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We study confining gauge theories with fermions vectorial under the Standard Model (SM) that produce
a Higgs doublet as a Nambu-Goldstone boson. The vacuum misalignment required to break the
electroweak symmetry is induced by an elementary Higgs doublet with Yukawa couplings to the new
fermions. The physical Higgs is a linear combination of elementary and composite Higgses while the SM
fermions remain elementary. The full theory is renormalizable and the SM Yukawa couplings are generated
from the ones of the elementary Higgs allowing to eliminate all flavor problems but with interesting effects
for electric dipole moments of SM particles. We also discuss how ideas on the relaxation of the electroweak
scale could be realized within this framework.
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I. INTRODUCTION

One of the simplest extensions of the Standard Model
(SM) is provided by new gauge theories with fermions that
are in a vectorial representation of the SM group. Similarly
to QCD, when the new gauge group confines hadrons are
produced. The dynamics is such that the vacuum does not
break the SM symmetries and for this reason the phenom-
enology is extremely safe: contributions to electroweak
observables are suppressed and flavor physics is structur-
ally protected. Yet such dynamics could very well lie at the
TeV scale.
According to the standard lore a major drawback of this

framework is the necessity of an elementary Higgs.
Nevertheless, while these theories have no direct motiva-
tion to explain the hierarchy between the Planck and the
electroweak scale, they have appeared in various contexts,
in particular to explain dark matter (DM) as an accidentally
stable composite state [1], and for the relaxation of the
electroweak scale [2]. Moreover, they could be remnants of
SUSY or composite dynamics stabilizing the electroweak
scale at a higher scale.
In this work we will explore the possibility of realizing

composite Higgs models within this framework. While the
subject of composite Higgs models has strongly relied on
effective theories with ad hoc properties, our framework
provides a viable and calculable UV completion (see [3–5]
for a different realization involving partial compositeness).
The lightest states are Nambu-Goldstone bosons (NGBs)
with quantum numbers determined by the charges of the
vectorlike fermions under the SM. A scalar NGB with
quantum numbers of the Higgs doublet exists whenever
Yukawa couplings between the fermions and an elementary
Higgs are allowed.
In isolation, fermionmass terms andSMgauge loops align

the vacuum so that the electroweak symmetry is not broken,
i.e. the composite Higgs has no vacuum expectation value

(VEV). The elementary Higgs allows a misalignment of the
composite Higgs vacuum and the tuning of the electroweak
VEV. The system so constructed contains an elementary
Higgs doublet and (at least) a composite one.1 Depending on
the mixing induced by the Yukawa interactions, the lightest
Higgs doublet can bemainly elementary or composite. In [8]
we studied the possibility that the elementary Higgs has a
negativemass parameter and induces electroweak symmetry.
We here turn to the regime where the Higgs VEV is induced
through the mixing with the (heavy) elementary Higgs.
Curiously, this mechanism of electroweak symmetry break-
ing was advocated in the first paper on composite Higgs
models [9] and quickly forgotten.Onevery attractive feature,
though, is that the presence of an elementary Higgs allows
to generate Yukawa couplings for the SM fermions in the
standard way avoiding the severe problems with flavor
physics of other composite Higgs models.
We will study under what conditions viable scenarios

can be constructed. In particular, if the Higgs is mostly
composite, bounds from the T parameter imply that the
strong dynamics should preserve custodial symmetry, a
situation more easily realized in SOðNÞ and SpðNÞ theo-
ries. Requiring that the theory is valid up to a high scale
implies that the Higgs cannot be arbitrarily composite. The
very same type of gauge theories discussed here have been
used to realize the dynamical relaxation of the electroweak
scale [2]. We then explain how that mechanism can be
realized in the present context giving an alternative explan-
ation for the electroweak scale.

1This bears some resemblance with theories of induced
electroweak symmetry breaking where a sector that breaks
electroweak symmetry induces the expectation value for the
elementary Higgs, see for example [6,7]. In our construction the
strong dynamics does not break electroweak symmetry so that it
can be decoupled to arbitrarily high energies although at the price
of tuning.
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The paper is organised as follows: In Sec. II we review
the general structure of the models discussing important
constraints from the T parameter, Higgs potential and
perturbativity at high energy. In Sec. III we consider in
detail models based on SpðNÞ gauge theories with four
fundamental fermions that produce a single Higgs doublet
with custodial symmetry. We extend the analysis to SOðNÞ
models in Sec. IV. In Sec. V we explain how the relaxation
of the electroweak scale could work in this context, and we
conclude in Sec. VI.

II. COMPOSITE HIGGS FROM CONFINING
GAUGE THEORIES

We extend the SM with a new “dark” gauge group and
fermions that are in a vectorial representations under the
SM [10]. We focus on the SUðNÞ, SOðNÞ and SpðNÞ gauge
theories with fermions in the fundamental representation.
The new dynamics is described by the renormalizable
Lagrangian

L ¼ LSM þ Ψ̄iðiD −miÞΨi −
GA2
μν

4g2D
þ θD
32π2

GA
μν
~GA
μν

þ ½HΨ̄iðyLijPL þ yRijPRÞΨj þ H:c:�: ð1Þ

The Yukawa interactions with the Higgs doublet H are
possible depending on the quantum number of the fermions
in the theory, while no Yukawa couplings between SM and
vectorial fermions are allowed at the renormalizable level.
The topological term for dark gauge fields, which will only
be relevant in the last part of this work, is physical for
nonvanishing dark-quark masses mi.
We assume that the new gauge dynamics is asymptoti-

cally free and confines at a scale mρ, spontaneously
breaking the global symmetries as reviewed in [11]. We
will be interested in the situation where the fermion masses
are smaller than the confinement scale. Explicitly we will
consider SUðNÞ, SOðNÞ and SpðNÞ theories with fermions
in the fundamental representation that give rise to the
following symmetry breaking patterns:

SUðNFÞ×SUðNFÞ
SUðNFÞ

;
SUðNFÞ
SOðNFÞ

;
SUðNFÞ
SpðNFÞ

: ð2Þ

All these cosets have the special property of being
symmetric cosets. This simplifies the construction of the
effective Lagrangian and we provide a unified description
below. These theories are expected to follow the power
counting of strongly coupled theories [12]. In particular we
will assume the standard large N scaling,

mρ ¼ gρf; gρ ∼
4πffiffiffiffiffiffiffi
ND

p ; ð3Þ

where ND is number of dark colors and f the dynamical
symmetry breaking scale.
We will further assume that the fermions belong to a

vectorial representation of the SM. Since gauge interaction
and fermion masses align the vacuum of the theory in the
unbroken direction, this guarantees that the strong dynam-
ics does not break the SM electroweak symmetry in
isolation. For this reason it is necessary to include an
elementary Higgs to trigger the electroweak symmetry
breaking.

A. Yukawa couplings

Of particular relevance for the present work will be the
couplings of the elementary Higgs with the vectorlike
fermions. Whenever the quantum numbers allow for
Yukawa couplings, a NGB with the same quantum number
as the Higgs exists in the spectrum. We will call it K. This
simple group theory fact, which follows immediately from
the fact that NGBs have quantum numbers of pairs of
fermions, implies that one effectively obtains a two
Higgs doublet model (2HDM) of type I, given that the
SM fermions can only couple to the elementary Higgs at a
renormalizable level. Turning this around, any gauge theory
that delivers a Higgs as a NGB allows a Yukawa coupling
with an elementary Higgs.
Elementary and composite Higgs will mix as dictated by

the Yukawa couplings so that the physical Higgs is a mixture
ofH andK. The same setupwas studied in [8,13] in the limit
where the 125 GeV Higgs is mostly elementary. We here
turn to the composite regime where the elementary Higgs is
necessary to induce the electroweak symmetry breaking for
K. Moreover, the presence of H allows one to generate SM
Yukawas coupling, avoiding all flavor problems.
Schematically, the physics of these models can be

understood as follows: similarly to QCD, Yukawa coupling
of the underlying theory yHΨ̄Ψ matches to the effective
coupling ymρfHK where we used the fact that the fermion
bilinear interpolates with the NGB as K ∼ Ψ̄Ψ=mρf. Then,
the mass matrix for elementary and composite Higgses has
the form

M2 ¼
�

m2
H ϵm2

H

ϵ�m2
H m2

K

�
; ð4Þ

where the mixing parameter ϵ has the structure

ϵ ∼ ðy − ~y�Þmρf

m2
H
; ð5Þ

and where y and ~y are the Yukawa couplings of the two
chiralities of the vectorlike fermions. For y ¼ ~y� the
couplings preserve parity. In this case, the mixing vanishes
because the Higgs is scalar and K is pseudoscalar,
effectively realizing an inert two Higgs doublet model.
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The composite Higgs acquires calculable contributions to
its mass from all the effects that explicitly break the global
symmetries, i.e. gauge and Yukawa couplings and fermion
masses. One finds

m2
K ∼

g2

16π2
m2

ρ þ
y2

16π2
m2

ρ þmmρ; ð6Þ

where we wrote collectively the dark-quark masses mi
as m.
In order to break the electroweak symmetry and obtain

v ≪ f one should require Det½M2� ≈ 0 and negative, i.e.

m2
K ≈ jϵj2m2

H: ð7Þ
This condition, which needs to be satisfied with a precision
v2=f2, is the tuning of the electroweak VEV in composite
Higgs models. Using the equation above, the mixing angle
between elementary and composite Higgs reads

tan β ≈ jϵj ≈ m2
K

jy − ~y�jmρf
: ð8Þ

Given that the gauge contribution implies mK > mρ=10, it
follows that the physical Higgs can be mostly composite for
y, ~y ∼ 1 or even smaller.
When jϵj < 1, the physical Higgs will be mostly

composite. The couplings of the elementary Higgs with
SM fermions generates at low energies the Yukawa
couplings for the composite Higgs,

ySM ≈ yEL sin β: ð9Þ

This implies that, in order to reproduce the known SM
Yukawa couplings, the elementary ones must be larger
according to the mixing. For this reason the mixing cannot
be arbitrarily large in order to avoid perturbativity bounds,
in particular from the top quark. Note however that the
flavor structure is identical to the SM so that all flavor
violation is controlled by the SM Yukawas. This allows one
to easily avoid all flavor bounds that plague ordinary
composite Higgs models.
Discrete symmetries play an important role in this

framework. For y ≠ ~y� the theory violates parity. Since
the elementary Higgs is even under parity while NGBs are
odd, their mixing is proportional to the violation of parity.
Moreover for complex Yukawas an extra CP-violating
phase exists in the theory. This has important physical
effects, generating in particular an electric dipole moment
(EDM) for the electron, that could be potentially observed.

B. T-parameter

In general, the strong dynamics that produced the Higgs
as NGBs might not respect custodial symmetry. Higher
dimensional operators produce tree-level corrections to the
T-parameter that scale as

ΔT ∼
v2

f2
: ð10Þ

At face value, this implies f > 5 TeV to comply with
experimental constraints.
In order to construct a viable composite Higgs model

with relatively low symmetry breaking scale, say
f ∼ 1 TeV, the Higgs should be in the (2,2) representation
of custodial symmetry SUð2ÞL × SUð2ÞR [12]. This means
that the unbroken group should contain the full custodial
symmetry, a condition possible only if the constituents are
complete representations of custodial symmetry.
In SUðNÞ gauge theories with fermions in the funda-

mental, the NGBs have the quantum numbers of the
product of left-handed and right-handed fields. The sim-
plest way to obtain a bi-doublet is to consider a doublet
and a singlet of SUð2Þ. There are two possibilities:

Ψ ¼ ð2; 2Þ þ ð1; 1Þ; Ψ ¼ ð2; 1Þ þ ð1; 2Þ; ð11Þ

where each fermion is Dirac. In both cases one obtains two
Higgs doublets in (2,2) rep. The only way to obtain a single
Higgs doublet is when it transforms as ð2; 1Þ1

2
, which is not

a custodial preserving rep. This is for example the case of
the coset SUð3ÞL × SUð3ÞR=SUð3Þ discussed in [8]. This
feature is associated to the fact that the fundamental rep of
SUðNÞ is complex so that the (2,2) NGBs are necessarily in
a complex representation.
In general, with more than one Higgs doublet custodial

symmetry SUð2ÞL × SUð2ÞR is not sufficient [14]. The
reason is the following: after electroweak symmetry break-
ing the W gauge bosons should transform as a triplet of
SUð2Þc so that m2

W=m
2
Z cos

2 θW ≈ 1. SUð2Þ × SUð2Þ is
isomorphic to SOð4Þ which is the symmetry group of
the 3-sphere S3. A Higgs VEV picks a direction on the
sphere breaking SOð4Þ to SOð3Þ. A second Higgs acquiring
a generic VEVwould then break SOð3Þ to SOð2Þ leading to
tree-level corrections to the T parameter (assuming it does
not break charge). In the models above we can write
custodially preserving Higgs couplings,

ð2; 2ÞHð1; 1Þ or ð2; 1ÞHð1; 2Þ; ð12Þ

that would lead to a custodial preserving vacuum. Note
however that compatibly with SM symmetries one could
write different Yukawa couplings for the two chiralities of
the vectorlike fermions that explicitly break custodial
symmetry. The potential generated would be such that
the minimum does not preserve custodial symmetry. In this
case corrections to T of order v2=f2 will be generated.
The situation is different in SOðNÞ and SpðNÞ models as

in this case the representations are real (or pseudoreal).
In SOðNÞ theories we can take the first rep in (11) to build
a real representation. This will produce a single Higgs
doublet in (2,2) rep of custodial symmetry. The second
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representation can instead be used in SpðNÞ theories. The
reason for this is that combining the reps of SpðNÞ with the
one of SUð2Þ one can build a real representation.2 Even
with these protected representations the Yukawa couplings
can break custodial symmetry leading to important tree-
level effects.
While the T-parameter can be protected through custo-

dial symmetry, other contributions to the precision tests are
the same as in composite Higgs models. In particular, the
contribution to the S parameter from vector resonances
ΔS ∼ 4πv2=m2

ρ implies that the dynamical scale should be
in the multi-TeV range.

C. Higgs potential

A notable feature of the NGB Higgs is that, once the
electroweak VEV is tuned, the Higgs mass is predicted in
terms of the couplings that break explicitly the global
symmetries. Having an underlying renormalizable theory
allows then in principle to derive the Higgs mass from the
fundamental parameters of the theory. We here sketch the
general structure of the potential before discussing explicit
examples.
In the models under consideration there are in general

three contributions to the composite Higgs potential: gauge
loops, vectorial fermion masses and Yukawa couplings with
the elementary Higgs. The first two in general align the
vacuum in the unbroken direction while the latter tends to
destabilize it. As a consequence, by tuning coefficients, one
can make v=f ≪ 1 as required for the composite Higgs.
First we notice that for a symmetric coset G=H such as

the ones we are considering the NGB can be described by
the matrix,

Σ ¼ UðΠÞ2; UðΠÞ ¼ eiΠ ð13Þ

where Π contains the broken generators. The advantage of
using Σ is that it transforms linearly under the full G group
making it easier to write invariants. The potential has the
following structure:

V ∼ ATr½MðHÞ · Σ · Σ0 þ H:c:� þ B
X
a

g2aTr½TaΣTaΣ†�;

ð14Þ

where

MðHÞ ¼ ðmþ haYaÞ; ðΣ0Þij ¼ hΨiΨji ð15Þ

and ga are the SM couplings. Herem is the diagonal matrix
of vectorial masses and the matrices Ya contain the Yukawa
couplings to the corresponding component ha of H. The

naive dimensional analysis estimate of the coefficients is
A ¼ mρf2 and B ¼ m2

ρf2=ð4πÞ2.
The potential has a special structure compared to a

generic 2HDM since the elementary Higgs only appears
linearly in the leading order terms. As a consequence
quartic couplings such us H2K2 or H3K are suppressed
compared to HK3. Integrating out at tree level the elemen-
tary Higgs doublet we obtain3

VðΠÞ≈ATr½m0 ·Σ ·Σ0 þH:c:�− A2

2m2
H

X
a

jTr½Ya ·Σ ·Σ0�j2

þB
X
a

g2aTr½TaΣTaΣ†�: ð16Þ

Since the potential contains terms either linear or quadratic
in Σ, projecting onto the physical Higgs direction one
obtains the following terms:

VðhÞ ≈ a cos
h
f
þ b sin2

h
f
; ð17Þ

where a and b are linear combinations of the coefficients in
VðΠÞ. Demanding that the electroweak VEV is reproduced
allows one to determine the Higgs mass as

cos
hhi
f

¼ a
2b

; m2
h ¼ −

2b
f2

sin2
hhi
f

: ð18Þ

The first condition is the tuning of order v2=f2 on the
coefficients a and b that needs to be performed to obtain a
small Higgs VEV. The second is the prediction of the Higgs
mass in terms of the coefficients of the effective Lagrangian
that are fully determined by the strong dynamics.
In addition if the elementary Higgs has a quartic term this

produces an extra contribution to the Higgs mass,

Δm2
h ≈ 2λv2 sin4 β ≈ 2λv2jϵj4: ð19Þ

Being suppressed by four powers of the mixing this is
typically negligible. The presence of a quartic coupling is
however important for the high energy behavior of the
theory.

D. Running

So far our discussion was at the level of the effective
theory. To establish the validity of the UV completion we
now study the evolution of the couplings of the microscopic
Lagrangian at high energies. At energies higher than the
confinement scale the evolution of the couplings is deter-
mined by the β-functions,

2The second rep would not work for SOðNÞ and the first for
SpðNÞ because they would not produce a real representation.

3We have omitted from the effective potential contributions from
loops with Yukawa couplings. These can be computed in terms
of form factors of the strong dynamics as explained in [13]. A
spurionic analysis shows that the functional structure is identical to
the one induced integrating out the elementary Higgs.
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dyt
d log μ

¼ yt
ð4πÞ2

�
9

2
y2t þ NDðjyj2 þ j~yj2Þ − 8g23 −

17

12
g02 −

9

4
g2
�

dy
d log μ

¼ y
ð4πÞ2

�
3

2
ðjyj2 − j~yj2Þ þ NDðjyj2 þ j~yj2Þ þ 3y2t − 6

dimðGDÞTðRÞ
ND

g2D

�
β ~y ¼ βyðy ↔ ~yÞ

dλ
d log μ

¼ 4

ð4πÞ2 ½3λ
2 − ð3y4t þ NDðjyj2 þ j~yj2Þ2Þ þ λð3y2t þ NDðjyj2 þ j~yj2ÞÞ�

dgD
d log μ

¼ −
g3D

ð4πÞ2
�
11

3
C2ðGÞ −

2

3
TðRÞNf

�
; ð20Þ

where Nf is the number of Weyl fermions and

TðRÞ ¼ f1=2; 1; 1=2g C2ðGÞ ¼ fND;ND − 2; ND þ 1g
ð21Þ

for SUðNÞ, SOðNÞ and Spð2NÞ respectively. The main
difference from the SM originates from the boundary
condition in (9). That equation should be understood at
the confinement scale. Because of the enhanced value of
the Yukawa coupling compared to the SM, the top Yukawa
may run into Landau poles at relatively low scales if the
Higgs is mostly composite. At face value for y, ~y ≪ 1 (also
favored by Higgs mass considerations), a negative βyt
function at a scale ∼O (few TeV) would require

sin2β≳ 9

2ð8g23þ 17
12
g02þ 9

4
g2Þ≈0.5 ði:e: tanβ≳1Þ: ð22Þ

In Fig. 1 we consider the evolution of the top Yukawa
coupling as a function of the mixing angle between
elementary and composite Higgs. For tan β ¼ 1 and y ¼
~y ¼ 0 the theory could be valid up to the Planck scale
while a lower scale is obtained when the Higgs is more
composite. We have checked that this result remains valid

as long as the dark Yukawas ðy; ~yÞ ≲ 0.5, which is satisfied
in the concrete model examples later.
Things could improve if also QCD becomes not asymp-

totically free due to extra colored matter so that g3 increases
at high energy. Also, starting at two-loop order, there is a
∼NDg2Dðjyj2 þ j~yj2Þ contribution from the dark gauge
coupling to βyt that may change the estimate in Eq. (22)
since at the confinement scale gD is large. We leave a
detailed study of these possibilities to future work.
Concerning the quartic of the elementary Higgs, the top

quark and the new SM fermions give a large negative
contribution to the β function of λ. Therefore if λðmρÞ ¼ 0
the quartic becomes quickly unstable developing a new
minimum. This can be easily remedied introducing a tree-
level quartic. In the composite regime, given that the
contribution to the Higgs squared mass is suppressed by
four powers of the mixing, this affects little the prediction
of the Higgs mass. For example for tan β ¼ 1 and ðy; ~yÞ ≪
1 then λð3 TeVÞ ≈ 0.8 in order to avoid instabilities or
Landau poles. Nevertheless issues about stability of the
SM vacuum need to be reconsidered in this context.

III. SUð4Þ=Spð4Þ MODEL

In this section we will consider the most economical
gauge theory that produces a composite Higgs doublet with
custodial symmetry. This has been considered in the past by
several groups [15–20]. The pattern of symmetry breaking
SUð4Þ=Spð4Þ can be realized by an SpðNDÞ dark gauge
group with two Dirac fermions in the ND dimensional rep
of the group. This rep is pseudoreal so that the fermion
kinetic terms enjoy an enhanced flavor symmetry SUð4Þ
compared to the apparent Uð2ÞL × Uð2ÞR in terms of Dirac
fermions. The gauge dynamics generates a fermion con-
densate that breaks spontaneously the symmetry to
Spð4Þ≃ SOð5Þ delivering five NGBs.
Let us denote the two Dirac flavors as U and D. In terms

of left-handed Weyl spinors these are

Ψ≡ ðULDLURDR Þ⊺: ð23Þ

To embed the electroweak symmetry inside the global
SUð4Þ symmetry QL ≡ ðULDLÞ⊺ transforms as a doublet
of SUð2ÞL and QR ≡ ðURDRÞ⊺ as a doublet of SUð2ÞR:

107 1011 1015
0

2

4

6

8

10

RG scale µ (GeV)

yt

tan 1

tan 0.6

tan 0.35
y y 0

FIG. 1. Evolution of the top Yukawa couplings at high energy
(one-loop) for y ¼ ~y ¼ 0 with ND ¼ 2. We assumed the boun-
dary condition for the top Yukawa ytð3 TeVÞ ≈ 0.8= sin β.
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QL ¼ ð2; 1Þ; QR ¼ ð1; 2Þ; ð24Þ

the hypercharge being the diagonal generator of SUð2ÞR.
Quantum numbers allow masses μL and μR for the two
doublets. In the limit μL ¼ μR, the quark masses are aligned
with our starting vacuum and do not break the global
symmetry further. For generic complex masses μL and
μR, instead, the residual symmetry is SUð2ÞL × SUð2ÞR.
Moreover independent Yukawa couplings with the elemen-
tary Higgs can be written down for QLUR and QLDR.
The mass terms and Yukawa interactions take the form

L ¼ −
1

2
Ψ⊺MΨþ H:c: ð25Þ

with the antisymmetric matrix

M ¼

0
BBBBB@

0 μL

−μL 0
−~y ~H� yH�

~y ~H† 0 −μR
−yH† μR 0

1
CCCCCA; ð26Þ

where H is the Higgs doublet and ~Hi ¼ ϵijHj. Note that
custodial invariance requires ~y ¼ −y.
For generic dark quark masses, we can use two phases of

the three fermion fields (doublet QL and singlets UR, DR)
to make the mass parameters real. The remaining fermion
phase can be used, for instance, to make y (or ~y) real, while
the relative phase between y and ~y is physical and could in
principle lead to CP-violating effects. We will however see
that such a phase does not appear in the lowest order chiral
Lagrangian.

A. Effective Lagrangian

Following Sec. II C we can easily write the effective
Lagrangian for the composite Higgs. As a reference
vacuum we can choose4

Σ0 ¼
�
iσ2 0

0 −iσ2

�
: ð28Þ

We then parametrize the five NGBs as

Σ≡ exp

�
2

ffiffiffi
2

p
i

f

X5
a¼1

XaΠa

�
· Σ0; ð29Þ

where the generators of SUð4Þ are normalized as
TrðTiTjÞ ¼ 1=2 δij; we denote the generators broken by
the vacuum Σ0 as Xi and the unbroken ones as Si, using the
same basis as [17].
The two derivative low energy Lagrangian, together with

the elementary Higgs one, reads

L ¼ f2

8
TrððDμΣÞ†DμΣÞ − 1

2
Cyf3ðTr½MΣ� þ H:c:Þ

− Cgf4g2iTr½SiΣSi�Σ†�
þ ðDμHÞ†DμH − μ2HH

†H − λðH†HÞ2; ð30Þ

where we expect the scaling Cy ∼mρ=f, Cg ∼
m2

ρ=ð4πfÞ2 ∼ 1=ND [13]. The covariant derivatives are
defined as5

DμΣ ¼ ∂μΣ − iðAμΣþ ΣA⊺
μÞ;

DμH ¼ ∂μH − iAμH: ð31Þ

The terms proportional to Cy and Cg above are the
contribution of the masses and gauge loops respectively
(with Si being the corresponding generators with gauge
coupling gi).
The five NGBs decompose under the electroweak

symmetry as a complex doublet K and a singlet η. The
Lagrangian in Eq. (30) can be written explicitly as

L ¼ sin2S
S2

�
ðDμKÞ†DμK þ 1

2
ð∂μηÞ2

�

þ S2 − sin2S
2f2S4

ðK†∂μK þ ð∂μKÞ†K þ η · ∂μηÞ2

þ ðμ2HfϵH†K þ H:c:g − 2CyImðμL þ μ�RÞf2ηÞ ·
sin S
S

þ μ2ηf2 · cos Sþ 1

2
μ2g

�
f2cos2Sþ η2

sin2S
S2

�
þ ðDμHÞ†DμH − μ2HH

†H − λðH†HÞ2; ð32Þ

where we introduced S≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K†Kþη2

p
f and defined

4The most general choice (up to a phase) of the vacuum
breaking SUð2ÞL can be parametrized as

Σ0 ¼
�
iσ2 cos θ sin θ
− sin θ −iσ2 cos θ

�
; ð27Þ

where the angle θ describes how the condensate aligns itself in the
direction that does not break the gauge symmetry (θ ¼ 0) and the
“technicolor” limit (θ ¼ π=2) passing through the composite
Higgs limit θ ≪ 1. In this work we will concentrate on the
composite Higgs limit and this is why we choose the θ ¼ 0
vacuum and parametrize the misalignment as a vacuum expect-
ation value of the pion field rather than a change in Σ0. We will
comment on the technicolor limit below.

5We denote Aμ¼gWi
μSiLþg0BμS6R and Aμ¼gσi

2
Wi

μþ1
2
g012Bμ

depending on whether they act on four-dimensional or two-
dimensional vectors.
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ϵ≡ −
ffiffiffi
2

p
iðy − ~y�ÞCyf2

μ2H
; μ2η ≡ 2CyReðμL þ μ�RÞf;

μ2g ≡ Cgð3g2 þ g02Þf2; ð33Þ

and, for convenience, we will also use μ2K ≡ μ2η þ μ2g.
Electroweak symmetry is broken by the vacuum expect-

ation values vH=
ffiffiffi
2

p
and vK=

ffiffiffi
2

p
of H and K. One finds

v2EW ¼ v2H þ f2sin2θ with θ≡ vK
f
: ð34Þ

We also define tan ~β as the ratio of the contributions from
both sectors to vEW:

tan ~β≡ vH
f sin θ

; ð35Þ

such that vH ¼ vEW sin ~β and f sin θ ¼ vEW cos ~β. We think
of ~β as an input parameter, but still use θ in expressions
whenever convenient.
There is a linear coupling for η proportional to

ImðμL þ μ�RÞ which we remove by rephasing the under-
lying dark quark fields, making the quark masses real, in
order to have hηi ¼ 0. Similarly, the combination iðy − ~y�Þ
appearing in ϵ can be made real. There are thus no more
complex phases remaining in the Lagrangian. As a con-
sequence the effective Lagrangian respects CP despite the
fact that the microscopic action contains a physical phase.
CP invariance is an accidental feature of the two-derivative
effective Lagrangian that does not persist to higher orders,
see the Appendix.
The pion potential is readily obtained from the

Lagrangian (32). We want now to relate the parameters
of the model to the vacuum expectation values. The
extrema of the potential are given by

μ2HvH þ λv3H ¼ ϵμ2Hf sin θ ð36Þ

ϵμ2HvH cos θ ¼ ðμ2η þ μ2g cos θÞf sin θ; ð37Þ

which we can rewrite as

μ2Htan
2 ~β ¼ μ2K þ μ2ηð1= cos θ − 1Þ − λv2EWsin

2 ~βtan2 ~β ≈ μ2K

ð38Þ

ϵ ¼ tan ~β

�
1þ λ

v2EW
μ2H

sin2 ~β

�
≈ tan ~β: ð39Þ

The tuning vEW ≪ f (i.e. θ ≪ 1), in the regime where the λ
contribution is negligible, can be seen from Eq. (38); the
difference between μ2H tan2 ~β and μ2K is indeed proportional
to the quantity we want to make small, v2EW=f

2, since from
the definitions of θ and ~β above

1= cos θ − 1 ¼ cos2 ~β
v2EW
2f2

þO
�
v4EW
f4

�
: ð40Þ

Finally, also from (38), μ2H does go to the expected
Standard Model value −λv2EW in the “elementary” limit,
tan ~β → ∞, however the point at which it turns negative
corresponds to values of ~β ever closer to π=2 as f (thus μK)
is increased.
Finally let us comment on the value of y determined by

the choice of parameters (in particular of ~β). Inverting the
definition of ϵ (33) and imposing the VEV equations just
obtained, we find that

Im½y − ~y�� ∼
�
gauge contributionþ μL þ μR

f

�
= tan ~β;

ð41Þ

where the gauge contribution coefficient is a few percent,
and the quark masses, as we find in the next section, need
to be fixed to a few percent of f as well, to reproduce the
correct Higgs mass in the small-~β regime. Thus, as
anticipated in Sec. II D, for moderately small values of
tan ~β, the Yukawa couplings are indeed less than one.

B. Spectrum and couplings

The three components of each H and K that are not
aligned with the VEV (let us denote them hi and ki) are
associated with the generators of the W� and Z, so they
must contain exact NGBs eaten by the massive gauge
bosons. Note that since we do not explicitly decompose the
degrees of freedom onto the exactly broken directions once
the vacuum gets misaligned, these do not correspond to the
typical Goldstone parametrization. At the level of quadratic
terms that we consider here, it makes no difference, except
that these ki as well as the singlet η need to be rescaled. One
can indeed see that the kinetic term in (32) gets multiplied
by sin2 θ=θ2; only the direction aligned with the VEV
retains a canonical kinetic term. So on the vacuum solution
we find

L⊃−
1

2
ðμ2gþμ2η=cosθÞðki;hiÞ ·

�
1 −cot~β

−cot ~β cot2 ~β

�
·

�
ki
hi

�
:

ð42Þ

This mass matrix has one zero eigenvalue, associated to
the three exact GBs, while the other fields have mass

m2
i ¼

μ2g þ μ2η= cos θ

sin2 ~β
¼ μ2K

sin2 ~β
þO

�
v2EW
f2

�
; ð43Þ

and the mixing angle is precisely ~β.
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The singlet η does not mix with the other fields and has indeed mass μη up to vEW=f corrections:

m2
η ¼

μ2η
cos θ

: ð44Þ

Of greater relevance is the mass matrix of the “radial” scalars, k0 and h0, since we want to identify the lightest of the two
as the observed Higgs boson:

L ⊃ −
1

2
ðk0; h0Þ

0
B@ μ2gcos2θ þ μ2η

cos θ − 1

tan ~β
ðμ2g cos θ þ μ2ηÞ

− 1

tan ~β
ðμ2g cos θ þ μ2ηÞ 1

tan2 ~β

�
μ2g þ μ2η

cos θ

�
þ 2λv2EWsin

2 ~β

1
CA�

k0
h0

�
; ð45Þ

and its eigenvalues, up to higher order terms in vEW=f
and λ, are

m2
h ≈ v2EW

�
μ2η
f2

cos4 ~β þ 2λ sin4 ~β

�
ð46Þ

m2
H ≈

μ2K
sin2 ~β

: ð47Þ

As for the rotation to the mass eigenbasis, the analog of the
2HDM mixing angle α is

α ¼ ~β − π=2þO
�
v2EW
f2

; λ

�
: ð48Þ

We are therefore close to the alignment limit and the Higgs
couplings are close to SM values.
Equation (46) holds well enough when f is sufficiently

large, so we have the relation

λ ≈
1

2

�
m2

h

v2EW

1

sin4 ~β
−
μ2η
f2

1

tan4 ~β

�
: ð49Þ

It reduces to the Standard Model relation 2λ ¼ m2
h=v

2
EW in

the tan ~β → ∞ limit, as it should; in the opposite limit, for λ

to remain finite, μη needs to be precisely tuned to fmh=vEW
but the value of λ itself is irrelevant. Figure 2 shows how, as
tan ~β is increased, λ is required to be small unless taken
negative, while a fixed value of μη is required for small ~β.
It is worth noting that mh does not depend on the gauge

contribution to the pion masses μg once the electroweak
scale is fixed. Without λ, the dark fermion masses are then
necessary to reproduce the correct spectrum. This holds
even when considering the nonlinearities of the potential.
Indeed, integrating out H, the symmetry-breaking term
from the Yukawas has the same trigonometric dependence
as the gauge contribution: there cannot be an interplay
between these two terms to tune the shape of the potential.
Finally the situation changes when μη → 0 (and λ ¼ 0): one
then goes to a technicolor limit θ ¼ π=2. In this case the
position of the VEVof K is fixed while μH is tuned against
the gauge contribution to give the correct Higgs mass:

m2
h ¼ μ2H tan2 ~β − μ2g: ð50Þ

The difference compared to 2HDM regarding the cou-
plings to gauge bosons of these scalars is the presence of
extra nonlinear terms. From kinetic terms,

f2

8
TrðDμΣ†DμΣÞ ¼ sin2S

S2
ðK†AμAμKÞ þ � � �

¼
�
g2Wþ

μ W−μ þ g2 þ g02

2
ZμZμ

��
v2EWcos

2 ~β

4
þ k0

vEW cos ~β
2

cos θ

�
þ � � �

DμH†DμH ¼
�
g2Wþ

μ W−μ þ g2 þ g02

2
ZμZμ

��
v2EWsin

2 ~β

4
þ h0

vEW sin ~β

2

�
þ � � � ð51Þ

so the expressions for the couplings contain an extra cos θ:

ghVV
gSMhVV

¼ cos α sin ~β − sin α cos ~β · cos θ

¼ 1 −
v2EWcos

4 ~β

2f2
þO

��
v2EW
f2

; λ

�
2
�

ð52Þ
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gHVV

gSMhVV
¼ sin α sin ~β þ cos α cos ~β · cos θ

¼ −
sin32~β

4

�
1

2

�
1 −

μ2η
μ2K

þ cot2 ~β

�

þ λf2tan2 ~β
μ2K

�
v2EW
f2

þO
��

v2EW
f2

; λ

�
2
�
; ð53Þ

where gSMhWW ¼ gmW , gSMhZZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
mZ. We observe

that the leading correction to the light Higgs coupling
comes entirely from the “compositeness” cos θ and the
effect of the misalignment (48) only enters at higher order.
Couplings of the singlet pion η were computed in [17].
As we are in a type-I 2HDM, the couplings to fermions

are [21]

ghf̄f
gSM
hf̄f

¼ cos α

sin ~β
≈ 1; ð54Þ

gHf̄f

gSM
hf̄f

¼ sin α

sin ~β
≈ −

1

tan ~β
; ð55Þ

while the fundamental couplings of our elementary doublet
H to fermions are enhanced by 1= sin ~β compared to the
SM values since vH ¼ vEW sin ~β and the fermion masses
are fixed.

IV. SUð5Þ=SOð5Þ MODEL

We now repeat the same steps for the pattern of
symmetry breaking SUð5Þ=SOð5Þ. As we will see the
different group theory leads to different expressions for
the Higgs mass and also, contrary to the previous example,
produces sizable contributions to the EDMs of SM
fermions.
This pattern of symmetry breaking is realized by an

SOðNÞ gauge theory with five Weyl fermions in the
vectorial representation of the gauge group. The

spontaneous symmetry breaking is driven by the dark
fermion condensate ðΣ0Þij ¼ hΨiΨji, symmetric under
the exchange of its flavor indices ði; j ¼ 1;…; 5Þ. The
fermions transform as a lepton doublet plus its conjugate
and a real singlet,6

Ψi ¼ ðQL; ~QL;NÞ⊺ ¼ ð2−1=2; 2þ1=2; 10Þ⊺: ð56Þ

The action is invariant under custodial symmetry acting on
the vector with the SUð5Þ generators,

SiL ¼ 1

2

�12 ⊗ σi

0

�
; SiR ¼ 1

2

�
σi ⊗ 12

0

�
:

ð57Þ

We include dark fermion masses, μL for QL and μN for
N, as well as Yukawa couplings, which can be incorporated
in the Lagrangian as

LM þ Lyukawa ¼ −
1

2
Ψ⊺MΨþ H:c:; ð58Þ

where M is the symmetric matrix,

M ¼

0
BBBBBBBBBBBB@

0 −μL
~y ~H�

0 μL

μL 0

yH�

−μL 0

~y ~H† yH† −μN

1
CCCCCCCCCCCCA
; ð59Þ

H, as before, is the Higgs doublet, ~Hi ¼ ϵijH�j, and the
fermion masses μL and μN are taken to be real.

A. Effective theory

To build the low energy effective theory for the NGB, we
make the following choice for the vacuum:

Σ0 ¼

0
B@

0 iσ2
−iσ2 0

1

1
CA: ð60Þ

The spontaneous breaking SUð5Þ → SOð5Þ produces 14
NGBs. Under custodial symmetry SUð2ÞL × SUð2ÞR they
decompose as

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.6

1

1.4

1.8

FIG. 2. Value of λ required to reproduce the correct Higgs mass
in the limit f → ∞. The red line indicates λ ¼ 0.

6Differently from the SUð4Þ=Spð4Þ the charge assignments are
compatible with unification into SUð5Þ multiplets. The same
gauge theory models also predict dark matter candidates as dark
baryons [1].
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14 → ð3; 3Þ ⊕ ð2; 2Þ ⊕ ð1; 1Þ ¼ πia ⊕ ð ~K;KÞ ⊕ η: ð61Þ

The doublet corresponds to the combination

K∼2−1=2⊗ 10; ~K∼21=2⊗ 10; ~Ki ¼ ϵijK�j: ð62Þ

We parametrize the NGBs as

Σ≡ exp

�
4i
f

X14
a¼1

XaΠa

�
· Σ0; ð63Þ

where Xa are the broken generators with trace normalized
to 1=2. Explicitly the tri-triplet πia ¼ ð3; 3Þ can be repre-
sented by means of the following block matrix:

πia ¼
1

2

0
B@

π0 πþ
π− −π0

0

1
CA; ð64Þ

π0 ¼
1ffiffiffi
2

p πi0σ
i; π− ¼ πi−σ

i; ðπ−Þ† ¼ πþ; ð65Þ

where πi0 ∈ R and πi� ∈ C, the subscripts (a ¼ �, 0)
indicate the hypercharge, and the superscripts (i ¼ 1, 2,
3) denote the components of each triplet.
The parametrization of the doublet and that of the singlet

in terms of 5 × 5 matrices are given, respectively, by

Φ¼ 1

2

0
B@

~K

K
~K† K†

1
CA; Xη ¼

1

2
ffiffiffiffiffi
10

p
�
14

−4

�
:

ð66Þ

With the above ingredients the two-derivative effective
Lagrangian reads

L ¼ f2

16
TrððDμΣÞ†DμΣÞ − 1

4
Cyf3ðTr½MΣ� þ H:c:Þ

−
1

2
Cgf4g2iTr½SiΣSi�Σ†� þ ðDμHÞ†DμH

− μ2HH
†H − λðH†HÞ2: ð67Þ

Focusing on the doublets the Lagrangian can be written
in explicit form as

L ¼ sin2S
S2

ðDμKÞ†DμK þ S2 − sin2S
2f2S4

ðK†∂μK þ ð∂μKÞ†KÞ2

þ ðϵμ2HH†K þH:c:Þ sin2S
2S

þ μ2Kf
2

2
cos2S

þ ðDμHÞ†DμH − μ2HH
†H − λðH†HÞ2; ð68Þ

where we defined

μ2K ¼ f2Cgð3g2 þ g02Þ þ 2CyfðμL þ μNÞ ð69Þ

S≡
ffiffiffiffiffiffiffiffiffiffiffiffi
2K†K
f2

s
; ϵ≡ −

iCyðy − ~y�Þf2
μ2H

: ð70Þ

As in the previous section, note that ϵ can be made real by a
redefinition of the fields H and K, so we will take ϵ ∈ Rþ,
hereafter.
The kinetic term is identical to the one found in the

previous section, as expected since SUð4Þ=Spð4Þ is a
submanifold of SUð5Þ=SOð5Þ. The potential, however,
has a different trigonometric dependence on S. In particu-
lar, the potential generated by gauge interactions and
vectorial masses both produce a cos2 S dependence while
the mixing with the elementary Higgs produces a potential
sin S cos S. This feature is at the heart of the different
prediction for the physical Higgs mass. In this case the
tuning of the electroweak VEV can be achieved even in the
absence of fermion masses through the cancellation of
gauge loop and heavy Higgs contribution.
As before from the second line of Eq. (68) one finds

v2EW ¼ v2H þ f2sin2θ ¼ ð246 GeVÞ2;
where θ ¼ SðhKiÞ ¼ vK

f
:

Minimization of the potential in (68) gives the following
equations of motion:

μ2HvH þ λv3H ¼ ϵμ2Hf sin θ cos θ;

μ2HvHϵ cos 2θ ¼ μ2Kf sin θ cos θ: ð71Þ

These equations are quite similar to those given in (36).
However, the nontrivial θ-dependence differs. As it is
apparent from the second equation, here the gauge and
fundamental fermion mass contribution, contained inside
μ2K , comewith the same function of θ, differently from what
happened in (37). We can rewrite the minimum conditions
as follows:

ϵ ¼ tan ~β

cos θ

�
1þ λ

v2EW
μ2H

sin2 ~β

�
≈
tan ~β

cos θ
; ð72Þ

μ2Htan
2 ~β ¼ μ2K

cos2θ
cos 2θ

− λv2EWsin
2 ~βtan2 ~β

≈ μ2K
cos2θ
cos 2θ

; ð73Þ

where tan ~β is defined as in Eq. (35) and we assumed the
contribution coming from elementary quartic λ to be much
smaller. As expected in the limit θ ≪ 1 the equations above
yield the tuning condition,
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ϵ ≈ tan ~β ≈
μK
μH

: ð74Þ

In complement to Fig. 2, another way to understand the
relation among the parameters imposed by (73) is to plot
the value of tan ~β as a function of μ2K and λv2EW relative to
μ2H, setting θ ¼ 0. This is shown in Fig. 3. Small values of
tan ~β—corresponding to the case where the doublet respon-
sible for the electroweak symmetry breaking is mostly
composite—require μH ≫ μK , while the value of λ plays
no role.
Coming to the spectrum, the mass matrix of the CP-even

neutral states (k0, h0) is given by

ðk0; h0Þ

0
B@

μ2K
cos 2θ − μ2K

tan ~β
cos θ

− μ2K
tan ~β

cos θ μ2K
tan2 ~β

cos2θ
cos 2θ þ 2λv2EWsin

2 ~β

1
CA�

k0
h0

�
:

ð75Þ

To first order in λ and up to corrections of order ðv4EW=f4Þ
the eigenvalues are

m2
h ≈ 4

v2EW
f2

μ2Kcos
4 ~β þ 2λv2EWsin

4 ~β;

m2
H ≈

μ2K
sin2 ~β

þ 2λv2EWcos
2 ~βsin2 ~β: ð76Þ

The small eigenvalue, mh, is the one associated with the
standard model Higgs boson, while mH is the mass of its
heavy partner. Importantly, contrary to what occurred in the
previous section, μ2K contains a contribution from gauge
loops allowing to tune the Higgs even without quark
masses. In this limit using the estimate of gauge loops
from QCD data one finds [22]

mgauge
h ≈ 150

ffiffiffiffiffiffiffi
3

ND

s
GeV: ð77Þ

Finally, the relation between the angle ~β and the angle α,
the latter corresponding to the rotation needed to diago-
nalize the mass matrix (75), is exactly that given in

Eq. (48), up to O½v2EWf2 ; λ�. The couplings of the light

Higgs to a pair of gauge bosons are equal to those
computed in the previous section, while the one of the
heavy Higgs is

gHVV

gSMhVV
≈ −

sin3 2~β
4

�
−1þ cot2 ~β þ λf2 tan2 ~β

μ2K

�
v2EW
f2

: ð78Þ

The couplings to fermions are equal to those given in (54).

The remaining scalars take mass from the Lagrangian

Lmass¼−
μ2Kcos

2θ

2cos2θ
ðki;hiÞ ·

�
1 −cot ~β

−cot ~β cot2 ~β

�
·

�
ki
hi

�
; ð79Þ

leading to

mi ¼ μ2K
cos2θ
cos 2θ

1

sin2 ~β
≈

μ2K
sin2 ~β

þO
�
v2EW
f2

�
; ð80Þ

where we have made explicit use of Eqs. (72) and (34).

B. Electric dipole moments

For complex Yukawa couplings the models contain a
new CP-violating phase. As in Ref. [8] this phase will in
general induce EDMs for the SM particles.7 In the micro-
scopic theory these originate from two-loop Barr-Zee
diagrams with the elementary fermions running in the loop
[23]. To estimate the EDMs in the confined regime we turn
to effective theory, where the singlets and triplets have
anomalous couplings to the photon. IncludingCP-violating
couplings from the scalar potential an EDM can be
generated through the diagrams of the kind depicted
in Fig. 4.

FIG. 3. A contour plot of tan ~β, obtained by solving Eq. (73)
with θ ¼ 0 as a function of μ2K=μ

2
H and λv2EW=μ

2
H .

7For SUð4Þ=Spð4Þ the leading order Lagrangian is accidentally
CP invariant, see the Appendix. As a consequence, no EDMs
are generated to leading order. For this reason we focus on
SUð5Þ=SOð5Þ.
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For SUð5Þ=SOð5Þ the anomalous couplings read [18]

Lanomaly ¼
ND

16π2f

� ffiffiffi
2

5

r
η · ðg2Wi

μν
~Wμν;i þ g02Bμν

~BμνÞ

þ
ffiffiffi
2

p
g · g0πi0 ·W

i
μν
~Bμν

�
; ð81Þ

where ~Vρσ ¼ 1
2
ερσμνVμν. For the potential it will be suffi-

cient for our purposes to expand (67), up to quartic order in
Π
f around the origin,

V ≈ μ2KK
†K þ μ2HH

†H þ λðH†HÞ2

− ϵμ2HðH†K þ K†HÞ
�
1 −

4

3f2
ðK†KÞ

�
− λKðK†KÞ2

þ 3ffiffiffiffiffi
10

p CyfηðAH†K þ A�K†HÞ þm2
η

2
η2

þm2
π0

2
ðπi0Þ2 þm2

πþπ
iþ · πi−

þ CyAf
�
−H†σi ~Kπi− þ 1ffiffiffi

2
p H†σiKπi0

�
þ H:c:; ð82Þ

where

λK ≡ 2

3

μ2K
f2

; m2
η ≡ 4

5
CyfðμL þ 4μNÞ;

m2
π0
≡ 4f2

�
CyμL
f

þ 2Cgg2
�
;

m2
πþ ≡ 4f2

�
CyμL
f

þ Cgð2g2 þ g02Þ
�
;

A≡ yþ ~y�; B≡ y − ~y�: ð83Þ

Using this expansion the same results of the previous
section can be recovered up to Oðv4EW=f4Þ corrections. We
can also extract the VEV of singlets of triplets,

hηi¼−
6ffiffiffiffiffi
10

p C2
yf3Imðy~yÞv2K

m2
ημ

2
H

; hπ30i¼
ffiffiffi
2

p
C2
yf3Imðy~yÞv2K
m2

π0
μ2H

;

hπ0þi≡hπ1þi− ihπ2þiffiffiffi
2

p

¼ C2
yf3v2Kffiffiffi
2

p
m2

πþμ
2
H

½2Imðy~yÞþ iðjyj2− j~yj2Þ�: ð84Þ

The contribution to EDMs can be computed as in [8]. We
first integrate out the elementary doublet H at tree level in
(82), obtaining the following relevant Lagrangian:

δLEDM ¼ −
m2

π0

2
ðπ30Þ2 −

m2
η

2
η2

þ 4C2
yf3Imðy~yÞ
μ2H

�
1ffiffiffi
2

p K†σiKπi0 þ
3ffiffiffiffiffi
10

p ηK†K

�
þ Lanomaly: ð85Þ

Next we integrate out πi0 and η assuming them to be heavier
than the physical Higgs,

δLEDM
eff ¼ NDC2

yf2Imðy~yÞ
5π2μ2Hm

2
ηm2

π0

× ½3m2
π0K

†Kðg2Wi
μν

~Wμν;i þ g02Bμν
~BμνÞ

þ 5m2
ηK†σiKgg0Wi

μν
~Bμν� ð86Þ

from which we can extract the coupling of the Higgs to
photons, which reads (λ ≪ 1)

LEDM
γγ ¼ e2ND

40π2
Imðy~yÞC2

yf2ð6m2
π0 − 5m2

ηÞtan2β
μ2Km

2
π0m

2
η

F ~Fk†0k0

≡ cK
Λ2

F ~Fk†0k0; ð87Þ

and in the last equality we defined

cK
Λ2

≡ e2C2
yf2NDImðy~yÞ
40μ2Kπ

2
×
ð6m2

π0 − 5m2
ηÞ

m2
π0m

2
η

× tan2β: ð88Þ

The electric dipole moment can be estimated in the
effective theory from the one-loop diagrams generated
through the effective operator in (87). For the electron this
gives [24,25]

de ≈
emecK
4π2Λ2

log
m2

Π
m2

h

; ð89Þ

where the factor mΠ in the log is an average of pion masses
that cuts off the logarithmically divergent integral obtained
from the effective operator (87). Restoring the powers of ℏ
and c in the previous formula, we find the following
estimate for the electric dipole moment of the electron:

FIG. 4. Feynman diagram contributing to the electric dipole
moment of the electron. The η and π NGBs couple to photons
through anomalies, while the crossed circle represents the
insertion of the Higgs VEV.
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de ≈ 10−26 e · cm × Imðy~yÞ × ND

3
×

�
TeV
mπ;η

�
4

×

�
mρ

TeV

�
2

× tan2β: ð90Þ

This prediction should be compared with the current
experimental limit [26], namely jdej< 8.7×10−29 e · cm,
at 90% confidence level, pointing towards the fact that new
composite particles could be detected at the TeV scale,
provided that the CP-violating phases are of order 1.

C. Custodial symmetry breaking

Finally, we discuss the violation of custodial symmetry
in the SUð5Þ=SOð5Þ model. For y ≠ ~y custodial symmetry
is broken by the Yukawas. While the VEV of the doublet
produces no tree-level correction to T the VEVs listed of
the triplets in Eq. (84) break in general custodial symmetry
producing the following contribution to the T parameter:

T ¼ 8

αem

�
C2
yf3

m2
πþm

2
π0
μ2H

�
2

v2EWc
4
β

�
Imðy~yÞ2ðm4

πþ −m4
π0
Þ

þm4
π0

4
ðjyj2 − j~yj2Þ2

�
; ð91Þ

where αem ¼ e2=4π. The first term on the right-hand side of
Eq. (91) vanishes when mπþ ¼ mπ0 , namely when g0 ¼ 0,
thus is essentially a hypercharge effect, combined with the
complex phase Imðy~yÞ; the second term, on the contrary, is
a purely Yukawa effect, depending only on the difference
between the two Yukawas y and ~y, and is present even
when the theory features no CP violation. In the
SUð4Þ=Spð4Þ model there is no such effect because of
the absence of the triplets, and corrections to the T
parameter are generated at the loop level.

V. RELAXING THE COMPOSITE HIGGS

The composite Higgs models that have been presented
feature an elementary Higgs doublet, necessary to induce
the vacuum misalignment of the composite Higgs that
dominantly breaks the electroweak symmetry. The pres-
ence of the elementary scalar reintroduces the hierarchy
problem, apparently offsetting the very motivation of
composite Higgs models. In this section we sketch how
to realize the relaxation of the electroweak scale [2] for the
composite Higgs. In [8] we discussed the relaxation in the
limit where the physical Higgs is mostly elementary. We
here turn to the composite regime. This is the composite
analog of the supersymmetric relaxion mechanism studied
in [27–29].
Following [2] we will assume that the elementary Higgs

mass scans in the early universe due to the evolution of the
relaxion scalar field ϕ,

Vðϕ; HÞ ¼ ðΛ2 − gΛϕÞjHj2 þ gΛ3ϕþ � � � : ð92Þ

This potential is technically natural, sending g → 0 invari-
ance under shift of ϕ is recovered. In addition the relaxion
has an axion-like coupling to the dark gluons,

1

32π2
ϕ

fϕ
~Ga
μνGa;μν; ð93Þ

where fϕ is a decay constant (not to be confused with f) of
the order of the cutoff of the theory Λ. This term can be
eliminated through a chiral rotation of the fermions so that
ϕ appears in the masses and Yukawas of the fermions and
we will work in this basis in what follows, see [8] for more
details. We neglect derivative couplings.
As we discussed in Sec. II the tuning of the electroweak

VEV requires that the mass matrix (4) for the elementary
and composite Higgs has a small negative eigenvalue. This
happens for

m2
K ≈ jϵj2m2

H: ð94Þ

To see how the tuned electroweak scale is selected assume
that m2

HðϕÞ in (92) is initially positive. For m2
HðϕÞ ≫ m2

K
we can integrate out H and obtain an effective potential
for K,

VK ¼ ðm2
K − jϵðϕÞj2m2

HðϕÞÞjKj2 þ � � � ; ð95Þ

where ϵ depends on ϕ through the Yukawa couplings
and mass of H. During the evolution of ϕ the mass of K
scans crossing zero when the condition (94) is satisfied.
Afterwards K acquires a VEV that in turn generates a
barrier for ϕ that can terminate its evolution. In light of
Eq. (94) the height of the Higgs dependent barrier is

BH ∼m2
Kv

2: ð96Þ

The derivative of the barrier is given by

∂
∂ϕVK ¼ ∂

∂ϕ ½jϵj2m2
HðϕÞ�v2

∼
�
1

fϕ
jϵj2m2

HðϕÞ þ jϵj2gΛ
�
v2: ð97Þ

Equating this with the derivative of (92) the first local
minima of the ϕ potential will be located at8

gΛ3fϕ ∼m2
Kv

2: ð98Þ

This equation implies that choosing g ≪ 1 a large hierarchy
v ≪ Λ can be generated [2].

8The first term in Eq. (94) dominates for m2
H > gΛfϕ so that

m2
HΛ2 > m2

Kv
2.
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For the relaxion mechanism to work the Higgs depen-
dent barrier of ϕ must dominate other barriers. In the
effective theory a Higgs independent barrier is obtained by
closing the K loop in Eq. (95). From this it follows that the
effective cutoff of these loops (corresponding to the scale of
compositeness) must be below 4πv. Since ϕ scans the θ
angle of the dark gluons we also need the θ dependence of
the vacuum energy to be subleading. For example for
mL > mN the vacuum energy scales as

EðθDÞ ∼mNgρf3 cosðθD − θ0Þ: ð99Þ

If the fermion masses dominate mK the Higgs dependent
term dominates the energy for

mL

mN
>

f2

v2
: ð100Þ

Note that for degenerate masses the Higgs dependent
barrier is always smaller than Eq. (99) and the classical
rolling ϕ cannot be stopped.

A. High scale relaxation

The relaxion mechanism described above requires the
masses of the new fermions to be close to the electroweak
scale. While this is technically natural the coincidence of
scales is not satisfactory. In [30] a mechanism to push the
new physics to much higher scales was described. This
requires the existence of a second rolling field, σ, scanning
the barrier height in such a way that it becomes much
smaller than the typical value.
This can also be implemented in our framework allowing

one to push the scale f to much higher values. The
dynamics generating the relaxion potential is identical to
the one discussed in Appendix A of [30], but in a different
region of parameters. The field σ scans the vectorial masses
of the fermions,

ðm0
LþgσLσþgϕLϕÞLLcþðm0

NþgσNσþgϕNϕÞNNc: ð101Þ

By assumption σ does not couple to the topological density
and to the Higgs, a choice not dictated by the symmetries
but radiatively stable. Assuming for simplicity that mN is
the lightest fermion one finds

EðθDÞ ∼ ðm0
N þ gσNσ þ gϕNϕÞgρf3 cosðθD − θ0Þ: ð102Þ

In the early universe ϕ is initially trapped in a deep
minimum of the potential and σ scans. Generically
EðθDÞ will cross zero and at that point ϕ will start evolving
as well.
Higher order effects should also be taken into account. If

the mL is lighter than the confinement scale as we are
assuming to construct a composite Higgs these arise as
higher order corrections in the chiral Lagrangian of the

composite Higgs. For example terms with two mass
insertions scale as

ΔE ∼m2f2U2 ð103Þ

and cannot be canceled with the mechanism above due to
the different trigonometric dependence. This barrier is
smaller than the Higgs dependent one for

m2
N

m2
K
<

v2

f2
: ð104Þ

Using this mechanism f can be much larger than the TeV.
We leave a detailed analysis to future work.

VI. CONCLUSIONS

In this paper we have constructed a simple UV com-
pletion of composite Higgs models. At first sight a
disheartening aspect of our construction is the presence
of an elementary doublet needed to trigger electroweak
symmetry. An elementary scalar however is most welcome
to construct a viable theory of flavor. Indeed from this point
of view the benefits of the elementary Higgs are as nice as
in the SM. The only breaking of the SM flavor symmetries
is due to the SM Yukawa couplings so that the theory
automatically respects minimal flavor violation; contribu-
tions to electroweak parameters are well under control.
Moreover these theories predict new states and deviation
from the SM that could be visible at LHC if the dynamical
scale is around TeV.
We have shown the conditions under which a successful

phenomenological model is obtained. In particular the T
parameter requires a custodially preserving vacuum that
can be more easily realized in SOðNÞ and SpðNÞ gauge
theories. In SUðNÞ theories further assumptions have to be
made due to the presence of several composite Higgs
bosons. In all cases the Higgs mass is predicted in terms of
the parameters of the UV Lagrangian. When the Higgs
mass is dominated by SM gauge loops this is naturally of
the right size to reproduce 125 GeV.
The models described here interpolate between elemen-

tary and composite Higgs models. In the composite regime
the dynamics shares many of the features of composite
Higgs models discussed in the literature concerning the
Higgs and spin-1 resonances. SM fermions remain elemen-
tary so that they have properties close to the SM. Sizable
EDMs however may be generated by the CP violating
phases of the new sector. One interesting consequence of
our construction is that the Higgs cannot be arbitrarily
composite if the theory must be valid up to a high scale.
Indeed in order to reproduce the known fermion masses in
the SM the Yukawa coupling with the elementary Higgs
must be larger than in the SM. Absence of Landau poles
then translates into a lower bound on the mixing with the
elementary Higgs.
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In the last part of the paper we attempted to connect the
elementary Higgs required to induce electroweak symmetry
breaking with naturalness. In order to achieve this we
showed how to implement the relaxion mechanism in our
framework. In the simplest scenario f ∼ TeV but it is also
possible to push the compositeness scale higher deviating
from the minimal scenario with multiple relaxion fields.

ACKNOWLEDGMENTS

D. B. and M. R. are supported by the MIUR-FIRB Grant
No. RBFR12H1MW and O. A. is partially supported by
the H2020 CSA Twinning project No. 692194, “RBI-T-
WINNING”. O. A. thanks the Mainz Institute for
Theoretical Physics (MITP) for hospitality during part of
this work. We wish to thank Andrea Mitridate, Alessandro
Strumia, Andrea Tesi, Mattia Crescioli, Francesco Ciumei
and Elena Vigiani for discussions on related subjects.

Note added.—Recently, Ref. [31] appeared with some
overlap with Sec. III.

APPENDIX: THE MASS MATRIX
AND CP VIOLATION

The UV Lagrangian of the models in Secs. III and IV
contains one physical CP-violating phase. However in the
two models this has a very different effect leading to sizable
EDMs for the electron in the second case and a smaller one
in the first. In this Appendix we wish to show how this
feature emerges from the different symmetry structure of
the two models.
First let us comment on the allowed structure of fermion

bilinears, and so in particular of Yukawa terms we are
interested in. Thinking of a basis where all the quarks are
left-handed Weyl spinors, the fermion bilinears one can
form have their Dirac indices contracted antisymmetrically.
Their dark color indices are contracted (anti)symmetrically
if they are in a (pseudo)real representation of the underlying
gauge group. This implies that the flavor structure needs to
be antisymmetric or symmetric if the breaking is respec-
tively SUðNÞ=SpðNÞ or SUðNÞ=SOðNÞ; and this in turn
means that the mass/Yukawa matrix needs to decompose
onto the broken generators as we will now argue.
The broken generators X and the unbroken ones S satisfy

the relations

XΣ0 ¼ Σ0X⊺; SΣ0 ¼ −Σ0S⊺: ðA1Þ

Since the vacuum Σ0 preserved by SpðNÞ is antisymmetric,
the products XΣ0 (or equivalently Σ†

0X) are going to be
antisymmetric as well, while the ones involving the
unbroken generators are symmetric; the converse is true
for SOðNÞ.
The nðn ∓ 1Þ=2 − 1 structures Σ†

0X, supplemented by
the vacuum itself, form a complete basis of antisymmetric

or symmetric matrices when the stability group is SpðNÞ or
SOðNÞ. The matrix M can thus be written as

M ¼ Σ†
0
~M; ðA2Þ

where ~M is a complex linear combination of (1, X), and the
term appearing in the lowest order chiral Lagrangian
becomes

Tr½MΣ� ¼ Tr½Σ†
0
~MeiΠΣ0� ¼ Tr½ ~MeiΠ�: ðA3Þ

In other words the Yukawa couplings of the elementary
Higgs doublet can be written as a combination of broken
generators, precisely the ones corresponding to the
composite doublet K. Note that this argument holds just
as well for SUðNÞ × SUðNÞ=SUðNÞ cosets.
Next, we already pointed out in the main discussion how

one CP-violating phase is expected. After making the
quark masses real, the remaining rephasing freedom is

y → eiδy; ~y → e−iδ ~y; ðA4Þ

so any one combination of y and ~y can be made real,
however only a single given combination at a time, leaving
a nontrivial relative phase between the Yukawa couplings.
Having one elementary Higgs doublet and one composite,
there is a unique linear mixing operator, H†K, the coef-
ficient of which can thus always be made real. CP violation
therefore needs to come from further terms. In particular we
are interested in terms of the form H†Kη: since the η
couples to electroweak anomalies, it would then lead to
EDM effects.
Such trilinear couplings come from the trace Tr½MΣ�. As

we have just shown, M also, not just Σ, decomposes onto
the broken generators X; this means the relevant trace—
picking up one H, one K, and one η—is of the form
Tr½XXX�. For a symmetric coset, the product of two broken
generators is

2XaXb ¼ fXa; Xbg þ ½Xa; Xb�

¼ 1

n
δab1þ dabcXc þ ifabcSc: ðA5Þ

Taking the trace of three broken generators thus selects the
symmetric structure constants dabc.
The SUð4Þ=Spð4Þ coset is special in that respect: these d

coefficients over the broken coset are all zero. This is why
the expected CP violation does not appear in the lowest
order chiral Lagrangian, as we have observed when
presenting (32), contrary to the situation in the other model.
To find terms involving the CP-violating phase in the

first model, we need to go beyond the Lagrangian (30) and
consider the interplay between the quark mass terms and
Yukawa couplings in higher order terms.
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At the next order the invariants are

Tr½MΣMΣ� and Tr½MΣ�2. ðA6Þ

The terms that lead to a linear couplings of η are

Lη ∼ 4
ffiffiffi
2

p
η
sin2S
S2

ðReðH†KÞReð#ðyþ ~yÞðμL − μRÞÞ
− ImðH†KÞImð#ðy − ~yÞðμL − μRÞÞÞ

− 2
ffiffiffi
2

p
fη

sin 2S
S

Imð#ðμ2L − μ2RÞÞ; ðA7Þ

where # designates the coefficient of the operators (A6) in
the chiral Lagrangian. Even if this latter coefficient is real
(also setting the quark masses to be real) one is left with

#4
ffiffiffi
2

p
η
sin2S
S2

ðμL − μRÞReððyþ ~y�ÞH†KÞ ðA8Þ

which is the expected term, proportional to the other (in
general complex) Yukawa combination, yþ ~y�, and to the
Spð4Þ-breaking mass μL − μR.
The reason why only the Spð4Þ-breaking mass appears

can be understood similarly to the absence of a term of
interest in the leading-order Lagrangian, using the argu-
ment of the Appendix: the Spð4Þ-breaking mass is the term
in the mass matrix ~M proportional to a broken generator
while the symmetry-preserving one is proportional to the
identity. One sees immediately that the traces (A6) are zero
if they involve an identity matrix instead of a broken
generator for the quark mass contribution.
Therefore the EDM depends on unknown higher order

coefficients suppressed by an extra μ=f which makes
its study of limited interest in the SUð4Þ=Spð4Þ model.
This is even reinforced by the fact that the anomalous
coupling of η to photons is zero at leading order [32]; one
would involve instead a Z boson in the loop via gηZγ ,
leading to yet another suppression due to its smaller
coupling to the electron.
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