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Systematic discovery of germline cancer
predisposition genes through the identification
of somatic second hits
Solip Park1, Fran Supek1,2,3,6 & Ben Lehner 1,4,5

The genetic causes of cancer include both somatic mutations and inherited germline variants.

Large-scale tumor sequencing has revolutionized the identification of somatic driver altera-

tions but has had limited impact on the identification of cancer predisposition genes (CPGs).

Here we present a statistical method, ALFRED, that tests Knudson’s two-hit hypothesis to

systematically identify CPGs from cancer genome data. Applied to ~10,000 tumor exomes

the approach identifies known and putative CPGs – including the chromatin modifier

NSD1 – that contribute to cancer through a combination of rare germline variants and somatic

loss-of-heterozygosity (LOH). Rare germline variants in these genes contribute substantially

to cancer risk, including to ~14% of ovarian carcinomas, ~7% of breast tumors, ~4% of uterine

corpus endometrial carcinomas, and to a median of 2% of tumors across 17 cancer types.
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Inherited risk for cancer was first proposed by Broca because of
the history of breast cancer in 15 members of his wife’s
family1. However, it was Alfred Knudson’s ‘two-hit’ hypoth-

esis that initiated the identification of cancer predisposition genes
(CPGs) in which deleterious germline variants have been asso-
ciated with increased risks of cancer2. Through a statistical ana-
lysis of retinoblastoma cases, Knudson proposed that ‘two hits’ to
the DNA were necessary to cause cancer and that in children with
the inherited form of the disease the first hit is inherited variation
in one allele of the gene with the ‘second hit’ being a somatically
acquired inactivation of the second allele3. This model was con-
firmed by the identification of biallelic inactivation of the RB1
gene in retinoblastoma and indeed most known high-penetrance
inherited cancer predisposition variants are loss-of-function
mutations in recessively acting tumor suppressor (TS) genes2,4.

Tumor sequencing has led to the systematic identification of
somatically acquired cancer driver alterations5. In contrast,
to-date, sequencing has had limited success in identifying
CPGs6–9, with most CPGs having been identified from high-
penetrance variants in family studies2,10. As for other genetic
diseases, an important reason for this is the low statistical
power to detect associations between rare genetic variants and

disease risk in genome-wide analyses, even in large population
studies11–13.

We reasoned that Knudson’s original two-hit model provides a
more specific hypothesis that can be tested genome-wide to
identify CPGs from tumor sequencing data. We present a method
to achieve this and its application to the analysis of ~10,000
tumor exomes.

Results
ALFRED: discovery of putative cancer predisposition genes. To
systematically identify CPGs from cancer genome data, we
devised a statistical method termed ALFRED (for allelic loss
featuring rare damaging) that tests Knudson’s two-hit hypothesis
genome-wide (Fig. 1 and Supplementary Fig. 1a).

To predict loss of heterozygosity (LOH) in each tumor from
exome sequencing data, ALFRED uses all germline variants in
coding and noncoding regions within each gene with sufficient
sequencing coverage (expanding the analyzed region to 100 kb for
genes shorter than this size) and then tests for allelic imbalance
(AI), a change in variant allele frequencies (VAFs) in the tumor
compared to in the matched non-tumor sample from each
patient, Supplementary Fig. 2, see Methods).
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Fig. 1 Systematic discovery of cancer predisposition genes using the two-hit hypothesis. a Knudson’s two-hit model. b Principal components analysis (PCA)
and clustering using common variants to stratify the population of cancer patients. c ALFRED test 1 quantifies the enrichment of rare damaging germline
variants (RDGVs) in samples with putative LOH events (estimated via allelic imbalance, AI) using randomization within the PCA clusters (N= 10) to
control for population structure. d ALFRED test 2 quantifies the enrichment of putative LOH events where the RDGV frequency increases (≥10% excess in
tumors over normal samples) in samples with AI, using a binomial test. The ALFRED P-value is the less significant P-value of the two tests. c and
d show the example data for BRCA1 in a pan-cancer analysis
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ALFRED classifies germline variants (identified from non-
tumor DNA; mainly from blood) as potentially damaging if they
have a minor allele frequency (MAF) <0.1% in the Exome
Aggregation Consortium (ExAC) database14 and result in a
premature stop codon, frameshift, splice site inactivation, or
missense change predicted as deleterious by the MetaLR
consensus algorithm15.

ALFRED performs two tests using these rare damaging
germline variants (RDGVs) and using putative LOH events,
which were inferred via AI between the tumor sample and a
matched normal sample (see Methods). The first test is for an
excess of RDGVs in a gene in tumor samples with putative
LOH of the gene, compared to the frequency of RDGVs in
the samples without LOH in that gene. This test uses a
stratified randomization procedure to account for population
structure. The second test is for the direction and magnitude of
AI, testing for an increase in the frequency of the RDGV allele
in the samples with AI (see Methods). We conservatively use
the less significant P-value of these two tests as the final
ALFRED P-value (Fig. 1).

Application of ALFRED to ~10,000 human tumors. We applied
ALFRED to 10,043 tumor exomes from 30 cancer types
sequenced as part of The Cancer Genome Atlas (TCGA) project
(Supplementary Data 1). The frequency of AI varied widely
across samples and tumor types with a median of 7.1% of genes
affected in each tumor by our estimates (Supplementary Figs. 4
and 5a and Supplementary Data 2). Ovarian carcinoma (OV) had
the highest frequency of AI (median= 17.8% of genes affected,
first quartile (Q1)= 15.2%, third quartile (Q3)= 21.1%). Lung
squamous cell carcinomas (LUSCs) had the second highest fre-
quency (13.7%), while kidney renal clear cell carcinoma (KIRC,
3.2%), prostate adenocarcinoma (PRAD, 2.4%), and thyroid
carcinoma (THCA, 1.1%) had the lowest number of genes
affected per tumor (Supplementary Fig. 5a).

We first applied ALFRED in a pan-cancer analysis using all
10,043 samples and testing for an enrichment of RDGVs in
samples with AI for the 2983 genes carrying at least five RDGVs
(of which at least one with ≥10% increased VAF in tumor
compared to matched normal sample) and with an above-average
(10%) frequency of AI in the gene in the complete data set (see
Methods; Supplementary Data 3).

We first observed that previously known CPGs gathered from a
recent literature review2 and from the Cancer Gene Census10

showed a significant enrichment of RDGVs in samples with AI
compared to samples without AI (P= 2.2 × 10−3 by
Mann–Whitney test; Fig. 2a). One example of this is the genes
causing Lynch syndrome (a deficiency in DNA mismatch repair),
which are robustly enriched as a set (P= 3.6 × 10−3 by
Mann–Whitney test). This extends to DNA repair genes in
general (P= 3.7 × 10−2 by Mann–Whitney test; Supplementary
Fig. 7a).

At a false discovery rate (FDR)= 0.2, 13 genes were
individually enriched for RDGVs in tumors with AI and exhibited
AI in favor of the variant allele (henceforth referred to as
‘ALFRED genes’) (Supplementary Data 3). These 13 genes
included three well-known CPGs: BRCA1 (relative risk (RR) for
the excess of AI events in samples with RDGVs compared to
without RDGVs= 3.74, 42.2% of patients with RDGVs also have
AI versus 16.0% of patients without RDGVs that have AI,
ALFRED P < 2.0 × 10−6), ATM (RR= 2.98, 32.8% versus 13.8%,
P < 2.0 × 10−6), and BRCA2 (RR= 2.25, 37.6% versus 21.5%,
2.0 × 10−6) (Fig. 2b; Supplementary Fig. 5c–f). The RDGVs in the
13 ALFRED genes were mainly contributed by deleterious
missense mutations (mean of 80%; Supplementary Fig. 8a). The

enrichment for known CPGs in this set of 13 genes is very strong
(odds ratio (OR)= 29.7, Fisher’s exact test P < 3.99 × 10−4),
demonstrating that, despite LOH potentially being selected for in
tumors for multiple reasons16, specifically testing for the
combination of LOH and RDGVs can identify putative new
CPGs without the use of sequencing data from control individuals
(Fig. 2c).

We also used ALFRED to analyze each of the 17 cancer types
with >300 samples in isolation (82% of the samples in total,
Supplementary Data 4). Four genes (six associations: BRCA1,
BRCA2, and ANK2 in ovarian cancer, BRCA1, BRCA2, and
ATM in breast cancer) were significant in at least one
individual cancer type (FDR= 0.2, referred to as ‘individual
cancer ALFRED genes’) and all four genes were also significant in
the pan-cancer analysis (Fig. 2d and Supplementary Data 4).
BRCA1 and BRCA2 were significant genes in ovarian cancer
(BRCA1, RR of AI events in samples with RDGVs compared to
without RDGVs= 23.3, 94.1% of patients with RDGVs also
have AI versus 53.1% of patients without RDGVs, P < 2.0 × 10−6;
for BRCA2, RR= 4.7, 83.3% versus 49.3%, P < 9.3 × 10−4) and
in breast cancer (BRCA1, RR= 2.5, 48.6% versus 26.6%,
P < 4.6 × 10−3; BRCA2, RR= 3.6, 57.1% versus 27.9%,
P < 1.3 × 10−3). Another known cancer susceptibility gene,
ATM, was also detected in breast cancer17 (RR= 2.96, 52.2%
versus 26.3%, P= 3.5 × 10−3).

We observed similar results when examining only rare protein
truncation variants (PTVs, encompassing splicing variants,
frameshift indels, and nonsense variants) (Supplementary Fig. 8).
Five genes were enriched for rare PTVs in tumors with AI and
exhibited AI in favor of the variant alleles, of which three genes
(BRCA1/2 and ATM) overlap with our initial ALFRED design
(RDGVs based model), while TNFSF13B (excess of rare PTVs in
AI samples over samples without AI samples= 0.37%, PTV-
ALFRED P= 1.85 × 10−3) and ACACB (excess= 0.41%, PTV-
ALFRED P= 3.02 × 10−3) are newly detected (Supplementary
Fig. 8b). Previously known CPGs also showed a significant
enrichment of rare PTVs in samples with AI compared to
samples without AI (P= 3.7 × 10−2 by Mann–Whitney test,
Supplementary Fig. 8c). Furthermore, we also used a PTV-
ALFRED model to analyze each of the 17 cancer types and three
genes were significant in at least one individual cancer type (FDR
= 0.2, four associations: BRCA2 and ATM in breast cancer,
BRCA1 and BRCA2 in ovarian cancer) (Supplementary Fig. 8e
and g).

Sub-sampling and repeating the pan-cancer analysis revealed
that the number of significant genes increases with the number of
samples (R2 between square root of sample size and number of
ALFRED genes= 0.8, Supplementary Fig. 9e), suggesting that
many more ALFRED genes will be discovered as more cancer
samples are analyzed.

Somatic cancer genes also carry germline risk variants. We next
tested whether cancer genes identified by recurrent somatic
alterations but not previously reported to harbor inherited risk
variants also showed evidence of carrying recessive RDGVs that
predispose to cancer via a two-hit mechanism. Somatic cancer
genes known to act via gain-of-function alterations (oncogenes;
OGs) showed no significant enrichment for RDGVs in samples
with AI (Fig. 2a). In contrast, and consistent with the two-hit
hypothesis, somatic cancer genes classified as TSs showed an
enrichment for RDGVs in samples with AI (P= 2.2 × 10−2 by
Mann–Whitney test, Fig. 2a). This enrichment was robust when
analyzing somatic drivers reported by different studies and more
strongly enriched in higher-confidence TSs that were reported in
multiple data sets (P= 3.08 × 10−3 by Mann–Whitney test;
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Supplementary Fig. 7a, b). This indicates that multiple genes
currently only known to be affected by somatic alterations also
contribute to cancer because of rare, damaging germline variants.

At an FDR= 0.2, four genes previously reported as somatic
cancer genes were significantly enriched for AI in samples with

RDGVs in the pan-cancer analysis (OR= 5.1, Fisher’s exact test
P= 2.1 × 10−2; Fig. 2c): MYH1 (RR= 2.3, 25.3% versus 12.6%,
P < 2.0 × 10−6), NOP56 (RR= 4.6, 50% versus 17.8%, P < 2.12 ×
10−4), NSD1 (RR= 2.0, 22.2% versus 12.4%, P < 2.56 × 10−4),
and PRPF8 (RR= 3.2, 57.1% versus 29.1%, P < 7.76 × 10−4).

F
ra

ct
io

n 
of

 g
en

e 
se

t

0.0

0.25

0.5

0.75

1.0

10

FDR-cut off (%)

20 30 40 50 60 70 80 90

3

4 6 6

9

15 16 23 44

2

3

6

3

13

4

18

5

33

5

78

6

96

6

137

7

267

9

Known CPG
Known somatic driver (TS)
Known somatic driver (OG + Other)
Not known cancer genes

b

a

Known somatic drivers

Known cancer predisposition 
genes (CPGs)

(N = 46) (N = 329)

MNT

NSD1

MYH1 ATM

PRPF8

NIPAL3

KCNG4

TPCN2

BRCA2

NOP56

ANK2

BRCA1

0

2

4

F
D

R
 =

 1
0%

F
D

R
 =

 2
0%

–log10(ALFRED P-value)

E
xc

es
s 

of
 R

D
G

V
s 

in
 s

am
pl

es
 w

ith
 p

ut
at

iv
e 

LO
H

co
m

pa
re

d 
to

 s
am

pl
es

 w
ith

ou
t p

ut
at

iv
e 

LO
H

 (
%

) 
 

0 2 4 6

RDGV frequency (%)

0 2 4

–log10(ALFRED P-value)

Known CPG
Known somatic driver
Not known cancer gene

2 4 6

KCNH5

0

5

FDR ≤ 20%

–log10(ALFRED P-value)

Excess of RDGVs in cancer type of interest 

2 4

10 (%)0.5

d

Pan

OV

BRCA

UCEC

LIHC

COADREAD

LUSC

BLCA

GBM

LUAD

KIRC

CESC

LGG

THCA

PRAD

SKCM

STAD

HNSC

A
T

M

B
R

C
A

1

B
R

C
A

2

M
Y

H
1

K
C

N
G

4

M
N

T

N
O

P
56

N
S

D
1

T
P

C
N

2

A
N

K
2

K
C

N
H

5

N
IP

A
L3

P
R

P
F

8

ALFRED genes (N = 13)

Number of cancer types with
P < 0.05

C
an

ce
r 

ty
pe

s

0

2

4

Number of genes with
      P < 0.05

0 2 4

c

−0.4

0.0

0.4

0.6

−0.2

0.2

E
xc

es
s 

of
 R

D
G

V
s 

in
 s

am
pl

es
 w

ith
 p

ut
at

iv
e 

LO
H

 c
om

pa
re

d 
to

 s
am

pl
es

 w
ith

ou
t p

ut
at

iv
e 

LO
H

 (
%

)

**
*

T
um

or
 s

up
pr

es
so

rs
 (

T
S

) 
 (

N
 =

 3
6)

K
no

w
n 

C
P

G
s 

(N
 =

 4
6)

N
ot

 k
no

w
n 

ca
nc

er
 g

en
es

(N
 =

 2
60

8)

O
nc

og
en

es
 (

O
G

) 
(N

 =
 3

5)

Known somatic driver

S
om

at
ic

_O
th

er
  (

N
 =

 2
58

)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04900-7

4 NATURE COMMUNICATIONS |  (2018) 9:2601 | DOI: 10.1038/s41467-018-04900-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Germline variants in ALFRED genes increase cancer risk. We
next compared the frequencies of RDGVs in the 13 ALFRED
genes in 10,031 cancer patients to the frequencies in 4,624 control
exomes compiled from three different studies (see Methods;
Supplementary Fig. 1b)18–20. We again used a randomization
procedure to control for population structure, estimated from
common variants (Fig. 3a and Supplementary Fig. 3c–e), and,
together with additional quality control steps (see Methods), we
only considered variants in regions with sufficient sequencing
coverage in both cases and controls (Supplementary Fig. 3f).

In a pan-cancer analysis, RDGVs were enriched 8.5-fold in
cases compared to controls in the ALFRED genes relative to other
genes (4.4-fold after excluding known CPGs from ALFRED
genes, Fig. 3b, average excess of RDGV-bearing individuals
in cases over controls= 0.23% of the population per each
ALFRED gene, P < 1.87 × 10−2 by Mann–Whitney test, Fig. 3b;
Supplementary Table 1). This was similar to the enrichment
for RDGVs across all previously known CPGs (average excess
per gene= 0.11% of the population, P < 2.04 × 10−4 by
Mann–Whitney test) and similarly so when excluding the
three known CPGs that overlapped with ALFRED genes (average
excess per gene= 0.12%).

Five of the pan-cancer ALFRED genes (BRCA1, ATM, BRCA2,
NSD1, and TPCN2) were individually significantly enriched for
RDGVs in cases versus controls (P < 0.05 by pan-cancer case-
control analysis, Fig. 3c) with one additional gene, NIPAL3,
marginally significant (P= 0.07 by case-control analysis) (Fig. 3c).
In addition, three of the six individual cancer type ALFRED genes
were enriched for RDGVs in cases of the matched cancer type
versus controls (P < 0.05, Fig. 3d; Supplementary Data 6): BRCA1
and BRCA2 in breast invasive carcinoma (BRCA) and OV, and
ATM in BRCA. Eight of the 13 ALFRED genes with a nominally
significant association between RDGVs and AI in at least one
cancer type in the ALFRED analysis (P < 0.05; Fig. 2d and
Supplementary Data 5) also had an enrichment of RDGVs in a
matched cancer type compared to in controls (P < 0.05, Fig. 3d;
Supplementary Data 6): ATM in colon and rectum adenocarci-
noma (COADREAD), lung adenocarcinoma (LUAD) and in
PRAD, NSD1 in OV, and TPCN2 in uterine corpus endometrial
carcinoma (UCEC).

We also validated the rare PTV-ALFRED model by comparing
the frequencies of rare PTVs in the five PTV-ALFRED genes in
cancer patients to the frequencies in control samples. Three of the
pan-cancer PTV-ALFRED genes (BRCA1, BRCA2, and ATM)
and all four individual cancer type PTV-ALFRED genes were
individually significantly enriched for rare PTVs in cases versus
controls (nominal P < 0.05) (Supplementary Fig. 8f and g).

To evaluate the robustness of this result, we randomly split the
TCGA samples into two groups, using one half of the data for the
ALFRED analysis (discovery set) and the other half for the case-
control analysis (validation set), repeating the split five times.
Overall, ALFRED genes presented similar effect sizes to the
original ones found on the entire TCGA (Pearson correlation
between excess of RDGVs in AI samples ranged from 0.79 to 0.82;
Supplementary Fig. 9a) and P-values (Pearson correlation

between ALFRED −log10 P-values, 0.71–0.76; Supplementary
Fig. 9b). The effect sizes (Supplementary Fig. 9c) and −log10 P-
values (Supplementary Fig. 9d) in the case-control analyses were
also highly correlated to the original ones (R= 0.88–0.89 and
R= 0.87–0.89), suggesting robust results.

Variants in ALFRED genes predispose to specific cancer types.
To further investigate the cancer type-specificity of the cancer risk
conferred by rare damaging germline variation in the ALFRED
genes, we tested whether RDGVs in these genes were enriched in
tumors of one type compared to in all of the other tumor samples
(e.g. in ovarian cancer compared to non-ovarian cancer; Fig. 4a).
If RDGVs in a gene contribute similar risk to many cancer types
then they would not show enrichment in this test. However, if the
RDGVs strongly predispose to one or a few cancer types, they
should be enriched in patients with these cancer types compared
to in other cancer patients. We performed two analyses: the first
using all samples and the second restricted to tumor samples with
AI in the gene of interest. In total, 8 of the 13 ALFRED genes had
an association (unadjusted P < 0.05) between RDGVs and AI in at
least one of the 17 individual cancer types (median 2 cancer types
per gene). Four of these eight genes were also significantly enri-
ched overall for RDGVs in the matched cancer type compared to
in other cancer types (P < 0.05, Fig. 4a; Supplementary Data 7)
with six genes enriched when only considering samples with AI
(Fig. 4b and Supplementary Data 8). For example, RDGVs in
BRCA1 and BRCA2 were, as expected, significantly enriched in
OV and BRCA compared to in all the other cancer samples
(BRCA1, excess of RDGVs in BRCA compared to non-breast
cancer= 2.1%, 95% CI: 1.1–3.1%, excess in OV= 6.7%, 5.1–8.2%;
BRCA2, excess in BRCA= 1.3%, 0.49–2.1%; excess in OV= 3.9%,
2.7–5.1%).

In total, therefore, seven of the eight ALFRED genes with a
nominally significant association between RDGVs and AI in at
least one cancer type in the ALFRED analysis also had a
significant enrichment (unadjusted P < 0.05) of RDGVs in that
cancer type over either control samples or other cancer types
(Supplementary Data 9). Moreover, four genes had a significant
enrichment in both additional RDGV frequency analyses
(BRCA1, ATM, BRCA2, and NSD1).

The contribution of ALFRED genes to cancer risk. Next, we
estimated the total contribution of RDGVs in the ALFRED genes
to cancer risk by quantifying the excess frequency of ALFRED
gene RDGVs in cancer patients over that in the general popula-
tion. Again, this was adjusted for the expectation based on the
population structure, as determined by a randomization test
(Methods). We examined ALFRED gene sets at different strin-
gency thresholds, and quantified the excess frequency of RDGV-
bearing cases (cancer patients) while adding genes sequentially
according to their ALFRED P-values for each cancer type
(ordered from the most significant gene to least significant gene;
Fig. 5), reporting the maximum excess of individuals carrying
RDGVs in cases compared to controls. This was significantly

Fig. 2 Pan-cancer and 17 individual cancer type ALFRED analyses. a Enrichment of RDGVs in samples with AI over samples without AI for different gene
sets (*P < 5.0 × 10−2, **P < 5.0 × 10−3). The median value of each gene set is displayed as a band inside each box. The length of each whisker is 1.5 times
the interquartile range (shown as the height of each box). Values lying outside the whiskers are considered outliers. b Excess of RDGVs in samples with AI
plotted against the ALFRED randomization test significance for individual genes. Color indicates significance and shape represents the type of gene. c The
fraction of different types of gene in the detected genes at varying FDR cut-offs. d ALFRED results in individual cancer types. Enrichments and P-values
are shown in each cancer type for all genes significant at FDR= 0.2 in the pan-cancer or in the individual cancer type ALFRED tests. Circle size indicates
excess of RDGVs within a cancer type and color represents the significance (P-value). Blue-border circles indicate genes that are significantly enriched
(FDR≤ 0.2). The number of cancer types in which each gene has P < 0.05 and the number of genes with P < 0.05 in each cancer type are presented in the
bar plots
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greater than the random expectation in 5 out of 17 individual
cancer types (Fig. 5 and Supplementary Fig. 10a).

The estimates of contribution to cancer risk were markedly
different across cancer types with a median excess of individuals
with RDGVs in cases compared with controls= 2.3% and a range
of 1.4% (head and neck squamous cell carcinoma (HNSC)) to

14.6% (OV). Strikingly, 21.7% of OV patients carried RDGVs in
ALFRED genes, which is an excess of 14.6% over controls (95%
CI: 11.6-17.1%). Other cancer types with a substantial contribu-
tion of RDGVs in ALFRED genes include BRCA (7.0% by excess
of cases versus controls, adjusted to random expectation; 95% CI:
4.7–9.1%) and UCEC (3.8% excess, 95% CI: 1.1–6.2%).
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We next compared the cancer risk contribution of RDGVs in
the ALFRED genes to the contribution of RDGVs in previously
reported CPGs (Supplementary Fig. 10). We first focused on the
contribution of RDGVs in the three previously known CPGs that
were also retrieved by ALFRED (BRCA1, BRCA2, and ATM). The
excess of RDGVs in these three CPGs in cases versus controls
suggests that RDGVs in these three genes are implicated in a
median of 1.2% of cancer cases across the 17 cancer types (range:
0.24–11.4%). However, RDGVs in the remaining ten newly
discovered ALFRED genes were estimated to explain a median of
1.8% of cases across cancer types (range: 0.32–4.0%). In OV, for
example, the excess of cancer cases that carry RDGVs in any
ALFRED gene after excluding known CPGs is 4.0% (95% CI:
1.6–5.0%). Similarly, for four other cancer types (bladder
urothelial carcinoma (BLCA), PRAD, THCA, and UCEC), the
ten putative novel ALFRED genes are estimated to explain
approximately 2% of cancer cases. For comparison, the
percentage of cancer cases explained by a general set of 46
previously reported CPGs is 4.9% (median across cancer types;
range 0.8–11.7%). However, the CPGs known to predispose
specifically to individual cancer types were estimated to
contribute to 1.0% of cases (median across cancer types; range
0–11.4%, Supplementary Fig. 10b). The newly discovered
ALFRED genes therefore appear to contribute more cancer risk
than the previously known CPGs relevant for each cancer type.

To estimate the total proportion of cancer cases attributable to
rare germline risk variants for each cancer type, we combined the
ALFRED genes with the previously reported CPGs (for any
cancer type). In total, RDGVs in these 56 genes explain a median
of 5.4% of cancer cases across the 17 cancer types (excess
frequency of cases with a RDGV over frequency of controls,
adjusted to a random expectation; range 2.3–15.2%). For instance,
a total of 15.2% (95% CI: 12.1–17.7%) of OV and 9.3% of BRCA
cases (95% CI: 6.2–12.4%) can be explained by RDGVs in the
56 genes (Supplementary Fig. 10b).

Discussion
The two-hit hypothesis has served as a framework for cancer gene
discovery for over 40 years3,4. Here we have shown that this
classic insight still provides a powerful hypothesis for the dis-
covery of CPGs and, in particular, that it can be used to discover
CPGs from cancer exomes without the use of control samples.

Only three of the genes identified by ALFRED (BRCA1,
BRCA2, and ATM) are known CPGs reported in two large-scale
literature surveys of CPGs identified through family studies2,10.
Our results suggest that multiple somatic cancer drivers and
putative new genes also harbor germline genetic variants that
predispose to cancer in the general population. For example, the
histone H3 lysine 36 methyltransferase NSD1 was the second
most significantly enriched gene in our case–control analysis with
an excess of RDGVs in cases compared with controls= 0.72%
(P < 1.14 × 10−3, 95% CI: 0.27–1.2%). This suggests that RDGVs
in NSD1 are causally implicated in ~0.72% of cancers, a similar
magnitude of effect as we observe for the well-known cancer
predisposition genes BRCA1 (0.64%) and ATM (0.68%). Genome
sequencing has previously established NSD1 as a somatically

mutated cancer driver in HNSC21 and LUSC22, and recurrently
silenced by methylation in renal cell carcinoma23,24. Here we have
presented evidence that NSD1 also carries germline cancer pre-
disposition variants. Loss-of-function germline variants in NSD1
cause Sotos syndrome, a rare genetic disorder characterized by
tissue overgrowth during the first years of life25. However, the
variants in NSD1 enriched in cancer patients are distinct from the
variants that cause Sotos syndrome (Supplementary Fig. 12h) and
they are much less likely to be truncation variants (OR= 151.8,
Fisher’s exact test P < 2.1 × 10−40), suggesting different mechan-
isms or allele-strengths underlie cancer predisposition and Sotos
syndrome.

Considered as a set, RDGVs in the ALFRED genes can explain
a substantial proportion of the cancer cases analyzed by the
TCGA project: a median of 2.3% across the 17 individual cancer
types with sufficient sample sizes. However, in several cancers the
contribution is substantially higher, with 14.6% of OV, 7.0% of
BRCA, and 3.8% of UCEC cases attributable to RDGVs in these
genes. Including additional known CPGs further increases the
estimate of the proportion of cases attributable to RDGVs: a
median of 5.4% across the 17 individual cancer types, with 15.2%
of OV, 9.3% of BRCA, and 6.0% of UCEC cases attributable to
RDGVs in ALFRED genes, respectively.

The sequencing of even larger numbers of tumors and control
individuals will further refine these estimates (Supplementary
Fig. 9e) and will also allow a more complete description of the
genes that contribute to cancer when they are inactivated by the
combination of RDGVs and somatic second hits.

Methods
Ethical approval. This paper reanalyzes previously published data sets. All cancer
patient and healthy controls data were handled in accordance with the policies and
procedures of the Centre for Genomic Regulation (CRG).

Tumor exome sequences. The whole-exome sequences of TCGA cancer patients
were downloaded from the Cancer Genomics Hub repository (https://cghub.ucsc.
edu/)26. A pair of BAM files per person was obtained: one with aligned short reads
derived from the healthy tissue (commonly, blood) of the donor, and another
from the tumor sample from the same person. The corresponding BAMs are
available from TCGA following authorization (dbGaP controlled data set
phs000178). Most of these BAMs (N= 9,774) were pre-aligned to the hg19
assembly. For the remaining 637 samples aligned to hg18, we realigned the reads to
hg19 using Illumina’s Isaac Aligner v1.14 (ref. 27) with default parameters,
except for specifying “--use-bases-mask Y75,Y75” if the aligner run would not
complete at default settings. Clinical data were downloaded directly from the
TCGA Data Portal (https://portal.gdc.cancer.gov). Technical covariates of TCGA
samples (N= 9618) were obtained from Buckley et al.28.

Control exomes. The exome sequences of healthy controls were collected from the
1000 Genomes Project19 (1000g; Phase III high-coverage whole-exome sequences,
the European (N= 500), East Asian (N= 513), African (N= 596), and Admixed
American (N= 345) populations; total N= 1954 exomes), from the Women’s
Health Initiative (WHI; N= 791 European American, N= 614 African
American, and N= 3 of unknown ethnicity; in total, 1408 samples
(dgGaP phs000200) (https://esp.gs.washington.edu/drupal/)20 and from the
UK10K data for N= 1658 samples (http://www.uk10k.org/)18.

Sample-level quality control and genomic region filtering. To ensure
sufficient sequencing coverage, we required that all genomic sites retained for
further analysis have ≥8 reads covering a site in at least 90% of the cancer
samples in each cohort (90 out of 100 randomly chosen samples). The threshold

Fig. 3 Case–control analysis. a Overview of the case–control analysis and randomization procedure used to control for population structure. b Enrichment
of RDGVs in 10,031 cancer cases over 4624 controls for eight gene sets (*P < 5.0 × 10−2, **P < 5.0 × 10−3). The median value of each gene set is displayed
as a band inside each box. The length of each whisker is 1.5 times the interquartile range (shown as the height of each box). Values lying outside the
whiskers are considered outliers. c Pan-cancer case–control P-values for ALFRED genes. d Case–control analyses for eight individual cancer types.
e Enrichment of RDGVs in cancer patients compared with control samples. Bubble plot shows significance by case–control analysis within each cancer type
as a –log10 P. Circle size indicates excess of RDGVs within a cancer type and color represents the P-value. Blue-border circles indicate genes that are
significantly enriched (P < 0.05). The number of detected cancer types (at P < 0.05) in each gene and the number of detected genes (at P < 0.05) in each
cancer type are presented in the bar plot
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of 8 reads was imposed after having applied the built-in read quality filters of
Illumina’s Isaac Variant Caller (IVC) software v1.0.6, which was run using
default settings27. Within the TCGA set of cancer cases we considered
sequencing centers (BI, WU, and BCM) separately for the purposes of this analysis,
meaning that there needs to be sufficient sequencing coverage in ≥90% of the
samples from each of the three centers for that genomic site to be allowed.
Moreover, we similarly subdivided the control data sets, requiring ≥8 high-
quality reads in at least 90% of samples from each of the 1000 Genomes
sequencing centers (BI, WU, BCM, and BGI) independently. The WHI was
considered as a single unit in this analysis but was filtered to exclude exome
sequences with low overall sequencing coverage, thereby retaining 1023 WHI
samples and examining only the sites with ≥8 high-quality reads in 90% of a
randomly sampled set of those tumors (Supplementary Fig. 3f). Finally, from
the UK10K cohort, we randomly selected three studies (EGAD431, EGAD433,
and EGAD438) and required sufficient sequencing coverage in 90 of 100 exomes
from each of these. Thus, in total, we made 11 genome masks (3 for TCGA
sequencing centers, 4 for 1000g, 1 for WHI, and 3 for UK10K) and intersected
them to arrive at the final set of allowed genome regions for the case–control
analysis, which spans 33.82 Mb of the hg19 reference. This encompasses 14,143
genes that therefore have sufficient sequencing coverage in both TCGA and the
control samples. After filtering to retain only the validated variants in ExAC ver-
sion 0.3 (ref. 14) (http://exac.broadinstitute.org/), the TCGA cancer samples had a
median 4574 nonsynonymous, stop gain and stop loss, splice SNVs and coding
indels in the filtered regions, as annotated by the Annovar tool version 2014-11-12
(ref. 29), while the control samples had a median 4588 variants each, according to
the same definition.

Importantly, the LOH calling procedure (estimated from AI between the tumor
and the normal sample from cancer patients; see below) were performed only on
the TCGA samples and not on controls, allowing us to use a less stringent
definition of covered genomic regions specifically for the purposes of determining

LOH. This was obtained as an intersection of only the three TCGA genomic masks,
thus covering 50.37 Mb of genomic DNA and affording more coverage at the
noncoding intronic and intergenic sites that flank exons. The TCGA cancer
samples had a median of 5154 variants (21,780 all germline variants both coding
and noncoding variants) in the covered regions.

Sample filtering. Before proceeding with further analyses, we removed (1) a set of
222 TCGA samples sequenced with the ABI platform that were outliers in a
principal components analysis (PCA) analysis and (2) the bottom 2% of samples
with the lowest number of called nonsynonymous variants (N= 146 TCGA
samples in the ALFRED analysis; N= 169 including 11 control samples in the
case–control analysis).

Calling germline variants. We called the germline variants (single-nucleotide and
short indels) on the normal and the tumor samples independently using Illumina
IVC27. We used the default IVC confidence threshold (genotype quality score
GQX ≥ 30) on the normal samples to determine the germline variants. Further-
more, we discarded all indel variants covered with less than 10 reads and when the
allelic frequency was significantly different from 50% and also from 100% in the
normal sample (Chi-square test P > 0.05).

Variant annotation and filtering. We annotated the called variants in the VCF
files using Annovar29, database version 2014-11-12. Of the data Annovar reports,
we used (i) the consequences of the mutations: synonymous, missense, truncating,
splice site, frameshift indel, and in-frame indel, using the RefSeq gene annota-
tions30; (ii) the estimated effect of missense mutations via the MetaLR predictor15,
which combines nine deleteriousness scores including PolyPhen-2, SIFT and
others. We discarded all variants marked as possible artifacts in the ExAC (via
VQSR recalibration scores supplied therein) or that were completely absent from
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ExAC. This filtering was performed on the full ExAC, which includes germline
variants of TCGA samples in addition to other non-cancer cohorts. We also dis-
carded double-nucleotide variants annotated by ExAC. Finally, we compared
detection frequencies of common variants (MAF > 5%) across TCGA and three
different control data sets. All pairwise combinations show very strong correlations
(Pearson correlation ranges from 0.92 to 0.99), suggesting that no major sequen-
cing artifacts were observed in our analysis (Supplementary Fig. 3c).

Detecting putative LOH events. In order to determine whether LOH has
occurred in each gene in each tumor sample, we considered all germline var-
iants (both rare and common), taking into consideration both the coding and
noncoding (intronic/UTR) variants. The average number of variants of gene
per sample is highly correlated with gene length (Pearson correlation coefficient

(PCC)= 0.55; Supplementary Fig. 2a). To reduce biases this may introduce,
we added neighboring variants: (1) within 100 kb and (2) extending the window
to 200 kb. The length bias is much reduced after adding neighboring variants
within 100 kb ( PCC = 0.25). Employing an even longer window size (200 kb)
does not further appreciably reduce the correlation between gene length and
number of variants (PCC= 0.18). In conclusion, we reasoned that adding
neighboring variants is warranted in order to lessen the bias wherein longer
genes provide more statistical power to detect LOH and that a window size of
100 kb is sufficient since increasing the window size further is not advantageous.

When testing genes shorter than 100 kb, we extended the examined region
bidirectionally so as to ensure that the gene was represented by variants spanning
at least 100 kb across the chromosome. In the case when a gene is longer than 100
kb, we only considered the variants within that gene but without extending to
include the neighbors. Similarly to calling coding variants, we also limited the
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their ALFRED P-value. Genes are randomly ordered in the random sets. Excess was calculated using a randomization for ALFRED genes (colored) and five
random gene sets of the same size (gray). Error bars indicate 95% confidence interval. b Results for the nine cancer types with largest maximum
enrichment
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analyses to genomic regions with sufficient sequencing coverage in the TCGA
samples (see above). Homozygous germline mutations were not included in further
analyses. Before performing a statistical test to call LOH, we applied an effect size
threshold, requiring that the tumor VAF of a germline variant must be either
higher than 0.7 or lower than 0.3. This ensures that the LOH was not a late event
during tumorigenesis, which is an unlikely scenario for an LOH event associated
with cancer-predisposing germline variants. Each variant in a gene (and possibly
surrounding regions) that meets the effect size threshold was further tested
individually using a two-tailed Fisher’s test that compares the read counts
supporting the variant and the reference alleles in the tumor, versus the read counts
supporting the variant and the reference alleles in the normal (noncancerous)
tissue. The P-values from all tested variants corresponding to the gene were then
pooled using Fisher’s method for combining P-values. Finally, we called LOH in
the gene if the nominal pooled P-value was ≤0.05. Applying this cutoff provides
putative LOH labels that are further used as input for the ALFRED test (see below)
that, in turn, provides FDR-adjusted statistical significance estimates.

We compared our AI detection method to copy number changes reported using
an independent method (GISTIC analysis of Affymetrix 6.0 SNP array data by
Broad Firehose analysis pipeline31 (http://gdac.broadinstitute.org/)) applied to
9672 TCGA samples. We compared our classification (AI or non-AI) to their copy
number alteration (CNA) categories—(i) loss, (ii) neutral, or (iii) gain—for all
tested genes. Our AI events were classified as losses (44.9%), neutral (31.7%),
and gains (23.4%), which compares to 15%, 67.7% and 23.4%, respectively, for
non-AI events.

Rare damaging germline variants. Rare variants were defined as those whose
frequency was <0.1% in each of the six subpopulations: African/African American
(AFR), Latino (AMR), EAS (East Asian), Finnish (FIN), Non-Finnish European
(NFE), and South Asian (SAS) and also globally in ExAC. Damaging variants were
defined as splicing variants, frameshift indels, nonsense variants, and deleterious
missense variants annotated as “D” (deleterious) by the MetaLR predictor15.
Additionally, we removed the RDGVs that were recurrent at the same position
in more than 1% of our samples (TCGA or control samples), thereby excluding
four variants (17-46608203-A-G, 20-5548206-TC-T, 21-34924148-A-G and
X-2833605-C-T).

Pan-cancer ALFRED analysis. We first tested for an excess of RDGVs in samples
with putative LOH compared to in samples without putative LOH of all possible
genes (N= 14,143), collapsing together all SNVs/indels in each gene in each
sample and using the exomes of all 30 cancer types (Supplementary Fig. 5b;
Supplementary Data 1). To increase statistical power, we first restricted our analysis
to the genes with high frequency of putative LOH events (above average in our data
set, 10.0%). Next, we applied a threshold fornumber of RDGVs that ensures there is
no inflation in the distribution of observed P-values (see below), implying a sta-
tistically well-calibrated test. Finally, 2983 genes were defined as ALFRED tested
genes, which carried at least five RDGVs (of which at least one with ≥10%
increased VAF of RDGVs in tumor compared to matched normal sample; 6692
genes were excluded that were carrying less than five RDGVs and, additionally, 329
genes were excluded if they carried no RDGV with ≥10% increased VAF), with an
above-average (10.0%) frequency of putative LOH in the gene in the pan-cancer
data (8809 genes were excluded that were lower than 10.0% frequency of putative
LOH; 4672 genes were carrying less than five RDGVs and lower putative LOH
frequencies than average frequency of putative LOH; Supplementary Fig, 6a). With
these criteria, the tested ALFRED genes were biased towards larger genes because
larger genes tend to present higher AI and RDGV frequencies (PCC= 0.40
between length and RDGV frequency, PCC= 0.23 between length and LOH fre-
quency; Supplementary Fig. 6b). However, the ALFRED method is designed to test
for the co-occurrence of LOH events and RDGV, and we observed only a very weak
correlation between ALFRED P-value (as −log10 P) and gene length (PCC= 0.09).

To determine the significance of the excess of RDGVs in putative LOH samples
compared to in samples without putative LOH, we applied a randomization
procedure that controls for the population stratification by randomizing the labels
within subpopulation clusters determined by PCA analysis (see below, Controlling
for population structure in the randomization test).

To evaluate the influence of known CPGs on the identification of ALFRED
genes, we performed an FDR correction only considering a set of known somatic
cancer genes (meaning, the known germline CPGs were excluded). We detected
five genes at FDR 20%, of which four genes (MYH1, NSD1, NOP56, and PRPF8)
overlap with our initial design, and additionally INO80 (ALFRED P= 1.03 × 10−3)
was newly detected. This supports the notion that ALFRED analysis could identify
putative novel genes even without including known CPGs.

To ensure the robustness of our ALFRED method, we considered possible
confounding factors. Several biological features of the tumors could affect our LOH
estimates, such as genomic instability, burden of RDGVs, sample purity, ploidy,
intra-tumor heterogeneity, and patient age (see section below, Associating AI
frequency with biological features). We evaluated the association between these
factors and the frequencies of our AI calls or RDGV frequencies, but found no
evidence of confounding (Supplementary Fig. 11). While AI frequencies do show
positive correlations with genomic instability (PCC = 0.34), ploidy (PCC= 0.36),
and patient age (PCC= 0.11) in the pan-cancer analysis, the ALFRED analysis—

which considers the overlap of RDGVs and AI events—does not appear to be
overly affected by these biological features (Supplementary Fig. 11c–e).

The ALFRED method was also robust to other possible confounders: (1)
sequencing artifacts due to whole-genome amplification (in OV and LAML
samples; Supplementary Fig. 12a), (2) somatic second hits not due to LOH but due
to somatic truncation mutations (Supplementary Fig. 12b; Supplementary
Data 11), (3) apparent LOH events which might be due to amplification of the
wild-type allele (Supplementary Fig. 12f), and (4) presence of haploinsufficient
genes (Supplementary Fig. 12g). In all such cases, the distributions of –log10
P-values of the ALFRED test were stable (PCC between original and filtered data
sets= 0.83 to 0.97, see Supplementary Fig. 12a, b and f).

We also explored the possibility that the ALFRED analysis could identify genes
with dominant gain-of-function variants. Genes with dominant gain-of-function
variants would not be significant in ALFRED analysis (e.g., no excess of RDGVs in
AI samples compared to no-AI samples), but would be significant in the
case–control analysis, meaning the variants are enriched in cancer patients in
comparison to the general population. We observed that 44 genes presented low
effect size of ALFRED analysis (RR for the excess of putative LOH events in
samples with RDGVs compared to without RDGVs, RR < 1.0), but were nominally
significant in the case-control analysis (unadjusted P < 0.05). There are four
somatic drivers (not classified as TSs or OGs) and one OG (JAK2, RR= 0.98,
case–control P= 9.28 × 10−4) detected (genes are labeled in Supplementary
Fig. 12e). While our initial ALFRED analysis was not explicitly designed to
identify cancer predisposition genes with dominant-negative effects, this result
suggests that indeed some cancer genes with a dominant effect might be
identified in the future by applying custom-developed methods to cancer
sequencing data.

ALFRED analysis of individual cancer types. We performed the same analysis for
each of 17 cancer types with >300 samples, a total of 8283 samples (82% of all
samples): BLCA, BRCA, cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), COADREAD, glioblastoma multiforme (GBM), HNSC,
KIRC, low-grade glioma (LGG), liver hepatocellular carcinoma (LIHC), LUAD,
LUSC, ovarian serous carcinoma (OV), PRAD, skin cutaneous melanoma (SKCM),
stomach adenocarcinoma (STAD), THCA, uterine corpus endometrial carcinoma
(UCEC). As in the pan-cancer analysis, in each cancer type we required the
putative LOH frequency to be above the average putative LOH frequency recorded
across all samples (10.0%). To avoid inflation of the P-value distribution, we
adjusted the requirement for the number of samples carrying a RDGV in each
cancer type as follows: more than two case (samples with LOH event) or control
samples (samples without LOH event) with a RDGVs in THCA, more than three in
five cancer types (CESC, KIRC, OV, PRAD, and UCEC), more than four in GBM,
more than five in four cancer types (BLCA, LGG, LIHC, and LUSC), more than six
in three cancer types (BRCA, COADREAD, and HNSC), more than seven in
SKCM, more than nine in two cancer types (LUAD and STAD).

To check the robustness of ALFRED analysis of single cancer types, we have
also confirmed results in the case when FDR correction was performed across the
statistical tests in 17 cancer types considered together (in the same manner as for
the pan-cancer analysis; Supplementary Fig. 12d and Supplementary Data 10).
Four genes (six associations) were detected in at least one individual cancer type
after merging all the cancer types together (FDR= 20%) and all four genes
overlapped with the genes detected when FDR correction was done in each cancer
type separately.

PTV-only ALFRED analysis. Additionally, we designed a PTV-ALFRED model
that tested for an excess of rare PTVs (without considering rare deleterious mis-
sense variants) in tumor samples with a putative LOH event over samples without
putative LOH in a pan-cancer analysis and in 17 individual cancer types (Sup-
plementary Fig. 8b and e). We restricted our analysis to genes with a high fre-
quency of putative LOH events and defined a threshold of the number of rare PTVs
that ensures no inflation and no deflation in the distribution of observed P-values
(lambda= 0.96). In the pan-cancer analysis, 174 genes were included in the PTV-
ALFRED model with at least five rare PTVs (Supplementary Data 12). We also
used a PTV-ALFRED model to analyze each of the 17 cancer types and three genes
were significant in at least one individual cancer type (Supplementary Fig. 8e;
Supplementary Data 13).

RDGV frequency analyses. To further evaluate the contribution of RDGVs in the
ALFRED genes towards cancer risk, we designed three different tests and applied
a randomization procedure to each of them in order to determine the statistical
significance and the effect size.

(1) Cancer patients versus control exomes: we tested for an excess of RDGVs in
cases (all TCGA samples) versus controls (the general population). We also
performed the same analysis for 17 individual cancer types separately
(Supplementary Fig. 6d).

(2) Cancer type of interest versus cancer samples of all other cancer types: we
tested for an excess of RDGVs in one TCGA cancer type compared to in all
the other TCGA samples (e.g., breast cancer versus non-breast cancers) for
each of the 17 cancer types (Supplementary Fig. 6e).
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(3) Cancer type of interest versus all the other cancer types for putative
LOH samples only: we tested for an excess of RDGVs in samples of each of
the 17 cancer types versus samples of the other cancer types as above but
only considering samples with putative LOH at the locus being tested
(Supplementary Fig. 6f).

To evaluate the robustness of our second RDGV frequency analysis, we sought
to determine whether our analysis could distinguish the cancer type-specific
enrichment when some genes predispose to more than one cancer type (e.g.,
BRCA1 in OV and BRCA). We have tested this possibility by performing an
analysis in which we tested each cancer type of interest versus all the remaining
cancer samples, but excluding one of the other types. Then we repeated this
analysis for all ‘other’ cancer types one-by-one (e.g., breast cancer versus non-
breast cancer types except ovarian cancer; then, breast versus non-breast cancer
types except bladder cancer etc.). For each cancer type, we therefore repeated this
test 16 times, excluding each one of the remaining types. The distribution of P-
values with this modified tissue-specificity analysis is rather similar to our initial
design (Supplementary Fig. 12c), suggesting the general robustness of our initial
analysis. One novel association (ATM in COADREAD) becomes nominally
significant in this modified tissue-specificity analysis (P-value changed from 5.3 ×
10−2 to 2.7 × 10−2). Also, as expected, BRCA1 in BRCA presented a slightly better
supported association in the modified tissue-specificity analysis (breast cancer
versus non-breast cancer types except ovarian cancer) (P < 2.0 × 10−6) compared to
the previous analysis (breast cancer versus non-breast cancer types; P < 8.4 × 10−5).

Controlling for population structure. Many germline variants from whole-exome
or genome sequencing data are expected to vary according to the ethnicities of the
individuals within the cohort. This is evident in PCA plots of germline variation19

and may confound genome-wide association studies32. We thus employed a ran-
domization test that controls for population stratification by comparing matched
samples only within subpopulations (Supplementary Fig. 5i; see the Randomization
algorithm section), as described in ref. 11. Past work using simulated data suggests
that such matching controls for P-value inflation equally well or better than the
approach where the population PCs are included as covariates in regression13.

To define the subpopulations in our data, we performed a PCA with only the
common germline variants (≥5% MAF in ExAC). For the ALFRED analyses and
the cancer type of interest versus all other cancers analyses, we performed the PCA
only on the TCGA samples. For the other case–control analyses we performed the
PCA on both the TCGA and control samples. We used the first four PCs to cluster
the individuals using the tclust package in R (Supplementary Fig. 3a and d)33, a
robust clustering algorithm that trims outlying samples34. We grouped samples
into k= 10 clusters for both the TCGA-only analysis and also k = 10 separately for
the TCGA plus controls analysis.

Stratified randomization algorithm. We aggregated together the RDGVs in each
gene11,12. Each sample was then assigned as carrying (‘1’) or not carrying (‘0’) at
least one of such qualifying variants. To determine the statistical significance of the
excess of RDGVs, we applied a randomization procedure to each of the different
testing scenarios described above, in which the labels of the individuals are ran-
domized within population strata (clusters determined on principal components of
the common variant matrix; see above), but they are not randomized across strata.
The labels are (i) in the ALFRED analysis: 1, putative LOH sample, 0, no-LOH
sample; (ii) in the case versus control analysis: 1, cancer sample, 0, control sample;
(iii) in the cancer type of interest versus all other cancer types analysis: 1, cancer
type of interest; 0, all other cancer types; (iv) in the cancer type of interest versus all
of the other cancer types analysis only for putative LOH samples: 1, putative LOH
samples in the cancer type of interest; 0, putative LOH samples in all other cancer
types. In each iteration the test statistic is computed, which is the difference
between (i) the relative frequency of samples (individuals) carrying RDGVs in the
tumors with putative LOH and (ii) the relative frequency of samples carrying
RDGVs in the tumors without putative LOH. Of note, the LOH tumors and the no-
LOH tumors can be substituted with cases and controls, respectively, thereby
allowing the same randomization procedure to be applied to the case–control
analysis; see above for details. In other words, we test for significant excess of the
proportion of the RDGV-bearing gene in cancer patients exhibiting putative LOH,
or, equivalently, the excess of the proportion of putative LOH-exhibiting gene in
samples bearing a RDGV.

We randomized 500,000 times to determine an empirical P-value, which is the
number of randomizations reporting an equal or higher value of the test statistic
for a given gene than was observed in the actual data. We examined the
distributions of P-values across test genes using quantile–quantile (Q–Q) plots,
which indicated no inflation in the individual randomization experiments (lambda
ranges from 0.1 to 1.0; Supplementary Fig. 6c). FDRs were calculated using the
Benjamini–Hochberg method35. In addition to the significance call for each gene,
we also report the effect sizes, which are found by subtracting the median test
statistic (excess % RDGV-carrying genes) across all randomization iterations from
the observed value of the test statistic in the actual data. This effect size quantifies
the observed excess of individuals harboring RDGV over a random distribution,
while accounting for the population structure. Moreover, we also report the 95%
confidence interval (CI) of the effect sizes, whose upper and lower bounds were

found by subtracting the 2.5th and the 97.5th percentile of the randomized
distribution from the observed value of the test statistic, respectively
(Supplementary Data 3).

In addition to testing individual genes, we also tested for significance of a set of
ALFRED genes pooled together. These were tested similarly as for individual genes
as above, except that here the set of genes in question is effectively treated as a
single concatenated gene. In other words, we quantified the relative frequency of
individuals harboring a RDGV in any of the genes in the set versus the individuals
without RDGVs in any of the genes in the set. The P-values, effect sizes, and
confidence intervals were calculated as above. The reported effect size can again be
interpreted as an excess relative frequency of individuals harboring a RDGV in any
of the genes in this set, adjusted for a baseline defined by the population
stratification.

Test for direction of AI. As described above, the first step in the ALFRED method
is a test for an excess of RDGVs in samples exhibiting AI. The second step is a test
for the direction and for the magnitude of AI that ensures that it is the wild-type
allele that is commonly lost, and not the RDGVs. In particular, we quantify the
VAF difference of the RDGV between the normal tissue and the tumor sample. If
the VAF of the RDGV is increased by ≥10% in the tumor compared to the normal
sample, that particular tumor sample is considered to have a putative two-hit event;
if the VAF of the RDGV is increased by less than 10% or it is decreased, there is no
two-hit event in that tumor. Next, for each gene, we test if there is an enrichment of
such two-hit events (where the RDGV increases in VAF ≥ 10%) in AI samples
compared to in no-AI. This is determined by using a binomial test (one-tailed),
where the baseline relative frequency of the putative two-hit events is determined
from their counts in the no-AI samples for that same gene.

Of note, the test for direction of AI additionally imposes a threshold for effect
size: at least 10% VAF increase is required, and smaller increases do not count
towards the final tally of putative LOH events. This is a conservative filter, since it
discards the more subtle increases in VAFs. To empirically estimate the effects of
the 10% cutoff, we examined the samples containing rare truncating (nonsense
or frameshift indel) variants of six genes that were previously associated with
inherited ovarian carcinoma36(BRCA1, BRCA2, MSH6, PALB2, RAD51, and TP53)
in the TCGA ovarian cancer data (N= 51 in our data set); these were the putative
true positive LOH events. Then, we randomly shuffled 100,000 times the VAFs
between the tumors and matched normal samples, thereby obtaining the empirical
distributions for the null hypothesis of no-VAF differences between tumor and
normal samples (in effect, we simulated the putatively true negative events). The
≥10% threshold for VAF increase is indeed near-optimal on the receiver operating
characteristic curve created using 51 rare truncation variants of the six genes,
shown in Supplementary Fig. 5g (sensitivity= 0.92; specificity= 0.74; balanced
accuracy= 0.83). A higher VAF increase threshold (≥20%) threshold results in an
inflated P-value distribution (lambda= 1.3), which is not desirable. Finally, to
combine the two ALFRED tests in a conservative manner, we retain the less
significant P-value of the two tests: (i) the AI-RDGV co-occurrence test and (ii) the
AI direction test, thereby obtaining the final ALFRED P-value (Fig. 1).

Estimating the contribution of ALFRED genes to cancer. We prepared seven
gene sets to compare the maximum excess of RDGVs in cases compared to con-
trols: known CPGs that were also discovered by ALFRED (N= 3), ALFRED genes
as a full set (N= 13), and without known CPGs (N= 10), CPGs known to pre-
dispose to particular cancer types from literature (N= 1 (CESC) to 11 (GBM))2,10,
all known CPGs considered as a full set (N= 46), and the union of ALFRED genes
and the CPGs (N= 56), and additionally sets of random genes (Supplementary
Fig. 10). For the random control, the same number of genes as for the ALFRED
genes (Fig. 5) or the combination of ALFRED genes and CPGs (Supplementary
Fig. 10) were randomly selected five times from a general set of genes (N= 2983
which were analyzed in the pan-cancer ALFRED analysis; this excludes the
ALFRED genes and known CPGs) and calculated the median values of these
excesses of RDGVs in cases versus controls. For the three gene sets that included
ALFRED genes (13 ALFRED genes, 3 known CPGs in ALFRED genes, 10 ALFRED
genes without CPGs), the genes were added sequentially according to their
ALFRED P-values for each cancer type, most significant gene (lowest P-value) first.
For the four remaining gene sets that did not use information from the ALFRED
test (i.e. ALFRED P-values), the genes were randomly ordered. For the full set of
known CPGs, we first added genes known to predispose to each particular cancer
type (e.g., BRCA1 in ovarian cancer was added before others), after that randomly
introducing the rest of the genes.

Known cancer gene sets. A total of 110 known germline CPGs and the cancer
types they predispose to were compiled from two sources; 67 from the Cancer Gene
Census (CGC)10 and 99 from a recently published review paper including four
Lynch syndrome-associated genes (MLH1, MSH2, MSH6, and PMS2)2 (Supple-
mentary Data 14). Fifty-eight genes were shared between the two sets. In addi-
tion, 112 DNA damage response genes were obtained from a recently published
review paper (37 genes overlapped with known CPGs)37. A total of 1695 somatic
drivers were compiled from four sources: 409 known somatic cancer genes were
from the CGC, 480 genes were compiled from nine sources including large-scale
cancer studies, publicly available screening panels and unpublished analysis of
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public available data sets38, 876 candidate cancer genes from Broad Firehose
determined by MutSig2CV39 (FDR ≤ 25% in any cancer type, http://gdac.
broadinstitute.org/), and 431 candidate TSs and OGs by TUSON (FDR ≤ 20%)40.
Three hundred and sixty-three compiled TS genes were obtained from Srivas
et al.41, including CGC, driver genes by Vogelstein et al.42, CancerGenes resource
by MSKCC43, and those predicted by TUSON. 209 OGs were obtained from CGC,
from Vogelstein et al.42 and predicted by TUSON. With respect to overlap, 373
genes were common to at least two of the four sources and 1322 genes were present
in only one data set. Within our 2983 tested genes, 46 were CPGs and 329
were somatic drivers (without overlap with CPGs) (Fig. 2a).

Genomic data from TCGA. Data were obtained from TCGA Genome Data
Analysis Center (GDAC) Firehose (http://gdac.broadinstitute.org/; downloaded in
January 2016). Somatic variants were extracted from the level 4 Mutation Anno-
tation Format (MAF) files in 8715 samples from 27 cancer types (8156 samples
overlapped our set) and filtered to include only nonsynonymous variants in the
coding region. Genomic copy number alteration (CNA) data (Affymetrix SNP6
platform) were extracted from the GISTIC2 (ref. 44) processing pipeline in
10,638 samples in 29 cancer types (9672 samples overlapped our set).

Associating AI frequency with biological features. Estimated ploidies were
derived from genome-wide copy number data using ABSOLUTE method in 4957
TCGA samples45, of which 4113 samples overlapped with our data (downloaded
from https://www.synapse.org/#!Synapse:syn1710466). Sample purity was calcu-
lated from the ESTIMATE method by measuring noncancerous components of the
tumor samples as reported in Aran et al.46 in 9364 TCGA samples (8276 samples
overlapped with our data). The degree of intra-tumor heterogeneity (ITH) across
17 cancer types (11 cancer types were overlapped with our data) was obtained from
McGranahan et al.47. It was defined as the absolute numbers of heterogeneous non-
silent mutations divided by the sum of absolute numbers of heterogeneous and
homogeneous non-silent mutations.

Code availability. The LOH and randomization codes are available upon request.

Data availability. This paper reanalyzes TCGA whole exome sequencing (retreived
from https://cghub.ucsc.edu/) and control samples (WHI, https://esp.gs.
washington.edu/drupal/; UK10K, http://www.uk10k.org/; 1000 genomes, http://
www.internationalgenome.org/). TCGA and control data sets are available upon
request from dbGaP under accession phs000178 (TCGA) and phs000200 (WHI),
and the study authors (1000 genomes and UK10K). The data set of rare variants is
from the ExAC Browser version 0.3(http://exac.broadinstitute.org/). All other
relevant data are available from the corresponding author on request.
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