aliquots of 100 ml, 10 ml, 1 ml and 0.1 ml were 

102 filtered through 0.45 µm pore size membrane filters (47 mm). Samples were diluted with 

103 phosphate buffer. For FC counts membrane filters were placed on the surface of mFC agar in 

104 Petri dishes and incubated at 44.5 °C for 24 hours. The colonies that displayed a characteristic 

105 blue color were counted and the result was expressed as the number of colony forming units 

106 (CFU) in 100 ml of water.

107 FS were determined by placing membrane filters on the surface of Slanetz-Bartley agar in 

108 Petri dishes and incubated at 36 °C for 48 hours. The filters that had red centered colonies 

109 were further tested by placing them on the surface of bile aesculin agar in Petri dishes and 

110 incubated at 44.5 °C for 2 hours. The colonies that displayed a brown color around them were 

111 considered to be fecal streptococci. The final result was expressed as CFU in 100 ml of water.

112

113 2.5. Bacterial community structure

114 One liter of seawater was filtered onto 0.2 µm Nucleopore polycarbonate membrane filters 

115 (Whatman, UK) with a peristaltic pump. Filters were stored in 1 ml sucrose buffer (40 mM 

116 EDTA, 50 mM Tris-HCl and 0.75 M sucrose), frozen in liquid nitrogen and afterwards stored 

117 at -80 °C. The DNA was extracted according to Massana et al. (1997). The bacterial V3-V4 

118 16S rRNA region was amplified using bacterial primers S-D-Bact-0341-b-S-17 (5’-

119 CCTACGGGNGGCWGCAG-3’) and S-D-Bact-0785-a-A-21 (5’-

120 GACTACHVGGGTATCTAATCC-3’) (Klindworth et al., 2013) in four parallel reactions. 

121 Each 25 µL PCR reaction contained: 1× DreamTaq Green PCR Master Mix (Thermo Fisher 

122 Scientific, USA), 0.5 µM of forward and reverse primers and 10 ng of DNA template. The PCR 

123 amplification conditions were: 5 min initial denaturation at 95 °C, 30 cycles of 40 s 

124 denaturation at 95 °C, 2 min annealing at 55 °C and 1 min elongation at 72 °C, finalized by 10 

125 min at 72 °C. After pooling of the replicate reactions, PCR products were purified using the 

126 Wizard SV Gel and PCR Clean-Up System (Promega, USA) and sent for sequencing on the 

127 Illumina MiSeq platform (2 x 250 bp paired-end) at IMGM Laboratories (Martinsried, 

128 Germany).

129 The forward and reverse sequences contained in fastq files were assembled using mothur’s 

130 command make.contigs and split into sample specific fasta files using mothur’s command 
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131 split.groups (Schloss et al., 2009). Multifasta files were processed by the SILVAngs 1.3 

132 pipeline (https://www.arb-silva.de/ngs) (Quast et al., 2013) as described in Ionescu et al. 

133 (2012). Briefly, sequences were aligned against the SILVA SSU rRNA SEED using the 

134 SILVA Incremental Aligner (SINA) (Pruesse et al., 2012). Sequences shorter than 50 aligned 

135 nucleotides, with more than 2% of ambiguities or 2% of homopolymers were removed. 

136 Putative contaminations and artefacts, reads with a low alignment quality (50 alignment 

137 identity, 40 alignment score reported by SINA), were excluded from downstream analysis. 

138 Identical sequences were identified (dereplication) and the unique sequences were clustered 

139 (Operational Taxonomic Units [OTU]) at 97% sequence identity using cd-hit-est (version 

140 3.1.2; http://www.bioinformatics.org/cd-hit) (Li and Godzik, 2006) running in accurate mode 

141 and ignoring overhangs. The representative OTU sequence was classified against the SILVA 

142 SSU Ref dataset (release 123.1; http://www.arb-silva.de) using blastn (version 2.2.30+; 

143 http://blast.ncbi.nlm.nih.gov/Blast.cgi) with standard settings (Camacho et al., 2009). 

144 Statistical data regarding the SILVAngs pipeline analysis are given in the supplementary 

145 materials (Table S1). The sequencing effort applied was insufficient to determine the whole 

146 bacterial richness as could be observed in the rarefaction curves that did not level off even for 

147 the samples with the greatest number of sequences (Fig. S1).

148

149 2.6. Sterol analysis

150 Sterol standards, including coprostanol (COP, 5β-cholestan-3β-ol), 5α cholestane and 

151 perylene (IS) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% 

152 trimethylchlorosilane (TMCS) were provided by Sigma-Aldrich Chemical Company 

153 (Stenheim, Germany).

154 The extraction and purification procedure was performed according to Isobe et al. (2002). A 

155 filter sample containing suspended particles was placed in a 50 mL glass tube, spiked with 5α 

156 cholestane and ultrasonically extracted by 30 mL each of methanol (MeOH), MeOH/DCM 

157 (1:1, v/v), and dichloromethane (DCM), consecutively for 1 hr for each solvent. The extracts 

158 were combined, concentrated to dryness by rotary evaporator, redissolved into 1 mL of 

159 hexane/DCM (3:1, v/v) and separated into fractions by silica gel column (100-200 mesh, 

160 Sigma-Aldrich). The fractions eluted with 40 mL of DCM and 30 mL of acetone/DCM, 3:7 

161 v/v were combined, evaporated; perylene (IS) was added and after derivatization with 

162 BSTFA-TMCS at 60°C for 1 h analyzed for sterols by GC/MSD.
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163 Sterols were analyzed by Agilent gas-liquid chromatography (GLC) 6890N GC System 

164 (Agilent Technologies, USA) equipped with a 5973 Network Mass Selective Detector, Zebron 

165 ZB-5MSi capillary column (30 m × 0.25 mm × 0.25 μm; 5% Phenyl-95% 

166 Dimethylpolysiloxane) and ultra-high purity helium as the carrier gas. The GLC settings 

167 were: programmed column temperature rise from 150 °C (1 min) by 20 °C/min up to 310 °C 

168 (5 min), at a constant column pressure of 2.17 kPa. Retention times, peak areas and mass 

169 spectra were recorded with Chemstation software. Data were acquired in the full scan mode 

170 between ions of m/z 50 and 550.

171

172 2.7. Data analysis

173 The correlations among parameters were tested using Pearson’s correlation coefficient (r). 

174 The level of statistical significance was p < 0.05. Differences in fecal indicators, HB 

175 abundance and production among sampling months and depths were tested by one-way 

176 analysis of variance (ANOVA; Systat 12). The normality and homogeneity of variances were 

177 tested by the Lilliefors and Levene tests, respectively. Results found to be significant by 

178 ANOVA (p < 0.05) were then analyzed by post hoc Tukey’s honestly significant difference 

179 (HSD) multiple-comparison tests to investigate which of the means were different.

180 Principal component analysis (PCA) was used to identify the most important variables that 

181 explain the most variation in dataset. The analyses were based on correlation matrices 

182 (constructed using the S, T, COP, FC, FS, NH4, DIN, PO4, HB, Leu and TdR) involving the 

183 normalization of all variables due to their different scales. Only the principal components with 

184 eigenvalues > 1 were considered to account for much of the parameter variability. PCA was 

185 performed using the software Primer 6.

186

187 3. Results

188 3.1. Environmental conditions

189 In August the water column was completely stratified while the mixing process began in 

190 October. In February and March isothermal and isohaline conditions characterized the whole 

191 study area. The water column stratification started to appear again in May (Fig. 2). The 

192 overall temperature and salinity values in the investigated period were typical for the coastal 

193 waters of Rovinj during all measurements (Ivančić et al., 2010).
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194 High concentrations of DIN (up to 28.96 μmol L-1) with the highest contribution of NH4 (up 

195 to 96%) were recorded along the 20 m layer in August in a radius of 300 m and in October 

196 only in the proximity of the outfall (C0). In February and March DIN decreased with respect 

197 to the warmer months, and was highest at 5 m and 10 m. In May, DIN concentrations were 

198 similar to the winter months but showed a distribution similar to the summer months with 

199 relative increase at 20 m (Fig. 2). During the summer the concentrations of phosphates (PO4) 

200 were increased only in the proximity of the outfall (up to 0.36 μmol L-1), while all the other 

201 values (during all samplings) were comparable to the ones typical for the northern Adriatic 

202 coastal waters (0.01 to 0.08 μmol L-1, data not shown). The average monthly Chl a in the area 

203 of Cuvi were within the long-term measurements for the northeastern Adriatic waters. The 

204 lowest values of Chl a were detected in August (0.28 μg L-1) and October (0.31 μg L-1) 

205 followed by an increase in February (0.48 μg L-1) and the maximum values in May (0.55 μg 

206 L-1).

207

208 3.2. Fecal pollution indicators; FIB and COP

209 All fecal pollution indicators were strongly mutually correlated (FC vs FS: n=195, r=0.964, p 

210 <0.001; FC vs COP: n=195, r=0.808, p <0.001; FS vs COP: n=195, r=0.788, p <0.001), 

211 displaying a very similar distribution throughout the year (Fig. 2). In general, FC were by an 

212 order of magnitude greater than FS. In October elevated concentrations of fecal indicators 

213 were found only in the vicinity of the outfall. In August, however, higher concentrations of 

214 indicators were present in the broader area spreading towards the western quadrant. During 

215 February and March elevated concentrations of indicators were present in the whole water 

216 column, reaching highest values at 5 m. In February, the peak of FIB concentrations was 

217 found at SE1, while in March it was localized at C0. In May, the distribution of indicators was 

218 similar to August, but the concentrations remained close to the winter months (Fig. 2). The 

219 monthly differences for all the indicators (one-way ANOVA) were not statistically 

220 significant. On the other hand the concentrations of all indicators were significantly higher at 

221 20 m (factor: depth) and at C0 (factor: distance, Table 1).

222 At the STP the concentrations of fecal pollution indicators were very high and displayed no 

223 relevant differences before (FC: 8.3·108 CFU/100 ml, FS: 6.1·107 CFU/100 ml, COP: 1256 μg 

224 L-1) and after (FC: 7.9·108 CFU/100ml, FS: 5.4·107 CFU/100 ml, COP: 1162 μg L-1) the 

225 primary treatment. 
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226 3.3. Heterotrophic bacteria in the receiving waters; abundance and production

227 The abundances of heterotrophic bacteria (HB) significantly differed between the months but 

228 not between the depths and distance from the outfall (Table 1). In August (2.1-7.6 108 cell L-1) 

229 and October (2.8-13.7 108 cell L-1) HB abundance was similar and significantly higher than in 

230 February (1.9-4.2 108 cell L-1), March (1.1-5.3 108 cell L-1) and May (1.3-3.9 108 cell L-1). 

231 During August and October when the waste water input was at maximum the abundance of 

232 HB was increased C0 at the depth of 20 m while during the other months this effect was not 

233 evident (Fig. 3).

234 Significant temporal variations were also observed in the cell specific leucine (Leu) and 

235 thymidine (TdR) incorporation rates and their ratio Leu/TdR (Table 1). Leu was significantly 

236 higher during February (96.1±56.8 zmol cell-1 h-1) than in March (42.7±19.5 zmol cell-1 h-1), 

237 May (29.4±19.6 zmol cell-1 h-1), August (31.5±25.9 zmol cell-1 h-1) and October (17.4±15.0 

238 zmol cell-1 h-1).The differences in Leu between the depths and distances were not significant. 

239 TdR was significantly higher during May (9.8±6.9 zmol cell-1 h-1) than in the other months 

240 when the values were comparable: August (5.0±9.9 zmol cell-1 h-1), October (3.2±2.6 zmol 

241 cell-1 h-1), February (2.3±1.7 zmol cell-1 h-1) and March (1.9±3.0 zmol cell-1 h-1). Also, TdR 

242 was significantly higher at 20 m of depth, while the differences with distance were not 

243 significant (Table 1). Leu/TdR ratios in March (86.6±146.8) were significantly higher than in 

244 May (5.4±4.7) and October (6.3±5.6), and not significantly different from the ratios in 

245 February (74.7±86.5) and August (27.2±23.4). The differences in Leu/TdR ratios between the 

246 depths and distance were not significant (Table 1).

247 The relationship among environmental variables, FIB, COP, HB abundance and production is 

248 shown on the principal component analysis plot (Fig. 4) where PC1 and PC2 explained 

249 44.77% and 24.32% of total variance, respectively. The highest loadings for negative 

250 relationship were obtained for NH4 (-0.447), FC (-0.436), FS (-0.431) and COP (-0.412) on 

251 PC1 while for S (-0.523) and Leu (-0.444) on PC2. For the positive relationship the highest 

252 loadings showed T (0.501) and HB (0.401) on PC2. The pollution variables (FC, FS, and 

253 COP) were simultaneously strongly related mutually and linked with NH4 and DIN. This 

254 relationship indicated that NH4 and DIN mainly resulted from the input of waste waters. In 

255 contrast, the input of waste waters affected less HB, PO4 and TdR. The positive relation 

256 between HB and T and negative with S indicated that higher HB numbers occurred in warmer 

257 and less salty layers. The positive relation between PO4 and S and negative with T indicated 

258 that increased PO4 concentrations occurred in the saltier and colder layers. Leu appeared to be 

259 completely independent of waste water input and governed by the natural fluctuations in T 
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260 and S, being increased at higher salinity and lower temperature. On PC1 the majority of 

261 samples were scattered around zero implying no significant influence of the waste waters on 

262 these layers. A portion of the samples, particularly from August and October was shifted 

263 following the increased concentration of FC, FS, COP and NH4 with an appreciable number 

264 of outliers positioned in colder and saltier layers (20 m). The separation along the PC2 was 

265 evident between the August-October and the clustered February, May and March samples due 

266 to the seasonal differences in temperature and salinity (Fig. 4).

267

268 3.4. Bacterial community structure

269 The bacterial communities of sewage waters before and after the primary treatment were very 

270 similar (Fig. 5). In untreated waters the community consisted of Epsilonproteobacteria 

271 (29.9%, with prevalence of the genus Arcobacter [29.1%]), Firmicutes (28.6%, with  

272 prevalence of the family Lachnopiraceae and Ruminococcaceae comprising 24% and 22% of 

273 the phylum, respectively), Gammaproteobacteria (21.6%), Bacteroidetes (8.8%), 

274 Betaproteobacteria (5.9%) and Fusobacteria (1.2%). After the primary treatment the only 

275 noticeable changes were evidenced in the decrease of Firmicutes (20.8%) and a comparable 

276 increase of Arcobacter (39.2%). For other phyla and classes changes were less than 2%. In 

277 wastewaters the most represented genera of Gammaproteobacteria were Acinetobacter (up to 

278 7.15%), Aeromonas (6.62%), Escherichia/Shigella (2.37%) and Shewanella (1%). In the 

279 marine environment those genera rarely reached 1%, mainly in the mostly polluted layers, 

280 while in the remaining waters the clades SAR86 and OM60 (NOR5) replaced them. 

281 Bacteroidetes in wastewaters were mainly represented by the genus Bacteroides, while the 

282 marine samples were primarily dominated by NS4 and NS5 marine groups (Fig.6). The genus 

283 Acidovorax appeared to be the main representative of Betaproteobacteria. 

284 Alphaproteobacteria were only a very small share of the waste water community.

285 The alpha diversity (OTU richness) of bacterial communities in recipient waters evidenced 

286 March as having a significantly higher number of OTUs than the rest of the year while the 

287 differences between the stations were not significant (Table S2 and Table S3). Among the 

288 allochthonous bacteria in the receiving waters, the presence of Firmicutes and the 

289 epsilonproteobacterial genus Arcobacter were recognized. In August and October those 

290 bacteria represented an important share of the community exclusively below the thermocline 

291 (20 m). Firmicutes were relevant only at the outfall (C0) and rapidly decreased with distance, 

292 while in August Arcobacter was consistently present up to SE3. In October, Firmicutes and 
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293 Arcobacter were concentrated only around the outfall, while in February allochthonous 

294 bacteria were present in the whole water column especially near the surface (5 and 10 m) at 

295 SE1 and SE3. Interestingly, at C0 their contribution was negligible. In March, Arcobacter and 

296 Firmicutes were detected at C0 (5 m and 10 m) while a major share of Firmicutes was present 

297 at SE1 (20 m). In May, a smaller portion of allochthonous bacteria was present at C0 and SE1 

298 only at 20 m (Fig. 6). 

299 In August and October, Gammaproteobacteria dominated the community at 20 m increasing 

300 with distance, but were much less present in the upper layer where the gammaproteobacterial 

301 clade SAR86 became quite recognizable. During February, March and May the share of 

302 Gammaproteobacteria remained in general constant (13.9%-42.2%) in the entire water 

303 column. The presence of the SAR86 clade was remarkably high during the colder months (up 

304 to 18.4%), while it decreased in May when a higher contribution of the gammaproteobacterial 

305 clade OM60 (NOR5) was observed. Alphaproteobacteria were also abundant in marine 

306 samples throughout the year (up to 56%). In warmer months the upper layers were much 

307 enriched with this class; however in the polluted layers a consistent decrease was observed. 

308 From February to May Alphaproteobacteria were uniformly distributed in all layers. 

309 However, different relative proportions of alphaproteobacterial members, the SAR11 clade 

310 and AEGEAN-169 marine group, appeared in various sampling months. The AEGEAN-169 

311 marine group was important in August; the SAR11 clade in October, February and March, 

312 while in May both of them became marginal (Fig. 6). Betaproteobacteria were a minor 

313 component of the community until March and May when they became relevant, with the 

314 prevalence of the genus Limnobacter. They showed a different spatial distribution between 

315 the two months being present in polluted superficial waters in March, while in May they were 

316 characteristic for the other layers.

317 Regarding Bacteroidetes, the genus Bacteroides was found in marine samples at the most 

318 polluted sites. The share of other members of Bacteroidetes (NS4 and NS5 marine groups) 

319 decreased with depth during warm months, while during the rest of the year they remained 

320 fairly homogenous. In August and May, these marine groups were quite relevant in the 

321 community. Actinobacteria, consisting principally of the genus “Candidatus Actinomarina”, 

322 were mainly present in October and February with a similar abundance at all depths, except at 

323 C0 (20 m) (Fig. 6). Among the Cyanobacteria, the genus Synechococcus was recorded in 

324 August in the upper layers and only marginally in October, March and May. Prochlorococcus 

325 was less abundant following the same distribution as Synechococcus (Table_dataset).
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326 3.5. Potentially pathogenic bacteria (PPB)

327 The diversity and abundance of PPB were analyzed at the genus level according to the 

328 reference pathogenic bacteria list made up of 32 genera (Ye and Zhang, 2011). A total of 

329 173580 sequences were attributed to the PPB genera which comprised 7.41% of all the 

330 sequences. The results showed that in the STP before and after the primary treatment the 

331 relative abundances were 38.0% and 49.7%, respectively. In the sea, the most polluted layers 

332 in August, October and February had high relative abundances of PPB (19.37%-32.37%), 

333 while in the rest of the year they were relatively low (<10%). In general, the most abundant 

334 and common genera of PPB were Aeromonas, Arcobacter, Pseudomonas, Vibrio and 

335 Escherichia/Shigella, while the genera Borrelia, Chlamydophila, Leptospira and Listeria 

336 were not detected (Fig. 7).

337

338 4. Discussion

339 Our results revealed that the primary treatment plant in Cuvi bay had a negligible effect on 

340 both the reduction of fecal indicators and the alteration of the sewage bacterial community 

341 structure. The concentrations of FIB in the retention basin were within the reported ranges for 

342 other untreated sewage waters which normally contain between 107-109 CFU/100 mL of FC 

343 and between 106-108 CFU/100 mL of FS (George et al., 2002).

344 The bacterial community in the STP influent consisted of a complex array of taxa dominated 

345 by Epsilonproteobacteria, Firmicutes, Gammaproteobacteria, Bacteroidetes and 

346 Betaproteobacteria. Arcobacter, the most abundant epsilonproteobacterial genus, has 

347 generally a low prevalence in human feces but it is typical for sewer systems (Collado and 

348 Figueras, 2011). Its high abundance was hypothesized to be a consequence of its adaptation to 

349 the specific ecological conditions present in sewage infrastructure (Fisher et al., 2014). In 

350 contrast, the second most abundant component in the STP, the phylum Firmicutes, is 

351 characteristic of the human gastrointestinal tract and can make up to 80% of gut microbiota 

352 (Rajilić-Stojanović and deVos, 2014). Among Firmicutes, the family Lachnospiraceae (class 

353 Clostridia), was the most common. Lachnospiraceae are considered a part of the core fecal 

354 community in untreated sewage waters (Shanks et al., 2013). Their reduction after the primary 

355 treatment could be ascribed to the fact that they are anaerobes. However, their ability to form 

356 spores facilitates their survival in a variety of aerobic and anaerobic environments (Galperin, 

357 2013). The third major component of the STP microbial community consisted of 
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358 Gammaproteobacteria. This class includes many opportunists and pathogens, such as 

359 Acinetobacter, Aeromonas, Escherichia/Shigella, Enterobacter, Pseudomonas and Vibrio 

360 which are considered as consistent members of sewage influents (VandeWalle et al., 2012). 

361 The primary treatment seemed to have the lowest impact on the members of this class. 

362 Bacteroidetes and Betaproteobacteria were two minor components of the STP bacterial 

363 community. Their presence corresponded to the typical structure of fecal communities found 

364 in the human intestine. The distribution of PPB in the STP showed that the system was not 

365 effective in their reduction. Moreover, an increase in number of detected genera and their 

366 relative abundance after the treatment indicated the probable survival of PPB introduced 

367 during previous inputs into the system.

368 The trace of the allochthonous bacteria (mainly Firmicutes and Arcobacter) in the marine 

369 environment corresponded to the trends and distributions of FIB and fecal sterols. Even when 

370 the volumes of the released sewage waters and the resident population varied during the 

371 investigated period, the variation in the concentrations of FIB and fecal sterols in the sea 

372 between the months was not significant. In the polluted waters of Cuvi bay the maximum 

373 COP concentration was 15.1 μg L-1 while the average levels were 0.33±1.34 μg L-1, 

374 corresponding to slightly contaminated coastal areas (Isobe et al., 2002). In Cuvi bay the 

375 concentration of all fecal pollution indicators significantly decreased with distance from the 

376 sewage outfall. In August and October the concentration of FIB and fecal sterols was the 

377 highest below the thermocline, while in February and March it was lower and more evenly 

378 distributed in the water column. May represented the transition between the aforementioned 

379 conditions. The overall effect of the waste water input on the HB abundance was very limited 

380 being positive only in the closest vicinity of the outfall in August and October, most probably 

381 due to the local increase of organic substrate, ammonia and phosphates released through the 

382 outfall. One of the reasons responsible for such a limited effect might be ascribed to the rapid 

383 dilution and spreading of the waste waters due to the relatively intense marine currents (~0.15 

384 ms-1). The rates of bacterial production even in the waters with the highest concentration of 

385 the fecal pollution indicators were within the natural ranges for the northern Adriatic Sea 

386 (Ivančić et al., 2010).

387 COP showed a remarkable correlation with other indicators of fecal pollution, FC and FS. 

388 Although those indicators were strongly associated, some differences emerged between warm 

389 and cold months as already observed in previous studies (Leeming and Nichols, 1996; Isobe 

390 et al., 2002). During August relatively low concentrations of COP (i.e. <0.5 μg L-1) were 
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391 coupled with high FIB counts (>10000 CFU/100 mL), while in February higher COP (i.e. 

392 >0.5 μg L-1) corresponded to low numbers of FIB (<50 CFU/100 mL). The reasons for these 

393 relations during winter could be ascribed to the greater dissipation of the sewage in the whole 

394 water column which exposed FIB to a higher degree of predation by microzooplankton. The 

395 opposite situation during August could be caused by the maintenance of favorable conditions 

396 for the survival of FIB inside the polluted and nutrient-rich plume spreading only below the 

397 thermocline.

398 The community structure of the less contaminated layers differed substantially from the 

399 polluted ones. The detection of PPB in some unpolluted waters could be explained by the fact 

400 that these genera include many autochthonous marine bacteria such as Pseudomonas and 

401 Vibrio which are commonly found in coastal waters. Among the autochthonous bacteria in 

402 unpolluted layers Alphaproteobacteria were ubiquitous and very abundant. Within this class a 

403 temporal pattern was recognized. The AEGEAN-169 marine group showed a very high 

404 relative abundance only in August while the SAR11 clade was abundant during the rest of the 

405 year. Previously, the AEGEAN-169 marine group has been found to be closely linked to the 

406 SAR11 clade during dinoflagellate blooms (Yang et al., 2015). In addition, the SAR11 clade 

407 is a typical representative of oligotrophic Mediterranean (Alonso-Saez et al., 2007) and 

408 Adriatic waters (Korlević et al., 2015) having a major role in the oxidation of low-molecular-

409 weight dissolved organic matter. Gammaproteobacteria were the second largest group which 

410 showed a different structure in polluted and unpolluted waters. In the latter the SAR86 clade 

411 was relatively more abundant, especially in colder months when there was an increase of Chl 

412 a, a proxy for phytoplankton biomass. Generally, Gammaproteobacteria are involved with 

413 phytoplankton blooms and degradation of algal biomass, where Reinekea spp. and clade 

414 SAR92 are commonly present (Teeling et al., 2016). However, it seems that in oligotrophic 

415 waters the SAR86 clade takes over their ecological role (Korlević et al., 2015). The SAR86 

416 clade displays metabolic streamlining containing an expanding capacity for the degradation of 

417 lipids and polysaccharides (Dupont et al., 2012). Another prominent gammaproteobacterial 

418 clade detected was the OM60 (NOR5) clade that appeared in the whole water column in 

419 March and increased in abundance in May (comparable to the SAR86 clade). The OM60 

420 (NOR5) clade has been described as a marine cosmopolitan member with clear preference for 

421 coastal marine waters (Yan et al., 2009).

422 Within the unpolluted layers actinobacterial genus “Candidatus Actinomarina” appeared first 

423 in October in association with genera typical for oligotrophic environments (e.g. SAR11 and 
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424 SAR86). During February, the increased relative importance of “Candidatus Actinomarina” 

425 characterized the entire water column. This genus is described as the smallest among free-

426 living prokaryotes, having an enhanced performance in oligotrophic environments or nutrient-

427 depleted conditions (Ghai et al., 2014). Moreover, these bacteria appear to be associated with 

428 zones of maximal photosynthetic production (Mizuno et al., 2015). In February, the specific 

429 rate of the bacterial biomass production was the highest and was not balanced with rates of 

430 DNA synthesis resulting in very high Leu/TdR ratios. In less favorable environmental 

431 conditions, such as low temperature and lack of substrate supply, bacteria might have reduced 

432 protein and especially DNA synthesis rates thus increasing the Leu/TdR ratio (Chin-Leo and 

433 Kirchman, 1990; Shiah and Ducklow, 1997). Bacterial cells with high Leu/TdR ratios are 

434 presumably processing carbon without cell division thus showing lower bacterial growth 

435 efficiency (Gasol et al., 1998). In our case the outfall and phytoplankton supplied the system 

436 with some substrate but the low winter temperature might have slowed the rate of DNA 

437 synthesis. In addition, besides the resources and the environmental conditions the intrinsic 

438 responses related to the bacterial community structure might have affected the pattern of 

439 bacterial metabolism and consequently the ratio of Leu/TdR (del Giorgio et al., 2011). A large 

440 spatial variability was generally observed for all bacterial production descriptors in 

441 accordance with other studies, which is probably due to the characteristics of water masses 

442 that coexist vertically in a certain area (Longnecker et al., 2006; del Giorgio et al., 2011).

443 In May, the presence of Bacteroidetes, commonly associated with phytoplankton blooms, 

444 might have indicated the availability of a substrate typically present in these conditions. In 

445 general, this phylum (order Flavobacteriales) appears recurrently, in successions, in response 

446 to the availability of phytoplankton-derived polysaccharides, i.e. transparent exopolymer 

447 particles. Bacteroidetes are considered fast-growing r-strategist with specialization on the 

448 initial attack of highly complex organic matter (Teeling et al., 2016). However, instead of 

449 having typical flavobacterial groups Ulvibacter and Formosa, our samples were dominated by 

450 NS4 and NS5 marine groups which seem to be better adapted to phytoplankton blooms in 

451 more oligotrophic conditions (Korlević et al., 2015). The increasing importance of the 

452 betaproteobacterial genus Limnobacter in March and May could be partly ascribed to the 

453 higher humic matter content (Hutalle-Schmelzer et al., 2010) potentially introduced with 

454 sewage or storm waters, but mainly to an increase in the autotrophic biomass. It has been 

455 recently shown that Limnobacter has been found associated with different diatoms (e.g. 

456 Pseudo-nitzschia multiseries) in the Atlantic and the North Pacific Ocean and specific 
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457 bacterial clades belonging to Alpha-, Gammaproteobacteria and Bacteroidetes (Amin et al., 

458 2012), also relevant in our samples. The obtained community structure in May suggested that 

459 there was an increase in phytoplankton biomass in agreement with an increase in Chl a 

460 concentration in the area. This input of substrate combined with higher temperatures could 

461 have enabled an increase in the rate of bacterial rates of DNA synthesis leading to a relatively 

462 low Leu/TdR ratio. A similar imbalance in bacterial production rates was observed around 

463 deep-chlorophyll maximum during an autotrophic biomass increase in the oligotrophic South 

464 Adriatic (Najdek et al., 2014).

465

466 5. Conclusions

467 The primary treatment did not affect substantially the bacterial community structure and did 

468 not reduce the concentration of PPB, COP and FIB. All fecal indicators were mutually 

469 significantly correlated. However, there was a temporal fluctuation in their correlation due to 

470 the variable survival of FIB. The distribution of the sewage plume was governed by the 

471 vertical stratification and the currents. The rapid dispersion of the sewage plume greatly 

472 mitigated its effect on the marine environment. In the recipient waters characterized by high 

473 concentrations of FIB and COP the presence of bacteria typical for sewage systems 

474 (Arcobacter and Firmicutes, Bacteroides) was evident within the community. Bacterial 

475 abundance and production in the sea receiving waste waters depended predominantly on 

476 environmental conditions. Throughout the year the autochthonous bacterial communities were 

477 dominated by taxa typical for coastal waters which included alphaproteobacterial clades 

478 SAR11 and AEGEAN-169, gammaproteobacterial clade SAR86 and NS4 and NS5 marine 

479 groups of the Bacteroidetes. The detection of “Candidatus Actinomarina” and Limnobacter 

480 appeared to be associated with increases of phytoplankton biomass but also with a possible 

481 leaching of coastal soils and an increased input of storm waters within the sewage system. 

482 The latter relations should however be further investigated.

483
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665 Figure captions

666 Fig. 1. Sampling stations in the Cuvi bay.

667 Fig. 2. Distribution of salinity (S), temperature (T), dissolved inorganic nitrogen (DIN), fecal 
668 coliforms (FC), fecal streptococci (FS) and coprostanol (COP) in the water column along the 
669 NW-SE and NE-SW profiles during August 2010, October 2010, February 2011, March 2011 
670 and May 2011.

671 Fig. 3. Distribution of heterotrophic bacteria (HB) and cell specific incorporation rates of 
672 leucine (Leu) and thymidine (TdR) in the water column along the NW-SE and NE-SW 
673 profiles during August 2010, October 2010, February 2011,  March 2011 and May 2011.

674 Fig. 4. Principal component analysis for the water temperature (T), salinity (S), concentration 
675 of orthophosphates (PO4), dissolved inorganic nitrogen (DIN), ammonium (NH4), fecal 
676 coliforms (FC) and streptococci (FS), coprostanol (COP), bacterial abundance (HB) and cell 
677 specific incorporation rates of leucine (Leu) and thymidine (TdR) in the water column during 
678 August 2010 (red triangle), October 2010 (yellow triangle), February 2011 (blue triangle), 
679 March 2011 (black triangle) and May 2011 (green triangle).

680 Fig. 5. Taxonomic classifications and relative contribution of the most common bacterial 16S 
681 rRNA sequences before and after the primary treatment at the sewage treatment plant (STP).

682 Fig. 6. Taxonomic classifications and relative contribution of the most common bacterial 16S 
683 rRNA sequences and bacterial abundances (HB) at the stations C0, SE1 and SE3 in August 
684 2010, October 2010, February 2011, March 2011 and May 2011.

685 Fig. 7. Relative abundances (percentage of a specific pathogenic genus in total identified 
686 pathogenic bacteria) of potentially pathogenic bacterial genera in the study area.

687 Fig. S1. Rarefaction curves for the Cuvi bacterial communities sampled in STP, August, 
688 October, February, March and May at stations C0, SE1 and SE3 at different depths.

689
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Table 1. Summary of one way ANOVA (N – number of samples, df – degrees of freedom, F-
ratios and p-values) for the monthly, depth and distance changes of the concentrations of fecal 
coliforms (FC), fecal streptococci (FS), coprostanol (COP), heterotrophic bacteria (HB), cell 
specific incorporation rates of leucine (Leu) and thymidine (TdR) and their ratios (Leu/TdR). 
Sample means are ordered by magnitude according to Tukey post hoc test.

Factor Parameter N df F-ratio p-value Tukey rank
month FC 195 4 1.544 >0.05 −

FS 195 4 1.709 >0.05 −
COP 195 4 1.673 >0.05 −
HB 195 4 39.404 <0.05 F~May~Mar<A~O
Leu 195 4 15.343 <0.05 May~O~A~Mar<F
TdR 195 4 2.958 <0.05 Mar~F~O~A<May

Leu/TdR 195 4 7.710 <0.05 May~O <Mar~F~A
depth FC 195 2 6.145 <0.05 5 m~10 m <20 m

FS 195 2 8.495 <0.05 5 m~10 m <20 m
COP 195 2 3.992 <0.05 5 m~10 m <20 m
HB 195 2 0.980 >0.05 −
Leu 195 2 1.176 >0.05 −
TdR 195 2 7.370 <0.05 5m~10m<20m

Leu/TdR 195 2 2.157 >0.05 −
distance FC 195 3 9.658 <0.05 300 m~150 m~50 m <C0

FS 195 3 10.080 <0.05 300 m~150 m~50 m <C0
COP 195 3 4.070 <0.05 300 m~150 m~50 m <C0
HB 195 3 0.961 >0.05 −
Leu 195 3 0.844 >0.05 −
TdR 195 3 0.224 >0.05 −

Leu/TdR 195 3 3.316 >0.05 −
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Table S1. Sequence statistics obtained by SILVAngs pipeline

Month Station Depth 
(m)

Min. 
Length 

(bp)

Avg. 
Length 

(bp)

Max. 
Length 

(bp)

Number of 
sequences

Number of 
Clustered 

Sequences

Number of 
Replicates

Number of 
Classified 

Sequences

Number of 
“No 

Relative” 
Sequences

Number of 
Rejected 

Sequences

Number 
of OTUs

Number of 
Singletons

Before 35 392 502 63367 23076 9917 52804 1439 9124 21247 13097
After 35 421 501 71343 28277 14043 64373 1691 5279 23735 14129

5 35 330 502 52805 17164 7472 35634 1820 15351 12372 7439
10 35 307 501 33225 10113 1483 21087 910 11228 10268 7684
20 35 319 501 39935 10392 1918 26426 1222 12287 15293 12018
5 36 404 501 34429 16261 4471 30409 611 3409 9966 6918
20 35 439 502 94609 45532 29661 90412 931 3266 16059 7871
5 36 431 502 59101 24822 12936 54102 2280 2719 18493 10005
10 35 414 501 63298 26703 15810 56576 1470 5252 15300 7705
20 36 431 501 64517 31483 14615 59670 1057 3790 14414 8123
5 35 432 501 78631 30938 16358 71830 3460 3341 27741 15708
10 35 421 502 85569 36268 21451 77107 2379 6083 21180 11553
20 36 411 501 37676 11401 6995 32490 2088 3098 16172 10011
5 35 427 502 29877 10801 2833 26360 1696 1821 14319 9284
10 36 429 501 40715 15924 8543 37254 1465 1996 14144 7596
5 35 432 501 35771 13416 6708 33015 1271 1485 14045 8244
10 35 433 502 32358 12608 8836 29942 1162 1254 9583 3488
20 36 435 502 56690 23038 11171 52246 1923 2521 19855 11409
5 35 314 502 58701 19035 9079 37998 1030 19673 9660 5399
10 35 406 502 75286 32654 17262 65828 1565 7893 15070 8064
20 35 406 502 64616 26547 13975 56488 1520 6608 16226 8784
5 36 412 502 44492 18660 5519 39412 1321 3759 15811 10023
20 35 413 502 59794 24611 14707 53802 1256 4736 14477 7066
5 35 410 501 62844 24765 14899 55635 1471 5738 16521 8657
10 35 322 502 95543 34371 23034 66136 1030 28377 8657 5255
20 35 425 501 39847 15757 7609 36384 1147 2316 13383 7336
5 35 293 502 31222 7132 805 18763 625 11834 11193 8812
10 35 404 501 37474 13854 1448 32641 621 4212 17513 13587
20 35 422 501 91595 34937 19979 83178 2299 6118 29762 15856
10 35 441 501 89774 40045 10303 85516 2309 1949 36571 22688
20 35 413 502 254535 128167 25881 231274 4581 18680 78865 56315
5 35 424 501 82699 33230 17559 75968 1695 5036 25943 14113
10 37 446 502 24968 8767 690 23300 1081 587 14122 10855
20 35 394 501 37390 14032 1429 31777 735 4878 16460 12594
5 35 438 502 66439 29985 13179 61885 1669 2885 19889 10984
10 35 431 501 32426 14235 6152 29671 951 1804 9846 5587
20 35 437 501 60634 23485 13555 56808 1561 2265 21070 11362
5 35 433 502 79625 36553 9534 72657 2585 4383 28534 17479
20 35 441 502 71462 29865 14454 67324 1922 2216 24248 13156
5 35 429 501 73274 29946 15606 66530 2298 4446 22327 12025
10 36 445 502 40512 17929 8296 38495 1100 917 13063 6808
20 35 436 501 41058 15505 8429 38195 1251 1612 14896 8208
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August 
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Table S2. Number of OTUs, richness estimates (Chao1 and Abundance-based Coverage 
Estimator [ACE] and Shannon's diversity index following the normalisation step.

before 10485 29881 35249 8,75
after 10226 29129 34367 8,62

5 8077 19536 22135 8,24
10 9149 38312 41967 8,31
20 11216 53584 56932 8,79
5 7079 24745 25985 7,70
20 6724 14751 15727 8,00
5 9458 23778 27004 8,61
10 7933 17982 20749 8,24
20 7033 17599 19470 7,99
5 11225 33079 39660 8,90
10 8786 22657 26502 8,39
20 10846 26839 30203 8,81
5 10838 27112 31695 8,84
10 9215 19676 22559 8,59
5 9640 21537 23877 8,66
10 7660 11619 12760 8,41
20 10123 26637 31000 8,68
5 6900 15602 16734 7,98
10 7914 18976 21475 8,23
20 8597 20401 23908 8,37
5 9575 26808 31482 8,55
20 8313 17762 20814 8,28
5 8768 20892 24334 8,32
10 4001 11408 11359 6,55
20 9137 19211 21648 8,53
5 11193 59848 65846 8,74
10 11293 53444 58180 8,80
20 11381 32916 38608 8,97
10 12390 45935 52303 9,10
20 12138 49658 54574 9,02
5 10727 28827 33781 8,87
10 12092 46276 55159 9,01
20 10981 50770 53808 8,77
5 9485 23760 27152 8,66
10 7570 16548 17539 8,31
20 10414 26021 30122 8,83
5 11088 36054 41769 8,87
20 10842 28605 33730 8,90
5 10314 25660 29839 8,83
10 8594 17554 19876 8,51
20 9835 21461 24001 8,78

March 
2011

C0

SE1

SE3

May  
2011
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October 
2010
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2011
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SE1

SE3

Shannon’s 
Diversity Index

August 
2010

STP
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SE3

Month Station Depth (m) Number of OTUs Chao1 ACE



Table S3. Summary of one way ANOVA (F-ratios and p-values) for the monthly and spatial 
changes of total number of OTUs, richness estimates (Chao1 and ACE) and Shannon's 
Diversity Index. Sample means are ordered by magnitude according to Tukey post hoc test.

OTUs 9,369 < 0,001 F ~ A ~  May ~ O < Mar
Chao1 11,538 < 0,001 F ~ O ~ May ~ A < Mar
ACE 11,783 < 0,001 F ~ A ~ O ~ May < Mar

Shannon's Diversity Index 7,221 < 0,001 F ~ A ~ O ~ May < Mar
OTUs 0,307 > 0,05 -
Chao1 0,685 > 0,05 -
ACE 0,659 > 0,05 -

Shannon's Diversity Index 0,176 > 0,05 -

Station

Factor Richness estimator / 
Diversity index

F-ratio p-value Tukey rank

Month




