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The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an
optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization
process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a
machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine
learning technique, support vector regression (SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which
model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work
reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We
illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.
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1. INTRODUCTION

Decrease of the fuel cycle costs is an important factor in
nuclear power plant management. The economics of the
fuel cycle can strongly benefit from the optimization of
the reactor core loading pattern, that is, minimization of
the amount of enriched uranium and burnable absorbers
placed in the core, while maintaining nuclear power plant
operational and safety characteristics.

The usual approach to loading pattern optimization
involves high degree of engineering judgment, a set of
heuristic rules, an optimization algorithm, and a reactor
physics computer code used for evaluating proposed loading
patterns. Since the loading pattern optimization problem
is of combinatorial nature and involves heuristics requiring
large numbers of core modeling calculations (e.g., genetic
algorithms or simulated annealing algorithms), the time
needed for one full optimization run is essentially deter-
mined by the complexity of the code that evaluates the core
loading pattern.

The aim of the work reported in this paper was to
investigate the applicability of a machine learning modeling
for fast loading pattern evaluation. We employed a recently

introduced machine learning technique, support vector
regression (SVR), which has a strong theoretical background
in statistical learning theory. SVR is a supervised learning
method in which model parameters are automatically deter-
mined by solving a quadratic optimization problem.

This paper reports on the possibility of applying SVR
method for reactor core loading pattern modeling. Required
size of the learning data set, as a function of targeted
accuracy, influence of SVR free parameters, as well as input
vector definition were studied.

In Section 2, the support vector regression method is
discussed. Basics of fuel loading pattern development and
optimization as well as the methodology applied for the
investigation of applicability of the SVR method for fuel
loading pattern evaluation are presented in Section 3. Results
and discussion are given in Section 4, while in Section 5 the
conclusions based on this work are drawn.

2. SUPPORT VECTOR REGRESSION

Machine learning is, by its definition, a study of computer
algorithms that improve automatically through experience.
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One of machine learning techniques is the support vector
machines (SVMs) method, which has a strong theoretical
background in statistical learning theory [1]. The method
proved to be a very robust technique for complex classifica-
tion and regression problems. Although, historically speak-
ing, the first implementation of SVM was for classification
problems [2, 3], in the last decade, the application of SVM
for nonlinear regression modeling is noticeable in different
fields of science and technology [4-10], the main reason
being robustness and good generalization properties of the
method.

In the upcoming paragraphs, we will give a short intro-
duction into the support vector regression method, stressing
only the most important theoretical and practical aspects
of the technique. Additional information can be found in
referenced literature.

In general, the starting point of the machine learning
problem is a collection of samples, that is, points, to learn
the model (training set) and a separate set to test the learned
model (test set). Since we are interested in developing a
regression model, we will consider a training data set, as well
as testing data set, comprised of a number of input/output
pairs, representing the experimental relationship between
input variables (X ;) and corresponding scalar output value

(yi):
{(Xu), (X2 02) 05 (KXo ) } c R xR (1)

In our case, the input vector defines the characteristics of
the loading pattern, while the output value, also referred to
as a target value, denotes the parameter of interest.

The modeling objective is to find a function y = f(X)
such that it accurately predicts (with ¢ tolerance) the output
value (y) corresponding to a new input vector (X), yet
unseen by the model (the model has not been trained on that
particular input vector) [11].

Due to the high complexity of underlying physical
process that we are modeling, the required function can be
expected to have high nonlinear properties. In the support
vector regression approach, the input data vector x is
mapped into a higher dimensional feature space F using a
nonlinear mapping function @, and a linear regression is
performed in that space. Therefore, a problem of nonlinear
regression in low-dimensional input space is solved by linear
regression in high-dimensional feature space.

The SVR technique considers the following linear estima-
tion function:

f(x) = (w,0(X)) +b, (2)

where w denotes the weight vector, b is a constant known as
bias, ®(%) is the mapping function, and (w,®(x)) is the
dot product in feature space, such that ® : ¥ — F, w €
F [12]. The unknown parameters w and b are estimated
using the data points in the training set. To avoid overfitting
and maximize generalization capability of the model, a
regularized form of the functional, following principles of
structural risk minimization (SRM), is minimized:

M
Reglf1= SC(f(X0) — i) + AW, (3)
i=1
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F1Gure 1: The schematic illustration of the SVR using e-insensitive
cost function (tube).

where R f] denotes regression risk (possible test set error),
based on empirical risk which is expressed through the cost
function C determined on the points of the training set, and
a term reflecting the complexity of the regression model.
Minimization task thus involves simultaneous minimization
of the empirical risk and minimization of structural com-
plexity of the model. Most commonly used cost function
(loss functional) related to empirical risk is the so called “e
insensitive loss function”:

1£(Z) = yll-e,

0, otherwise,

B for [|£ () 1l = &
CUfF(F0)-y) =

(4)

where ¢ is a parameter representing radius of the tube around
regression function. The SVR algorithm attempts to position
the tube around the data, as depicted in Figure 1 [7], and
according to (4) does not penalize data points for which
calculated values (y) lie inside this tube. The deviations of
points that lie more than ¢ away from the regression function
are penalized in the optimization through their positive and
negative deviations & and £*, called “slack” variables.

It was shown that the following function minimizes the
regularized functional given by (3) [1]:

FG) = f(7 ) = 3

i=1

- oc,»)K(?c’i, 75) +b,
(5)

where o a; are Lagrange multipliers describing w, and are
estimated, as well as parameter b, using an appropriate
quadratic programming algorithm, and K(x;, X) is a so
called kernel function describing the dot product (w, ®(x))
in the feature space. A number of kernel functions exist [13].
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Kernel functions used in this work are described in more
details in the following section.

Due to the character of the quadratic optimization,
only some of the coefficients o — «; are nonzero, and
the corresponding input vectors x are called support
vectors (SVs). Input vectors matching zero o — «; coef-
ficients are positioned inside the ¢ tolerance tube and
are therefore, not interesting for the process of model
generation. Support vectors that are determined in the
training (optimization) phase are the “most informative”
points, that compress the information content of the training
set. In most of the SVR formulations, there are two free
parameters to be set by the user: C-cost of the penalty
for data-model deviation, and e-insensitive zone. These
two free parameters and the chosen form of the kernel
function and its corresponding parameters control the
accuracy and generalization performance of the regression
model.

3. METHODOLOGY

One of the key processes of both, safe and economical
operations of nuclear reactor, is in-core fuel management,
or to be more precise, fuel loading pattern determination
and optimization. Every method and technique used for
fuel loading pattern determination and optimization tasks,
whether based on engineering judgement, heuristic rules,
genetic algorithms, or a combination of stated approaches,
requires a large number of potential fuel loading patterns
evaluation. The evaluation is normally performed using a
more or less sophisticated reactor physics code. Usage of such
codes is time consuming. Therefore, in this work, we are
investigating the possibility of SVR method being used as a
fast tool for loading pattern evaluation.

However, taking into account that the SVR method is
to be used, a number of factors have to be addressed prior
to creating a model. The first is the setting of the loading
pattern that is to be investigated, including the method by
which the experimental data points are to be generated, the
definition of the input space and parameters used as target
values. The second is the choice of the kernel function and
appropriate free parameters used in the SVR model. Finally,
SVR modeling tools have to be addressed.

3.1. Computational experiment setup

Taking into account the preliminary and inquiring charac-
teristics of the study, we decided to use limited fuel assembly
inventory for a single loading pattern optimization as a basis
for the development of our regression models. NPP Krsko
Cycle 22 loading pattern has been used as a reference one.
121 fuel assemblies, grouped in 7 batches that were used for
core loading in Cycle 22 have been used for generating a
large number of randomly generated fuel loading patterns,
which were then divided into training and testing data sets
and employed in SVR model development process. The
global core calculations of each of the trial loading patterns
have been conducted using MCRAC code of the FUMACS
code package, which also includes the LEOPARD code for

two-group cross-section preparation [14]. The calculation is
based on quarter core symmetry, fixed cycle length, and fixed
soluble boron concentration curve.

The generation phase, that is, the definition of the load-
ing patterns, has been based on a semirandom algorithm.
In order to narrow the investigated input space as much as
possible, as well as to stay within the limits of the numbers
of available fuel assemblies per batch, we introduced a
limitation for every fuel assembly regarding the position
where it can be placed: fuel assemblies originally placed
on axes positions could be randomly placed only on axes
positions, and vice versa. The central location fuel assembly
was fixed for every loading pattern.

The most important issue in the regression model
development is the definition of the input space to be
used for SVR model development. Since in a quarter core
symmetry setup, the NPP Krsko core is defined by 37
fuel assemblies, and having in mind the inquiring nature
of the work, we decided to simplify the problem by the
assumption of the 1/8 core symmetry, resulting in 21 fuel
assemblies defining the core. Fuel assembly (position) is
defined by initial enrichment, number of IFBAs, and reactor
history, or at least burnup accumulated in previous cycles.
Therefore, the number of potential parameters defining the
input space is 63. The high dimensionality of the input
space generally increases the number of training points and
time required for the development of the SVR of certain
generalization properties. Therefore, we decided to reduce
the number of parameters by introducing k-inf at the
beginning of the cycle as a new parameter and representing
fuel assembly only by k-inf and number of IFBAs (0 for
old fuel, and 32, 64, 92, and 116 for fresh fuel). Thus,
the final number of parameters defining the input space
was 42.

The SVR model would eventually be used in an optimiza-
tion algorithm as a fast tool for loading pattern evaluation.
Therefore, the target parameters which we want to model
should be the most important parameters on which such an
evaluation is based. In this work, we used the global core
effective multiplication factors at the beginning and at the
end of the cycle (kessoc and kesroc), as well as power peaking
factor (FYy) as target parameters for which separate SVR
models were built.

3.2. Kernel functions

The idea of the kernel function is to enable mathematical
operations to be taken in the input space, rather than
in the high-dimensional feature space [15]. The theory is
based upon reproducing kernel Hilbert spaces (RKHSs)
[16].

A number of kernel functions have been proposed in the
literature. The particular choice of the kernel that is going
to be used for mapping nonlinear input data into a linear
feature space is highly dependent on the nature of the data
representing the problem. It is up to the modeller to select the
appropriate kernel function. In this paper, the focus is placed
on two widely used kernel functions, namely, radial basis
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function (RBF), also called Gaussian and the polynomial
function (PF), which are defined by (6)

In the case of RBF kernel, parameter o represents the
radius of the Gaussian kernel, while d in the case of PF kernel
represents the degree of the polynomial kernel.

As already mentioned, the behaviour of the SVR tech-
nique strongly depends on the selection of the kernel func-
tion, its corresponding parameters, and general SVR “free”
parameters (C and ¢). All the parameters used in this study
were determined by a combination of engineering judgement
and optimization procedure based on the application of
genetic algorithms [17].

3.3. SVR modeling tools

Excellent results in SVR application to a wide range of
classification and regression problems in different fields of
science and technology, initiated creation of a number of
implementations of the support vector machines algorithm,
some of which are freely available software packages. In
this work, we decided to test three often used packages:
SVMTorch [18], LIBSVM [19], and WEKA [20].

As stated in the previous subsection, RBF and PF
kernel functions have been used. The general form of the
kernels is given in (6). However, practical parameterisation
of the functions, that is, their representation, is somewhat
different from code to code. For example, parameter ¢ in
LIBSVM notation for RBF represents 1/(20)%. Whenever,
a direct comparison of codes has been performed, general
kernel parameters have been set (see (6)), and code specific
parameters were modified to reflect on these values.

4. RESULTS AND DISCUSSION
4.1. Comparison of code packages

The comparison of three code packages for SVR model-
ing, namely, SVMTorch, LIBSVM, and WEKA, has been
conducted using a maximum training set size of 15000
data points while the test set consisted of 5000 data points.
The number of data points for learning models is typically
enlarged until satisfactory results regarding the accuracy are
achieved. In this subsection, only the results of final models
comparison are presented.

Preliminary analyses revealed that preprocessing of the
input data is required in order to allow normal and reason-
ably fast operation of all SVR code packages. Mainly, due to
the fact that input variables span extremely different ranges,
scaling of the input data has been performed, including the
scaling of the target values (all in the range 0 to 1), using one
of LIBSVM codes: SVMSCALE.

Models for three target values (kefsoc, kefroc and
EX) were compared for the model accuracy, learning and

implementation times (Pentium 4 Mobile CPU 1.7 GHz,
256 MB RAM, Windows XP SP2), and the relative number
of support vectors as the measure of model generalization
characteristics. The implementation time has been measured
on 5000 data points. The accuracy of the model was
determined using root mean square error (RMSE) and
relative average deviation (RAD) defined as

n L r 2
RMSE = M’
\ ! @)
RAD = 2=t (1yi = fil/yi) x 100%
n

where f; stands for predicted value corresponding to the
target value y;. The metric of interest was also the percentage
of tested data points which had the predicted value deviate
from the target value by more than 20%:

D=5 1009 > 200 )
1

In the case of RBF kernel function, the initial values of
free parameters were estimated using a genetic algorithm
(GA) on the LIBSVM code. The ranges for every parameter
(C, &, and 0) were set, based on engineering judgement, from
1 to 1000 for C and 0.001 to 2.0, and 1 to 7.07 (1/50) for € and
o, respectively. The GA was characterized by 20 populations
each consisting of 100 members. The training set consisted of
4500 data points, while the test set had 500 data points. The
best result was obtained for C = 371.725, ¢ = 0.05154, and
0 = 6.4697.

In the case of the PF kernel function, we decided to set
the d parameter to the commonly used value of 3, while for
simplicity reasons C and & were set to 371.725 and 0.05154,
respectively. Comparison results for RBF kernel function are
given in Table 1 while in Table 2 comparison results for PF
kernel function are presented.

The results of preliminary tests suggest that appropriate
regression models using SVM method can be developed for
all target values regardless of the applied code package. The
only difference is the learning time required for the model to
be developed. The implementation or deployment time for
the execution of the model (maximum of 30 seconds for 5000
calculations) is not the issue. The accuracy for the kefsoc and
kefrroc target values is satisfactory, while additional effort has
to be placed on developing the FA;; model by adjusting SVR
parameters and increasing the training set size.

4.2. Training set size influence on SVR model quality

SVR model quality can be interpreted as the time required
for the model learning, accuracy of the model, and general-
ization characteristics of the model. As shown in the previous
subsection, model implementation/deployment time is not
the key issue.

As discussed previously, the size of the training set
influences all factors of the model quality, and generally
thorough analysis of that influence is necessary. Here,
we present the results of preliminary tests conducted for
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TasLE 1: Comparison of results for RBF kernel function.
Target value Code package Accuracy Learnl.ng/Implem. SV [%]
RMSE RAD [%] >20%[%] time [s]
SVMTorch 0.029 6.793 3.44 120/14 5.27
kessoc LIBSVM 0.029 7.179 3.96 18/3 3.59
WEKA 0.028 6.621 3.20 2250/6 3.77
SVMTorch 0.050 5.048 1.96 10800/30 16.69
keszoc LIBSVM 0.045 4.550 1.76 1260/15 18.37
WEKA 0.045 4.570 1.98 28160/30 18.22
SVMTorch 0.040 15.060 20.42 13080/13 16.91
Fy LIBSVM 0.039 14.810 19.64 1080/14 17.97
WEKA 0.039 14.801 19.58 33362/14 17.86
TaBLE 2: Comparison results for PF kernel function.
Target value Code package Accuracy Learnl.ng/Implem. SV [%]
RMSE RAD [%] >20% [%] time [s]
SVMTorch 0.030 6.418 3.76 50/11 6.88
ketmoc LIBSVM 0.030 7.610 5.62 9/3 4.83
WEKA* 0.030 6.259 3.46 4027/10 2.43
SVMTorch 0.072 7.147 4.92 840/20 19.33
keszoc LIBSVM 0.058 5.856 3.12 2113/11 30.21
WEKA* 0.056 6.095 3.34 31120/45 30.02
SVMTorch 0.044 16.057 22.92 420/18 18.50
Fy LIBSVM 0.039 14.992 20.50 325/8 18.43
WEKA* 0.042 15.701 22.40 7000/30 17.17

* o T d
PF kernel in the form Kpp( X, X j) = (xiij) .

0.046 5
: 28
0.044 - ~ 726
£
0.042 - %22
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g 10 3
0.034 - s s
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FIGURE 2: Training set size influence on model quality for kegsoc-
preliminary tests.

kefsoc model development using LIBSVM code package
(see Figure 2). The characteristics of applying other code
packages on all target values are qualitatively very similar.

Apart from the anomaly observed for the RMSE curve
at the training set size of 5000 data points originating in
statistical and random characteristic of the training and
testing data sets, the accuracy (RMSE) and the generalization
properties (low SV percentage) of the models increase with
the increase of the training set size. The learning time is also
increased exhibiting a nearly linear trend.

5. CONCLUSIONS

This work introduces a novel concept for fast evaluation
of reactor core loading pattern, based on general robust
regression model relying on the state of the art research in
the field of machine learning.

Preliminary tests were conducted on the NPP Krsko
reactor core, using the MCRAC code for the calculation
of reference data. Three support vector regression code
packages were employed (SVMTorch, LIBSVM, and WEKA)
for creating regression models of effective multiplication
factor at the beginning of the cycle (kesmoc), effective
multiplication factor at the end of the cycle (kefroc), and
power peaking factor (FRy).

The preliminary tests revealed a great potential of the
SVR method application for fast and accurate reactor core
loading pattern evaluation. However, prior to the final con-
clusion and incorporation of SVR models in optimization
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codes, additional tests and analyses are required, mainly
focused on the parameters defining input vector, thus
influencing its size, the required size of the training set and
parameters defining kernel functions.

In the case of the scenario involving machine learning
from the results of more accurate and time consuming
3D code, we do not anticipate any major changes in the
learning stage of SVR model development, as well as it its
implementation. However, generation of training and testing
data sets would be more demanding (time consuming and
requiring more hardware resources).

These are the issues that are within the scope of our
future research.
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