Stretched configuration of states as inferred from γ -ray angular distributions in ${}^{40}\text{Ar}+{}^{208}\text{Pb}$ neutron transfer reactions

P. Čolović¹, S. Szilner¹, L. Corradi², T. Mijatović¹, G. Pollarolo³, A. Goasduff^{2,4}, D. Montanari^{4,5}, R. Chapman⁶, E. Fioretto², A. Gadea⁷, F. Haas⁵, D. Jelavić Malenica¹, N. Mărginean⁸, D. Mengoni⁴, M. Milin⁹, G. Montagnoli⁴, F. Scarlassara⁴, J. F. Smith⁶, N. Soić¹, A. M. Stefanini², C. A. Ur⁸, and J. J. Valiente-Dobón²

 $^{1}\,$ Ruđer Bošković Institute, Zagreb, Croatia

² Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy

³ Dipartimento di Fisica Teorica, Università di Torino, and Istituto Nazionale di Fisica Nucleare, Torino, Italy

⁴ Dipartimento di Fisica, Università di Padova, and Istituto Nazionale di Fisica Nucleare, Padova, Italy

⁵ Institut Pluridisciplinaire Hubert Curien, CNRS-IN2P3, Université de Strasbourg, Strasbourg, France

⁶ School of Engineering and Computing, University of the West of Scotland, Paisley, United Kingdom

⁷ Instituto de Fisica Corpuscular, CSIC-Universitat de València, Valencia, Spain

⁸ Horia Hulubei National Institute of Physics and Nuclear Engineering and ELI-NP, Bucharest, Romania

⁹ Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia

July 3, 2017

Abstract. Angular distributions of γ rays for selected transitions in 40,41,42 Ar isotopes have been studied with the PRISMA magnetic spectrometer coupled to the CLARA γ array. These transitions were populated in Ar isotopes reached via neutron transfer in the 40 Ar+ 208 Pb reaction. By comparison with the shape of the experimental angular distribution of the known E2 transitions we established more firmly the spin and parity of excited states. In particular, in 41 Ar for the $(11/2^-)$ state through the $(11/2^-) \rightarrow 7/2^-$ transition whose structure was discussed in term of a phonon-fermion coupled state. The comparison with the expected fully aligned spin indicated that a high level of spin alignment has been reached.

PACS. 25.70.Hi Transfer reactions – 29.30.-h – 23.20.Lv

1 Introduction

Transfer reactions have been extensively used to study nuclear structure properties of states with single-particle or vibrational character, their coupling being especially important in the vicinity of closed shells [1]. It is still an open question to what extent such couplings play a role in the dominant configuration of states strongly populated in heavy ion transfer reactions. The field received recently a boost thanks to the availability of large solidangle magnetic spectrometers coupled to large γ arrays. With these devices it was shown how multinucleon transfer reactions could be efficiently used to populate neutronrich nuclei moderately far from the stability, with sufficient yields to make spectroscopic studies feasible. By employing fragment- γ coincidences with the PRISMA-CLARA set-up, investigations about the importance of phononfermion coupling for medium mass nuclei have been carried out (see e.g. Refs. [2–8] and references therein).

Fragment- γ coincident measurements allow for an unambiguous assignment of γ rays to a specific nucleus. On the other hand, due to the difficulties to obtain γ - γ coincidences, the construction of the level scheme and the interpretation of the observed γ transitions have been mainly based on systematics with neighboring nuclei and largescale shell-model calculations. A significant help also came from the dynamic properties of transfer reactions, which, at energies close to the Coulomb barrier, maximize the transferred angular momentum due to the matching of the orbitals of the involved states [9,10], leading to higher yields for yrast and near-yrast states. In the collision, the exchange of the mass, charge, energy and angular momentum between reaction partners is mediated by the singleparticle (fermion) and surface vibration (phonon) properties of the two colliding ions [11]. One thus expects that the same degrees of freedom will play an important role in the description of the states populated in these transfer reactions. These degrees of freedom have been probed in the study of the ⁴⁰Ar+²⁰⁸Pb system [2,7,12,13].

An extensive discussion of the states strongly populated in the neutron transfer channels has been carried out [2]. In particular, the odd Ar spectra comprise partly single particle states and partly states that involve combinations of single-particle with a collective boson. We observed a significant population of states whose structure matched a stretched configuration of the valence neutron coupled to the vibration quanta. By a close inspection of the wave-functions of the populated states, it was concluded that the important contribution to the increase of the quadrupole deformation when neutrons fill the $f_{7/2}$ orbital is a narrowing of the gap between the $s_{1/2}$ and $d_{3/2}$ proton orbitals.

For a firm attribution of the character of the populated states, experimental knowledge of other observables is required. Information about the multipolarity of the transitions can be obtained via γ -ray angular distributions. This has been shown in the case of the ${}^{48}\text{Ca}{+}^{64}\text{Ni}$ reaction, measured at energies about twice the Coulomb barrier, where the population of highly oriented spin in multinucleon transfer reactions was evidenced [6]. The comparison with the expected fully aligned spin indicated that a high level of spin alignment, normal to the reaction plane, has been obtained in this heavy-ion transfer reaction. In the present article, by exploiting the modularity of the CLARA detector, we analyzed angular distributions for the intense γ transitions in Ar isotopes. We used the shape of the experimental angular distribution of the known E2 transitions as reference to assess whether the untabulated transitions populated in the same reaction display an E2 character. We also carefully studied the level of spin alignment manifested in the transfer reactions. In particular we focused on the $(11/2^{-}) \rightarrow 7/2^{-}$ transition in ⁴¹Ar, which has been discussed in connection with phonon-fermion couplings.

2 Experiment and method

The ⁴⁰Ar+²⁰⁸Pb reaction was studied by using the PRI-SMA spectrometer [14–16] coupled to the CLARA γ array [17]. The description of the experimental conditions have been already extensively outlined in Refs. [2, 12, 13], to which we refer for the details. For convenience we here briefly recall the main features of the set-up and the experiment.

The positive ion injector PIAVE coupled to the ALPI post accelerator of the Laboratory Nazionali di Legnaro has been used to accelerate a 40 Ar beam at $E_{\rm lab}=6.4$ MeV/A. The beam impinged onto a 300 μ g/cm² 208 Pb target with an average current of 7 pnA. Identification of projectile-like fragments has been made with PRISMA placed in the vicinity of the grazing angle ($\theta_{lab} = 54^{\circ}$). At the entrance of the spectrometer a position-sensitive micro-channel plate detector [18] provides a start signal for time-of-flight measurements and position signals. After passing through the optical elements of the spectrometer, ions enter a focal plane [19], made of a parallel plate of multiwire type, providing timing and position signals with resolutions similar to the entrance detector. At the end of the focal plane is located an array of a transverse field multiparametric ionization chambers, providing nuclear charge (via ΔE) and total energy. The described detector system gives all the necessary information for the complete ion identification, i.e. atomic number Z, mass number A, ionic charge state, and velocity vector, which is performed via an event-by-event reconstruction of the trajectory inside the magnetic elements [13, 15, 20]. The

 γ rays were detected with the CLARA array [17]. It consisted of 25 HPGe clover-type detectors (22 were installed in the present experiment) situated in the hemisphere opposite to PRISMA and covering an angular range of ~100° to 180° with respect to the entrance direction of the spectrometer [17]. The total photo-peak efficiency was of the order of 3% for E_{γ} =1.33 MeV. Doppler correction of γ -ray energies was performed taking into account the reconstructed velocity vector in PRISMA.

The angular distributions of the strong γ transitions could be obtained by grouping the HPGe crystals in three rings with 40, 28 and 16 crystals corresponding to the average polar angle $\theta_{\text{CLARA}}=101^{\circ}$, 131° and 154° , respectively. A careful evaluation of the relative efficiency of each of the CLARA ring was carried out by using a 152 Eu source and the γ -ray intensities, corrected for this efficiency, were normalized to the one of $\theta_{\text{CLARA}}=101^{\circ}$. The angular distribution function depends on spin of the initial and final states, multipolarity of the transition and degree of angular momentum alignment. Here, the normalized angular distributions have been fitted with the function $W(\theta) = a_0(1 + a_2 P_2(\cos\theta))$, where $P_2(\cos\theta)$ stands for the Legendre polynomial and a_0 and a_2 are fitting parameters. The anisotropy of the angular distributions can be characterized by the coefficient $a = a_0 \times a_2$. These coefficients have been compared with calculated values for γ transitions from aligned nuclei following the prescription of Refs. [21, 22]. For the calculation, we took into account the spins of the initial and final states and the multipolarity of the transition. As already discussed, such comparison allows to estimate the degree of angular momentum alignment of the reaction fragments, i.e. the fraction of the angular momentum transferred into fragments spin normal to the plane of the reaction.

In the next section we present the analysis of the γ angular distributions for the ^{40,41,42}Ar isotopes. This analysis was made to establish more firmly the spin and parity of excited states, in particular, for the $(11/2^-) \rightarrow 7/2^-$ transition in ⁴¹Ar and to some extent for the $(6^+) \rightarrow (4^+)$ transition in ⁴²Ar.

3 Results and discussion

For convenience we report in Fig. 1 the partial level scheme of 40,41,42 Ar, pertinent for the present discussion of the E2 transitions, with the energy, spin, parity of the states, and the energy of transitions as in Ref. [2]. We briefly remind that these states were discussed in terms of the sd-pf large-scale shell-model (SM) calculations [24,25] by using the SDPF-U effective interaction, with the valence space of the full sd shell for the protons and the full pfshell for the neutrons. The dominant configuration of the 0^+ and 2^+ states in the even Ar isotopes were with two and four neutrons in $f_{7/2}$ for 40 Ar and 42 Ar, respectively, with the $(d_{5/2})^6(s_{1/2})^2(d_{3/2})^2$ proton configuration. This proton configuration amounts to 75% and 55% for the 0^+ state, and to 71% and 49% for the 2^+ state in 40 Ar and 42 Ar, respectively. With the addition of neutrons a

Fig. 1. Experimental level schemes of ⁴⁰Ar (left), ⁴¹Ar (middle) and ⁴²Ar (right), showing only the transitions relevant for the angular distribution analysis. Relative γ -ray intensities are indicated by the width of the arrows. The energy, spin, parity of levels, and the energy of the transitions, are as in Refs. [2,23].

single $s_{1/2}$ proton is promoted to the $d_{3/2}$ orbital, and this depletion of $s_{1/2}$ strongly contributes to the increase of collectivity. The $7/2^-$ ground state of 41 Ar was well described by a neutron in the $f_{7/2}$ orbital, with a large part of its wave function which can be understood as $0^+ \otimes \nu f_{7/2}$ configuration. We also found a large concentration of 2^+ of 40 Ar coupled to the neutron in $f_{7/2}$ in the $(11/2^-)$ state.

Fig. 2. (Color online): Angular distribution of the 1461 keV $2^+ \rightarrow 0^+$ transition in 40 Ar (points). The errors in the ratio $N(\theta)/N(\theta = 101^\circ)$ are only statistical, those in θ_{CLARA} correspond to the angular range defined by the detector geometry. The curve is a fit with the function $W(\theta) = a_0(1 + a_2P_2)$, with $a = a_0 \times a_2 = 0.25$. The shaded area represents the overall uncertainty of the fit.

We start the analysis by showing the angular distribution for the $2^+ \rightarrow 0^+$ quadrupole transition in ⁴⁰Ar. This well known transition of E2 character is taken as reference to test the validity and sensitivity of the adopted method. The experimental angular distribution is plotted in Fig. 2. In the same figure we report the results of the fitting procedure with the $W(\theta)$ function where the shaded area represents the uncertainty of the fit. From the fit we extracted a coefficient a = 0.25 (see also table Tab. 1). The value calculated by assuming a stretched quadrupole $2^+ \rightarrow 0^+$ transition and taking into account a maximum spin alignment turns out to be $a_{max} = 0.71$. In this entrance channel mass partition the largest contribution to the excitation of the 2^+ state is due to Coulomb excitation. We thus expect a certain level of alignment, compatible with the observed ratio a/a_{max} , representing the attenuation coefficient.

The experimental a values, for this and other Ar isotopes, are reported in Tab. 1, together with additional relevant information. We also report the intensity ratio at "small" (close to 90°) and "large" (close to 180°) angle, which is a useful parameter for a rough estimation of the electromagnetic transition anisotropy. Due to the CLARA geometry we defined this ratio as $R_I = I(154^\circ)/I(101^\circ)$.

Fig. 3. (Color online): Angular distribution of the 1630 keV $(11/2^-) \rightarrow 7/2^-$ transition in ⁴¹Ar. Errors and shaded area are defined as in Fig. 2. The red curve is a fit with the function $W(\theta)$ with a = 0.3.

Following the outlined procedure, we constructed the angular distribution for the 1630 keV photo-peak in 41 Ar, which was attributed to the $(11/2^{-}) \rightarrow 7/2^{-}$ transition [2]. The results are shown in Fig. 3. The curve is the $W(\theta)$ fit, from which one obtains $a = (0.3 \pm 0.1)$, to be compared with the calculated one $a_{max}=0.45$ expected for a stretched quadrupole transition from the fully aligned $11/2^{-}$ spin. The attenuation coefficient of 0.67 indicates a high level of alignment in this one-neutron transfer channel. This attenuation coefficient is plotted in Fig. 4, together with the coefficients of other transitions here studied (full/red symbols). In the same figure we chose to plot, also, the results of the known E2 transitions populated in the ${}^{48}Ca + {}^{208}Pb$ reaction [26]. We would like to stress that these reported states have been populated by transfer reactions, using the same ²⁰⁸Pb target and a similar incident energy as in our ⁴⁰Ar+²⁰⁸Pb case. Both reactions have been measured with the PRISMA-CLARA set-up, where the reaction plane is well defined by the PRISMA spec-

P. Čolović et al.: Stretched configuration of states in ⁴⁰Ar+²⁰⁸Pb neutron transfer reactions

Isotope	$E_{\gamma} [\mathrm{keV}]$	$J_f^{\pi} \rightarrow J_i^{\pi}$	Mult.	a	R_I
$^{40}\mathrm{Ar}$	1461	$2^+ \rightarrow 0^+$	E2	$0.25 {\pm} 0.05$	1.3 ± 0.1
	1432	$4^+ \rightarrow 2^+$	E2	$0.4{\pm}0.1$	$1.4{\pm}0.1$
$^{41}\mathrm{Ar}$	1630	$(11/2^{-}) \rightarrow 7/2^{-}$	(E2)	$0.3 {\pm} 0.1$	$1.4{\pm}0.1$
$^{42}\mathrm{Ar}$	1208, 1205	$2^+ \rightarrow 0^+, (4^+) \rightarrow 2^+$	E2, (E2)	$0.44 {\pm} 0.05$	$1.5 {\pm} 0.1$
	1150	$(6^+) \rightarrow (4^+)$	(E2)	$1.4{\pm}0.4$	$2.6 {\pm} 0.4$

Table 1. γ ray energy, spin, parity, multipolarity, $a = a_0 \times a_2$ and R_I coefficients for the transitions of 40,41,42 Ar considered in the present work. The R_I ratio is defined as $R_I = I(154^\circ)/I(101^\circ)$ (see text). E_{γ} , J_f^{π} and J_i^{π} are as in Ref. [2]. Known multipolarities are as in Ref. [23] while those deduced in the present work are labelled as (E2).

trometer. Similar average values for the alignment were previously reported for E2 transitions in Ca isotopes [6] populated in the ⁴⁸Ca+⁶⁴Ni transfer reactions.

Fig. 4. (Color online): The attenuation coefficient, $a/a_{\rm max}$, for the indicated transitions in the (-2n) (⁴⁶Ca) and (+2n)(⁵⁰Ca) channels in the ⁴⁸Ca+²⁰⁸Pb reaction (blue/empty symbols) [26], are plotted together with coefficients obtained in the present work (red/full symbols) for the ⁴⁰Ar+²⁰⁸Pb reaction. The average attenuation coefficient (0.64 ± 0.08) of ⁴⁰Ar+²⁰⁸Pb is indicated by the red-full line with the shaded area uncertainties. The $11/2^- \rightarrow 7/2^-$ transitions in ⁵¹Sc populated in the ⁴⁸Ca+²⁰⁸Pb reaction via the (+1p+2n) channel, and in ⁴¹Ar populated in ⁴⁰Ar+²⁰⁸Pb via (+1n), are included.

As a follow up of the presented analysis of the E2 transitions in 40,41 Ar, we applied the same procedure also for 42 Ar. We would like to remind that the γ rays of the transitions $2^+ \rightarrow 0^+$ and $(4^+) \rightarrow 2^+$ in 42 Ar have very similar energies [2]. They have been extracted from particle- γ - γ spectra as 1208 and 1205 keV, respectively. Unfortunately, due to the limited statistics of our experiment, the two transitions could not be analyzed separately, and the angular distribution has been constructed by integrating the whole doublet (top panel of Fig. 5). Nevertheless, the summed angular distribution for the two transitions is compatible with the quadrupole nature of both of them, once the attenuation factor is taken into account.

In the bottom panel of the same figure we plot the angular distribution for the $(6^+) \rightarrow (4^+)$ transition, where the large errors, reflecting the limited statistics, lead to significant uncertainties in the fitting procedure and a rather large *a* value. For completeness, we also added in

Fig. 5. (Color online): Angular distribution in 42 Ar for the 1208(+1205) keV photo-peak attributed to $(4^+) \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ (top), and for the 1150 keV (6⁺) $\rightarrow (4^+)$ transition (bottom). Errors and shaded area are defined as in Fig. 2. The red curves are fits with the $W(\theta)$ function.

Tab. 1 the results for the $4^+ \rightarrow 2^+$ established *E*2 transition in ⁴⁰Ar. Attenuation coefficients of these transitions are also plotted in Fig. 4.

Due to the CLARA geometry, the analyzed angular distributions incorporate a limited (actually three) number of experimental points. In spite of this limitation, all distributions turn out to be compatible with a quadrupole character. The analysed transitions exhibit a large amount of spin alignment, about ~70% for pure transfer channels. In particular, the 1630 keV transition in 41 Ar displays an angular distribution of quadrupole character and therefore the excited state at 1630 keV is consistent with a $11/2^-$ state. These findings well agree with the attribution of a dominant $2^+ \otimes \nu f_{7/2}$ stretched configuration to the $11/2^-$ state.

In the recent work [26] the structure of the neutron rich Ca isotopes, in particular the ⁴⁹Ca and ⁴⁷Ca nuclei populated in the one-neutron transfer channels, were investigated via γ ray angular distributions, with additional information from life-time measurements. A strong excitation of the $9/2^+$ state in 49 Ca and $11/2^+$ state in 47 Ca was observed, and their structure interpreted as a particle/hole coupled to the 3^- phonon of ⁴⁸Ca [6, 26, 27]. Such interpretation in terms of a phonon-fermion coupling scheme came also from the very recent work of Ref. [8], where the level structure of the neutron rich ³⁹S has been studied in the ${}^{36}S+{}^{208}Pb$ reaction, measured with the same PRISMA+CLARA set-up. In particular, a γ transition of 1517 keV was attributed to the decay of the $11/2^{-}$ state to the ground state, similarly to our ⁴¹Ar isotone case. The analysis supports the structure of this state in $^{39}\mathrm{S}$ as due to the unpaired neutron in the $f_{7/2}$ orbital coupled to the 2^+ of the ${}^{38}S$ core. This fact was used to systematically study the behaviour of the excitation energy difference $E(11/2^{-}) - E(7/2^{-})$ in odd-S isotopes in order to follow the quadrupole deformation in neutron rich sulfur isotopes.

4 Summary

We analyzed the γ angular distributions for selected transitions in 40,41,42 Ar isotopes. These isotopes have been populated in the 40 Ar+ 208 Pb inelastic and transfer reactions making use of the PRISMA spectrometer coupled to the CLARA γ array. By exploiting the modularity of CLARA, the angular distributions of the strong transitions have been constructed, allowing to establish more firmly the spin and parity of populated states. To this aim, we also took advantage of the high level of spin alignment in the neutron transfer channels. In particular, through the study of the 1630 keV transition, the structure of the $(11/2^-)$ state in 41 Ar has been described as a stretched configuration of the $f_{7/2}$ valence neutron coupled to the 2^+ vibration phonon. Such results support the importance of phonon-fermion coupling in the description of the states populated via nucleon transfer.

5 Acknowledgement

The authors are grateful to the LNL Tandem-ALPI staff for the good quality beams and the target laboratory for the excellent targets. This work was partly supported by the EC FP7 Contract ENSAR (262010). This work has been supported in part by the Croatian Science Foundation under the project 7194, in part by the Scientific center of excellence for advance materials and sensors in Zagreb. One of the authors (A.G.) has been supported by MINECO, Spain, under the grant FPA2014-57196-C5, Generalitat Valenciana, Spain, under the grant PROME-TEOII/2014/019 and EU under the FEDER program.

References

- A. Bohr, and B.R. Mottelson, *Nuclear Structure*, Vol. II, W.A. Benjamin, Inc., New York, 1975.
- S. Szilner, L. Corradi, F. Haas, D. Lebhertz, G. Pollarolo, C. A. Ur, L. Angus, S. Beghini, M. Bouhelal, R. Chapman, E. Caurier, S. Courtin, E. Farnea, E. Fioretto, A. Gadea, A. Goasduff, D. Jelavić Malenica, V. Kumar, S. Lunardi, N. Märginean, P. Mason, D. Mengoni, G. Montagnoli, F. Nowacki, F. Recchia, E. Sahin, M.-D. Salsac, F. Scarlassara, R. Silvestri, J. F. Smith, N. Soić, A. M. Stefanini, and J. J. Valiente-Dobón, Phys. Rev. C 84, 014325 (2011).
- S. Lunardi, S. M. Lenzi, F. Della Vedova, E. Farnea, A. Gadea, N. Märginean, D. Bazzacco, S. Beghini, P. G. Bizzeti, A. M. Bizzeti-Sona, D. Bucurescu, L. Corradi, A. N. Deacon, G. de Angelis, E. Fioretto, S. J. Freeman, M. Ionescu-Bujor, A. Iordachescu, P. Mason, D. Mengoni, G. Montagnoli, D. R. Napoli, F. Nowacki, R. Orlandi, G. Pollarolo, F. Recchia, F. Scarlassara, J. F. Smith, A. M. Stefanini, S. Szilner, C. A. Ur, J. J. Valiente-Dobón, and B. J. Varley, Phys. Rev. C 76, 034303 (2007).
- J. J. Valiente-Dobón, D. Mengoni, A. Gadea, E. Farnea, S. M. Lenzi, S. Lunardi, A. Dewald, Th. Pissulla, S. Szilner, R. Broda, F. Recchia, A. Algora, L. Angus, D. Bazzacco, G. Benzoni, P. G. Bizzeti, A. M. Bizzeti-Sona, P. Boutachkov, L. Corradi, F. Crespi, G. de Angelis, E. Fioretto, A. Gorgen, M. Gorska, A. Gottardo, E. Grodner, B. Guiot, A. Howard, W. Krolas, S. Leoni, P. Mason, R. Menegazzo, D. Montanari, G. Montagnoli, D. R. Napoli, A. Obertelli, T. Pawlat, B. Rubio, E. Sahin, F. Scarlassara, R. Silvestri, A. M. Stefanini, J. F. Smith, D. Steppenbeck, C. A. Ur, P. T. Wady, J. Wrzesinski, E. Maglione, and I. Hamamoto, Phys. Rev. Lett. **102**, 242502 (2009).
- D. Mengoni, J.J. Valiente-Dobón, A. Gadea, S. Lunardi, S. M. Lenzi, R. Broda, A. Dewald, T. Pissulla, L. J. Angus, S. Aydin, D. Bazzacco, G. Benzoni, P. G. Bizzeti, A. M. Bizzeti-Sona, P. Boutachkov, L. Corradi, F. Crespi, G. de Angelis, E. Farnea, E. Fioretto, A. Goergen, M. Gorska, A. Gottardo, E. Grodner, A. M. Howard, W. Królas, S. Leoni, P. Mason, D. Montanari, G. Montagnoli, D. R. Napoli, A. Obertelli, R. Orlandi, T. Pawlat, G. Pollarolo, F. Recchia, A. Algora, B. Rubio, E. Sahin, F. Scarlassara, R. Silvestri, J. F. Smith, A. M. Stefanini, D. Steppenbeck, S. Szilner, C. A. Ur, P. T. Wady, and J. Wrzesiński, Phys. Rev. C 82, 024308 (2010).
- D. Montanari, S. Leoni, D. Mengoni, G. Benzoni, N. Blasi, G. Bocchi, P. F. Bortignon, A. Bracco, F. Camera, G. Coló, A. Corsi, F. C. L. Crespi, B. Million, R. Nicolini, O. Wieland, J. J. Valiente-Dobón, L. Corradi, G. de Angelis, F. Della Vedova, E. Fioretto, A. Gadea, D. R. Napoli, R. Orlandi, F. Recchia, E. Sahin, R. Silvestri, A. M. Stefanini, R. P. Singh, S. Szilner, D. Bazzacco, E. Farnea, R. Menegazzo, A. Gottardo, S. M. Lenzi, S. Lunardi, G. Montagnoli, F. Scarlassara, C. A. Ur, G. Lo Bianco, A. Zucchiatti, M. Kmiecik, A. Maj, W. Meczynski, A. Dewald, Th. Pissulla, and G. Pollarolo, Phys. Lett. B 697, 288 (2011).
- S. Szilner, L. Corradi, F. Haas, G. Pollarolo, L. Angus, S. Beghini, M. Bouhelal, R. Chapman, E. Caurier, S. Courtin, E. Farnea, E. Fioretto, A. Gadea, A. Goasduff, D. Jelavić Malenica, V. Kumar, S. Lunardi, N. Märginean, D. Mengoni, T. Mijatović, G. Montagnoli, F. Recchia, E. Sahin, M.-D. Salsac, F. Scarlassara, J. F. Smith, N. Soić, A. M. Stefanini, C. A. Ur, and J. J. Valiente-Dobón, Phys. Rev. C 87, 054322 (2013).

- R. Chapman, Z. M. Wang, M. Bouhelal, F. Haas, X. Liang, F. Azaiez, B. R. Behera, M. Burns, E. Caurier, L. Corradi, D. Curien, A. N. Deacon, Zs. Dombradi, E. Farnea, E. Fioretto, A. Gadea, A. Hodsdon, F. Ibrahim, A. Jungclaus, K. Keyes, V. Kumar, S. Lunardi, N. Marginean, G. Montagnoli, D. R. Napoli, F. Nowacki, J. Ollier, D. ODonnell, A. Papenberg, G. Pollarolo, M.-D. Salsac, F. Scarlassara, J. F. Smith, K. M. Spohr, M. Stanoiu, A. M. Stefanini, S. Szilner, M. Trotta, and D. Verney, Phys. Rev. C 94, 024325 (2016).
- P. J. A. Buttle, and L. J. B. Goldfarb, Nucl.Phys. A 176, 299 (1971).
- 10. D. M. Brink, Phys. Lett. B 40, 37 (1972).
- L. Corradi, G. Pollarolo and S. Szilner, J. of Phys. G 36, 113101 (2009).
- 12. T. Mijatović, S. Szilner, L. Corradi, D. Montanari, G. Pollarolo, E. Fioretto, A. Gadea, A. Goasduff, D. Jelavić Malenica, N. Mărginean, M. Milin, G. Montagnoli, F. Scarlassara, N. Soić, A. M. Stefanini, C. A. Ur, and J. J. Valiente-Dobón, Phys. Rev. C 94, 064616 (2016).
- 13. T. Mijatović, S. Szilner, L. Corradi, D. Montanari, G. Pollarolo, E. Fioretto, A. Gadea, A. Goasduff, D. Jelavić Malenica, N. Mărginean, G. Montagnoli, F. Scarlassara, N. Soić, A. M. Stefanini, C. A. Ur, and J. J. Valiente-Dobón, Eur. Phys. J. A 52, 113 (2016).
- 14. A. M. Stefanini, L. Corradi, G. Maron, A. Pisent, M. Trotta, A. M. Vinodkumar, S. Beghini, G. Montagnoli, F. Scarlassara, G. F. Segato, A. De Rosa, G. Inglima, D. Pierroutsakou, M. Romoli, M. Sandoli, G. Pollarolo, and A. Latina, Nucl. Phys. A701, 217c (2002).
- S. Szilner, C. A. Ur, L. Corradi, N. Mărginean, G. Pollarolo, A. M. Stefanini, S. Beghini, B. R. Behera, E. Fioretto, A. Gadea, B. Guiot, A. Latina, P. Mason, G. Montagnoli, F. Scarlassara, M. Trotta, G. de Angelis, F. Della Vedova, E. Farnea, F. Haas, S. Lenzi, S. Lunardi, R. Marginean, R. Menegazzo, D. R. Napoli, M. Nespolo, I. V. Pokrovsky, F. Recchia, M. Romoli, M.-D. Salsac, N. Soić, and J. J. Valiente-Dobón, Phys. Rev. C **76**, 024604 (2007).
- 16. L. Corradi, S. Szilner, G. Pollarolo, D. Montanari, E. Fioretto, A. Stefanini, J. Valiente-Dobón, E. Farnea, C. Michelagnoli, G. Montagnoli, F. Scarlassara, C. Ur, T. Mijatović, D. J. Malenica, N. Soić, and F. Haas, Nucl. Instr. and Meth. in Phys. Res. B **317**, 743 (2013).
- 17. A. Gadea, D. R. Napoli, G. de Angelis, R. Menegazzo, A. M. Stefanini, L. Corradi, M. Axiotis, L. Berti, E. Fioretto, T. Kroell, A. Latina, N. Marginean, G. Maron, T. Martinez, D. Rosso, C. Rusu, N. Toniolo, S. Szilner, M. Trotta, D. Bazzacco, S. Beghini, M. Bellato, F. Brandolini, E. Farnea, R. Isocrate, S. M. Lenzi, S. Lunardi, G. Montagnoli, P. Pavan, C. Rossi Alvarez, F. Scarlassara, C. Ur, N. Blasi, A. Bracco, F. Camera, S. Leoni, B. Million, M. Pignanelli, G. Pollarolo, A. DeRosa, G. Inglima, M. La Commara, G. La Rana, D. Pierroutsakou, M. Romoli, M. Sandoli, P. G. Bizzeti, A. M. Bizzeti-Sona, G. Lo Bianco, C. M. Petrache, A. Zucchiatti, P. Cocconi, B. Quintana, Ch Beck, D. Curien, G. Duchene, F. Haas, P. Medina, P. Papka, J. Durell, S. J. Freeman, A. Smith, B. Varley, K. Fayz, V. Pucknell, J. Simpson, W. Gelletly, P. Regan, The EUROBALL and PRISMA Collaboration, Eur. Phys. J. A 20, 193 (2004).
- G. Montagnoli, A.M. Stefanini, M. Trotta, S. Beghini, M. Bettini, F. Scarlassara, V. Schiavon, L. Corradi, B. R. Behera, R. Fioretto, A. Gadea, A. Latina, S. Szilner, L. Donà, M. Rigato, N. A. Kondratiev, A. Yu. Chizhov, G. Kniajeva, E. M. Kozulin, I. V. Pokrovskiy, V. M. Voshressensky, and

D. Ackermann, Nucl. Instr. and Meth. in Phys. Res. A **547**, 455 (2005).

- S. Beghini, L. Corradi, E. Fioretto, A. Gadea, A. Latina, G. Montagnoli, F. Scarlassara, A. M. Stefanini, S. Szilner, M. Trotta, and A. M. Vinodkumar, Nucl. Instr. and Meth. in Phys. Res. A 551, 364 (2005).
- 20. D. Montanari, E. Farnea, S. Leoni, G. Pollarolo, L. Corradi, G. Benzoni, E. Fioretto, A. Latina, G. Montagnoli, F. Scarlassara, R. Silvestri, A. M. Stefanini, and S. Szilner, Eur. Phys. J. A 47, 4 (2011).
- A. H. Wapstra, G. J. Nijgh, and R. Van Lieshout Nuclear Spectroscopy Tables, North-Holland, Amsterdam, VII (1959).
- 22. T. Yamazaki, Nucl. Data A 3, 1 (1967).
- 23. Nucl. Data Sheets 92, 783 (2001); 94, 1 (2001);
 94, 429 (2001); National Nuclear Data Center, http://www.nndc.bnl.gov/.
- E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).
- 25. F. Nowacki, and A. Poves, Phys. Rev. C 79, 014310 (2009).
- 26. D. Montanari, S. Leoni, D. Mengoni, J. J. Valiente-Dobón, G. Benzoni, N. Blasi, G. Bocchi, P. F. Bortignon, S. Bottoni, A. Bracco, F. Camera, P. Casati, G. Colò, A. Corsi, F. C. L. Crespi, B. Million, R. Nicolini, O. Wieland, D. Bazzacco, E. Farnea, G. Germogli, A. Gottardo, S. M. Lenzi, S. Lunardi, R. Menegazzo, G. Montagnoli, F. Recchia, F. Scarlassara, C. Ur, L. Corradi, G. de Angelis, E. Fioretto, D. R. Napoli, R. Orlandi, E. Sahin, A. M. Stefanini, R. P. Singh, A. Gadea, S. Szilner, M. Kmiecik, A. Maj, W. Meczynski, A. Dewald, Th. Pissulla, and G. Pollarolo, Phys. Rev. C 85, 044301 (2012).
- G. Coló, P. F. Bortignon, and G. Bocchi, Phys. Rev. C 95, 034303 (2017).