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Abstract 1 

The aim of this study was to compare the capability of “passive” and “active” 2 

biomonitoring to determine the environmental pressure. For this purpose, PAHs content and 3 

several biological responses in resident and caged mussels (Mytilus galloprovincialis) at five 4 

sampling sites (Rijeka Bay, Adriatic Sea) were analsed. Resident mussels were found better in 5 

reflecting the level of PAH loads at particular sites while only caged mussels could detect 6 

input of HMW PAHs. When data of each investigated parameter were compared separately, 7 

the majority of differences between resident and caged mussels’ results were site-specific.  8 

Integration of biological response patterns expressed as Index of Biological Response (IBR) 9 

resulted with different sampling sites ranking for resident and caged mussels. Multiple Factor 10 

Analysis (MFA) based on integration of tissue PAH concentration and biological response 11 

revealed resident mussels as more powerful for detection of environmental pressure. The use 12 

of resident mussels is recommended as appropriate and less costly approach for monitoring 13 

the effect of pollution. 14 

 15 

 16 

 17 

 18 

 19 
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1. Introduction 1 

  Design of ecotoxicological surveys monitoring spatial and temporal trends of 2 

chemical contamination in coastal and estuarine areas is important for interpretation of 3 

collected data.  Alongsides monitoring of pollutant level in marine organisms due to its 4 

possible transfer to humans following seafood consumption, the concept of integration of 5 

chemical, biochemical and physiological parameters has been accepted for ecotoxicological 6 

characterization of the marine environment (Galloway et al. 2002; Bihari et al. 2007; 7 

Fernandez et al. 2010, Barhoumi et al., 2014, Regoli et al., 2014). Biomonitoring has the 8 

advantage of an integrated evaluation in time and space of the presence and the effect of the 9 

bioavailable pollutants. Additionally, it enables the evaluation of possible causal relationship 10 

between contaminant presence and observable biological effects in aquatic organisms 11 

dwelling in a contaminated environment. Under environmental stress, marine life responds at 12 

all levels of biological organization (molecular, cellular, organism, population, community, 13 

and ecosystem). Responses at molecular and cellular levels, as the earliest signals of 14 

environmental disturbance before community and ecosystem responses can be detected, have 15 

been commonly used to evaluate the health effects of environmental contamination in marine 16 

ecosystems (Michel et al. 2000; Nigro et al. 2006; Fernandez et al. 2010). Assessment of 17 

PAH-induced cellular damage generally includes determination of genotoxic effect by means 18 

of measuring DNA damage or DNA integrity (Galloway 2002; Bihari et al. 2006) and 19 

activities of enzyme affected by PAH metabolites (Devier et al. 2005; Fernandez et al. 2010). 20 

At the same time, integrated monitoring studies usually include determination of mussel 21 

physiological status (Thomas et al. 1999; Bihari et al. 2007). In “mussel watch”, monitoring 22 

programs resident (passive biomonitoring) and/or caged mussels (active biomonitoring) as 23 

bioindicators of chemical contaminants could be used. Resident mussels have better 24 

discriminative capacity in reflecting the cumulative effects (Nigro et al. 2006), display lower 25 

seasonal variability of biomarkers ( Lehtonen et al., 2016) and due to the long –term exposure 26 

are more sensitive to tissue contaminant accumulation (Marigómez et al., 2013, Martínez-27 

Gómez et al., 2017). On the other hand, due to the short-term exposure influences of genetic 28 

differences and adaptive phenomena in caged mussels are reduced leading to higher 29 

sensitivity (Garmendia et al., 2011). Moreover, determination of biological response in caged 30 

mussels is invaluable in the investigation of areas where they better represent the diffused 31 

contamination (Martínez-Gómez et al., 2017) and/or native populations are absent. Due to the 32 

aforementioned abilities and limitations, several authors agreed that a parallel analysis of 33 

caged and resident mussels will improve the assessment of pollution and its effects on 34 
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ecosystem health; especially in case of chronic pollution and long-term biomonitoring 1 

programmes (Nigro et al., 2006, Hunt and Slone, 2010, Marigómez et al., 2013, Lehtonen et 2 

al., 2016). Taking into the account financial side, the use of native mussels as cost-effective 3 

was indicated as appropriate except in cases of site-point or time-point pollution when caging 4 

remains more useful.   5 

 The aim of this study was to examine the advantages/disadvantages of the caging 6 

approach for determination of environmental contamination in the urbanised area of Rijeka 7 

bay, Croatia, and compare the results with the results obtained using resident mussels. Due to 8 

its coastal population, influence of tourism and industrial facilities, Rijeka Bay was identified 9 

as affected by human activities and has been included in MEDPOL and national monitoring 10 

programmes.  The amount of polycyclic aromatic hydrocarbons in the marine sediment 11 

indicated this coastal area as an environment with a high PAH input (Bihari et al. 2007; 12 

Traven et al. 2008). To asses the input of PAHs in  marine environment and the impact on 13 

marine organisms, both the concentration of accumulated PAHs and their biological effects 14 

(biomarkers) were determined in caged and resident mussel Mytilus galloprovincialis. 15 

 Polycyclic aromatic hydrocarbons (PAHs) are widespread chemicals in the marine 16 

environment. PAHs are present at high concentration in most urbanized coastal areas as a 17 

consequence of numerous human activities mostly related to combustion or disposal of fossil 18 

fuels (pyrolytic sources) and offshore drilling or petroleum shipping activities (petrogenic 19 

sources). They can also originate from natural events such as forest or grass fires, volcanic 20 

eruptions and petroleum seeps as well as from natural synthesis by organisms (biogenic 21 

source). Once released into the marine environment PAHs tend to adsorb on suspended 22 

particles in seawater column and sediment becoming bio-available to the marine organisms. 23 

Accumulation of PAHs in biota depend upon the proximity to the sources of pollution, their 24 

bioavailability and species ability for PAH biotransformation. PAHs affect living organisms 25 

through their toxicity. The reactive products of PAHs metabolism such as epoxides and 26 

dihydrodiols bind to cellular proteins and DNA causing the biochemical disruption and cell 27 

damage. The toxicity of individual PAHs increases as a molecular weight increases and four-, 28 

five-, and six-ring PAHs have the highest mutagenic and carcinogenic potential (reviewed in: 29 

Neilson 1998; Douben 2003). Due to their harmful biological effects, they are listed as 30 

priority substances in the EU Water Framework Directive (WFD).  31 

In the attempt to link the exposure of marine organisms to chemicals and in situ 32 

biological response, several biomarkers were determined in both resident and caged mussels. 33 

The testing included quantification of the level of toxic content in  mussel tissue (potential 34 
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toxicity), specific biomarkers of genotoxicity (DNA integrity) and general neurotoxicity 1 

(acetylcholine esterase activity) as well as determination of mussel physiological status 2 

(“stress-on-stress”).  Considering that the level of toxic compounds in an organism relies on 3 

the contaminant concentration in the environment, determination of mussel biological 4 

extract’s potential toxicity enables detection of toxic contaminants presence and 5 

discrimination of polluted environment (Cotou et al. 2002). Toxicity of many chemicals, 6 

including PAHs lies in their capacity to interact with DNA.The genotoxicity of environmental 7 

pollutants could be observed as a decrease in DNA integrity.   Some genotoxic agents, e.g. 8 

PAHs contribute to the inhibitory effect of pesticides on acetylcholine esterase activity (Jett et 9 

al. 1999). Besides, other types of pollutants such as heavy metals, surfactants and algal 10 

biotoxins display anti-choline esterase activity and thus AChE activity has been suggested as 11 

an useful biomarker of general stress (Guilhermino et al. 1998, Lehtonen et al. 2003).  In 12 

addition to referred molecular biomarkers that are more or less responsive to narrow range of 13 

contaminants, this study also included the determination of mussel health status. Measured as 14 

“stress-on-stress” (de Zwan et al. 1995, Pampanin et al. 2005, Bihari et al. 2007), mussel 15 

physiological status reflects the integrative impact of complex contaminant mixture related to 16 

the survival potential of an organism. 17 

 Simple and multivariate statistical methods were used to investigate the relationships 18 

among biological and chemical variables. The focus was put on the difference of the 19 

biological response between caged and resident mussels and the relevance of the particular 20 

biological response for design and interpretation of the data in future ecotoxicological studies 21 

of the area. Integrated biomarker response index (IBR) that combines investigated biological 22 

responses and counteracts the influence of the natural variability as well as adaptive responses 23 

of individual biomarkers was used to characterize the pollution load at investigated sampling 24 

sites. Moreover, multiple factor analysis (MFA) that analyses data sets of variables (PAHs 25 

tissue concentrations and biomarkers) collected on the same set of observations (resident or 26 

caged mussels) was performed to analyse differences between those two observations.  27 

28 
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2. Materials and methods 1 

 2 

2.1. Study area 3 

 4 

 Figure 1.  Investigated area: sampling sites S1-S5 in Rijeka Bay and reference site in  5 

 Lim Bay. (1,5 column fitted figure) 6 

 7 

 8 

 Investigation was carried out at 5 sites from Rijeka Bay, Adriatic Sea, Croatia, (Fig1) 9 

representing areas with high level of human activities: shipyard (S1, S5), harbour (S2), river 10 

mouth (S3) and industry (S4). Basic environmental parameters of seawater at investigated 11 

sites were given in Table1.   12 

 13 

 Table 1. Brief description of the investigated area. 14 

Investigated 

site Description T oC pH 

DOMa 

mg/l Salinity 

DOb 

mg/l 

REF Protected area 19.0 7.99 27.10 35.71 8.20 

S1 Shipyard 19.5 8.10 26.90 35.29 8.33 

S2 Harbour 19.0 8.06 21.40 27.30 8.34 

S3 River mouth, urban runoff 17.5 8.16 13.49 16.40 10.85 

S4 Urban sewage, industrial outflow 19.0 7.74 11.26 13.38 10.04 

S5 Shipyard, urban sewage 19.0 7.88 21.74 27.78 7.67 
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aDOM - dissolved organic material 1 

bDO - dissolved oxygen 2 

2.2. Sampling strategy  3 

 Mussels (Mytilus galloprovincialis  Lmk, 1819), shell-length from 5 to 6 cm, referred 4 

as reference mussels, were taken from a fish-farm located in the Lim bay and within 3 hours 5 

transferred by car in humid atmosphere (18oC) to five locations in Rijeka bay (cca 300 6 

specimens per site)(Table 1). They were immerged 1 – 2 m from the surface and caged for 30 7 

days. Resident mussels (5-6 cm), dwelling in vicinity of the caged mussels were collected 8 

from near the air-water interface (0.3 – 0.5 m) together with caged mussels and transferred to 9 

lab immediately after collection. Random sub samples of 30 resident and 30 caged mussels 10 

were separated for “stress-on-stress” determination. For PAH analysis and toxicity assay, soft 11 

tissue of 100 resident and 100 caged mussels was dissected and for AChE activity and DNA 12 

integrity measurement, gills from 15 resident and 15 caged specimens were dissected and 13 

immediately frozen in liquid nitrogen.  14 

 15 

2.3. PAH analysis 16 

 For PAH determination mussel tissue (20 – 30 g) was heated at 70-80oC in 200 ml 1M 17 

KOH dissolved in ethanol for 5 h. After addition of 200 ml cyclohexane and heating for 15 18 

min. several washing with distilled water were performed until complete removal of KOH. 19 

The sample was evaporated to 2 ml and adding 0.5 – 1 g Al2O3, removed fat. After 20 

evaporation to dryness, samples were dissolved in 1 ml methanol (Stijve and Hischenhuber 21 

1987). The determination of PAH amount was performed with high performance liquid 22 

chromatography using Thermo-Finnigan (ThermoQuest Corp., USA) equipment and a 23 

LiChrospher RP-18 (AGILENT, USA) column (250 * 4 mm). The flow rate was adjusted to 24 

1.5 ml/min and the mobile phase mixture was carried out in the following conditions: time = 0 25 

min., 80:20 (%) methanol/water, time = 10 min., 100 % methanol. The maximum elution time 26 

was 16 min. For simultaneous determination of different PAH compounds UV-VIS and 27 

fluorescence detector was used. The excitation and emission wavelengths were changed 28 

during the analysis according to the program shown below. 29 

 30 

  Wavelengths 31 

 Time   Excitation  Emission 32 
 (min)      (nm)     (nm) 33 

    0       252     402 34 
   7.6       238     398 35 
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   8.5       268     398 1 
 11.5       300     466 2 
 16.0       300     466 3 

 4 

The peak heights and relative areas were recorded with ChromQuest Software Ver 2.51 5 

(ThermoQuest Corp., USA). The detection limits were 1 ng/l for seawater sample, 1 µg/kg 6 

dry weight for sediment samples and 0.1 ng/g wet weights for mussels. 10 of 16 US EPA 7 

PAHs were analyzed (ACE-acenaphthene, PHE-phenanhtrene, ANT-anthracene, FLU-8 

fluorene, PYR-pyrene, CHR-chrysene, B(a)A-benzo(a)anthracene, B(b)F-9 

benzo(b)fluoranthene, B(a)P-benzo(a)pyrene, IND-indeno(1,2,3,c.d)pyrene). The recoveries 10 

of PAHs were from 64 % for anthracene to 98 % for acenaphthene.  11 

 12 

2.4. Toxicity assay 13 

The potential toxicity of mussel biological extracts was measured by the Microtox® 14 

bioassay (Cotou et al. 2002). The bioassay measures the reduction of bacterial (Vibrio fisheri) 15 

luminescence following the exposure to toxic extract. The biological fluid was extracted from  16 

3 pooled mussels ( ~ 1g wet weight) and homogenized in a dilution buffer (BioFixLumi, 17 

Macherey-Nagel, Germany), 1:3 (w/v)  with a Potter-Teflon homogenizer. The homogenate 18 

was centrifuged at 5000g for 15 min and the supernatant was used for toxicity testing. The 19 

decrease in luminescence was measured for serial dilutions of mussel extracts according to 20 

the BioFix® Lumi procedure prescribed by the manufacturer (Macherey-Nagel, Germany) in 21 

Microtox® Model 500 luminometer (AZUR Environmental, U.S.A.). EC50 (ml) was estimated 22 

using Mictox®Omni Software. The potential toxicity was expressed as 1/EC50 x 100. 23 

 24 

2.5. DNA integrity 25 

To determine DNA integrity in mussel cells, gill tissue (100 mg) was homogenized in 26 

2 ml TE buffer (1 mM EDTA, 10 mM TrisHCl, pH 7.4) and DMSO (9:1) in liquid nitrogen. 27 

DNA denaturation rate in mussel gill lysates at alkaline pH was measured by FAST 28 

Micromethod ® (Batel et al. 1999, Bihari et al. 2005) in the Fluoroscan Ascent microplate 29 

reader (Labsystem, Finland).The procedure is based on the ability of fluorochrome Picogreen,  30 

(Molecular Probes Inc., U.S.A.) to preferentially interact with double-stranded DNA in 31 

alkaline conditions.  Briefly, 25 µl (100 ng DNA/ml) of gill homogenate was lysed in 25 µl 32 

lysing solution ( 4.5 M urea, 0.1% SDS, 0.2 M EDTA, pH 10.0) supplemented with Picogreen 33 

(20 µl/ml lysing solution) in the dark for 30 minutes. Analyses were performed in 34 

quadruplicates of 5 gills samples.  DNA denaturation conditions were achieved by adding 35 
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250µl NaOH-EDTA (pH 11.5). Afterwards, the decline in fluorescence of the dsDNA-Pico-1 

Green complex was measured in microplates at room temperature. The decrease in DNA 2 

integrity (genotoxicity) reflected as loss of dsDNA after 5 minutes of denaturation time was 3 

expressed as ΔF/min.   4 

2.6. Acetylcholine esterase activity 5 

Acetylcholine esterase (AChE) activity in mussel gills was measured by the method of 6 

Ellman et al. (1961), adjusted to microtitar plates (Bocquene and Galgani 1998). The tissue 7 

was homogenised in cold (4°C) 0.1M Tris HCl buffer, pH 8.0 (1:4, w/v) using Teflon Potter 8 

homogeniser. After centrifugation of homogenate at 10000g, for 30 min the supernatant was 9 

taken for immediate measurement of enzyme activity. The reaction mixture contained 14 µl 10 

0.1M Tris HCl (pH 8.0), 14 µl 8 mM 5,5’-dithiobis-2-dinitrobenzoic acid and 298 µl gill 11 

tissue homogenate. The enzyme reaction was initiated with 14 µl of substrate (45 mM 12 

acetylthiocholine, ACTC). The absorbance increase at 415 nm was recorded every 30 seconds 13 

in microplate reader (Labsystems, Multiscan Ascent®, Finland) using Ascent Software ™,  14 

version 2.4 and specific AcHE activity was expressed as nanomoles of hydrolysed ACTC per 15 

minute per mg of protein (nmol/min-1  mg-1). Tissue protein concentration in homogenates was 16 

determined according to the method of Lowry (1951) with bovine serum albumin (BSA) as 17 

the protein standard.  18 

2.7. “Stress-on-stress” 19 

 Resident mussels, caged mussels and referent mussels were placed in boxes (30 20 

animals/ box) in humid atmosphere at 19oC. Survival was assessed daily. Death mussels were 21 

recognized according to their specific smell, absence of any muscular activity and open 22 

valves. The average survival time (LT50) was determined for each sample (box) using probit 23 

analysis (Toxicologist ver. 1.0).   24 

2.8. Statistical analyses 25 

 All the statistical data analyses were performed with STATISTICA 8.0 (StatSoft Inc, 26 

U.S.A.). Wilcoxon matched pair test was used for the detection of significant difference 27 

between two sets of data non-parametric. Cluster analysis using Euclidean distance and 28 

complete linkage was performed to determine the similarity between distributions of 29 

accumulated PAHs. Non-parametric Spearman test was used to determine the degree of 30 

correlation between investigated parameters. To determine the relationship between 31 

biomarkers and accumulated PAHs, PCA was performed. To present the difference in 32 

biological response between resident and caged mussels and pollution status of each location 33 

in a simple way, an integrated biomarker response (IBR) was used. It was calculated as an 34 
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average (IBR/n)  of different arrangements of biomarkers in the set (Beliaeff and Burgeot, 1 

2002; Broeg and Lehtonen, 2006, Lehtonen et al., 2006, Marigómez et al., 2013)  and 2 

visualized using a star plot graphic tool.  3 

 Multiple factor analysis (MFA) was applied to derive an integrated picture of both 4 

biomarker response and PAH level as well as the relationship between observations obtained 5 

in resident and caged mussels. MFA (Abdi and Valentin, 2007, Abdi et al., 2013) was used to 6 

analyse set of observations (sampling sites) described by several groups (resident and caged 7 

mussels) of variables (measured parameters).  Each data set was pre-processed (centred and 8 

standardized). MFA was performed in two steps.  First a principal component analysis (PCA) 9 

was performed on each data set (resident and caged mussels) which is then normalized by 10 

dividing its elements by the square root of the first eigenvalue (matrix equivalent of the 11 

standard deviation) obtained from its PCA. Second, the normalized data sets were merged to 12 

form unique matrix and a global PCA was performed on the matrix. The individual data sets 13 

were then projected onto the global analysis to analyze communalities and discrepancies.  14 

15 
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Results and discussion 1 

3.1. Polycyclic aromatic hydrocarbons 2 

The total concentration of the 10 PAHs determined in the resident and caged mussels 3 

from 5 investigated sites in Rijeka Bay is presented in Table 2. The total PAH content in 4 

resident mussels at all investigated sites was higher than in mussels from the pristine 5 

Mediterranean areas but in the range determined for mussels collected in highly urbanised 6 

areas (Baumard et al. 1999, Barhaumi et al., 2014) or in vicinity of gas-drilling activities in 7 

the northern Adriatic (Gomiero et al., 2015).  The total PAH content in caged mussels was 8 

higher than at 123 stations around the coast of the NW basin of the Mediterranean Sea 9 

(Galgani et al, 2011) but lower than in urbanized Adriatic coastal areas (Fabbri et al., 2006) . 10 

In both, resident and caged mussels PAH levels were higher than previously reported for 11 

resident mussels in surrounding areas  (Bihari et al. 2007) although neither individual PAH 12 

concentration exceeded EAC value (OSPAR, 2013).  13 

At one sampling site (S3) situated at the Rječina river estuary and characterised by low 14 

salinity (16.4) PAH content in caged mussels decreased during 30 days, probably, due to the 15 

high influence of freshwater with low contaminant concentration that had mixed with 16 

seawater and had reduced the bioavailability of present contaminants. Decrease in PAH 17 

concentration would classify this area as not influenced by recent PAHs input. In contrast, 18 

PAH content in resident mussels at S3 was higher than in referent mussels and therefore this 19 

site should be classified as an area contaminated by PAHs. Since PAH concentration in 20 

resident mussel represented a time-weighted average it is evident that PAH dynamics in the 21 

mussels is not only influenced by the presence of PAH but also by the adaptation of 22 

indigenous mussel to particular environmental situation (Galgani et al., 2011). The level of 23 

PAH content in mussels caged at all other investigated locations was higher than before 24 

transplantation indicating accumulation of bio-available PAHs during 30 days period as a 25 

consequence of PAHs presence in surrounding water. 26 

  27 

Table 2. Concentration of individual PAH compounds (ng/g ww), selected PAH ratios in 28 

resident (r1-r5), and caged (c1-c5) mussels Mytilus galloprovincialis from referent (REF) and 29 

5 investigated sites in the Rijeka Bay. 30 

 31 

 REF r1 c1 r2 c2 r3 c3 r4 c4 r5 c5 

Acenaphthene 64 146 58 157 102 88 59 121 85 136 88 

Phenanthrene 32 49 38 50 40 39 35 41 40 45 36 
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Anthracene 0.7 1.4 0.8 1.5 1.0 0.9 d.l. 1.4 0.9 1.5 0.8 

Fluoranthene 15 50 18 60 22 19 7.1 23 10 49 8.2 

Pyrene 5.2 24 12 30 17 8.4 d.l. 13 0.8 25 d.l. 

Chrysene 2.5 50 7.5 69 6.3 7.9 2.9 10 7.2 34 3.9 

Benzo(a)anthracene 1.0 20 4.3 62 23 2.7 2.6 5.9 3.2 15 4.7 

Benzo(b)fluoranthene d.l. 41 d.l. 57 19 6 d.l. d.l. d.l. d.l. d.l. 

Benzo(a)pyrene d.l. d.l. d.l d.l. 1.6 d.l. d.l. d.l. d.l. d.l. d.l. 

Indeno(1,2,3-cd)pyrene d.l. d.l. d.l. d.l. 2.0 d.l. d.l. d.l. d.l. d.l. d.l. 

Σ PAHs 120 381 139 486 234 172 108 215 147 305 142 

Σ COMBa 23.7 144 41.8 278 159 44 12.6 52 21.3 40.3 12.1 

Σ CARCb 3.5 111 9.9 188 51.9 16.6 5.5 15.9 10.4 16.0 20.3 

BAPEsc 0,25 6,86 0,64 12,95 6,14 1,15 0,4 0,91 0,54 2,14 0,65 

Ratios            

LMW/ Σ PAHs 0.80 0.51 0.69 0.53 0.61 0.31 0.87 0.75 0.85 0.59 0.88 

LMW/HMW 4.00 1.08 2.33 0.75 1.56 3.00 6.69 3.17 6.14 1.50 7.33 

COMB/PAHs 0.20 0.48 0.30 0.57 0.39 0.25 0.13 0.24 0.14 0.40 0.12 

CARC/PAHs 0.03 0.29 0.09 0.39 0.22 0.10 0.06 0.08 0.07 0.16 0.06 

d.l. below detection limit 1 
a PAHs produced by combustion of fossil fuels   2 
bcarcinogenic PAHs proposed by EPA (USEPA, 1984) 3 
c carcinogenic potential expressed as equivalents of BaP based upon relative carcinogenic potency of 4 
each individual PAH proposed by Nisbet and LaGoy, 1992.   5 
 6 
 7 
 At all sampling sites tissue concentration of 10 PAHs was higher in resident than in 8 

caged mussels. Previous studies suggested that the equilibrium time depended on the 9 

pollution level, with a faster balance when the environmental levels of pollutants were high 10 

indicating that  3-4 weeks was enough to reach the equilibrium between environmental and 11 

tissue levels of pollutants (Payne et al, 2008, Marigómez et al., 2013).  Observed difference of 12 

PAH content between resident and caged mussels in Rijeka Bay may be explained by longer 13 

caging time needed to reach equilibrium (Serafim et al, 2011) or irregular PAH input 14 

dynamics in the area. When four sampling sites (S2, S3, S4 and S5) were taken into 15 

consideration high correlation (R2 = 0,908) between the amount of accumulated PAHs during 16 

30 days and PAH content in resident mussels was found suggesting the existence of dynamic 17 

equilibrium between matrices in resident mussels and related PAH accumulation kinetics in 18 

transplanted mussels. The only exception was S1 where low amount of accumulated PAHs 19 

could not be related to relatively high PAH content in resident mussels. This result evidenced 20 

site-specific irregular PAH input at S1 that could not be detected by caged mussels. 21 
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In investigated area the majority of PAHs could have come from motor vehicle 1 

exhausts, residential and industrial heating sources, coal, crude oil and natural gas processing. 2 

The predominance of combustion PAHs was noticed only at S2. In resident mussels it 3 

exceeds  50% that is in accordance with intense accumulation determined in caged mussels (2 4 

times over the initial value) reflecting chronic as well as recent input of combustion PAHs. 5 

Compared to other sampling stations S2 is located in a harbour, in the city centre, where, due 6 

to the concentrated transportation activities, combustion-related PAHs were the expected 7 

main source of contamination. However, in caged mussels at S3, S4 and S5, the amount of 8 

combustion PAHs after 30 days decreased (50% of initial value at S3 and S5). This decrease 9 

indicated that rapid elimination of previously accumulated combustion PAHs (coal and wood 10 

burning during winter) occurred during the caging period. However, their absence in May 11 

when caging was performed, changed the equilibrium point at those sites.   12 

Moreover, only in caged mussels from site S2 Benzo(a)pyrene (BaP)and Indeno(1,2,3-13 

cd)pyrene (IND) were detected indicating their presence during the caging period. Bihari et al. 14 

(2007) reported IND presence in sediment and absence in resident mussel from the areas 15 

southwest and southeast from the S1 – S5 sampling sites. Absence of BaP and IND in resident 16 

mussels could be attributed to the biotransformation and elimination efficiency arising from 17 

genetic predisposition of indigenous population to cope with particular environmental 18 

conditions in harbour (Lacroix et al, 2017). Caged mussels could have dissimilar metabolic 19 

(biotransformation and elimination) efficiency due to the different origin and genetic 20 

predisposition for adaptation to a new environment. Nevertheless, the fraction of high 21 

molecular weight hydrocarbons was higher in resident than in caged mussels at all sampling 22 

sites. However, when compared to initial status, caged mussel accumulated HMW PAHs only 23 

at S1and S2 (Fig. 2) while at S4 and S5 mussel accumulated LMW PAHs. 24 

In resident mussels, the LMW/HMW ratio was related to the total PAH content (Fig3). 25 

The increase of total PAH amount was followed by a decrease of LMW/HMW suggesting the 26 

presence of a dynamic equilibrium between bio-available PAH uptake from the medium and 27 

its elimination. The LMW/HMW ratio in caged mussels was ΣPAH independent. Exposure of 28 

caged mussel to new environmental condition for a period of 30 days significantly changed 29 

the LMW/HMW ratio.  30 

 31 
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Figure 2.  Accumulation/elimination of low molecular weight (LMW) and high 3 

molecular weight (HMW) PAHs during caging (30 days) at 5 investigated sites in 4 

Rijeka Bay. (1 column fitted figure) 5 

 6 

 Predominance of bio-available LMW  at S4 and S5 PAHs could be ascribed to the 7 

absence or HMW and faster uptake of LMW. Mussels can directly absorb lower weight PAHs 8 

through interstitial filtered water, while heavier hydrocarbons are mainly ingested in particle 9 

form from the digestive system. Moreover, differing effect between resident and caged 10 

mussels was detected at S2 where B(a)P and IND were found only in caged mussels. Higher 11 

efficiency of  PAH biotransformation and elimination pathways in resident compared to caged 12 

mussels and suggests existence of resident mussel population adapted to a polluted 13 

environment (Lacroix et al., 2015). When compared to caged mussels, resident mussels were 14 

chronically exposed to contamination and thus have developed metabolic adaptations for 15 

efficient elimination of harmful compounds that would enable their survival in the 16 

contaminated environment. This contrasting effect observed at S2, S4 and S5 indicated 17 

complex PAH dynamics between matrices (Picardo et al., 2001, Bihari et al., 2007) leading to 18 

particular PAH partitioning in distinct environment.   19 

 20 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lacroix%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25814057
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Figure 3.  Relation of low molecular weight (LMW) and high molecular weight 2 

(HMW) PAHs  ratio and total PAH content in resident and caged mussels Mytilus 3 

galloprovincialis. (1 column fitted figure) 4 

 5 

 In order to compare the PAHs distribution in resident and caged mussels the sets of 6 

data containing fractions of accumulated individual PAHs were submitted to similarity 7 

analysis. A hierarchical cluster analysis of individual PAH content (Fig4) revealed 3 groups 8 

of mussels with statistically different PAH distribution (ANOSIM). The first group comprise 9 

c2, r2 and r1, the second group r4, r5, c4, c5, ref, r3 and the third group by c1 and c3. Similar 10 

PAH distribution between resident and caged mussels indicated similar time-weighted 11 

relations of bioavailable PAHs at 3 investigated sites; S2, S4, and S5. This corresponding 12 

PAH content between caged and resident mussels at the same site could be related to the 13 

amount of accumulated PAHs (Seraphim et al., 2011, Marigómez et al., 2013). Significant 14 

correlation between PAH content in caged and resident mussels was found for sampling sites 15 

S2 (r=0.69, p<0.05) and S4 (r=0.63, p<0.05). Irrelevantly of pollution level at these sites (486 16 

ng/g in resident and 234 ng/g in caged at S2; 215ng/g in resident and 147 ng/g in caged at S4),  17 

it indicated the equilibrium between environmental and tissue level of pollutants was reached 18 

during caging period. On the contrary, at S1 this equilibrium point was not reached and PAH 19 

distribution in caged mussels differed from PAH distribution in resident mussels.   20 
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Figure 4.  Similarity of accumulated PAHs distribution between resident (r1-r5) and 4 

caged (c1-c5) mussels Mytilus galloprovincialis from 5 investigated sites in Rijeka 5 

Bay. (1,5 column fitted figure) 6 

 7 

During the transplantation period, caged mussels at S1 accumulated the lowest 8 

fraction (36%) and mussels at S3 next to the highest fraction (63%) of PAH amount 9 

found in resident mussels.  Therefore, similarity/dissimilarity of PAH content between caged 10 

and resident mussels from the same site could not be related to the amount of accumulated 11 

PAHs as observed by Seraphim et al. (2011) and Marigómez et al.(2013). In comparison to r1 12 

and r3, c1 and c3 samples are characterized by the absence of BbF, that suggests slow uptake 13 

of HMW PAHs by caged mussels in specific environmental conditions. Besides the 14 

differences of decontamination kinetics for each individual PAH (Rantamaki, 1997) and 15 

mussel adaptation capacity, PAH pattern differences between resident and caged mussels 16 

could be explained by the variability of sources and related input dynamics linked to either 17 

site-specific irregular activities (S1-shipyard) or freshwater inflow (S3-estuary).  .  18 

 19 
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3.2. Biological response 1 

 Biomarkers were initially analysed separately (Fig5) and statistically significant 2 

differences were determined between referent and investigated sites for resident and caged 3 

mussels as well as between caged mussels before and after transplantation to particular 4 

investigated site. Modulations of biological responses were detected in both resident and 5 

caged mussels at all investigated sites indicating the existence of a chemical pressure in 6 

explored area. 7 
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Figure 5. Biological response of resident (r1-r5) and caged (c1-c5) mussels Mytilus 10 

galloprovincialis to environmental conditions at referent site (ref) and 5 sites in Rijeka 11 

bay (TOX – potential toxicity of biological fluids, GTOX- 1/DNA integrity in gills 12 

cell, AChE- acethylcholine esterase activity in gills, SOS – “stress-on-stress”).p <0.05 13 

vs ref (o), p <0.05 ri vs ci (*) . (2 columns fitted figure) 14 

 15 

In resident mussels, the median potential toxicity ranged from 1.7 (r2) to 5.6 (r4), while for 16 

caged mussels the median values were from 1.3 (c5) to 7.7 (c4) It corresponded well to 17 

previous findings for the Rijeka bay area (Bihari et al. 2007). Toxicity, significantly higher 18 

than in referent mussels, was determined in resident and caged mussels collected at S4. 19 
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Sampling site S4 was in a part of Rijeka suburb situated in a closed bay with limited water 1 

exchange (Degobbis, 1981) under the influence of nearby industry (oil-refinery, charcoal 2 

transport) and inflow of freshwater from urban and agricultural area (Frančišković_Bilinski, 3 

2013, Fafanđel et al., 2015). The potential toxicity of mussel biological extracts could not be 4 

related to total PAH content suggesting that PAHs were not the dominant toxic pollutants 5 

accumulated in the mussel tissue.  6 

 At three sampling sites (S1, S2, S4) potential toxicity of caged mussels’ biological 7 

fluids increased and after caging period was higher than potential toxicity of resident mussels’ 8 

at the particular site. It indicated rapid accumulation of toxic compounds (including PAHs) in 9 

caged mussels during the transplantation period and the presence of elimination mechanisms 10 

in resident mussels.  When compared to the reference, only mussels at S4, both caged and 11 

resident expressed statistically higher potential toxicity, thus, showing similar capacity to 12 

detect affected environment.   13 

As expected, DNA integrity in resident mussels from S2, S3, S4 and S5 was 14 

significantly lower than DNA integrity in referent mussels. However, after the transplantation 15 

period the decrease in DNA integrity was observed only in caged mussels from S1 and S3. In 16 

spite higher inter-individual differences in resident than in caged mussels, chronic exposure to 17 

contaminated environment had greater impact on DNA integrity resulting in better sensitivity 18 

of resident mussels to express genotoxic effect. 19 

There was no overall correlation between DNA integrity and total PAH content or 20 

between DNA integrity and genotoxic potential expressed as benzo(a)pyrene equivalents 21 

(BaPEs). Similar results were previously reported suggesting that genotoxic impact derived 22 

not from the PAH parental compounds but rather from their reactive metabolites and/or other 23 

DNA-interacting chemicals (Thomas et al. 2007; Fernandez-Tajes et al.; 2010). It is still 24 

worth mentioning that referent mussels express the highest DNA integrity while the lowest 25 

DNA integrity was determined in the resident mussels containing the highest PAH amount 26 

and the highest BaPEs. It is very likely that PAHs are not dominant genotoxins at all sampling 27 

sites and  other environmental factors affected the mussel DNA integrity. Therefore, low 28 

DNA integrity found in resident and caged mussels at S3 characterized by low salinity and 29 

low PAH input  could be related to intense transcriptional activities associated with mussel’ 30 

adaptation to brackish waters at the Rječina river mouth (Hamer, 2008).  The significant 31 

differences in DNA integrity between resident and caged mussels was observed at S1 and S5. 32 

At S1 the genotoxic effect was detected in caged but was absent in resident mussels. This 33 

higher sensitivity of caged mussels has probably arisen from the modification of gene 34 
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expression rhythm as a consequence of adaptation to a more contaminated environment 1 

(Venier et al.2006, Banni et al, 2011). On the contrary, in mussels caged at S5 DNA integrity 2 

has not changed after transplantation and was higher than in resident mussels suggesting 3 

current lack of genotoxic compound input linked to irregular technological processes 4 

associated with local activities (shipyard).  5 

The highest median acetylcholine esterase (AChE) activity (25.5 nmol/mg min) was 6 

determined at a referent site. It is in the accordance with the previously measured spring 7 

activities at the same site (Semenčić 2004) and comparable to activities measured in Adriatic 8 

areas not impacted by pesticides (Corsi et al. 2002). The median activities in resident mussels 9 

ranged from 5.1 nmol/mg min at S5 to 18 nmol/mg min at S1while the median AChE 10 

activities in caged mussels were from 9.3 nmol/mg min at S2 to 23.3 mnol/mg min at S5. The 11 

significant difference in enzyme activity between referent and resident mussels was 12 

determined at S5. Although the change of AChE activity in caged mussels during a 30 days 13 

period did not express statistical significance, transplanted organisms showed decrease in 14 

enzyme activity at all sampling sites. Statistically significant difference of AChE activity 15 

between caged and resident mussels was found at S1 and S5. Lower activity in caged mussels 16 

could be linked to seasonal/irregular activities, e.g. heavy metals input from the shipyard (S1) 17 

while higher activity indicate the absence of inhibiting agents during the transplantation 18 

period due to or dilution by intense freshwater inflow (S5). Finally, although caged mussels 19 

displayed responsiveness of AChE to new environment, only AChE activity in resident 20 

mussels could discriminate an environment impacted by AchE-inhbiting pollutants. In 21 

addition, the significant correlation between AChE inhibition and genotoxic effect was 22 

determined only in resident mussels (r = 0.94, p<0.05). It is not surprising since many 23 

environmental pollutants have anti-cholinesterase as well as genotoxic activity. In resident 24 

mussels where biological effects are related to the chronic exposure the level of particular 25 

response is set by adaptation/elimination mechanisms to some optimal value. In contrast, 26 

caged mussels when confronted to the specific pollutants present in a new environment 27 

displayed acute response.                                     28 

The “stress-on-stress” survival test revealed stressed conditions at S3, S4 and S5 in 29 

both resident and caged mussels. However, at S1 and S2 reduced survival time was detected 30 

only in resident mussels designating them as more sensitive. Discrepancy in physiological 31 

status between resident and mussels caged for 4 weeks were previously reported for Venice 32 

lagoon (Pampanin et al. 2005) as well as for mussels from Galician coast (Marigómez et al., 33 

2013) where caged mussels appeared to be less resistant, than native mussels. It is very likely 34 
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that lack of change of mussel’s physiological status after transplantation at S1 and S2 1 

reflected current absence of environmental stressors.  2 

 To reach a general agreement about sensitivity of biological response in resident vs. 3 

caged mussels a simple table (Table 4) was created. It presents sensitivity of each biomarker 4 

to detect the biological effect (express value statistically higher than referent for each 5 

investigated sampling site). At sampling site S3 equal sensitivity was noted. At sampling sites 6 

S2, S4 and S5 resident mussels were more responsive. At sampling site S1 sensitivity of 7 

biological response was biomarker-specific. Biomarker-specific sensitivity was already 8 

observed by Marigómez et al. (2013) who reported that several biomarkers exhibited 9 

significant differences between resident and caged mussels and stressed the importance of 10 

multi-biomarker approach. It seems that the sensitivity did not originate only from the 11 

mussels themselves but also from the site-specific conditions.  12 

 13 

Table 4. Biological response sensitivity of resident and caged mussels at five investigated 14 

sites in Rijeka Bay.   15 

Biological response 
Sampling sites  

S1 S2 S3 S4 S5 

Potential toxicity -/- -/- -/- R/C -/- 

DNA integrity -/C R/- R/C R/- R/- 

AChE activity -/- -/- -/- -/- R/- 

“Stress-on-stress” R/- R/- R/C R/C R/C 

“R/-” - biological response was detected only in resident mussels (significantly differ from reference)  16 

“-/C” -biological response was detected only in caged mussels (significantly differ from reference) 17 

 “-/-“- biological response was not detected (does not significantly differ from reference) neither in 18 

resident nor in caged mussels.  19 

“R/C” - biological response was detected (significantly differs from reference) both in resident and 20 

caged mussels. 21 

 22 

For both resident and caged mussels no correlation has been found between any of 23 

measured biological effects. This variability of biological response patterns confirms the 24 

importance of the use of several biomarkers since their combination would provide invaluable 25 

information beyond that given by individual biomarker. To quantify multi-biomarker effect 26 

the integrated biomarker response index (IBR) was calculated. It took into account the level 27 



 21 

of each investigated effect, and was presented as a star-plot (Fig. 7). Based on cumulative 1 

effect integrated in IBR for each investigated site, caged mussels have identified S1 and S2 as 2 

the most affected sampling sites while resident mussels have identified sampling sites S4 and 3 

S5.  4 
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Figure 6. (A) IBR of biological effects (TOX, GTOX, AChE, SOS) presented as star-7 

plot for each sampling site, (B) IBR index calculated for 4 biological effects  8 

(■– resident mussels, □- caged mussels) (2 columns fitted figure) 9 

 10 

 11 

It is very likely that the caged mussels, when compared to resident mussel at S1 lack the 12 

adaptation capacity and therefore their transplantation to the new environment containing 13 

increased level of contaminants (including PAHs) caused greater response. Moreover, 14 

apparent difference of biological response between resident and caged mussels at S4 (TOX, 15 

AChE, SOS) and S5 (TOX, GTOX, AChE) due to the low level of effect in caged mussels 16 

could be related to the discontinuous presence of environmental stressors confirming low 17 

sensitivity of caged mussels to time-point pollution. 18 

 19 

 20 

  21 

22 



 22 

3.3. Integrating PAH content and biological response 1 

 2 

When analyzing field data – often no distinguishable correlations between biomarkers 3 

and tissue pollutant concentrations can be observed when evaluated individually by linear 4 

regression or when subjected to canonical correlation analysis. In search of correlation 5 

between PAH accumulation and biological response in mussels exposed to contaminated 6 

environment principal component analyses (PCA) of biological responses in resident and 7 

caged mussels was performed (Fig6). The plot of scores shows the position of investigated 8 

sites (r1-r5, c1-c5) in the ordination plane of the first two principal components (PC1 and 9 

PC2), projection of the variables (TOX, GTOX, AChE, SOS) on the PC plane present their 10 

contribution to principal components and the size of the bubble represent the PAH 11 

concentration. The sequence of eigenvalues was similar from one analysis to the other: the 12 

two sets of variables have a strong first direction of inertia (>50%). All the variables 13 

determined in resident mussels were significantly negatively correlated to PC1 that explains 14 

the 61.4 % of the total variance, and the sampling sites could be classified according to their 15 

PC1 score: referent site as the site with the minimal impact and r4 with the major impact. 16 

There was no correlation between PC1 and the accumulated PAHs content. This result 17 

reflected the cumulative effect of long-term exposure of resident mussels to mixture of 18 

environmental factors where PAHs were not the dominant component or the resident mussels 19 

have adapted (Lacroix et al., 2017) so the PAH effect has not been easily recognized. Finally, 20 

the effect of other pollutants (e.g. heavy metals) present at investigated sampling sites (Perić 21 

et al., 2012) that could modulate biological response (S4, S5) should not be neglected. 22 

23 
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Figure 7. PCA of biological response of resident (r1-r5) and caged (c1-c5) mussels 4 

Mytilus galloprovincialis to environmental conditions at referent site (ref) and 5 sites 5 

in Rijeka Bay (TOX – potential toxicity of biological fluids, GTOX- 1/DNA integrity 6 

in gills cell, AChE- acethylcholine esterase activity in gills, SOS – “stress-on-stress”). 7 

Superimposed bubble size corresponds to total PAH content. (2 columns fitted figure) 8 

 9 

The results of the PC analysis of caged mussels showed that PC1 was negatively correlated to 10 

acetylcholine esterase activity, positively correlated to “stress-on-stress” while PC2 was 11 

positively correlated to genotoxic effect. Therefore, the position of the sites with minimal 12 

impact (ref) would be in the lower right quadrant and the sites with the highest impact (c1, c2) 13 



 24 

in upper left quadrant. The position of the sampling site with the lowest PAH content was in 1 

the PC plane area that was characterized by the minimal impact while the sampling site with 2 

the highest PAH content (c2) was situated in the quadrant corresponding to the highest 3 

impact. However, there was no overall correlation between PAH content and any of the first 4 

two principal components. Distinct response times and duration for biomarkers and 5 

bioaccumulation are in accordance with previously reported field studies results (Garmendia 6 

et al., 2011, Marigómez et al., 2013). This supports currently recommended integration of 7 

biomarkers and chemical data (OSPAR, 2013),  using integrative indices (Regoli et al., 2014) 8 

or multivariate analysis (Turja et al., 2014) for the assessment of environmental disturbance 9 

caused by chemical stress in coastal areas.  10 

 However, the position of sampling sites based on a set of four investigated mussel 11 

biological responses clearly shows the difference between PCA results for resident and caged 12 

mussels. The observed distinction gave an indication of the different points of view between 13 

resident and caged mussels originating from the same biomarkers set. To display differences 14 

between resident and caged mussels after integration of all observations (PAH level and 15 

biological responses) multiple factor analysis (MFA) was applied. The first step of the 16 

analysis that included PCA of each data set revealed that the first eigenvalue of the separate 17 

PCA of variables in resident mussels was slightly higher (8.0) than the one of PCA of 18 

variables in caged mussels (7.0). Thus, normalization of data allowed balancing and avoided 19 

the domination of variables from resident mussels in the construction of the first axis.  Taking 20 

this way the groups of variables equally into the account, multiple factor analysis (MFA) of 21 

chemical and biological data derived an integrated picture of the investigated sampling sites 22 

and the relationship between variable groups used to describe them (Fig 8). MFA provided 23 

global analysis as a balanced representation of each sampling site according to both resident 24 

and caged mussel data set.   25 

 Projecting the data set of caged and resident mussels onto the global analysis provided 26 

partial representations map that revealed the level of agreement between resident and caged 27 

mussels.  Partial representations of same sampling site are even closer that they do express the 28 

same information. It showed a well-defined partition of sampling sites particularly along the 29 

first PC. The first axis is highly correlated to PAH content in resident and caged mussels. 30 

31 
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Figure 8. Multiple factor analysis (MFA) relationship between the studies: A) Projection 6 

of the resident (●) and caged (□) mussel onto the global analysis. A line segment links the 7 

position of the resident/caged mussel to its global position (o). B) Chemical and biochemical 8 

descriptors represented as eigenvectors of correlation matrix in the first two planes of PCA-9 

global analysis. (2 columns fitted figure) 10 

 11 

Therefore, when considering tissue contaminant load and the observed partition of sampling 12 

sites along PC1 caged mussels showed higher discrimination capacity then resident mussels. 13 

The partition on axe 1 between resident and caged mussels for S1, S3 and S5 was related to 14 

either irregular contaminant input (S1, S5-shipyard) or freshwater inflow (S3-estuary) since 15 

caged mussels were limited to recent input and failed to detect contaminant input at sites with 16 

irregular activities.  17 

 The second axis was correlated to biological response (TOX, GTOX, and AChE in 18 

resident mussels only confirming that resident and caged mussels did not respond with 19 

comparable patterns to the same environment. This absence of correlation of biological 20 

response between resident and caged mussels indicated the presence of different adaptation 21 
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traits of the indigenous mussel population when compared to caged mussels. It is in 1 

accordance to different sample sites ranking obtained by IBR. Moreover, eigenvectors of 2 

correlation matrix of chemical and biological descriptors indicated no correlation between 3 

bioaccumulation and biological response in resident mussels. Distinct response between 4 

bioaccumulation and biomarkers was already observed (Garmendia et al., 2011, Marigómez et 5 

al, 2013) and attributed to different response times. Based on their results in Galicia, 6 

Marigómez et al. (2013) concluded that the suite of biomarkers was more sensitive after 7 

caging (short-term response) whereas tissue pollutant concentrations were more sensitive in 8 

native mussels (long-term response).  Our case confirmed that long-term exposure of resident 9 

mussels were more reliable for overall contaminant bioaccumulation assessment. At the same 10 

time due to the adaptation mechanisms resident mussels expressed reduced discrimination 11 

capacity and were prone to false negative results (absence of HMW PAHs at S2). It put 12 

forward the importance of mussel origin to reflect particular environmental conditions 13 

(Pampanin et al., 2005, Viarengo et al., 2007). Indeed, when considering the level of 14 

contaminant bioaccumulation, discrimination capacity was higher in caged mussels but 15 

resident mussels were more sensitive than caged mussels in expressing biological effects.   16 

 Therefore, it was important that MFA integrated chemical and biological data and 17 

derived an integrated picture. By the comparison between the representations of partial 18 

individuals, the opposition between each sampling site and referent site was much bigger 19 

from a resident mussel’s point of view than from a caged mussel’s point of view. It means 20 

that when analysed together tissue PAH concentrations and multiple biological response, 21 

resident mussels were more powerful for the detection of environmental pressure in the 22 

investigated areas. It can be concluded that despite the observed shortcomings, when 23 

contaminant bioaccumulation and biological endpoints were integrated, resident mussels 24 

could provide reliable results. Future use of resident mussels in environmental risk assessment 25 

that combine chemical and biological measurements by multivarate analysis (Turja et al., 26 

2014), complex modelling tools such as weight of evidence (WOE) (Regoli et al., 2014) or 27 

integrated assessment framework (Martinez-Gomez, C. et al., 2017) is supported for long-28 

term monitoring.  29 

  30 

31 
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4. Conclusion 1 

 2 
 Comparison of resident and caged mussels’ results revealed site-specific differences 3 

for each investigated parameter.  The correlation between total PAH content in resident and 4 

caged mussels was found at majority of sampling sites. The absence of HMW PAHs in 5 

resident mussels at S2 indicated limitation of indigenous population and higher sensitivity of 6 

caged mussels to reflect PAH load in the environment. There was no correlation of biological 7 

response between resident and caged mussels. Resident and caged musssels expressed 8 

different biological response sensitivity’s patterns and different sample site ranking according 9 

to the cumulative biological effect. Integration of all biological effects confirmed low 10 

sensitivity of caged mussels to time-point pollution.  11 

  For detection of environmental pressure, it was important to combine multiple 12 

biomarkers as well as to integrate contaminant content and biological response due to the 13 

limitation of individual investigated parameter. MFA was successfully applied in an 14 

ecotoxicological study enabling comparison of complex response in two investigated 15 

monitoring systems.The visualization of specific and common structures provided 16 

achievement of a comprehensive answer about differences between resident and caged 17 

mussel’s response.  MFA analysis of tissue PAH concentrations together with multiple 18 

biological response displayed resident mussels as more powerful for detection of 19 

environmental pressure in the investigated area. 20 

The results of this study confirmed resident mussels as reliable bioindicator. Their use 21 

as an appropriate and less costly approach for monitoring the effect of pollution is 22 

recommended. Yet, caged mussels are more suitable in case of areas with chronic 23 

contaminant input, but should be avoided at sites characterised by irregular contaminant input.   24 

This investigation contributes to comprehension of advantages and limitations 25 

connected to the “resident or caged mussels” dilemma before designing a monitoring strategy 26 

as well as during the interpretation of acquired information and provision of data that would 27 

be beneficial to its final users.   28 

 29 

 30 
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