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Abstract

New microbial genomes are sequenced at a high pace, allowing insight into the genetics of not only cultured microbes, but
a wide range of metagenomic collections such as the human microbiome. To understand the deluge of genomic data we
face, computational approaches for gene functional annotation are invaluable. We introduce a novel model for
computational annotation that refines two established concepts: annotation based on homology and annotation based on
phyletic profiling. The phyletic profiling-based model that includes both inferred orthologs and paralogs—homologs
separated by a speciation and a duplication event, respectively—provides more annotations at the same average Precision
than the model that includes only inferred orthologs. For experimental validation, we selected 38 poorly annotated
Escherichia coli genes for which the model assigned one of three GO terms with high confidence: involvement in DNA
repair, protein translation, or cell wall synthesis. Results of antibiotic stress survival assays on E. coli knockout mutants
showed high agreement with our model’s estimates of accuracy: out of 38 predictions obtained at the reported Precision of
60%, we confirmed 25 predictions, indicating that our confidence estimates can be used to make informed decisions on
experimental validation. Our work will contribute to making experimental validation of computational predictions more
approachable, both in cost and time. Our predictions for 998 prokaryotic genomes include ,400000 specific annotations
with the estimated Precision of 90%, ,19000 of which are highly specific—e.g. ‘‘penicillin binding,’’ ‘‘tRNA aminoacylation
for protein translation,’’ or ‘‘pathogenesis’’—and are freely available at http://gorbi.irb.hr/.
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Introduction

Many computational methods for functional annotation of

genes are based on a search for sequences with common

evolutionary descent—homologs. One possible encoding of

homology is the use of phyletic profiles: each row in the phyletic

profile represents one gene, and the columns represent the

presence or absence of homologs in sequenced genomes [1,2].

There are two main ways in which phyletic profiles can be used

for annotation of gene function. Both of them involve propagating

the annotation label. First, one could create phyletic profiles and

propagate the annotation label within the profile—from genes

with known function to their homologs included in the profile.

This is homology-based annotation, and many schemes for doing

so are possible [3]. Second, one could propagate labels between

the profiles by finding similar profiles: assuming that genes that are

inherited together tend to work together, one transfers annotation

from a better-studied group of homologs to a profile that is similar

but contains genes that are not as well studied. Again, this can be

done in many ways. For example, phyletic profiles can be grouped

by similarity using a variety of distance measures [e.g., 1,4]

possibly involving a machine learning framework [e.g., 4–6]. Rows

in the phyletic profile can stand for genes or groups of genes [e.g.,

1,7,8]; functional annotation can be assigned using a range of

vocabularies, e.g., UniProt controlled vocabulary of keywords [9],

Enzyme Commission numbers [10], or arguably the most

widespread vocabulary, the Gene Ontology [11]. In addition,

one could employ some hybrid between the first two approaches,

e.g., when the evidence in favour of within-profile label

propagation is used to improve the confidence of between-profile

propagation and vice versa.

Refinements of homology-based annotation include making a

distinction between two types of homologous relationships:

orthologs—sequences derived from the same gene in the last

common ancestor, and paralogs—sequences derived from a

duplication event [12]. Because orthologous pairs are expected

to keep the same function [13–15] and paralogous pairs are

expected to diverge in function [16], the canonical approach to

functional annotation relies on transfer of function between

orthologs. However, the latest evidence suggests that, relative to

pairs of paralogs, the conservation of function between pairs of

orthologs is not as strong as the standard model would imply [17].
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Our goal was to create a functional annotation model that

learns to associate gene function with specific patterns in phyletic

profiles—the presence and absence of different types of homologs

in different organisms. To create the phyletic profiles, we

combined ortholog cliques—fully interconnected groups of

orthologs—with both additional orthologs and additional paralogs.

We found that, instead of reducing the predictive accuracy,

paralogs provide valuable information: compared to the model

that includes only orthologs, the model that includes both

orthologs and paralogs gave more predictions at the same average

correctness.

In addition, we performed experimental assays in the model

organism Escherichia coli, showing that the annotation model

provides a realistic assessment of confidence for the predicted

annotations: a growth phenotype screen on E. coli knockout

mutants indicated an overall Precision of 66%—out of 38 tested

genes, we confirmed predictions for 25—agreeing with the

expected Precision of 60%.

We predict Gene Ontology annotations at various levels of

specificity for about 1.3 million poorly annotated genes in 998

prokaryotes at a stringent threshold of 90% Precision: about 19000

of those are highly specific functions. In addition to these, we

provide many more predictions at less stringent cut-offs in a Web

resource GORBI (http://gorbi.irb.hr/).

Results

We created our functional annotation models in three steps: 1)

constructing the phyletic profiles, 2) functionally annotating them

where possible, and 3) using a decision tree-based classifier to find

groups of profiles that are similar or dissimilar. We detail these

steps below.

The first step is constructing the phyletic profiles; in fact, this

step is what differentiates between models proposed in this work.

To choose among these models for functional annotation, we

constructed four kinds of phyletic profiles (Figure 1). First, phyletic

profiles of OMA cliques of orthologs: each profile represents the

pattern of presence/absence of an OMA clique member among

909 Bacterial and 89 Archaeal genomes. Second, we added the

presence patterns for all orthologs inferred by the OMA algorithm

that did not participate in the ortholog clique; these orthologous

pairs include inferred one-to-one, one-to-many, many-to-one, and

many-to-many orthologs. Third, we added presence patterns for

all paralogs inferred by the OMA algorithm; these are in fact

inferred between-species paralogs—broken pairs in the OMA

algorithm. The within-species paralogs are accounted for implic-

itly: if an OMA clique member is connected to a within-species

paralog, the binary phyletic profile does not change. Fourth, we

made a separate set of phyletic profiles that only include clique

members and paralogs, but not the orthologs outside of the clique.

The second step is annotating the phyletic profiles with a GO

term if at least half of clique members had the respective GO term

assigned to them. We determined this threshold empirically (see

Materials and methods) in order to maximize functional consis-

tency of known annotations within OMA cliques. The additional

orthologs and paralogs were not considered in GO term

annotation, even when their presence/absence was used in

creating the profile. In other words, the difference between the

functional annotation models is in the pattern of presence/absence

of different types of homologs, and not in the functional

annotations assigned to the phyletic profile.

The final step is measuring the (dis)similarity between profiles.

We presented both the annotated and the poorly annotated

phyletic profiles to a machine learning algorithm based on decision

trees. In the decision tree algorithm, the groups of phyletic profiles

are recursively divided into subsets based on their presence/

absence patterns. In fact, the similarity measure is not defined a

priori, but is instead inferred from the data: those homologs whose

presence/absence best discriminates between GO terms are used

to determine which profiles are more similar. In the final step of

the decision tree algorithm, the most similar phyletic profiles are

placed in leaves: this allows us to propagate the GO term

annotation across profiles within these leaves.

Here, we used an algorithm based on decision trees, Clus-

HMC-Ens [18]. Clus-HMC-Ens is based on combining multiple

decision trees in a Random Forest-like setting [19], and can handle

multiple labels—here, GO terms—for each phyletic profile.

Furthermore, Clus-HMC-Ens is aware of the hierarchical

relationships between the multiple labels and uses this information

to improve predictive accuracy [18].

We report three performance measures: Precision, Recall, and

Area Under the Precision-Recall Curve (AUPRC). Precision

stands for the fraction of predictions that are known to be true,

Recall stands for the fraction of known annotations that were

successfully predicted, and AUPRC summarizes both Precision

and Recall at all possible stringency thresholds of the annotation

model. Formal definitions of these measures and the machine-

learning algorithm’s train/test procedure used to obtain them are

detailed in the Materials and methods section.

Both orthologs and paralogs contribute to predictive
accuracy of phyletic profiles

In one OMA clique, inferred orthologous relations connect each

protein to every other protein, so it is not surprising that they

group proteins with mostly the same function (see Materials and

methods). However, OMA cliques leave out many of the existing

orthologous relations. Consequently, phyletic profiles of OMA

cliques are incomplete, leading to poor performance in our

classification model: many of the true orthologous relations are

missing, and the model can successfully annotate using only the

most general GO terms (Figure 2, model a; Figure S1 in Text S1:

panels A, B, and C). If we compensate for the missing orthologous

relations in OMA cliques by adding all inferred one-to-one,

Author Summary

While both the number and the diversity of sequenced
prokaryotic genomes grow rapidly, the number of specific
assignments of gene functions in the databases remains
low and skewed toward the model prokaryote Escherichia
coli. To aid in understanding the full set of newly
sequenced genes, we created a computational model for
assignment of function to prokaryotic genomes. The result
is an innovative framework for orthology and paralogy-
aware phyletic profiling that provides a large number of
computational annotations with high predictive accuracy
in train/test evaluations. Our predictions include annota-
tions for 1.3 million genes with the estimated Precision of
90%; these, and many more predictions for 998 prokaryotic
genomes are freely available at http://gorbi.irb.hr/. More
importantly, we show a proof of principle that our
functional annotation model can be used to generate
new biological hypotheses: we performed experiments on
38 E. coli knockout mutants and showed that our
annotation model provides realistic estimates of predictive
accuracy. With this, our work will contribute to making
experimental validation of computational predictions
more approachable, both in cost and time.

Phyletic Profiles with Both Orthologs and Paralogs
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one-to-many, many-to-one, and many-to-many orthologs left out

when constructing the cliques, the model improves: the mean

AUPRC is 0.8 (Figure 2, model b; Figure S1 in Text S1: panels D,

E, and F). We also tested whether adding paralogs to phyletic

profiles of OMA cliques improves the mean AUPRC: it does,

showing that the functional information we obtain from paralogs is

far from useless (Figure 2, model c; Figure S1 in Text S1: panels G,

H, and I). Still, the mean AUPRC is 0.65—lower than if we enrich

phyletic profiles with orthologous relationships. However, it is the

combined information from orthologs and paralogs that provides

us with the best model for functional annotation (Figure 2, model

d; Figure S1 in Text S1: panels J, K, and L): the mean AUPRC

increases to 0.85.

In the above experiments, adding only orthologs improved

AUPRC more than adding only paralogs (Figure 2, models b and

c, respectively). To test whether accounting for the ortholog/

paralog distinction would further increase AUPRC, we encoded

the phyletic profiles with three levels: presence of an OMA clique

member or another ortholog (2), presence of a paralog (1), or

absence of any of these (0). We found a small gain in AUPRC

resulting from the ortholog/paralog distinction (Figure S2 in Text

S1, panel B), but we also found that increasing the number of

levels in the dataset from the original two to the above-described

three decreases the AUPRC (Figure S2 in Text S1, panel A).

Taken together, accounting for the ortholog/paralog distinction

did not yield an overall gain in AUPRC in the current machine

learning setup (Figure S2 in Text S1, panel C), so we chose the

binary model as our principal result.

Consistent gains in accuracy across GO terms
In this binary model that includes both orthologs and paralogs,

most of the general GO terms have high AUPRC. More specific

Figure 1. Constructing phyletic profiles with the relations inferred by the OMA algorithm. A) One OMA group and the possible relations
used in constructing phyletic profiles: members of an OMA group are all connected by orthologous relations and they form a clique (red); some
orthologous proteins were left out in the process of forming cliques because they lack an orthologous connection to at least one group member
(blue); a witness to non-orthology infers paralogs (green) [35] B) Constructing phyletic profiles: presence of the corresponding homolog is shown
with the colours and their combinations. For example, when constructing the phyletic profile that accounts for OMA clique members (red) and all left
out orthologs (blue), the cell in the 1st column and 1st row will have ‘1’: ‘Species 1’ has an ‘OMA 1’ clique member (red) and at least one more protein
in an orthologous relationship with at least one protein from ‘OMA 1’ (blue); the cell in the 998th column and 2nd row will have ‘0’: ‘Species 998’ only
has protein(s) in a paralogous relationship to ‘OMA 2’ members. In the Function column, the Gene Ontology annotations are assigned when at least
half of the OMA clique members have the respective annotation. This figure is featured on the GORBI web site: http://gorbi.irb.hr/en/method/oma-
cliques-in-phylogenetic-profiling/.
doi:10.1371/journal.pcbi.1002852.g001
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GO terms span a wide range of AUPRC (Figure S3 in Text S1).

Nevertheless, both specific and general GO terms benefit from the

inclusion of orthologs and paralogs. Specific GO terms such as

‘‘lysine biosynthetic process via diaminopimelate,’’ ‘‘organic

acid:sodium symporter activity,’’ or ‘‘bacterial-type flagellum basal

body’’ are used in less than 0.1% of annotations in the 07-02-2012

UniProt-GOA release (their Information Content is higher than

10): the mean AUPRC of this subset of specific GO terms rises

from 0.78 in the model that includes orthologs (Figure 2, model b)

to 0.83 in the model that includes both orthologs and paralogs

(Figure 2, model d). For the general GO terms such as ‘‘protein

transport,’’ ‘‘kinase activity,’’ or ‘‘plasma membrane,’’ each used

in more than 3% of annotations in the 07-02-2012 UniProt-GOA

release (their Information Content is lower than 5), the

corresponding change in AUPRC is from 0.80 to 0.88.

Intuitively, phyletic profiling should perform best for the Biological

Process (BP) GO terms: proteins with similar profiles are expected to

be involved in the same BP but not necessarily to have the same

Molecular Function (MF). For example, one kinase and one

glucosidase may be involved in the same process of sporulation despite

having different MF. As a result, one would expect phyletic profiling to

be more appropriate for assigning BP GO terms than MF GO terms.

Here, we report high predictive accuracy for all three ontologies

(Figure 2, model d). In fact, among the best performing and most

Figure 2. Predictive performance of the four analysed models for the three Gene Ontologies. A) Biological Process, B) Cellular
Component, and C) Molecular Function. The x axis represents the models: phyletic profiles are based on (a) OMA cliques of orthologs; (b) OMA cliques
of orthologs and OMA inferred orthologs; (c) OMA cliques of orthologs and OMA inferred paralogs; and (d) OMA cliques of orthologs, OMA inferred
orthologs, and OMA inferred paralogs. The y-axis represents the Area Under the Precision-Recall Curve (AUPRC). Each disc represents one GO term; its
colour represents the ontology, while the area of the disc is proportional to the generality of the GO term: the frequency of the GO term among all
annotations available in 07-02-2012 UniProt-GOA release. Each boxplot summarizes AUPRC for the dataset indicated on the x-axis. Lower, mid, and
upper horizontal lines denote the first quartile, median and the third quartile, respectively; vertical lines reach 1.5 interquartile range from the
respective quartile or the extreme value, whichever is closer.
doi:10.1371/journal.pcbi.1002852.g002

Phyletic Profiles with Both Orthologs and Paralogs
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specific predictions are those for Molecular Function (MF) GO

terms ‘‘acyl-CoA dehydrogenase activity,’’ ‘‘transposase activity,’’

‘‘organic acid:sodium symporter activity’’ and its parent term

‘‘solute:sodium symporter activity,’’ ‘‘penicillin binding’’ and its

parent term ‘‘drug binding’’ (Figure S3 in Text S1).

Model that includes paralogs provides more predictions
with the same correctness

The AUPRC provides us with a view on predictive accuracy

that values both the comprehensiveness of predicted annotations

for a given GO term (Recall) and their correctness (Precision)

across the entire range of model stringency cut-offs. To further

explore the relationship between Precision and Recall at specific

levels of model stringency, we chose three cut-offs—0.1 (permissive

cut-off), 0.3 (medium cut-off), and 0.7 (stringent cut-off), for the

two best models—the model including orthologs (corresponding to

AUPRC values in Figure 2, model b) and the model including

both orthologs and paralogs (corresponding to AUPRC values in

Figure 2, model d). The combination of data and cut-offs resulted

in six plots (Figure 3).

For any of the cut-offs, the mean Precision for GO terms

between the two models is similar (Figure 3, horizontal lines

between A and D; B and E; C and F). However, there is a

difference for Recall, in particular for the more stringent cut-offs

(Figure 3, vertical lines between B and E; C and F). It is this

increase in Recall that increases AUPRC, as we observed before

(Figure 2). For example, at the most stringent cut-off the model

including only orthologs predicts annotations with 414 GO terms

for at least 50 poorly characterized genes in the 998 genomes,

while the model including both orthologs and paralogs predicts

annotations with 573 GO terms for at least 50 genes.

To each unnannotated OMA clique, the model assigned a cut-

off that indicates the probability of being annotated with a GO

term. To have an interpretable measure of confidence for each

prediction, we transformed this cut-off to the corresponding

Precision (see the Materials and methods section). We then

propagated the function of each OMA clique to the member genes

and obtained the functional annotations, along with the estimates

of Precision for each annotation.

As a consequence of the increased Recall, the model that

includes both orthologs and paralogs provides more annotations at

the same Precision (Figure 4A). The increased Recall allows us to

assign specific annotations at a very stringent threshold of 90%

Precision. For example, we predict new annotations for E. coli,

both using the most general, as well as many specific GO terms

(Figure 4B, Figures S4 and S5 in Text S1).

Experimental validation of the model’s accuracy
estimates

In the comparisons above, we obtained the best predictive

performance for the model based on cliques of orthologs enhanced

by both inferred orthologs and paralogs. We evaluated the ability

of each model to generalize to novel data, the poorly characterized

genes, with an out-of-bag method for testing predictive perfor-

mance: we measured accuracy on a random subset of the

annotated phyletic profiles left out when inferring the functional

Figure 3. The relationship between Precision and Recall for GO terms, at various model stringency cut-offs. Predictions for each GO
term are evaluated at one of three cut-offs: (A), (B), and (C) show results at cut-offs 0.1, 0.3, and 0.7 respectively, for the model including OMA cliques
of orthologs and OMA inferred orthologs; (D), (E), and (F) show results at model cut-offs 0.1, 0.3, and 0.7 respectively, for the model including OMA
cliques of orthologs, OMA inferred orthologs, and OMA inferred paralogs. Each disc represents one GO term; the colour denotes the ontology, and
the area of the disc reflects the frequency of the GO term in the 07-02-2012 UniProt-GOA release. The coloured lines correspond to the mean values
for the respective axes, for the respective ontology. The model made at least 50 predictions for each visualized GO term.
doi:10.1371/journal.pcbi.1002852.g003
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annotation model. This method was shown to give unbiased

estimates of predictive performance [20].

To validate how realistic are these out-of-bag performance

estimates, we chose annotations for 38 genes in Escherichia coli K-12

having at least 60% expected Precision, for three GO terms that

were straightforward to investigate experimentally using readily

available antibiotics: ‘‘DNA damage response,’’ ‘‘translation,’’ and

‘‘peptidoglycan-based cell wall biogenesis.’’ The 38 E. coli strains,

each with the deletion of one among the 38 selected genes, were

grown in the presence of antibiotics that target the above

Biological Processes: nalidixic acid (causes severe DNA damage,

including double-strand breaks), kasugamycine (inhibitor of

translation initiation), and ampicillin (inhibitor of cell wall

synthesis) (Figure 5).

To each of the 38 genes the model assigned a Precision, as

explained in the Materials and methods section. For example,

Precision associated with the E. coli gene yfgI for ‘‘DNA damage

response’’ was 62%; for ‘‘translation’’ and ‘‘peptidoglycan-based

cell wall biogenesis’’ it was lower than 1%. We would therefore

predict this gene to be involved in ‘‘DNA damage response’’ with a

probability of being a false positive of 38% (100-62). For the other

two GO terms the probability of being a false positive would be

over 99%: the annotation model inferred that these are unlikely

functions for this gene.

To experimentally evaluate a predicted annotation, we used the

E. coli mutant deleted in the gene whose function we predicted. We

compared the mutant to the E. coli wild type when grown in the

presence of the antibiotic that inhibits the predicted function. If the

gene is indeed involved in the predicted function, the survival of

the mutant is expected to be lower than the survival of the wild

type. For example, we predicted ‘‘DNA damage response’’ for the

E. coli yfgI gene, so the corresponding mutant and the wild type

were grown in the presence of DNA-damaging nalidixic acid; we

expect the mutant to have lower survival than the wild type

because its DNA repair capabilities are diminished.

We might predict a particular function, such as ‘‘DNA damage

response,’’ for an important gene that is indirectly involved in

many biological processes. Deleting such a gene may lower

survival non-specifically and thus appear to validate our predic-

tion. To control for this, we also grew each mutant in the presence

of the two additional antibiotics. For the above example of the yfgI

gene, if our prediction is correct, the survival of the mutant should

not be different from the survival of the wild type when grown on

kasugamycin or ampicillin.

Therefore, we considered a prediction confirmed only if both of

the following criteria were satisfied: 1) the survival of a mutant was

lower than 25% of the wild type when grown with the addition of

the antibiotic inhibiting the process predicted by our model, and 2)

the survival of the mutant was higher than 50% of the wild type

when grown on the other two antibiotics.

For example, we predicted ‘‘DNA damage response’’ for the E.

coli yfgI gene: when grown on DNA-damaging nalidixic acid, the

yfgI mutant had 7% survival of the wild type, but when grown on

kasugamycine or ampicilin, the survival was much higher: 98%

and 74% of the wild type, respectively (Table S1). We therefore

consider the prediction for the involvement of the yfgI gene in

DNA repair processes confirmed: the yfgI mutant is sensitive to a

DNA-damaging agent, while exhibiting wild type-like resistance to

other stresses.

With these criteria, 25 out of 38 genes had confirmed

predictions, which is equivalent to the experimental Precision of

66% (Figure 5). Since the selected genes had an expected Precision

of 60%, the experiments show that the estimates of accuracy

provided by the model are realistic. In fact, 14 of the 38 tested

genes have Precision $85%. For these genes, the experiments

have shown 11 out of 14 (79%) to be correct, approximately

matching the expected precision of 85%.

Consequently, these estimates can be used to guide decisions

when prioritizing genes for an in-depth experimental investigation

of function in the wet lab.

Examples of novel functions for Escherichia coli genes
supported by literature evidence

In addition to the systematic experimental verification of novel

annotations in three GO categories as described above, here we

highlight individual predictions for which we found supporting

evidence in the publicly available databases. This information was

not available to the classifiers at the time when the models were

constructed. The following examples are for E. coli K12, as this is

by far the best-studied model prokaryote [21].

We predict genes hypC and hybG to have ‘‘nickel cation

binding.’’ These genes had no GO terms assigned in the 07-02-

2012 UniProt-GOA release (http://www.uniprot.org/uniprot/

P0AAM3 and http://www.uniprot.org/uniprot/P0AAM7), and

we therefore considered them unannotated. In the meantime, hypC

was annotated with ‘‘metal ion binding’’ using experimental

evidence: this is a parent GO term of our prediction. Moreover,

when examining the literature, we found evidence that these two

genes are involved in the biosynthesis of the [NiFe] cluster [22].

Another prediction is for gltL: we predicted it is annotated with

‘‘ATP-binding cassette (ABC) transporter complex.’’ In line with

our predictions, PortEco, a portal that includes information from

14 different E. coli data resources [23], labels the gene as ‘‘ATP-

binding component of ABC superfamily.’’ Note that more general

electronic GO annotations were available for this gene, e.g. ‘‘ATP

binding,’’ ‘‘ATPase activity,’’ and ‘‘ATP catabolic process’’

(http://www.uniprot.org/uniprot/P0AAG3).

A similar prediction of a more detailed function is for ybgI,

where we predict GO terms from both BP and MF ontologies.

This gene is known to be a conserved metal-binding protein [24],

having an electronic GO annotation ‘‘metal ion binding’’; we

predict it is annotated with the BP GO term ‘‘Mo-molybdopterin

cofactor metabolic process.’’ Based on the structure of the protein,

Ladner et al. hypothesize this protein is a hydrolase-oxidase

enzyme [24]; we predict this protein is annotated with the MF GO

term ‘‘hydrolase activity, acting on acid anhydrides, in phosphorus-

containing anhydrides.’’

Figure 4. Existing and predicted annotations for the representative prokaryotes. A) The number of our model’s predictions at Precision
90% compared to the available curated Gene Ontology (GO) annotations. Each bar summarizes the data for one prokaryote: Escherichia coli K-12,
Listeria monocytogenes serotype 4b str. F2365, Mycobacterium tuberculosis H37Ra, Pseudomonas aeruginosa UCBPP-PA14, Staphylococcus aureus
subsp. aureus NCTC 8325, and Streptococcus pneumoniae R6. For both our predictions and the available GO annotations we show GO term
annotations that have Information Content higher than 3. The colour of the bar denotes the source of the annotations: yellow for the model that
includes all inferred one-to-one, one-to-many, many-to-one, and many-to-many orthologs, blue for the model that includes both these orthologs and
the paralogs, and green for the curated annotations available in the 07-02-2012 UniProt-GOA release. B) Biological Process (BP) annotations that the
model including both orthologs and paralogs assigned to E. coli genes at Precision 90%. Apart from the most general terms in the BP ontology, we
highlight some more specific annotations.
doi:10.1371/journal.pcbi.1002852.g004
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Predictions available to browse or download from the
GORBI website

Because we showed our functional annotation model gives realistic

estimates of predictive accuracy, we made our predictions freely

available in a Web site GORBI (http://gorbi.irb.hr/). Our

predictions can be queried either using GO accession number,

NCBI taxonomy ID, or gene/protein ID (Figure 6). For example, one

can focus on more general or more specific GO terms, depending on

their position in the ‘‘Gene Ontology DAG’’ (Figure 6, insert A). In

addition, an experimenter can tune the search parameters to get a

small number of high-confidence candidates, or a larger number of

candidates that potentially have more false predictions, depending on

the availability of annotations for the desired function and the

available resources for experimental validation.

Discussion

Phyletic profiles in functional annotation
The intuition of phyletic profiling is that corresponding genes

gained and lost together in different genomes are likely to share

function: they could be involved in the same metabolic pathway,

which is therefore incomplete without all the members in a

genome [1]. Additionally, even if the two genes are parts of

separate pathways and don’t strictly require each other for

function, they could both share a role beneficial for survival in a

particular environment [25].

The standard way of finding corresponding genes in different

genomes is via sequence homology: in addition to inferring

function via homology, a phyletic profile allows to infer function

based on the presence or absence of the corresponding genes in a

range of organisms.

Orthologs and paralogs in functional annotation

In functional annotation, we often differentiate between two

subtypes of homologs, orthologs and paralogs [e.g., 26]. According

to the standard model of genome evolution, paralogs—pairs of

genes diverged through a duplication event—could obtain a new

function [e.g., 27]. Conversely, orthologs are pairs of genes

diverged through a speciation event and should be more likely to

Figure 5. Experimental validation of predictions. A) Genes predicted to be annotated with ‘‘peptidoglycan-based cell wall biogenesis,’’ B)
genes predicted to be annotated with ‘‘translation,’’ C) genes predicted to be annotated with ‘‘DNA damage response,’’ D) genes predicted to be
annotated with both ‘‘translation’’ and ‘‘DNA damage response,’’ and E) a gene predicted to be annotated with both ‘‘translation’’ and ‘‘
peptidoglycan-based cell wall biogenesis.’’ The x-axis denotes the Escherichia coli knockout mutant. The y-axis represents the percentage of survival
of the mutant strain normalized to the wild type. Coloured bars represent the survival when the antibiotic disrupts the biological process we predict
for the genes; here, the correctly annotated mutants are expected to survive less than the wild type (w. t.). Coloured lines represent the survival when
we predict no effect of the antibiotic on the survival rate; here, deletion mutants were expected not to differ from the wild type. Error bars show the
variation in the results among the four replicates.
doi:10.1371/journal.pcbi.1002852.g005
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retain function; they are therefore expected to be more

informative in functional annotation [15].

However, the exact quantification of the functional divergence

in a pair of orthologs and a pair of paralogs is not fully resolved. It

was observed that the search for homologs using the best

bidirectional hit approach, without explicitly distinguishing

orthologs from paralogs, produces a higher level of functional

compactness via Gene Ontology (GO) terms [28] than is present in

the ortholog databases Homologene [29] and OMA [30]. In

addition, Studer and Robinson-Rechavi list scenarios where the

standard model—predicting that paralogs diverge in function

more than orthologs—is invalid; for example, cases where paralogs

share function, and orthologs do not [31].

A recent large-scale study further challenged the veracity of the

standard model: the authors compared mouse and human ortholog

and paralog pairs and surprisingly found that paralogs tend to

conserve function more than orthologs [32]. This finding caused a

stir in the community—demonstrating the relevance of the topic—

but was subsequently challenged in two publications [17,33].

Nevertheless, a recent systematic survey showed that the

divergence in function between paralogs is not as strong as the

standard model would imply [17]. In addition, we know that

homologs—orthologs and paralogs combined—are useful in

functional annotation, especially when their sequence similarity

is above the ‘‘twilight zone’’ [34]. Further, orthologs and paralogs

share a common ancestor: paralogs, as well as orthologs, could

carry functional information useful for annotation.

Paralogs enrich phyletic profiles
In line with the recent research [17], our results show that the

standard model, when viewed in the functional annotation

context, tends to draw too strong of a line between orthologs

and paralogs. When we enriched clique-only annotation models

with additional orthologs and additional paralogs, we obtained a

model that outperformed both the model that was enriched only

with orthologs and the model that was enriched with refined

homologs at different evolutionary distances (Figure S6 in Text

S1). The improvement is most notable in the number of new

annotations we were able to assign: while keeping the Precision at

the same high level, our best model increases Recall (Figure 3), and

consequently gives us more predictions at the same level of

correctness (Figure 4A).

Even so, our results do not contradict the standard model in two

major points: 1) cliques of orthologs—groups where all genes are

connected with orthologous relations—are indeed functionally

very similar (Figure 7), and 2) our results support the current

widespread annotation efforts that use homology: even when we

disregard the orthology/paralogy relationships to enhance cliques,

we obtain high predictive accuracy (Figure S6 in Text S1).

Figure 6. A screenshot of the GORBI web site. Predictions can be browsed in three ways, and any of their combination: 1) query using a Gene
Ontology (GO) accession number (e.g. 6418 for ‘‘tRNA aminoacylation for protein translation’’); alternatively, one can browse the ‘‘Gene Ontology
DAG’’ (insert A) to find interesting GO terms, 2) query using an organism’s NCBI taxonomy ID (e.g. 288681 for Bacillus cereus E33L); alternatively, one
can browse the ‘‘Taxonomy tree’’ (insert B) to find the NCBI taxonomy IDs of interesting organisms, 3) query using protein identifiers: NCBI Gene ID,
UniProtKB protein ID, RefSeq ID, UniRef ID, UniParc, or EMBL ID. The results (insert C) list NCBI taxonomy ID and the name of the organism, Entrez
Gene ID, UniProt ID that links to the corresponding protein’s page in the UniProt Knowledge Base, GO accession number, the name and the expected
precision for the prediction.
doi:10.1371/journal.pcbi.1002852.g006
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Orthologs-only model outperforms paralogs-only model
The OMA algorithm infers paralogs (i.e., non-orthologs) among

genes linked as the best bidirectional hits in the respective

genomes: a witness to non-orthology breaks the link between two

genes [35]. Because only one witness is enough to break the

orthologous relationship, the OMA algorithm produces ortholo-

gous groups with high specificity [36]. As a trade-off, the set of

inferred paralogs might contain pairs whose orthologous link was

erroneously broken; the probability for this to happen increases

with the addition of new genomes (A. Altenhoff, personal

communication). Therefore, our set of paralogs might contain

orthologs that were misclassified as paralogs.

Even so, when we enriched clique-only annotation models with

the inferred paralogs, predictive accuracy increased less than when

we enriched clique-only annotation models with the missing

orthologs (Figure 2, models c and b, respectively). We obtained

these results despite enriching with a larger number of paralogous

pairs than orthologous pairs: it is not the number of added pairs

that improves the predictive accuracy, but the genome they are

located in.

Experimental validation shows that the model’s
performance estimate is realistic

An important output of any computational annotation model is

an estimate of confidence for the annotations: it can subsequently

be used to guide decisions about experimental validation. In fact,

one project that provides a framework for the exchange of

information between the computational and experimental com-

munities is COMBREX [37,38]. To meaningfully contribute to

growing resources such as COMBREX, we wanted to evaluate

whether our annotation model provides realistic estimates of

confidence for the individual annotations.

Probing growth profiles of knockout E. coli mutants with sub-

lethal concentrations of antibiotics is an established method of

functional annotation [39,40]. Here, we experimentally validate

whether a gene is involved in the predicted Biological Process by

growing the respective knockout E. coli mutant in a medium

containing the antibiotic that targets the Biological Process we

predicted. The experimental results support the estimates of

Precision obtained from a cross-validation procedure, serving as a

proof of principle that our phyletic profiling-based model is useful

when searching for novel functions of poorly annotated genes in a

microbiology lab.

Our annotation model assigns GO terms from across the GO

hierarchy, for both general and specific terms. Overall, more

general terms tend to have a higher cross-validation Area Under

the Precision-Recall Curve (AUPRC) (Figure S3 in Text S1) and

consequently the annotations assigned with these terms are more

likely to be correct.

The AUPRC scores such as the one we use serve as a test of the

internal consistency of the model. On the one hand, the model

captures the similarities of the phyletic profiles of the OMA cliques

(and the enriched OMA cliques) of orthologs; on the other hand,

Figure 7. Functional coherence of GO annotations. Each panel presents the results of evaluation for the annotations inferred from A) 30%, B)
50%, C) 70%, and D) 90% of OMA members. We propagated the annotations available for the OMA group members in the 2008-01-16 UniProt-GOA
release to unannotated group members, and evaluated the predictions with the newly arrived annotations in the more recent 17-10-2011 UniProt-
GOA release.
doi:10.1371/journal.pcbi.1002852.g007
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the model captures the GO terms assigned to the OMA cliques of

orthologs. For a given GO term, the AUPRC scores will be low if

the phyletic profiles’ features cannot be used to transfer the

function between the profiles. Thus, we make no prior assump-

tions whether a GO term at a certain level of specificity can be

transferred across profiles, but rather infer this from the data itself

in a systematic manner.

An experimenter can focus on more general or more specific

GO terms depending on the trade-off of reported Precision and

the cost/time required of experiments; when using the GORBI

Web site, GO terms can be selected depending on their position in

the Gene Ontology hierarchy (Figure 6, insert A).

To facilitate the use of the generated computational annotations,

we provide them in a Web site GORBI (http://gorbi.irb.hr/) where

each prediction is accompanied by the annotation model’s estimate

of confidence.

Conclusions
We contribute a solution for computational annotation of genes

that utilizes a distinction between two types of homologs—

orthologs and paralogs—to yield an innovative annotation model:

phyletic profiles derived from cliques of orthologs enriched with

both orthologs and paralogs have shown the best predictive

accuracy. Our results are in line with related recent research: while

it is generally accepted that pairs of orthologs have a lower rate of

functional divergence, the divergence in paralogous pairs is not as

strong as the standard model would imply [17].

In addition, we performed validation experiments in knockout

mutants of E. coli, showing that our annotation model reports

realistic measures of predictive performance. The agreement with

the experimental results implies that our functional annotations—

and the corresponding confidence estimates—can be used to

narrow the search space for potential function candidates and

thereby help to bridge the widening gap between the sequenced

and characterized proteins.

For successful annotation of newly sequenced proteins, we need

contributions from both the computational community—a large

number of credible annotations—and the experimental commu-

nity—validating the most interesting computational annotations.

In turn, the validated findings from the wet-lab can be fed into the

computational annotation pipelines, helping to propel a virtuous

circle that increases the number of experimentally annotated

genes.

Our research aims to contribute to the understanding of the

deluge of data we face, whether from complete microbial genomes

for which we provide annotation predictions (http://gorbi.irb.hr/),

or from the metagenomics projects, in particular the emerging

human microbiomes, to which we can apply our annotation model.

Materials and Methods

Annotation data
We downloaded all annotation data from the FTP site of the

UniProt-GOA database [41].

We used the Gene Ontology (GO) vocabulary for functional

annotation [28]. We included all annotations assigned by a curator

(evidence codes EXP, IMP, IGI, IPI, IEP, IDA, ISS, RCA, IC,

NAS, TAS), and from the non-curated annotations (evidence

code IEA), we included those inferred from UniProtKB key-

words, UniProt Subcellular Location terms, Enzyme Commission

numbers, and InterPro (reference codes GO_REF:0000004,

GO_REF:0000023, GO_REF:0000003, and GO_REF:0000002,

respectively). Despite not being curated, a recent report showed

these electronic annotations are of high quality, in particular for

the only analysed Prokaryote, E. coli [42 and Figure S7 in Text S1]

We express the specificity (opposite of generality) of a GO term

GOi with respect to its Information Content:

Information Content(GOi)~{log2(freq(GOi)),

where freq(GOi) is the frequency of GOi among all annotations for

the twelve Reference genomes [43].

The OMA algorithm and the OMA database
The OMA algorithm is a graph-based method of orthology

inference [35]. Roth et al. provide full details of the algorithm, and

we summarize the main points relevant to our work. The

algorithm starts with an all-against-all sequence alignment:

proteins from two species are connected if they are best

bidirectional hits, within a confidence interval, in the compared

species. The connections between a pair of proteins are broken

when one of them is the best bidirectional hit with one of the

proteins in a connected pair in some third species, and the other is

the best bidirectional hit with the second protein in the same pair;

the broken pairs are inferred paralogs. The remaining connections

are inferred orthologs. Finally, OMA cliques of orthologs are sub-

graphs where all proteins are connected by orthologous relation-

ships (Figure 1).

In this work, we only use OMA cliques that group at least 10

members.

The OMA algorithm is available as a stand-alone version; the

results can also be browsed on the OMA web site [44].

Annotating OMA cliques of orthologs
Because one essential component of our work is annotating

OMA cliques of orthologs based on the proteins they contain, we

first checked whether OMA cliques contain proteins with the same

function. First, unannotated OMA members were labelled with

the GO terms of annotated OMA members at four thresholds: if

30, 50, 70, or 90% of OMA members have the respective function.

To assign these labels, we used only annotations available in the

16-01-2008 UniProt-GOA release.

Next, we checked the annotations in the more recent 17-10-

2011 UniProt-GOA release. For each unannotated protein, we

consider the labelled function to be confirmed if the protein holds

the respective annotation in the more recent release; we consider

the labelled function to be rejected if the protein holds the same

annotation alongside a ‘NOT’ qualifier (explicit rejection) or a new

annotation that is not the propagated one (implicit rejection). To

make a more robust measure, we summarize the confirmed and

rejected annotations for each GO term. We named this measure

‘Coherence of a GO term.’ More formally,

Coherence~
DCGOi

D
DCGOi

DzDRGOi
D

where CGOi
is the set of confirmed annotations associated with

term GOi and RGOi
is the set of rejected annotations associated

with term GOi. We account for the definition of the GO: the

assignment of any GO annotation assumes the assignment of all

the GO parent terms.

This is a conservative estimate of Coherence: we consider as

rejected an annotation that might not have been added to the

database yet. Annotations are continuously being added to

UniProt-GOA database, and the annotation update interval for

a gene can be as long as 12 years [42]. To compensate for this bias,
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we evaluated coherence on a three-year interval, as most genes in

E. coli are updated within that time frame.

For each GO term, the functional coherence depends on the

imposed annotation threshold (Figure 7): when a larger fraction of

OMA members in 2008 supported the GO annotation, we found

more newly annotated proteins that support this propagated GO

annotation in 2011. The drawback of the increasing threshold was

a smaller number of GO terms that can be used in annotation and

consequently a smaller number of annotated OMA groups used in

training the annotation model. We chose the threshold of 50% as a

compromise: for most GO terms, the newly annotated proteins are

in accordance with the propagated functions—fraction of correctly

predicted newly arrived annotations is greater than 0.9—and we

are left with enough specific GO terms for functional annotation

(Figure 7, panel C): 422 GO terms from the Biological Process

ontology, 48 GO terms from the Cellular Component ontology,

and 264 GO terms from the Molecular Function ontology. We use

the 50% threshold throughout this work.

Phyletic profiles
The phyletic profile of an OMA clique of orthologs is encoded

as a vector of binary values. The vector’s length is 998 items—the

number of prokaryotic genomes included in our work. Each

position in the vector indicates the presence or absence of an

OMA clique member in the respective genome. There are 64052

annotated and unannotated OMA phyletic profiles in our dataset

(Figure 1).

We enriched the phyletic profiles, first by connecting the

missing orthologs to OMA clique members (Figure 1, full lines),

and second by connecting the paralogs (Figure 1, dashed lines) to

OMA clique members. Orthologs include one-to-one orthologs,

one-to-many orthologs, many-to-one orthologs, and many-to-

many orthologs.

Machine learning algorithms
The Clus-HMC [7] algorithm builds decision trees for

hierarchical multi-label classification (HMC). In contrast to

ordinary classification trees [45], which can be used for single-

label annotation, Clus-HMC is able to deal with multiple,

hierarchically organized class labels, such as terms from the Gene

Ontology. It builds decision trees for HMC by extending the

standard decision tree learning algorithm: It splits the training data

into subsets based on attribute values, in order to minimize the

weighted sum of variances for all class labels within the subsets

resulting after the split [7].

In this weighted sum, a parameter w0 can be used to place more

weight on either the more specific, or the more general GO terms.

The default value of this parameter is 0.75, which places more

weight on more general terms. Changing the default value of the

w0 parameter to place more weight on the specific terms will

favour them, possibly trading off the accuracy of the more general

terms for a gain in accuracy of the more specific terms. To test for

possible gain, we experimented with different values of the w0

parameter to place higher weight on either the more general GO

terms (default value, w0 = 0.75; w0 = 0.5) or on the more specific

GO terms (w0 = 1/0.75 = 1.33; w0 = 1.75; w0 = 2.0; w0 = 3.0).

Clus-HMC-Ens proved to be robust to the value of the w0

parameter (Figure S8 in Text S1): we did not record a significant

change in the AUPRC values (p-value was not lower than 0.28 in

the five tested values of the w0 parameter, Wilcoxon signed-rank

test), and we therefore used the default value in all our

computational experiments.

In addition, the hierarchy of class labels introduces dependen-

cies between the classes: Clus-HMC is aware of the hierarchical

relationships between the multiple labels and uses this information

to improve predictive performance.

The Clus-HMC algorithm was extended to an ensemble setting

(Clus-HMC-Ens) [18], where a forest of decision trees for HMC is

learned: The predictions of the individual trees are combined to

obtain the overall prediction of the ensemble. Clus-HMC-Ens

implements, among other methods, the Random Forest (RF)

ensemble [19] approach, where the individual trees are construct-

ed by using a randomized version of Clus-HMC. Each tree is

constructed from a different sample of the training dataset: The

bagging (Bootstrap aggregating) methodology of resampling the

dataset [46] is used to construct the different samples. One

bootstrap sample consists of the same number of examples as the

original dataset, but they are randomly drawn with replacement;

consequently a bootstrap sample contains about two thirds of

unique examples. A model—Clus-HMC decision tree—is pro-

duced from each of the bootstrap samples.

When estimating the classification error, out-of-bag estimates

are calculated. The examples that were omitted from the bootstrap

sample—one third of the original dataset—are used in calculating

Precision, Recall, and Area Under the Precision-Recall Curve

(AUPRC). The estimates are based on the random sample, and

the measures are therefore unbiased. To check whether adding

paralogs improves the functional annotation model regardless of

the machine learning algorithm used, we inferred functional

annotation models with the standard approach used in phyletic

profiling: transfer of function via pairwise distance measures

between phyletic profiles, as implemented in a kNN classifier

(Figure S9 in Text S1). The conclusions presented above do not

change: the model that includes both orthologs and paralogs

outperforms the model that includes only orthologs. Because Clus-

HMC-Ens outperforms kNN in computational efficiency and

predictive accuracy, we used Clus-HMC-Ens throughout this

work.

Evaluating the functional annotation models
We compare models of functional annotation using Precision-

Recall curves: in the Precision-Recall space, Recall is on the x-axis,

and Precision is on the y-axis. Traditionally, Precision and Recall

are defined for binary classification: an instance either has or does

not have the label; in our case, each OMA clique either has or

does not have a GO annotation. Precision and Recall are defined

for each GO term:

Pr ecision~
DTPGOi

D
DTPGOi

DzDFPGOi
D
, Re call~

DTPGOi
D

DTPGOi
DzDFNGOi

D

where TPGOi
is the number of correctly predicted true annotations

(‘‘True Positives’’), FPGOi
is the number of incorrectly predicted

true annotations (‘‘False Positives’’), and FNGOi
is the number of

missed true annotations (‘‘False Negatives’’).

Precision stands for the fraction of correctly predicted examples

out of all the predictions, and Recall stands for the fraction of

correctly predicted examples out of all known to be true.

Here, we are dealing with a multi-class problem: each OMA

clique can be annotated with multiple GO terms. The classifier we

are using is adapted for such a problem and assigns a probability

that each OMA group is assigned each of the GO terms. By

varying a cut-off for the probability form 1.0 to 0.0, we are

relaxing the stringency of the predictions: an increasing number of

OMA groups are assigned an increasing number of GO terms.

Fixing this cut-off at the three values and calculating Precision and

Recall for each GO term created visualizations in Figure 3.
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The probabilities allow us to have a ranking of GO annotation

predictions for OMA cliques and proteins therein. In addition to

the ranking, we wanted to have an intuition for the number of

candidates we need to experimentally examine in order to get

confirmed annotations. Therefore, we translated the probabilities

to Precision for each GO term. Similarly as above, we varied the

cut-off for the probability, and calculated the corresponding

Precision for each GO term at each probability cut-off: out of all

the OMA clique annotations that pass the threshold, we counted

the number of true positives, and the number of false positives.

To compare models in Figure 2, we used a single measure of

performance that combines Precision and Recall: Area Under the

Precision-Recall Curve (AUPRC). To calculate AUPRC, we first

varied the probability cut-off from 1.0 to 0.0 and obtained the

Precision-Recall curve. We then calculated the area that is

enclosed between the Recall axis and the curve. The closer

AUPRC is to 1.0, the better the model.

Bacterial strains, growth conditions, and antibiotic
treatments

All deletion mutants used herein were derived from wild-type

sequenced Escherichia coli MG1655 by P1 transduction. P1 phage

was grown on a series of Keio collection deletion mutants listed in

Table S1. Successfully transduced mutants were selected on LB

plates supplemented with kanamycine.

Bacteria were grown in LB broth at 37uC, to the exponential

phase (OD600 = 0.2–0.3). Viable cell counts were estimated by

plating serial dilutions on LB plates, as well as LB plates

supplemented with 400 ug/mL kasugamycine (inhibitor of trans-

lation initiation), 4 ug/mL nalidixic acid (causes severe DNA

damage, including double strand breaks), and 3 ug/mL ampicillin

(inhibitor of cell wall synthesis). Plates were incubated overnight at

37uC. The concentrations of antibiotics used in this study were

selected as the concentrations that lead to ,10% survival of the

wild type E.coli.

Sources of data and software

1. The orthology and paralogy data from the OMA database,

May 2011 version was kindly provided by A. Altenhoff.

2. The cross-references for the various gene/protein identifiers

(UniProt, GenBank, Entrez GeneID) were downloaded from

the NCBI FTP site [http://www.ncbi.nlm.nih.gov/Ftp/].

3. GO annotations were downloaded from the UniProt-GOA

FTP site. We used the 2008-01-16 and the 2011-10-17

UniProt-GOA releases to evaluate the consistency of OMA

group annotations, 2011-10-17 UniProt-GOA release to create

all the annotation models, and 07-02-2012 UniProt-GOA

release to estimate the frequency of occurrence of a GO term in

the UniProt-GOA database [http://www.ebi.ac.uk/GOA/].

4. The GO definition was downloaded from the GO FTP site

[http://www.geneontology.org/GO.downloads.ftp.cvs.shtml].

5. Final dataset files in ARFF format, as given to the Clus-HMC-

Ens algorithm (Datasets S1 and S2).

6. The Clus-HMC-Ens algorithm is available for download as

part of the predictive clustering framework Clus [http://www.

cs.kuleuven.be/,dtai/clus/].
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Dataset S1 The training dataset files in ARFF format, as given to

the Clus-HMC-Ens algorithm, for the Biological Process, Cellular

Component, and Molecular Function ontology.

(ZIP)

Dataset S2 The unlabelled dataset files in ARFF format, as given

to the Clus-HMC-Ens algorithm, for the Biological Process,

Cellular Component, and Molecular Function ontology.

(ZIP)

Dataset S3 The settings files as given to the Clus-HMC-Ens

algorithm.

(ZIP)
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18. Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H (2008) Decision trees for

hierarchical multi-label classification. Machine Learning 73: 185–214.
doi:10.1007/s10994-008-5077-3.

19. Breiman L (2001) Random Forests. Machine Learning 45: 5–32. doi:10.1023/

A:1010933404324.
20. Maimon O, Rokach L, editors (2005) Data Mining and Knowledge Discovery

Handbook. New York: Springer-Verlag. p. doi:10.1007/b107408.
21. Janssen P, Goldovsky L, Kunin V, Darzentas N, Ouzounis CA (2005) Genome

coverage, literally speaking. The challenge of annotating 200 genomes with

4 million publications. EMBO reports 6: 397–399. doi:10.1038/sj.embor.
7400412.

22. Butland G, Zhang JW, Yang W, Sheung A, Wong P, et al. (2006) Interactions of
the Escherichia coli hydrogenase biosynthetic proteins: HybG complex

formation. FEBS letters 580: 677–681. doi:10.1016/j.febslet.2005.12.063.
23. McIntosh BK, Renfro DP, Knapp GS, Lairikyengbam CR, Liles NM, et al.

(2012) EcoliWiki: a wiki-based community resource for Escherichia coli. Nucleic

acids research 40: D1270–7. doi:10.1093/nar/gkr880.
24. Ladner JE, Obmolova G, Teplyakov A, Howard AJ, Khil PP, et al. (2003)

Crystal structure of Escherichia coli protein ybgI, a toroidal structure with a
dinuclear metal site. BMC structural biology 3: 7. doi:10.1186/1472-6807-3-7.

25. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. (2011)

Enterotypes of the human gut microbiome. Nature 473: 174–180. doi:10.1038/
nature09944.

26. Tamura M, D’haeseleer P (2008) Microbial genotype-phenotype mapping by
class association rule mining. Bioinformatics (Oxford, England) 24: 1523–1529.

doi:10.1093/bioinformatics/btn210.
27. Wapinski I, Pfiffner J, French C, Socha A, Thompson DA, et al. (2010) Gene

duplication and the evolution of ribosomal protein gene regulation in yeast.

Proceedings of the National Academy of Sciences of the United States of
America 107: 5505–5510. doi:10.1073/pnas.0911905107.

28. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium.

Nature Genetics 25: 25–29. doi:10.1038/75556.

29. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. (2011) Database
resources of the National Center for Biotechnology Information. Nucleic Acids

Research 39: D38–51. doi:10.1093/nar/gkq1172.

30. Altenhoff AM, Schneider A, Gonnet GH, Dessimoz C (2011) OMA 2011:

orthology inference among 1000 complete genomes. Nucleic acids research 39:

D289–94. doi:10.1093/nar/gkq1238.

31. Studer RA, Robinson-Rechavi M (2009) How confident can we be that

orthologs are similar, but paralogs differ? Trends in Genetics: TIG 25: 210–216.

doi:10.1016/j.tig.2009.03.004.

32. Nehrt NL, Clark WT, Radivojac P, Hahn MW (2011) Testing the ortholog

conjecture with comparative functional genomic data from mammals. PLoS

computational biology 7: e1002073. doi:10.1371/journal.pcbi.1002073.

33. Thomas PD, Wood V, Mungall CJ, Lewis SE, Blake JA (2012) On the Use of

Gene Ontology Annotations to Assess Functional Similarity among Orthologs

and Paralogs: A Short Report. PLoS computational biology 8: e1002386.

doi:10.1371/journal.pcbi.1002386.

34. Rost B (1999) Twilight zone of protein sequence alignments. Protein engineering

12: 85–94.

35. Roth ACJ, Gonnet GH, Dessimoz C (2008) Algorithm of OMA for large-scale

orthology inference. BMC bioinformatics 9: 518. doi:10.1186/1471-2105-9-518.

36. Altenhoff AM, Dessimoz C (2009) Phylogenetic and functional assessment of

orthologs inference projects and methods. PLoS computational biology 5:

e1000262. doi:10.1371/journal.pcbi.1000262.

37. Roberts RJ, Chang Y-C, Hu Z, Rachlin JN, Anton BP, et al. (2011)

COMBREX: a project to accelerate the functional annotation of prokaryotic

genomes. Nucleic acids research 39: D11–4. doi:10.1093/nar/gkq1168.

38. Roberts RJ (2011) COMBREX: COMputational BRidge to EXperiments.

Biochemical Society transactions 39: 581–583. doi:10.1042/BST0390581.

39. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, et al. (2011) Phenotypic

landscape of a bacterial cell. Cell 144: 143–156. doi:10.1016/j.cell.2010.11.052.

40. Deutschbauer A, Price MN, Wetmore KM, Shao W, Baumohl JK, et al. (2011)

Evidence-based annotation of gene function in Shewanella oneidensis MR-1

using genome-wide fitness profiling across 121 conditions. PLoS genetics 7:

e1002385. doi:10.1371/journal.pgen.1002385.

41. Barrell D, Dimmer E, Huntley RP, Binns D, O’Donovan C, et al. (2009) The

GOA database in 2009–an integrated Gene Ontology Annotation resource.

Nucleic acids research 37: D396–403. doi:10.1093/nar/gkn803.
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