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Abstract

There is a rising need for automated analysis of news text, and topic models
have proven to be useful tools for this task. However, as the quality of the
topics induced by topic models greatly varies, much research effort has been
devoted to their automated evaluation. Recent research has focused on topic
coherence as a measure of a topic’s quality. Existing topic coherence measures
work by considering the semantic similarity of topic words. This makes them
unfit to detect the coherence of transient topics with semantically unrelated
topic words, which abound in news media texts. In this paper, we introduce
the notion of document-based topic coherence and propose novel topic coher-
ence measures that estimate topic coherence based on topic documents rather
than topic words. We evaluate the proposed measures on two datasets contain-
ing topics manually labeled for document-based coherence, on which the pro-
posed measures outperform a strong baseline as well as word-based coherence
measures. We also demonstrate the usefulness of document-based coherence
measures for automated topic discovery from news media texts.

Keywords: Topic models, Topic coherence, Topic model evaluation, Text
analysis, News text, Explorative analysis

1. Introduction

News media, including broadcast, the press, and online news, in many ways
mold our perception of the world and influence our decisions. According to a
recent study by Newman et al. (2016), online news, including online news sites,
news aggregators, search engines, social media, and increasingly also messaging
apps are now the predominant source of news, while the majority of consumers
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discover news stories through algorithms rather than editors or journalists. The
increased consumption of online news in textual form has paralleled a growing
interest in the use of natural language processing (NLP) and machine learning
for automated analysis of news texts. These technologies enable users to derive
information from large amounts of text data and target diverse components of
the news media ecosystem, from providing end-consumers with more efficient
and personalized access to news (Steinberger et al., 2013; Vossen et al., 2014;
Li et al., 2011) to support for news production and dissemination (Clerwall,
2014; Popescu & Strapparava, 2017) to content analysis (Flaounas et al., 2013;
Neuendorf, 2016).

One important NLP task in the context of news text analysis is the unsuper-
vised discovery of topics from large volumes of texts. Topic models (Blei et al.,
2003; Blei, 2012) have proven to be extremely useful tool for this task. A topic
model is a probabilistic model of text that, given a set of text documents as in-
put, produces word-topic and document-topic probability distributions. Topics
are expected to correspond to concepts and can be used as topical summaries
or features for various downstream NLP tasks. Table 1 shows an example of
topics produced by running a topic model on a corpus of US news from 2015.
The main advantage of topic models is that they are unsupervised and require
a minimum of linguistic processing. However, the downside is that the quality
of the topics may greatly vary – an issue compounded by the stochastic and
approximate nature of the topic model inference.

There are a number of ways to characterize the quality of model-derived
topics (Boyd-Graber et al., 2014). Recent research has focused on the notion
of topic coherence, loosely defined in terms of topic’s correspondence to a con-
cept (Newman et al., 2010). The existing approaches to topic coherence are
word-based, assuming that topic coherence correlates with the coherence of the
words assigned to that topic. Consequently, the coherence of model topics is as-
sessed and measured based on top-ranked topic words. As an example, consider
the model topics in Table 1. The first two topics would likely be considered
coherent, as their top-ranked words correspond to the concepts of “Economy”
and “Sport”, respectively. Topics 3 and 4 appear less coherent when judging by
their top-ranked words, while the last topic, labeled “noise”, is an incoherent
topic composed of unrelated words.

While the assumption that topic coherence correlates well with the coher-
ence of the top-ranked topic words is intuitive and certainly also true in many
cases, we argue that it nonetheless provides a partial view of the notion of topic
coherence. In particular, we note that word-topic distribution constitutes just a
subset of the topic-related information contained in the model, and that not all
topics will lend thesmelves to a semantic interperetation based on topic words
alone. A case in point are topics 3 and 4 in Table 1. Unlike “Economy” and
“Sport”, which are general and enduring topics, topics 3 and 4 are contingent
and transient – a trait typical of topics from a newspaper corpus. At the level
of topic words, the topics appear incoherent, as the words are semantically
dissimilar. However, another important piece of information, thus far mostly
overlooked in topic coherence analysis, is the document-topic distribution. In
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Topic label Top-10 topic words

1. Economy rate, economy, growth, fed, dropped, low, market,
reserve, price, unemployment

2. Sport team, game, players, season, sports, league, fans,
football, bowl, pick

3. US DHS shutdown boehner, homeland, block, dhs, mcconnell, pass, il-
legal, speaker, border, deportation

4. ISIS war authorization ground, veto, resolution, corker, latino, bob, draft,
review, capitol, pass

5. (noise) paper george animals richard dog pledge era nothing
sometimes cooperation

Table 1: Example topics derived from a corpus of news texts compiled by Korenčić et al.
(2015), comprising about 24 thousand US news articles from 2015. Each topic is characterized
by ten words with the highest word-topic probability. The topic labels were assigned manually
based on inspection of documents with highest document-topic probability.

particular, if a human annotator inspects the documents associated with the two
topics, she will likely recognize the topics as coherent and semantically interpret
them as “US DHS shutdown” and “ISIS war authorization”, respectively. This
example illustrates that, for the transient topics corresponding to news stories,
the topic words provide insufficient information to assess the coherence. In such
cases, the topic coherence can often be more easily assessed by inspecting the
documents associated with the topic.

Motivated by the above observations, we propose document-based topic co-
herence as an alternative to word-based topic coherence. Document-based topic
coherence can better capture topics’ semantic interpretability in cases when the
topics are transient and contingent, as is often the case with news topics. The
main result of our work is a novel method for calulating document-based topic
coherence. The method consists of three steps: (1) the selection of topic-related
documents, (2) document vectorization, and (3) computation of a coherence
score from the document vectors using either distance-based, graph-based, or
density-based methods. We consider a number of options for each of the three
steps, obtaining different document-based topic coherence measures. We exper-
imentally evaluate the measures on two datasets with topics obtained using
a standard Latent Dirichlet Allocation topic model, manually annotated for
document-based coherence. We show that a graph-based coherence measure
performs the best, outperforming a strong baseline document-based method.
Furthermore, we experiment with measuring document-based coherence using
state-of-art word-based coherence measures, demonstrating that these measures
fail to estimate document-based coherence. A qualitative analysis of topics
based on word- and document-based coherence reveals that document- and
word-based measures can complement each other and that it therefore may be
beneficial to combine these two types of measures. Lastly, in a proof-of-concept

3



study, we demonstrate the usefulness of document-based coherence measures for
the task of semi-automated topic discovery.

In summary, the contribution of our work is threefold: (1) we introduce the
notion of document-based topic coherence and demonstrate its adequacy for
news media texts, (2) we propose novel, document-based topic coherence mea-
sures, and (3) we compile and make available two datasets1 of topics manually
annotated with document-based topic coherence scores, as well as the code2 and
the resources necessary to replicate our experiments.

The remainder of the paper is set out as follows. The next section provides
background on topic models and an overview of the related work, including ap-
plications on news texts and topic model evaluation. In Section 3, we elaborate
the notion of the document-based coherence and propose methods for comput-
ing document-based coherence measures. In Section 4, we evaluate and analyze
the document-based coherence measures, while in Section 5, we compare them
against state-of-art word-based coherence measures. In Section 6, we describe
the proof-of-concept for the application of document-based coherence measures
to semi-automated topic discovery. In Section 7, we conclude the paper and
outline future work.

2. Background and Related Work

In this section, we give a brief description of topic models, followed by an
overview of related work. There are three threads of research relevant to our
work: applications of topic models for news text analysis, evaluation of topic
models, and topic coherence evaluation.

2.1. Topic Models

Topic models (Blei et al., 2003) are generative probabilistic models of text
with numerous text analysis applications, including exploratory analysis of text
collections (Grimmer, 2009; Chuang et al., 2012), information retrieval (Wei &
Croft, 2006), feature extraction (Chen et al., 2011), and natural language pro-
cessing tasks, such as word sense disambiguation (Boyd-Graber et al., 2007b)
and sentiment analysis (Lin & He, 2009). The structure of a topic model is de-
fined by a set of random variables and relationships among them, which together
define the probabilistic process of text generation. Typically, the variables of
interest are topics, defined as probability distributions over words in the dictio-
nary, and document-topic distributions, defining topic salience within each of
the documents.

The most widely used topic model is Latent Dirichlet Allocation (LDA),
proposed by Blei et al. (2003). This model posits a fixed number of topics, K,
with each topic being a probability distribution over words in the dictionary.
Topics are represented by a word-topic probability matrix φ, with φij being

1https://rebrand.ly/doc-coh-dataset
2https://rebrand.ly/doc-coh-code
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the probability of word j in topic i. Similarly, documents are represented by a
document-topic probability matrix θ, with θij being the probability of topic j
in the i-th document. The process of text generation unfolds as follows. First,
each topic φi is sampled as a multinomial distribution from a Dirichlet prior

distribution with parameter ~β. Then, for each document Di, θi is sampled as
a multinomial distribution from a Dirichlet prior distribution with parameter
~α. Lastly, for each word within the i-th document, a topic zij is sampled from
θi, and then the word is sampled from the topic φzij . This generative process
is summarized by the following probabilities for the word-topic matrix and the
document collection:

p(φ) =

K∏
i=1

Dir(φi|~β)

p(Di) = Dir(θi|~α)
∏
j

Mult(zij |θi)Mult(wij |φzij )

Text documents D = {Di} are the observed variables of the model, and
inference algorithms are used to estimate the word-topic distributions p(φ|D),
document-topic distributions p(θ|D), and assignments of topics to words p(z|D).
Typically, the inference is performed using approximate inference methods, such
as Gibbs sampling (Griffiths & Steyvers, 2004) and variational inference (Blei
et al., 2003; Hoffman et al., 2010). Various extensions of the basic LDA model
with a richer structure have been proposed in the literature, including those that
model text document metadata (Mimno & McCallum, 2012) and relationships
between topics (Blei & Lafferty, 2007), as well as models with a variable number
of topics (Blei, 2012).

All the coherence measures considered in this article use either the word-topic
probability matrix φ or the document-topic probability matrix θ to represent
topics as lists of topic-related words or documents, respectively, and use this
representation to compute the coherence of topics.

While LDA and its variants are certainly the most widely used topic models
today, it should be noted that generative models are not the only approach to
topic modeling. One alternative is matrix factorization models, such as latent se-
mantic analysis (LSA) (Deerwester et al., 1990) and non-negative matrix factor-
ization (NMF) (Lee & Seung, 1999). These models derive a set of latent factors
by approximating the document-word matrix as a product of document-factor
and factor-word matrices. The latent factors can be viewed as corresponding to
topics, with the semantics of factors defined by document-factor or factor-word
weights. Relevant for the work presented in this paper is the fact that coherence
measures studied in this paper can also be applied to such factor-based topics,
represented by either document-factor or factor-word weights.

2.2. Topic Models for News Text Analysis

Topic models have been applied to diverse news text processing tasks, rang-
ing from exploratory analysis and scientific news analysis to commercially viable
applications such as news recommendation, summarization, and retrieval.

5



Exploratory analysis. These methods use topic models to create visualizations
and browsing interfaces that enable users to gain insights into collections of news
text. One approach to topic-based exploratory news analysis is to represent ob-
jects such as news outlets (Chuang et al., 2014) or storylines (Ahmed et al.,
2011) in terms of topic weights. Such representations can be used to create
informative topic-based object descriptions or to search for topically similar ob-
jects. Topic-document probabilities can be used to visualize temporal salience
of topics, as a means of news corpus exploration (Newman et al., 2006) or for de-
tecting and visualizing events (Dou et al., 2012). Furthemore, the probabilistic
topic modeling framework can be used to extract relationships between mod-
eled objects; for instance, Newman et al. (2006) treat extracted named entities
as words, calculates topic-entity and entity-entity relatedness from conditional
probabilities and creates graph-based visualizations. A recent survey of text
visualization techniques by Kucher & Kerren (2015) reports a large interest for
methods based on topic modeling.

Content analysis. Topic models have established themselves as a useful tool for
quantitative content analysis within computational social science (Jacobi et al.,
2016), owing to the fact that they can scale up the analysis to large docu-
ment collections and alleviate the labor-intensive process of manual document
categorization (document coding). In the context of news media, two typical
use cases are media agenda (McCombs & Shaw, 1972) and news framing (Ent-
man, 1993) analyses. These applications exploit the fact that models’ topics
often correspond to news issues. For instance, Kim et al. (2014) demonstrated
the use of topic models for a comparative analysis of media agenda and public
agenda, by comparing the salience of topics from news text against topics from
user-generated texts. Similarly, Jacobi et al. (2016) used topic models to first
identify the issues of interest and then analyzed how the framing of these issues
has changed over time. However, as the correspondence between topics and
news issues might in some cases be weak, Korenčić et al. (2015) proposed to
address this problem by a semi-supervised method for media agenda analysis
consisting of news issue discovery and measurement of issue salience. Because
topic models are receiving increased interest in the social science community,
Grimmer & Stewart (2013) pointed to a need for new methods for validating
these tools before they can be adopted as standard. We see measures of topic
coherence proposed in this paper as an important step toward that goal.

Other applications. Topic models have been used for various other news text
analysis tasks, either by using topic-document or topic-word probabilities to
construct or enrich features of the modeled objects or by using the model to
directly calculate probabilistic relationships between them. For example, topic
models have been used for news recommendation, by constructing topical fea-
tures of both user preferences and news texts (Garcin et al., 2013; Li et al.,
2014). Gao et al. (2012) proposed an event summarization method that uses a
cross-collection topic model of news articles and tweets to produce summaries by
ranking article sentences and tweets based on conditional probabilities derived
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from the model. Shahaf & Guestrin (2012) proposed a system for interactive
discovery of news storylines, represented as temporal sequences of news articles
connecting two endpoint articles, where each news article is represented using
features constructed from topic models. Yi & Allan (2009) experimented with
enhancing news information retrieval using topic models for query expansion
and the construction of a document language model. The above studies show
that topic models outperform or perform on par with the state-of-art systems
across a variety of use cases.

2.3. Evaluation of Topic Models

Topic models are only as useful as the quality of the topics they produce. As
noted in the introduction, the downside of topic models is that the quality of the
topics depends on a range of factors. First, topic modeling involves a number of
design decisions, including which topic model structure and inference algorithm
to use, how to set the model hyperparameters, and how to preprocess the text.
Second, due to the stochastic nature of the inference process, the quality of
the topics can greatly vary even for a single model. Automated topic model
evaluation help in addressing both issues: it can be used to narrow down the
set of possible design options and to identify high-quality models from among
several runs.

The approaches to topic model evaluation may be divided into extrinsic
(task-dependent) and intrinsic (task-independent). The former approach is
used to evaluate the quality of a model in terms of how much it improves the
performance on a downstream NLP task, such as information retrieval (Wei &
Croft, 2006), word sense disambiguation (Boyd-Graber et al., 2007a), sentiment
analysis (Titov & McDonald, 2008), or word similarity and document classifi-
cation (Stevens et al., 2012). In contrast, the intrinsic approach evaluates the
quality of the produced topics irrespective of an application. In this paper, we
focus on automated intrinsic evaluation, which is more generally applicable than
extrinsic evaluation.

Intrinsic evaluation methods may further be divided into four main cate-
gories: measures of fit, measures of stability, measures of match with a ground
truth, and measures of topic quality. Measures of fit rely on the probabilistic
structure of topic models to compute discrepancy between the model and the
data. The most commonly used method from this category is to measure the
perplexity of held-out text data with respect to the inferred model (Blei et al.,
2003; Wallach et al., 2009). A more sophisticated method was proposed by
Mimno & Blei (2011), who measure the discrepancy between empirical proper-
ties of the learned latent variables and properties expected from the probabilistic
model structure.

Measures of stability are motivated by the variability in the inferred topics
and the fact that model stability is a desirable property in a number of applica-
tions, most notably in social sciences. Stability of a set of models is calculated
by averaging the similarity across pairs of models. Similarity can be computed
by aligning similar topics of the two models (Waal & Barnard, 2008; Koltcov
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et al., 2014; Belford et al., 2018), or by representing the models in terms of
words or documents and comparing such representations (Belford et al., 2018).

Topic model evaluation can also be framed as a matching problem, in which
model-produced topics are compared against ground-truth labels. In particular,
(Ramirez et al., 2012) proposed the evaluation of topic models as clustering algo-
rithms, by treating the topics as soft clusters. In contrast, (Chuang et al., 2013)
proposed a framework for matching model topics directly to human-compiled
concepts.

The measures of topic quality focus on computing quality scores of individual
topics, which can then be aggregated to obtain model quality scores. AlSumait
et al. (2009) defined a score of topic quality in terms of the distances between
topic-document or topic-word distributions on one side and uninformative dis-
tributions (uniform and “vacuous”) on the other. Chang et al. (2009) framed the
evaluation of topic quality as a word intrusion task: human judges were asked
to identify intruder words randomly inserted into a set of top topic words, with
the idea that, for interpretable topics, the intruders will be easier to spot. The
work of Lau et al. (2014) proposes a method to fully automate the original
word intrusion task of Chang et al. (2009). Musat et al. (2011) calculated the
“conceptual relevance” of topics, defined to measure the ease of attributing a
concept to a topic. This is achieved by mapping top-ranked topic words to
WordNet concepts and finding WordNet concepts that encompass these words,
while being as specific as possible. A special class of topic quality measures are
the topic coherence measures, described next.

2.4. Topic Coherence

Relevant to the work described in this paper is the line of research that uses
topic coherence as a measure of topic quality. This line of research was motivated
by the work of Chang et al. (2009), who proposed to measure the quality of
model topics in terms of their interpretability. Chang et al. (2009) showed that
models that fare better in predictive perplexity often have less interpretable
topics, suggesting that evaluation should consider the internal representation of
topic models and aim to quantify their interpretability.

The idea soon gave rise to a new family of methods that evaluate the se-
mantic interpretability by measuring the topic coherence (Newman et al., 2010).
These methods are word-based: top-ranked topic words are used as input for
automatic coherence calculation methods and shown to human annotators that
label topics with coherence scores. The majority of these methods calculate
topic coherence by averaging pairwise semantic similarities of the top-ranked
topic words (typically 5 or 10) or subsets thereof (Röder et al., 2015). The
experimental evaluation is usually carried out using a ranking measure or a
correlation coefficient (typically: AUC, Kendall’s τ , Spearman’s ρ, or Pearson’s
r) to assess the agreement between the calculated coherence scores and human-
annotated coherence judgments (either binary coherent/non-coherent judgments
or graded judgments on a Likert scale).

The main design decision for a coherence method that works by averaging
pairwise similarities of top-ranked topic words is the choice of the word simi-
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larity measure. Existing work uses WordNet- and Wikipedia-based word sim-
ilarity (Newman et al., 2010), pointwise mutual information (Newman et al.,
2010; Aletras & Stevenson, 2013; Lau et al., 2014), conditional word probabil-
ity (Mimno et al., 2011), distributional vectors (Aletras & Stevenson, 2013),
tf-idf (Nikolenko et al., 2015), and word embeddings (O’Callaghan et al., 2015;
Nikolenko, 2016). Instead of calculating pairwise word similarities, Rosner et al.
(2014) proposed the partitioning of the set of top-ranked topic words into sub-
sets, and then averaged the similarities of subset pairs. Röder et al. (2015)
proposed a generic framework for topic coherence measures based on aggrega-
tion of similarities of either word or subset pairs. By searching through the
framework-induced space of measures, the authors derived several novel and
efficient topic coherence measures. Two coherence methods from the literature
fall outside of the described similarity-based framework: the measure of Ram-
rakhiyani et al. (2017), which clusters the embeddings of top-ranked topic words
and approximates the coherence with the size of the largest cluster, and a set
of measures proposed by Newman et al. (2010), which work by analyzing the
results of querying a web search engine with top-ranked topic words.

The work presented in this paper falls under the category of topic coherence
methods. However, our work differs from all of the above in that we mea-
sure topic coherence by reference to documents rather than words associated
with a topic. In other words, the coherence measures we propose make use of
document-topic distributions rather than word-topic distributions. As argued
in the introduction, we hypothesize that characterizing topic coherence in terms
of documents associated with the topics may be more adequate in some cases,
especially for news media, which abounds with contingent and transient top-
ics. Therefore, unlike all the prior work on topic coherence, we evaluate the
proposed document-based coherence measures on datasets annotated specifi-
cally for document-based coherence, with topic coherence scores obtained upon
inspection of topic-related documents rather than topic-related words.

One point that deserves additional comment is the definition of topic coher-
ence. Existing work relies on operational definitions, by means of providing the
annotators with instructions on how to assign coherence scores to topics. These
instructions are descriptive and informal, based on topic’s correspondence to
a concept (Mimno et al., 2011), topic’s interpretability (Aletras & Stevenson,
2013; Rosner et al., 2014), or both (Newman et al., 2010; Nikolenko et al., 2015).
Other descriptors such as “meaningful”, “easy-to-label”, and “coherent” are of-
ten used to compound the definitions. It can be argued that the definitions that
refer to topic correspondence to a concept are essentially equivalent to those that
refer to topic interpretability, since interpretation necessarily involves concep-
tualization. With this in mind, we define a model topic as coherent if a human
annotator can recognize its correspondence to a concept. Furthemore, we note
that not all concepts can be represented by a model topic; e.g., non-topical con-
cepts such as “breaking news”, “good news”, or “bad news” cannot be expected
to emerge as topics of a topic model trained on a corpus of news articles. We
will refer to the concepts that can be represented using topic models as semantic
topics. In practice, not all topics produced by a topic model will correspond
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Figure 1: Three steps of the proposed document-based topic coherence measures.

to semantic topics. Two common types of erroneous topics are “mixed” and
“noise” topics (Boyd-Graber et al., 2014). Mixed topics are a fusion of two or
more otherwise coherent topics – the words and the documents associated with
a mixed topic are a union of words and documents of the coherent sub-topics.
Noise topics consist of random unrelated words and documents.

Technically, the work most similar to ours is that of AlSumait et al. (2009),
who proposed a measure of topic quality based on document-topic distribution
and combined it with a word-based measure to produce the final topic qual-
ity score. However, unlike AlSumait et al. (2009), we perform a quantitative
evaluation of document-based measures using the document-based measure from
AlSumait et al. (2009) as a baseline. Our evaluation procedure bears similarities
to that of Ramirez et al. (2012), as both evaluation approaches use document-
topic distributions, but whereas Ramirez et al. (2012) evaluated complete topic
models using manually labeled documents, we evaluate the individual topics by
computing their coherence scores.

3. Document-based Topic Coherence Measures

In this section, we describe the proposed document-based topic coherence
measures. The calculation of each measure comprises three main steps: (1)
selection of topic-related documents, (2) vectorization of the documents, and
(3) calculation of a coherence score based on document vectors (Figure 1).

The first step takes as input a topic and document-topic probability matrix
θ and outputs a list of documents. Top documents are selected by taking a
fixed number of documents with the highest document-topic probabilities. The
document vectorization step takes as input a list of text documents and outputs
a list of vectors. Vectorization of documents’ text is performed using standard
bag-of-words or tf-idf vectorization or by aggregating the embeddings of doc-
ument words. Finally, the vectorized documents are given as input to one of
three types of methods for coherence scoring: distance-based, density-based, or
graph-based methods. Distance-based methods aggregate pairwise document
distances, while density-based methods use a vector probability density to ap-
proximate mutual closeness of documents. Graph-based methods derive a graph
from document distances and calculate the coherence using one of several graph
property measures. We next describe in detail each of the three steps of coher-
ence measure calculation.
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3.1. Selection of Topic-Related Documents

The aim of this step is to construct a list of text documents that are repre-
sentative of a model topic – the documents that are associated with the topic in
the context of the topic model. Selecting too many documents (in the extreme
case, all the documents) will render the document list incoherent. Alternately,
selecting too few documents (in the extreme case, a single top document for the
topic) will likely make the list highly coherent.

We opt for a simple and model-independent strategy: given a topic, we select
TopDocs documents with the highest document-topic probabilities. TopDocs
is the parameter of the selection step and we optimize its value empirically.
A similar strategy has proven effective in the case of word-based coherence
measures, where selecting the top 10 words has shown to yield good results.

Recall from Section 2.1 that the document-topic distributions are represented
by the document-topic probability matrix θ, where θij is the probability of topic
j in the i-th document. These probabilities represent the strength of association
between the topics and the documents. Formally, for a topic j, the first TopDocs
documents are chosen from the list of all documents Di1 , . . . , DiN ordered by
the probability of topic j in descending order (θi1j ≥ θi2j ≥ . . . ≥ θiN j).

3.2. Document Vectorization

The purpose of the vectorization step is to transform information contained
in documents’ texts into vectors that will be input to coherence scoring meth-
ods. These vectors must enable the scoring methods to approximate the degree
in which a set of documents share a topic. Vector representations useful for
clustering or clasifying documents into topical categories as well as for retriev-
ing documents via topical queries are expected to also work well for calculating
topical coherence of documents.

We experiment with two standard text vectorization methods commonly
used in document classification and retrieval: word probabilities and tf-idf scor-
ing (Schütze et al., 2008). The word probability and tf-idf vectors are derived
from the news corpus used to build the topics under evaluation and are thus
domain-specific. In addition, we experiment with generic (i.e., mixed-domain)
vectors constructed via per-document aggregation of two types of word embed-
dings derived from a sizable external corpus: CBOW (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014). The CBOW and GloVe word embedding
vectors are widely used in NLP, while representing documents as vector aggrega-
tions has been found to work well in many taks, including clustering documents
into topical categories (Zhang et al., 2018) and document retrieval based on
topical queries (Galke et al., 2017), which are related to our task.

Word count vectorization. These vectorization methods rely on counting occur-
rences of words in text documents. This is preceded by document preprocessing,
which at the minimum includes tokenization and case-folding, but may also in-
clude morphological normalization, such as stemming or lemmatization, and
stop-word removal.
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Let N denote the total number of documents in the corpus, cij the number
of occurrences of word j in the i-th document, di the size of the i-th document,
and dcj the number of documents the word j occurs in. Probability vector probi

of the i-th document is a vector of empirical word-in-document probabilities,
obtained as maximum likelihood estimates, probi,j = cij/di. Tf-idf represen-
tation (Salton & Buckley, 1988) combines word-in-document probabilities with
frequencies of word occurrence in other corpus documents. We use the tf-idf vari-
ant in which the tf-idf vector tfidf i of the i-th document is defined as tfidf i,j =
tf i,j × idf j where tf i,j = log(cij) + 1 and idf j = log((N + 1)/(dcj + 1)) + 1. In
addition, we normalize document tf-idf vectors to a unit L2-norm.

Word embedding aggregation. This method of aggregation relies on pre-constructed
word embeddings (Turian et al., 2010): low-dimensional, continuous-valued vec-
torial representations of words’ meanings derived from word co-occurrences in
a large text corpus. We experiment with the two most commonly used word
embeddings: CBOW (Mikolov et al., 2013) and GloVe (Pennington et al., 2014).
CBOW embedding vectors are obtained by optimizing the log-linear prediction
of words based on their context words. On the English dataset, we use pre-
trained 300-dimensional CBOW embeddings, derived from a 100-billion-word
Google News corpus. On the Croatian dataset, we use the word2vec tool to
train 300-dimensional CBOW embeddings on the hrWaC corpus – a web corpus
of Croatian texts (Ljubešić & Erjavec, 2011) totaling 2.8 billion words.3 GloVe
embedding vectors are obtained by approximating global word co-occurrence
probabilities using a weighted least squares regression model. On the English
dataset, we use pre-trained 300-dimensional GloVe embeddings, derived from
Wikipedia and Gigaword corpora. On the Croatian dataset, we train 300-
dimensional GloVe embeddings on the hrWaC corpus using the glove tool.4

We compute the vector representation of a document text by adding up the
word embedding vectors of all its content words. Optionally, we average the
resulting vector to account for the differences in document lengths.

3.3. Coherence Scoring Method

After documents representative of a topic have been selected and vectorized,
a list of document vectors is fed to a coherence scoring method. We experiment
with three types of methods: (1) distance-based methods, which aggregate dis-
tances between document vectors, (2) density-based methods, which approxi-
mate coherence using a multivariate normal distribution as a model of document
vectors, and (3) graph-based methods, which first construct a connectivity graph
from document vectors and then compute a suitable graph measure. In total,
nine scoring methods are proposed: two distance-based, two density-based, and
five graph-based methods. While there are other types of measures we could

3CBOW pre-trained vectors for English and the word2vec tool are available from
https://code.google.com/archive/p/word2vec/

4GloVe pre-trained vectors for English and the tool are available from
https://nlp.stanford.edu/projects/glove/
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have considered, we have chosen these tree types as they make different assump-
tions as to what contributes to coherence of a set of document vectors: mutual
closeness (distance-based methods), compactness (density-based methods), or
connectivity (graph-based methods).

3.3.1. Distance-based coherence

Distance-based methods rely on a measure of distance between vectors, i.e.,
a function d : Rn×Rn → R+ that assigns a positive number to a pair of vectors.
The distance measure does not have to be a metric in the mathematical sense,
as long as it gives a useful notion of distance, such as the cosine distance.

We consider two simple distance-based methods: (1) average distance, which
calculates an average of distances between all pairs of document vectors, and (2)
distance variance, which calculates the average of distances between the docu-
ment vectors and the center (mean) vector. In both cases, the final coherence
score is produced by negating the average to convert a measure of dispersion
into a measure of coherence.

3.3.2. Density-based coherence

The density-based coherence method works by first fitting a multivariate
normal probability density function to the set of document vectors and then ap-
proximating coherence as the average log-density of the vectors under the model.
The intuition is that, the higher the density, the tighter the grouping around
the mode of the probability density function, and the higher the coherence of
the document vectors.

The parameters of the multivariate density function are a mean vector, µ ∈
Rn, and a covariance matrix, Σ ∈ Rn×n. To reduce the number of parameters,
and in turn prevent overfitting, we restrict the covariance matrix to either a
diagonal matrix (Σ = diag(σ2

i ), where σ2
i is the variance of the i-th vector

component) or an isotropic matrix (Σ = σ2I). This is equivalent to assuming
uncorrelated noise and isotropic noise, respectively.

We fit the probability density function to the document vectors using max-
imum likelihood estimate. Before fitting, we optionally perform dimensionality
reduction on the document vectors using the standard principal component
analysis (PCA).

3.3.3. Graph-based coherence

Graph-based methods first construct a graph of selected topic-related doc-
uments and then calculate a coherence score using a suitable graph measure.
The nodes of the graph correspond to the documents, while graph edges are
constructed using a measure of distance between document vectors. Graph
measures we experiment with correspond to the notion of graph compactness or
connectivity: closeness centrality, communicability centrality, clustering coeffi-
cient, number of connected components, and the size of the minimum spanning
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Graph construction. We experiment with two methods to construct edges be-
tween document nodes. The first method constructs a fully connected weighted
graph with edge weights set to the distance between document vectors. The
second method uses a distance threshold to connect only those pairs of doc-
uments whose distance falls below a given threshold. After thresholding, the
remaining edges can retain their weights, or the graph can be converted into an
unweighted graph.

Closeness centrality. The first graph measure we consider is closeness centrality
(Freeman, 1978). Closeness centrality of a graph node v is defined as the inverse
of the average shortest path distance between the node and all other reachable
nodes:

cc(v) =
|C(v)| − 1∑
w∈C(v) d(v, w)

(1)

where C(v) is the set of all nodes reachable from the node v (the nodes in the
connected component containing the node v). Closeness centrality of an isolated
node (C(v) = v) is 0.

To avoid assigning high closeness centrality to nodes of a fragmented graph
(a graph with many small connected components), the closeness centrality is
normalized by the relative size of the node’s connected component

ccnorm(v) =
|C(v)| − 1

N − 1

|C(v)| − 1∑
w∈C(v) d(v, w)

(2)

where N is the number of nodes in the graph.
We calculate the coherence score as the average normalized closeness cen-

trality of all the graph nodes:

CC (G) =
1

N

∑
v∈G

ccnorm(v) (3)

Subgraph centrality. Subgraph centrality (Estrada & Rodriguez-Velazquez, 2005)
is a measure of node centrality correlated with the number of closed walks (cy-
cles allowing node repetition) that start and end in a node. Let µk(v) denote
the number of closed walks of length k originating in the node v. Subgraph
centrality of a node v is defined as:

sc(v) =

∞∑
k=1

µk(v)

k!
(4)

5All of the measures considered here are available as part of the NetworkX (Schult & Swart,
2008) library available at http://networkx.readthedocs.io.
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The number of closed walks µk(v) is scaled by k! to ensure the convergence of
the series. Subgraph centrality of a node can be efficiently computed via spectral
decomposition of the graph’s adjacency matrix. Edge weights are irrelevant for
subgraph centrality because the measure is based on the number of walks, not
the weights of the walks. For this reason, subgraph centrality is not applied to
complete graphs, as all the graphs with the same number of nodes would be
assigned the same centrality score.

We calculate the coherence score by averaging subgraph centralities of all
the nodes:

SC (G) =
1

N

∑
v∈G

sc(v) (5)

Clustering coefficient. The clustering coefficient of a node v is the number of
actual triangles that go through the node v, denoted as T (v), divided by the
number of all possible triangles that could go through that node. A triangle
through a node v corresponds to a set of three distinct nodes – v, u1, and u2 –
such that edges vu1, u1u2, and u2v exist. The clustering coefficient is defined
as:

cc(v) =
T (v)

deg(v)(deg(v)−1)
2

=
2T (v)

deg(v)
(
deg(v)− 1

) (6)

A weighted version of the clustering coefficient, which we apply to weighted
graphs, is defined as (Saramäki et al., 2007):

cc(v) =
1

deg(v)
(
deg(v)− 1)

) ∑
u1,u2

(
w′(v, u1)w′(u1, u2)w′(u2, v)

)1/3
(7)

Here, the sum is over all pairs of nodes that close a triangle with v, and w′(u, v)
is the weight of the edge between nodes u and v divided by the maximum edge
weight in the graph.

We calculate the coherence score by averaging the clustering coefficients of
all the graph nodes:

CC (G) =
1

N

∑
v∈G

cc(v) (8)

Connected components and spanning tree. We experiment with two additional
measures based on the connectivity structure of the graph. The first measure
is the inverse of the number of connected components in the graph. We use
this measure only in combination with thresholded graph construction, as for
complete graphs, the number of connected components is always one. The
second measure is the negative weight of the minimum spanning tree of the
graph. We use this measure only in combination with a non-thresholded, fully
connected weighted graph.
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4. Experiments with Document-Based Coherence

We now proceed with evaluating and analyzing the proposed document-
based coherence measures. To this end, we use two datasets of topics manually
annotated for document-based coherence. After defining a set of coherence mea-
sures that correspond to sensible parameter values, we select the best measures
on a development set and evaluate these on two test sets, using area under the
ROC curve (AUC) as the performance metric. Lastly, we analyze the best-
performing measures. We begin by describing the construction of the datasets.

4.1. Datasets

As argued in the introduction, document-based topic coherence has the po-
tential to better capture the semantic interpretability of news topics than word-
based coherence. The standard way of evaluating the proposed document-based
coherence measures is to compare their coherence scores against coherence judg-
ments obtained from human annotators. As we are specifically interested in
evaluating document-based coherence measures, the human judgments should
also be based on topic-related documents rather than just topic-related words.

To the best of our knowledge, no dataset that meets the above desiderata
is publicly available. Hence, we created our own dataset of news text topics
manually annotated with document-based topic coherence judgments. One can
obtain the coherence judgments directly, be asking the annotators to judge
the coherence of each topic, or indirectly, by first asking the annotators to
semantically interpret and label each topic, and then use these labels to derive
the coherence judgments. We chose the latter approach as it allowed us to reuse
existing datasets with manually labeled topics.

As a starting point, we used the dataset of Korenčić et al. (2015), which
contains LDA topics derived from a corpus od 24k political news articles from
mainstream US news outlets. Korenčić et al. ran five LDA models initialized
with different random seeds – three models with 50 topics and two models with
100 topics. The so-obtained topics were then pooled together, similarly as in
(Lau et al., 2014), to obtain a final set of 350 topics. Having a pooled set of
topics allows us to evaluate the coherence measures on a more diverse set of
topics.

The topics were then manually labeled by two annotators, with the anno-
tation procedure set up as follows. The annotators were instructed to inspect
a model topic represented as a list of article titles and words and to infer, if
possible, the corresponding semantic topics. A semantic topic was described as
either an abstract concept or a concept corresponding to an entity, event, or a
story. After inspecting a model topic, the annotators consulted a shared list of
semantic topics discovered so far and either updated the list with new topics or
re-used the existing ones. The model topic was then labeled with semantic top-
ics and, if the topic contained unrelated random documents or words, with an
additional “noise” label. For calibration, annotators labeled a shared set of 50
topics and updated the labeling conventions. The top-ranked documents were
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presented to the annotators as a list of titles sorted by document-topic proba-
bilities, with the full texts of articles available for inspection. The annotators
were instructed to inspect the documents in sorted order and to stop when the
document-topic probability fell below 10%. Topic-related words were presented
as a list of top 20 topic words. For labeling, the annotators relied primarily
on documents, as the words proved either seemingly unrelated, vague, or too
abstract whereas lists of well-formed document titles provided more accurate
and specific information. Consequently, the decisions on the semantic topics
and their correspondence to model topics, as well as the decision on existence
of noise, were made based on topic-related documents, while the words at best
served to confirm this decision. In summary, 52% of the model topics were la-
beled with one semantic topic, 15% were labeled with one semantic topic and
the noise label, 17% were labeled with two semantic topics, 4% were labeled
with two semantic topics plus noise, while 12% were labeled as noise.

Using the above-described labeled dataset as input, we defined as coherent
all topics that have been annotated with a single semantic topic, possibly with
the addition of noise, and as incoherent otherwise.6 In other words, we consider
a topic as coherent as long as a human annotator can recognize that the topic
corresponds to a single semantic topic, which is in line with the definitions of
topic coherence used by Newman et al. (2010) and Mimno et al. (2011), whereas
an incoherent topic corresponds either to noise or to a mixture of two or more
semantic topics. This resulted in 235 topics (67%) being labeled as coherent and
115 topics (33%) labeled as incoherent. On a sample of 50 topics annotated by
both annotators, the annotators agreed on 88% of the topics, while the chance-
corrected kappa agreement coefficient (Landis & Koch, 1977) is 0.674.

We randomly split the described set of 350 topics into two subsets: the de-
velopment set, containing 120 topics, and the test set, containing 230 topics. We
use the development set to optimize the parameters of the coherence measures
and the test set for final evaluation of these measures. To ensure that both the
development and the test sets are representative of the entire dataset, the split
was stratified across the five labels: single semantic topic, semantic topic plus
noise, two semantic topics, two semantic topics plus noise, and noise.

In addition to the US news topics dataset described above, we introduce a
second dataset that serves as an additional test set for assessing the robustness
of the results. We refer to this second dataset as test-cro. The test-cro dataset
consists of topics derived from a corpus of news texts in Croatian language,
originally compiled for a media agenda setting study in (Korenčić et al., 2016).
The topics were pooled from four LDA models – three models with 50 topics and
one model with 100 topics, which resulted in a total of 250 topics.7 Coherence

6Following (Nikolenko et al., 2015; Nikolenko, 2016), we work with binary judgments of
coherence, since obtaining these from existing labels is rather straightforward. The alternative
would have been to convert the existing labels into graded judgments of topic coherence, but
it is not clear how one would proceed about this.

7 Korenčić et al. (2016) originally used 200 topics, however, to make the size of the test-cro
dataset comparable to that of the test set, we built and labeled an additional model with 50
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labels were derived by the same procedure used for the US topics – model topics
were first annotated with semantic topics and the “noise” label, after which the
coherence labels were derived from the annotations. Of the 250 topics, 166 topics
(66%) were labeled coherent, whereas 84 topics (34%) were labeled incoherent.

We make available both the US news topics dataset and the Croatian news
topics dataset.8

4.2. Evaluation of Coherence Measures

We use the Area Under the ROC Curve (AUC) metric (Ling et al., 2003) to
evaluate the performance of topic coherence methods. AUC is a metric employed
for both classification and ranking evaluation. As a ranking measure, it has been
used to evaluate word-based topic coherence (Nikolenko et al., 2015; Nikolenko,
2016) by comparing binary topic labels (coherent or incoherent) against the nu-
merical coherence scores produced by the coherence measures. We use the AUC
metric because it is well suited for comparing binary judgments of coherence,
obtained by our topic labeling method, with real-valued coherence scores.

Generally, given a model M producing confidence scores and data points
x ∈ D labeled with binary class labels, AUC corresponds to the probability
that, for two points x and x′ such that x belongs to the positive and x′ belongs
to the negative class, the positive one receives a higher score, i.e., M(x) >
M(x′) (Nikolenko et al., 2015). In the case of coherence measures, with topics
labeled as either coherent (positive class) or incoherent (negative class), AUC
of a coherence measure Coh is the probability that, for a coherent topic t and
an incoherent topic t′, the coherent topic gets a higher coherence score, i.e.,
Coh(t) > Coh(t′). The AUC scores are confined to the [0, 1] interval, with
0 and 1 being the worst and the best score, respectively, and 0.5 being the
expected score of an uninformative random measure.

The alternative interpretation of AUC rests on the idea that a model M pro-
ducing confidence scores can be converted into a binary classifier by thresholding
its output. The false positive rate (fall-out) and the true positive rate (recall)
of the classifier for different threshold values define the receiver operating char-
acteristics (ROC) curve. The performance of a perfect classifier corresponds
to point (0, 1) (no fall-out, complete recall). In contrast, the performance of
a random classifier for different threshold values corresponds to a straight line
from (0, 0) to (1, 1). Given an ROC curve, AUC is defined as the area under
the ROC curve. For the case of a binary classifier for topic coherence based
on thresholding a coherence measure, the recall corresponds to the proportion
of coherent topics detected by the classifier, while fallout corresponds to the
proportion of incoherent topics falsely detected as coherent.

topics.
8https://rebrand.ly/doc-coh-dataset
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Scoring Vectorization # Measures

Distance Cnt 48
Distance Embd 80
Density Cnt 96
Density Embd 128
Graph Cnt 936
Graph Embd 1560

Table 2: Six categories of coherence measures, each corresponding to one combination of the
coherence scoring and document vectorization methods, along with the number of distinct
measures considered in the evaluation.

4.3. Baseline Method

We use as the baseline the document-based measure of “topic significance,”
proposed by AlSumait et al. (2009). To the best of our knowledge, this measure
is the only document-based measure of topic quality. The measure represents
each topic as a probability distribution over the set of corpus documents ob-
tained by normalizing topic-document probabilities. Topic significance is then
calculated as the distance between the described distribution and the uninforma-
tive uniform distribution, using either cosine or KL-divergence as the distance
measure. We use the variant based on the cosine distance, since it performs bet-
ter on both datasets. In (AlSumait et al., 2009) this measure is not evaluated
on its own but instead combined with similarly defined word-based measures in
a composite measure of topic quality, which is then evaluated qualitatively by
an inspection of high- and low-scored topics.

4.4. Model Selection

Our goal is to identify the well-performing document-based coherence mea-
sures from Section 3: those that have a high correlation with human-provided
scores of document-based coherence of model topics, as measured by the AUC
score. To this end, we first introduce a set of parameters that describe the struc-
ture of these measures. We then proceed to define a set of sensible parameter
values corresponding to a set of coherence measures that will be considered in
further evaluation.

Coherence measure categories. To ease the analysis, we group the coherence
measures into six categories, as shown in Table 2. Each category corresponds
to a pairing of two attributes: the coherence scoring method and the docu-
ment vectorization method. We consider these two attributes to be the most
distinguishing properties of a coherence measure.

The first attribute is the coherence scoring method, which essentially deter-
mines how the documents are viewed (as points in a vector space or as nodes
in a graph) and how to estimate the coherence score from a set of documents
(cf. Section 3.3). Distance-based methods (Distance) rely on a measure of vec-
tor distance and aggregate the distances directly, while density-based methods
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(Density) rely on a probability density defined on the space of vectors and cal-
culate the dissipation of vectors around the center of distribution. In contrast,
graph-based methods (Graph) add structure to the set of vectorized documents
by constructing a document graph using a measure of vector distance for edge
definition and calculate the coherence using measures describing various graph
properties.

The second attribute, the document vectorization method (cf. Section 3.2),
determines the representation of the top-ranked topic documents that are given
as input to the coherence scoring method. Here, we distinguish between two
types of vectorization methods: Cnt and Embd. The former methods are
based on word-in-document counts (normalized bag-of-words and tf-idf) derived
from the same corpus that was used to build the topic model under evaluation.
Document preprocessing we use to obtain word-in-document counts consists of
stemming and stop-word removal. In contrast, Embd vectorization methods
refer to representations based on the aggregation of word embeddings (CBOW
and GloVe), which have been derived from a large, external corpus. Apart
from the difference in how the vectors are constructed in these two cases, an
important difference is that the Cnt vectors are domain-specific (in our case:
the domains of US and Croatian political news), whereas Embd vectors are
generic (i.e., mixed-domain). This difference is likely to have an influence on
the coherence measure calculation: in contrast to domain-specific vectors, the
generic vectors will generally be more ambiguous and might not correspond to
the domain-specific senses of some words.9 Alternately, generic vectors might
better capture the meaning of rare words, and might generally be statistically
more reliable because they are derived from a larger corpus.

Coherence measure parameters. To allow for a systematic analysis of the document-
based coherence measures proposed in Section 3, we parametrize these measures
with respect to the selection of topic-representative documents, the vectoriza-
tion method, and the coherence scoring method. Table 3 outlines the parameters
and their values considered in subsequent experiments. The parameters are bro-
ken down by coherence scoring method except for the first three parameters,
which are shared by all methods. The shared parameters together define how a
model’s topic is transformed into a set of document vectors, while the method-
specific parameters define the details of the coherence score calculation. For a
more precise description of the parameters, the reader is referred to Section 3.

Note that not all parameter-value combinations are sensible. More specifi-
cally, EmbeddingAgg is applicable only if DocVect is cbow or glove. For Den-
sity scoring method, if DocVect equals bow or tfidf (high-dimensional vec-
tors), the value of DimReduce is varied among the full set of values (5, 10,
20, 50, 100), while if DocVect equals cbow or glove (vectors of lower dimen-

9As many polysemous words have domain-specific senses, restricting the domain from
which the representations are derived will typically decrease the word-level ambiguity. This
sense-domain relation has also been leveraged for improving word sense disambiguation,
e.g., (Magnini et al., 2002).
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Scoring Parameter Values

(All) TopDocs 10, 25, 50, 100
DocVect bow, tfidf, cbow, glove
EmbeddingAgg average, sum

Distance DistanceMeasure l1, l2, cosine
DistanceAgg average, variance

Density CovMatrix isotropic, diagonal
DimReduce None, 5, 10, 20, 50, 100

Graph DistanceMeasure l1, l2, cosine

GraphAlgo

closeness-centrality, subgraph-centrality,
clustering, num-connected,
min-spanning-tree

DistanceThresh None, 0.02, 0.05, 0.1, 0.25, 0.5, 0.75
Weighted True, False

Table 3: Coherence measure parameters and values for the different coherence scoring meth-
ods. The first three parameters are shared by all three scoring methods.

sion), the value of DimReduce is varied among the values 5, 10, and 20. The
DimReduce value of None is combined with all the vectorization methods, re-
sulting in a vector size of approximately 24k dimensions for bow and tfidf,
and 300 dimensions (the original size of the word embeddings) for cbow and
glove. Similarly, not all parameter combinations make sense for the Graph
scoring method: for fully connected weighted graphs (DistanceThresh set to
None), only the closeness-centrality, clustering, and min-spanning-tree

methods are sensible. For thresholded graphs (DistanceThresh set to a positive
real number), subgraph-centrality and num-connected are used only for un-
weighted graphs (Weighted set to False). Table 2 lists the numbers of sensible
parameter combinations for each of the measure categories. In total, we consider
2,848 distinct coherence measures.

Another point worth mentioning is the treatment of the DistanceThresh pa-
rameter for the Graph scoring method. To account for the fact that different
distance measures and vectorization methods generally yield distances at dif-
ferent scales, we proceed as follows. For each combination of DistanceMeasure
and DocVect , we estimate the distribution of distances from a random sample
of 100k document-vector pairs from the corpus. We then treat DistanceThresh
as a percentile rank from the so-obtained distribution, varying the threshold
among the values 0.02, 0.05, 0.1, 0.25, 0.5, and 0.75.

4.5. Results

Table 4 shows the AUC scores on the test and test-cro sets for each cate-
gory of coherence measures. For each category, we report the AUC score of the
best-performing coherence measure from that category on the development set.
The best-performing measures are chosen from the set of measures defined by
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Measure Category test test-cro

Scoring Vectorization AUC p-value AUC p-value

Graph Cnt 0.804 – 0.812 –
Distance Cnt 0.754 0.001 0.785 0.028
Density Cnt 0.745 0.000 0.774 0.009
Distance Embd 0.732 0.001 0.746 0.029
doc-dist-cosine – 0.730 0.006 0.748 0.025
Density Embd 0.728 0.001 0.725 0.005
Graph Embd 0.694 0.003 0.671 0.000

Table 4: Coherence measures’ AUC scores for each of the six categories and the baseline,
ordered by the score on the test set. The p-values are derived by comparing the AUC score
from the first row with the AUC score from the other six rows.

parameters described in Section 4.4. Note that we carry out no such optimiza-
tion on the test-cro dataset, as we want to test the cross-dataset robustness of
the measures’ parameters. The doc-dist-cosine on both datasets is the baseline
method (cf. Section 4.3).

As seen from Table 4, the best-performing measure comes from the Graph-
Cnt category, which achieves an AUC score of over 0.8 on both test and test-
cro sets and outperforms other measures by at least 0.027 AUC. We use the
DeLonge’s test (DeLong et al., 1988)10 to test the statistical significance of
differences between the AUC score of the Graph-Cnt measure and that of the
other seven measures, including the baseline; the p-values are shown in Table 4
next to the corresponding AUC scores. Two observations follow from Table 4.
The first is that the ordering of the measures by AUC scores is almost perfectly
consistent for the two datasets. The second observation is that on the test-cro
set the Cnt-based measures and the baseline achieve higher AUC scores than
on the test set.

Figure 2 shows the ROC curves of the best-performing coherence measures
on the test dataset. As described in Section 4.2, an ROC curve measures the
classification performance of a coherence measure: each point on a curve cor-
responds to a classifier based on a coherence measure paired with a coherence
threshold used to decide whether a topic is coherent or incoherent. Figure 2
contrasts the best-performing coherence measures against the baseline measure
(green curve) and the globally best Graph-Cnt measure (red curve). The ROC
curves show that all the measures perform better than random classifiers. Fur-
thermore, the ROC curves complement Table 4 in showing the performance gap
between the Graph-Cnt and other measures. For the Graph-Cnt measure,
the recall of 0.8 or above may be achieved with fall-out of at least 0.33. This

10DeLong’s test is designed to compare the AUCs of two correlated ROC curves (ROC curves
derived from different measures applied to the same data points). We use the implementation
from the pROC R package (Robin et al., 2011).
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Figure 2: ROC curves of the best-performing coherence measures from the Table 4. The curve
of the baseline measure is plotted in green on each plot. The curve of the measure from the
top-performing category (top left) is plotted in red on other measures’ plots.

means that if one wants a Graph-Cnt-based classifier to detect 80% of the
coherent topics, the tradeoff is to have at least 33% of the incoherent topics
classified as coherent. The other measures can achieve the recall of 0.8 with
fall-out rates close to 0.5 (with the exception of Density-Cnt yielding 0.43
fall-out). On the other hand, if one wishes to achieve fall-out rates below 0.2
(reliable detection of incoherent topics), the Graph-Cnt measure can achieve
this with a recall of 0.64 or below, while for the other measure the recall would
be at best 0.56.

As seen from both Table 4 and Figure 2, the baseline measure described in
Section 4.3 is a strong baseline – its performance is only slightly worse than all
the proposed measures, except for the Graph-Cnt measure, which markedly
outperforms the baseline.

In the above evaluation, each of the measure categories was represented
by a single best-performing measure on the development set. This rises the
question whether the chosen measures are indeed representative as being the
best measures within their respective categories. To answer this question, from
each of the six categories we selected the top 10 or top 5% (depending on
the category size) measures with the best performance on the development set
(instead of a single best-performing measure per category) and evaluated these
on the test and test-cro sets. Our analysis showed that the best-performing
measures from Table 4 are indeed, with one exception, representative of their
categories, achieving performance comparable to the measures with the best test
and test-cro performance within the same category. An exception is the Graph-
Embd category, where the measure that performs the best on the development
set does not perform well on either the test or the test-cro set. However, the
selected Graph-Embd measures with the top test and test-cro performances
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AUC score

Category Parameters Dev Test

Graph-Cnt

DocVect=tfidf, TopDocs=50, DistanceMeasure=l2,
DistanceThresh=0.05, Weighted=False,
GraphAlgo=subgraph

0.778 0.812

DocVect=tfidf, TopDocs=50, DistanceMeasure=cosine,
DistanceThresh=0.02, Weighted=False,
GraphAlgo=subgraph

0.782 0.804

Graph-Embd

DocVect=cbow, TopDocs=50, DistanceMeasure=cosine,
DistanceThresh=0.25, Weighted=False,
GraphAlgo=subgraph

0.730 0.766

DocVect=glove, TopDocs=50, DistanceMeasure=l1,
EmbeddingAgg=average, DistanceThresh=0.25
Weighted=True, GraphAlgo=clustering

0.792 0.694

Distance-Cnt
DocVect=bow, TopDocs=50, DistanceMeasure=cosine,
DistanceAgg=average

0.735 0.754

DocVect=bow, TopDocs=50, DistanceMeasure=cosine,
DistanceAgg=variance

0.739 0.754

Distance-Embd
DocVect=cbow, TopDocs=50, DistanceMeasure=cosine,
DistanceAgg=average

0.711 0.746

DocVect=glove, TopDocs=25, DistanceMeasure=cosine,
DistanceAgg=variance

0.719 0.732

Density-Cnt
DocVect=tfidf, TopDocs=50, DimReduce=100,
CovMatrix=isotropic

0.704 0.745

DocVect=tfidf, TopDocs=50, DimReduce=None,
CovMatrix=isotropic

0.704 0.745

Density-Embd
DocVect=cbow, TopDocs=25, DimReduce=5,
EmbeddingAgg=average, CovMatrix=isotropic

0.701 0.734

DocVect=cbow, TopDocs=25, DimReduce=10,
EmbeddingAgg=average, CovMatrix=isotropic

0.708 0.728

Table 5: Parameter values of the best-performing coherence measures. For each of the six
categories two best-performing measures are shown: one best performing on the development
set and the other best-performing on the test set.

perform markedly better. A detailed analysis of the representativeness of the
best development set measures is provided in the supplementary material.11

We now turn to a question of practical importance: which parameter values
yield the best measures, i.e., which measures should one apply in practice? In
Table 5, we give an indicative summary which shows the parameter values for
two best-performing measures from each of the categories – one with the best
performance on the development set and another with the best performance on
the test set. A detailed analysis of the parameters of the best measures is pro-
vided in the supplementary material,11 while here we summarize only the most
interesting findings. Interestingly, all of the best-performing Graph-Cnt mea-

11https://rebrand.ly/doc-coh-supplementary
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sures use thresholding to filter the edges, but ultimately use an unweighted
graph. Of the five proposed graph-based coherence algorithms (cf. Section
3.3.3), three algorithms emerge as components of the best-performing measures:
subgraph-centrality, closeness-centrality, and clustering-coefficient.
Common to all three algorithms is that they calculate local connectivity scores
of graph nodes and average them to obtain the graph score, unlike the other two
algorithms (num-connected and min-spanning-tree), which calculate global
graph connectivity properties. As regards the edge threshold value, subgraph
and closeness centrality algorithms generally prefer smaller thresholds yield-
ing sparse graphs (percentile ranks 0.02, 0.05, and 0.10), while the clustering

algorithm seems to prefer higher thresholds (percentile ranks 0.25 and 0.5). The
best Graph-Embd measures have the same structure, but fail to achieve the
performance of the best Graph-Cnt measures. All the best measures that use
Embd-based document vectorization in combination with l1 and l2 distances
perform the aggregation of document vectors by averaging instead of summing
the word embeddings. This is expected because the l1 and l2 distance mea-
sures, unlike the cosine distance, are not invariant to vector length. Generally,
representing documents with Cnt vectors seems preferable over Embd vec-
tors. More specifically, for graph-based measures the choice of Cnt vectors
over Embd vectors leads to a large increase in performance, yielding globally
best performance.

4.6. Conclusions

The main finding from the above experiments is that the best overall per-
formance is achieved by coherence measures from the Graph-Cnt category,
i.e., measures that rely on count-based document vectorization derived from
an in-domain corpus and combined with graph-based algorithms for coherence
scoring. This result was confirmed on both the US news topics dataset and
the Croatian news topics dataset. Measures from the Graph-Cnt category
construct graphs of top topic documents by removing all edges above a small
distance threshold and calculate the coherence score by aggregating local node
connectivity information, suggesting that the most effective way to estimate
coherence of a set of documents is to use vectors of word-in-document counts
to represent the documents and average local similarities in the neighborhoods
of each document. In contrast, the measures from the Graph-Embd category,
which fail to reach the performance of best Graph-Cnt measures, also average
local similarities but use embedding-based document vectorization. Measures
from other four non-Graph categories calculate the global similarity of the
entire set of documents.

Another observation arising from the experiments is that, not surprisingly,
the choice of document vectorization method has a strong influence on the per-
formance of the coherence measures. These observations indicate that improve-
ments to existing methods could be achieved by means of some other vectoriza-
tion method.

Finally, the choice of top 50 topic-related documents as input for calcula-
tion of a topic’s coherence score emerged as the best option that results in
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measures achieving best or nearly-best results for all the measure categories, as
demonstrated by the results in Section 4.5 (and additional analyses provided
the supplementary material).

5. Experiments with Word-based Coherence

The previous experiment has investigated the efficacy of document-based
coherence measures. In this section, we turn to the question of how document-
based coherence measures, which we propose in this work, relate to the word-
based coherence. While in the introduction we argued that document-based
coherence measures may be better suited for topics derived from news media
texts, the objective of the experiments described in this section is to quantify the
magnitude and consistency of these gains. To this end, we measure how well
the state-of-art word-based coherence measures approximate document-based
coherence of topics derived from news media texts. Lastly, to gain additional
insight into differences between the two types of measures, we perform a qual-
itative analysis of topics coming from the high and low ends of the document-
and word-based coherence spectrum.

5.1. Word-Coherence Measures

As a reference point for selecting the word-based coherence measures, we
use the study of Röder et al. (2015), who carried out a detailed and systematic
analysis of a large number of word-based coherence measures on six publicly
available datatasets. For our experiments, we select five top-performing mea-
sures from this study, designed to predict coherence scores formed by inspection
of top-ranked topic words: (1) the CUCI measure of Newman et al. (2010), (2)
the CNPMI measure of Aletras & Stevenson (2013), (3) the CA measure of Ale-
tras & Stevenson (2013), and the (4) CV and (5) CP measures, both discovered
by an exhaustive search of the parameter space in (Röder et al., 2015).12

In the generic framework of Röder et al. (2015), the above measures are
defined by an appropriate partitioning of the set of topic words into subsets,
followed by computing the average of an appropriate similarity measure13 be-
tween all pairs of so-obtained subsets. This includes the calculation of similarity
of word pairs as a special case. The pairwise similarities between word subsets
are calculated from probabilities based on word co-occurrences derived from a
corpus, which are affected by the choice of the corpus and the choice of the
corpus preprocessing method (tokenization, stopword removal, and word nor-
malization).

The measures CUCI and CNPMI average the similarity of word pairs computed
using pointwise mutual information (PMI) and its normalized version (NPMI),

12All five considered measures are implemented in the open-source software package Pal-
metto, available at https://github.com/dice-group/Palmetto.

13Röder et al. (2015) use the term “confirmation measure” to refer to a similarity measure
between subsets of topic words.
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respectively. A sliding window is used to derive word co-occurrence for both
measures. The CA measure also averages the similarity of word pairs, with
the difference that the words in the pair are first represented as vectors of
NPMI-based similarities with other top-ranked topic words and the similarity
of the pair is calculated as the similarity of these two vectors. The CV measure
averages the similarities between pairs each comprising a topic word and its
complement set that consists of all other topic words. Similarly, as for CA,
indirect vector similarity is used to compare a word with its complement set.
Lastly, the CP measure averages similarities of pairs each comprising a topic
word and all topic words ranked above it by the word-topic probabilities, using
as similarity a measure based on conditional probability of a single word given
a word set (Fitelson, 2003).

5.2. Estimating Document-Based Coherence with Word-Based Coherence

In this experiment, we examine how well the top-performing word-based
coherence measures approximate document-based coherence scores. Namely,
word-based coherence measures from Section 5.1 are designed to predict, using
as input a set of top-ranked topic words, coherence scores of topics assigned
by human annotators based on the inspection of top-ranked topic words. In
contrast, document-based coherence scores are assigned by annotators who in-
spected the top-ranked topic documents, and accordingly document-based mea-
sures considered in Section 4 use as input the top-ranked topic documents. We
evaluate word-based coherence measures in the same way as we have evaluated
the document-based measures, namely, on the test and test-cro sets of manually
annotated topics using AUC score as the performance measure (cf. Sections 4.1
and 4.2).

We use the measures with the parameters optimized for word-based coher-
ence estimation (Röder et al., 2015), all of which use top-10 topic words as input
and derive the co-occurrence counts from Wikipedia. For the US news topics
dataset, we derive the counts from the English Wikipedia (dump from June
2016), while for the Croatian news topics dataset, we derive the counts from the
Croatian Wikipedia (dump from November 2017). In both cases the counts are
derived with the preprocessing we used when we built our topic models.14 Be-
fore preprocessing, we removed the redirection, disambiguation, category, and
portal pages from both Wikipedia datasets.

Table 6 shows the performance of state-of-art word-based coherence mea-
sures compared against the baseline document-based coherence method doc-
dist-cosine (cf. Section 4.3). The accompanying p-values are obtained using the
DeLonge’s test (cf. Section 4.5) with the null hypothesis of no difference between
the AUC scores of a word-based measure and that of the baseline. As is evident
from the results, document-based coherence measures outperform word-based

14 For the US topics we also tried using the original counts used by Röder et al. (2015),
available online, but the counts obtained with our preprocessing turned out to give better
AUC scores for all the measures.
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test test-cro

Measure AUC p-value AUC p-value

doc-dist-cosine 0.730 – 0.748 –
CV 0.607 0.002 0.508 0.000
CA 0.579 0.001 0.442 0.000
CP 0.548 0.000 0.614 0.009
CNPMI 0.498 0.000 0.595 0.002
CUCI 0.482 0.000 0.571 0.001

Table 6: Performance of word-based coherence methods in estimating document-based coher-
ence, compared against the document-based baseline coherence measure.

measures by a considerable margin – the best word-based measures achieve AUC
scores slightly above 0.6, while the document-based baseline achieves scores of
at least 0.73. Partitioning the set of top-ranked topic words into pairs of words
and word sets, as implemented by CV and CP measures, seems to yield some-
what better AUC scores than partitioning into word pairs, as implemented by
all other word-based coherence measures.

5.3. Qualitative Analysis

The previous experiment has shown that, when comparing to the proposed
document-based coherence measures, state-of-art word-based coherence mea-
sures fall short of estimating document-based coherence. This raises the ques-
tion of what is the relation between these two approaches to measuring coher-
ence: is document-based coherence simply a better model of topic coherence,
or are word- and document-based coherence two different, although correlated
and possibly complementary views on topic coherence?

To investigate which of the two is the case, we carried out a qualitative
analysis of the topics from our US news topics dataset. The analysis is done
along two dimensions: document-based coherence and word-based coherence.
In each of the two dimensions, we select topics of high coherence and topics
of low coherence, giving us four categories of topic coherence. The topics are
selected from a sample of 230 topics constituting the test set (cf. Section 4.1),
based on scores produced by the document- and word-based coherence measures.
More specifically, for document-based coherence we select from the top 30% and
bottom 30% of topics ranked by the best-performing measure from the Graph-
Cnt category (cf. Section 4.5), while for word-based coherence we do the same
using the CP measure (this measure performs well on word-based coherence
but poorly on document-based coherence; cf. Table 6). Furthermore, for the
purpose of this analysis, we manually categorize each semantic topic as either
concrete (topics pertaining to entities, events, or news stories) or abstract (topics
pertaining to general issues or abstract semantic categories).

High document/low word coherence. In this category, we find 23 topics from the
test set, the majority (21) of which are concrete. Table 7 gives five examples,
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Topic label Top-10 topic words

Chicago mayoral election mayor chicago emanuel de giuliani garcia love blasio
rudy runoff

Restoration of ties with Cuba foundation cuba list malley summit rubio cuban do-
nations trump island

Ted Cruz cruz ted liberty tea imagine evangelical r-texas de-
clared candidacy obamacare

Iran negotiations nuclear agreement sanctions iranian weapons kerry
framework tehran cotton corker

Vaccination vaccines parents science kids choice huffpost carson
measles research believes

Table 7: Topics with high document coherence and low word coherence.

where all but the “vaccination” topic are concrete. The low word-based coher-
ence scores are in line with the observation that the top-ranked topic words are,
as a whole, semantically unrelated. However, high document-based coherence
scores are a consequence of the topic-related documents being highly similar
news articles describing the same entity, event, or story. Note that, since a
state-of-art word-based coherence measure is unable to recognize the coherence
of these topics, they would likely be discarded as low-quality topics. Likewise,
a human annotator – unless familiar with the news corpus – would judge the
set of top-ranked words as unrelated and the topics as incoherent. Hence, high
document/low word coherence topics are a paradigmatic case for the use of
document-based coherence measures.

High document/high word coherence. Among the 20 topics in this category, 14
are abstract and 6 are concrete. This suggests that topics scored with high
word-based coherence tend to be abstract. The top-ranked topic words of such
abstract topics are semantically related. Table 8 shows five example topics
from this category. Among these, two are concrete topics pertaining to entities,
which shows that concrete topics can also have high word coherence if they
are characterized by words relating to a common concept. On the other hand,
the fact that 14 abstract topics are also scored as coherent by the document-
based coherence measure suggests that document-based coherence can detect
the coherence of not only concrete but also abstract semantic topics.

Low document/high word coherence. From the 12 topics in this category, three
are incoherent, while the rest are abstract topics. This again confirms the cor-
relation between topic abstractness and word-based coherence. The abstract
topics fall into two groups. The first is a group of four topics (lawsuits, journal-
ism, social media, and radio & television) whose low document coherence is due
to topics being unrepresented in the documents, i.e., they are mentioned in a
relatively small portion of document text otherwise dominated by other topics.
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Topic label Top-10 topic words

Environment climate energy global science environmental warming
fuel scientists emissions plants

Budget billion domestic fiscal balance deficit medicare repeal
priorities ryan trillion

Consumer debt crisis debt loans dollars contract fees payments taxpayers
borrowers treasury consumers

Robert Menendez attorney menendez lawyer criminal allegations file
sentence prosecutors convicted prison

Yemen saudi strike target al yemen intelligence arabia
houthis pakistan qaeda

Table 8: Topics with high document coherence and high word coherence.

This makes the topic-related documents heterogeneous and incoherent, which
in turn lowers the document-based coherence score. The second group are five
topics that are coherent but for which the document-based coherence score is
either misestimated or low because a topic is highly abstract and associated
with a set of documents that are less semantically related. Table 9 shows all the
topics from the first group and one example topic from the second group. Taken
together, this category of topics shows that it might be beneficial to combine
document- and word-based coherence measures: the word coherence could be
used as a fallback in cases when a document-based coherence measure fails to
detect coherence, for instance because the topic is being underrepresented in
the documents.

Low document/low word coherence. Among the 26 topics in this category, the
majority of topics (18) are incoherent (mixture of topics or noise), while the
remaining 8 topics pertain to a single semantic topic but with the addition
of noise. Additionally, the majority of the remaining topics (7 out of 8) are
concrete – a property that correlates with low word-based coherence. The re-
maining set of 8 topics in this category represents a hard case whose coherence
is difficult to detect even with a combination of a document- and word-based
coherence measure – these topics are specific in that they contain both noise
(which decreases document-based coherence) and are concrete (which decreases
word-based coherence). This category of topics complements the one containing
topics with low document and high word coherence in demonstrating the useful-
ness of combining word-based and document-based coherence measures. Among
the topics with low document coherence, word coherence correlates with true
coherence: most (18 out of 26) low word coherence topics are indeed incoherent,
while most (10 out of 12) high word coherence topics are indeed coherent.
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Topic label Top-10 topic words

Lawsuits file board lawsuit complaint suit violated georgia
damage settled accused

Radio and television morning host watch night radio television tv network
update station

Journalism writing published article piece journalists paper jour-
nal newspaper quoted editor

Social media fox twitter host night tweeted morning facebook com
watch remarks

Crime prison criminal crime sentence convicted attorney
prosecutors trial lawyer judge

(noise) video someone thought probably maybe else guy any-
thing everyone yes

Table 9: Topics with low document coherence and high word coherence.

5.4. Conclusions

We motivated the need for document-based coherence by essentially claiming
that word-based coherence in some cases is not informative enough to gauge the
coherence of a topic derived by a topic model, especially for transient and contin-
gent topics typical of the news domain. Results of the experiments in Section 5.2
confirm this by showing that when state-of-art word-based coherence measures
proposed in the literature are used for estimating document-based coherence,
their performance is markedly below the document-based coherence baseline.
However, some word-based measures outperform a random baseline, indicating
a degree of correlation between document-based and word-based coherence.

The qualitative analysis of model topics with high and low document- and
word-based coherence indicates that word- and document-based coherence mea-
sures are complementary to each other and that they may be combined to detect
coherent topics more accurately – there exist coherent topics (model topics cor-
responding to semantic topics) that would be discarded as incoherent if the
detection were based on word- or document-based coherence alone. Interest-
ingly, high word-based coherence correlates with abstract topics, whereas low
word-based coherence correlates with concrete topics.

6. Semi-Automated Topic Discovery

As mentioned in the introduction, the increased availability and consumption
of online news in textual form brought about increased interest in automated
content analysis of news texts. Most content analysis techniques rely on an
inventory of topics, which ideally corresponds to the topics covered by the news
texts under analysis. However, large quantities of news data available on one
hand, and the transience of topics reported about in the news on the other,
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make it impossible to establish a fixed and comprehensive topic inventory for
the news domain. The alternative is to rely on techniques for (semi)automated
topic discovery from text corpus, for which topic models have proven to be an
extremely useful tool.

However, although topic models make topic discovery much easier, for the
reasons discussed in the introduction the results are of varying quality – more
precisely, not all topics induced by a topic model will be semantically inter-
pretable. Hence, to be usable for content analysis, the results of the topic model
typically need to be examined by a human expert, which requires considerable
effort. Moreover, to increase the coverage of the topics, one would typically want
to run several differently parametrized topic models (e.g., models with varying
number of topics) and examine the topics collected from all these models, which
further increases the complexity of the task.

In this section we demonstrate how our proposed document-based coher-
ence measures can be used to improve the efficiency of semi-automated topic
discovery based on topics collected from several models. The idea is to use
document-based topic coherence scores as a heuristic for which topics should
be examined first by the human expert. The assumption is that, if the human
expert examines the topics in the order of their coherence score rather than at
random, and if care is taken to avoid re-discovering duplicate topics, this may
substantially improve the discovery rate of the semantic topics (the number
of discovered topics per number of topics examined), thus reducing the overall
human effort.

6.1. Experimental Setup

We simulate the described topic discovery scenario using our US news topics
dataset of model topics annotated with semantic topics (cf. Section 4.1) by
traversing the topics sorted in descending order of coherence score and keeping
a count of the number of distinct semantic topics.

We simulate the semantic topic discovery process using the entire US news
topics dataset consisting of 350 model topics. Each coherent topic is labeled with
a single corresponding semantic topic, while both fused topics and noise topics
are labeled with zero semantic topics. Discovery is simulated by traversing the
list of model topics sorted either at random or by scores assigned by a coherence
measure. Each model topic is compared with the topics from the list of already
discovered topics and discarded if it is found to be a duplicate. If the topic is
not a duplicate, it is counted as a topic examined by a human expert, and if the
topic corresponds to a semantic topic, the semantic topic is added to the list
of discovered topics. We measure the effectiveness of the discovery process by
examining the topic discovery rate: the number of discovered semantic topics
per number of topics examined.

Two points deserve to be mentioned: topic duplication and fused topics.
While using more than a single topic model will generally improve the coverage
of the semantic topics, it will also result in some topics being duplicated, espe-
cially those that are more salient in the corpus. Because incoherent topics are
random, being the result of either random noise or of the fusing of two random
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semantic topics, they are very unlikely to be duplicated. Alternately, coherent
topics will match semantic topics, which are limited in number, and therefore
topics that get duplicated are most likely coherent. As a consequence, sorting
the topics by coherence will push the duplicates toward the start of the list,
thereby lowering the topic discovery rate, as each duplicate topic needs to be
examined but yields no new semantic topics. To prevent this, we remove all du-
plicates from the pooled list of topics. We consider two topics to be duplicates
if the cosine distance between the topics’ probability vectors is less than 0.5 – a
conservative choice, as topics have to be almost identical to meet this threshold.
When simulating the topic discovery process, we apply duplicate removal to
both topics sorted by coherence and randomly ordered topics.

Another point worth mentioning concerns the fused topics: model topics
corresponding to two or more semantic topics. As described in Section 4.1, 21%
of model topics in our dataset were labeled with two semantic topics. In this
experiment, we treat fused topics as noise, simulating the topic discovery sce-
nario in which the fused topics are recognized by the human expert as noise and
discarded – a task that can be performed efficiently. Some semantic topics that
only occur as fused may be missed, but using a pool of topic models rather than
a single model makes it more likely that the fused topic will eventually emerge
as separate and coherent topic in one of the models. Alternatively, the human
expert could attempt to split up fused topics into individual semantic topics
but this would be a time-consuming and potentially error-prone task. In this
approach to topic discovery the benefit of using a coherence measure to improve
the discovery rate would be reduced, since the fused topics generally have low
coherence. To remedy this, the coherence measures could be compounded with
measures for detection of fused topics, but we leave this for future work.

6.2. Results

We tested four coherence measures: the baseline document-based measure
(cf. Section 4.3), the CP word-based measure (cf. Section 5.1), and two top-
performing document-based measures from the Graph-Cnt category with the
highest AUC score on the development set and the test set (cf. Table 5), subse-
quently denoted graph1 and graph2, respectively. We compare the four coher-
ence measures against a random baseline: we run the simulation for 20 random
topic orderings and calculate the average, minimum, and maximum of discov-
ered topics per the number of examined topics.

The results are shown in Figure 3. The curves on the left plot show the
number of topics discovered as a function of the number of topics examined,
while the right plot shows the difference between the number of topics discovered
and the average number of topics discovered when examined in random order.
The main observation is that topic discovery guided by the document-based
coherence measures markedly outperforms both the random baseline and the
state-of-art word-based coherence measure. Furthermore, the two Graph-Cnt
coherence measures outperform the document-based coherence baseline, giving
the overall best performance. Another observation is that these two coherence
measures, albeit they score nearly identical in terms of AUC (cf. Table 5), yield
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Figure 3: Semantic topics discovered (y-axis) per model topics examined (x-axis): (a) absolute
number of topics discovered and (b) the average difference between the number of topics
discovered when using ordering based on a topic coherence measure and random ordering.

different topic discovery curves. This suggests that for evaluating coherence
measures for specific applications it might be a good idea to complement rank-
based metrics such as AUC with an application-oriented evaluation metric.

In more concrete terms, the results on this dataset show that by sorting the
topics by coherence-based coherence it is possible to discover all semantic topics
after examining 160 model topics – this is in contrast to an average of 200 model
topics which would have to be examined if the order were random. Assuming
that topic examination takes 6 minutes on average (an estimate based on the
annotation of the dataset), the coherence measure would save the annotator
four hours. If the aim is to examine only 100 model topics, perhaps to get an
overview of semantic topics covered by the corpus, examination in random order
would on average discover only 59 semantic topics, whereas examination based
on document-coherence would discover 77 topics – an increase of 30%.

7. Conclusion

Topic models are a popular tool for unsupervised discovery of topics from
text corpora, including texts from the news domain. A well-known problem with
topic models, however, is that the quality of the generated topics typically varies.
This motivated the development of a number of model evaluation techniques,
most notably those based on the calculation of topics’ semantic coherence. The
existing topic coherence methods estimate the coherence based on the semantic
relatedness of the topic words. This approach, however, is inadequate for news
media texts, where topics are often contingent and transient and therefore asso-
ciated with semantically unrelated words. To solve this problem, we proposed a
novel class of topic coherence methods that estimate topic coherence based on
topic documents rather than topic words. The underlying assumption is that,
because documents contain more information than words, document-based topic
coherence can better capture topics’ semantic interpretability.

The proposed document-based methods calculate the coherence of a topic
in three steps: selection of topic-related documents, vectorization of the docu-
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ments, and calculation of a coherence score from document vectors. We pro-
posed a number of different methods, including distance-based, density-based,
and graph-based methods, and evaluated them on two datasets of topics manu-
ally labeled with coherence scores. The method that uses tf-idf or bag-of-words
document representations, builds an unweighted similarity graph, and estimates
the coherence score by aggregating node connectivity scores was found to outper-
form all other considered methods in terms of coherence ranking performance,
including a strong baseline. Furthermore, we have shown that the method can
be used to speed up the otherwise tedious task of semi-automated topic discov-
ery from a corpus of news media texts.

To investigate the relationship between document-based and word-based
topic coherence, we evaluated state-of-art word-based coherence methods on
our datasets of topics labeled with document-based coherence scores. We found
that word-based coherence methods, which are optimized for word-based coher-
ence, perform poorly on our datasets. An examination of model topics with
estimated high and low document- and word-based coherence demonstrated the
potential merit in combining word- and document-based coherence measures to
detect coherent topics more accurately.

There exist a number of interesting directions for future work. On the tech-
nical side, the methods we propose could probably be improved by using a more
effective document vectorization method. Document-level neural embeddings
(Lau & Baldwin, 2016) and kernel-based aggregations of word-level embeddings
(Zhang et al., 2018) might be a good starting point. The experiments in Section
4.5 show that the baseline document-based method exhibits fairly good perfor-
mance, so one possibility might be to try to improve the baseline or combine it
with the measures we proposed. Another promising direction for future work,
indicated by the experiments in Section 5, would be to combine document- and
word-based coherence measures.

At a conceptual level, we believe that further investigating the possible ap-
plications of both word- and document-based coherence measures in exploratory
analysis might prove these measures useful for a task separate from topic model
evaluation. Such applications might also help us gain a better understand-
ing of the concept of topic coherence. Document-based coherence measures
can be used, in line with similar word-based experiments (Stevens et al., 2012;
O’Callaghan et al., 2015), for a systematic comparative analyses of various topic
models as well as other clustering models. Ideally, such an analysis would also
consider the application of document-based coherence to other genres of texts
besides news texts, especially genres with shorter and topically focused texts,
such as social media posts and other user-generated content, as well as the
topically more heterogeneous scientific articles.
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