Conformationally Adaptive Biosensors

Shlomo Yitzchaik

Institute of Chemistry and The Nanoscience and Nanotechnology Center The Hebrew University of Jerusalem

Divisions of Theoretical Physics and Physical Chemistry Rudjer Boskovic Institute – Zagreb Croatia - February 22**, 2018.**

Molecular Conformations Role in Electrical Biosensing

Molecule - Semiconductor

✓ Small Molecules

✓ Enzymes

✓ lons

One Electron Energy Level Diagram n-Type Semiconductor

Silicon – molecule electronic interface

Chem. Phys. Lett. **1997** J. Phys. Chem. C **2010** J. Am. Chem. Soc. **2008**

Biosens. Bioelectron. **2009**, *24*, 2384 IEEE Sens. J., **2011**, 11, 2007-2015

Sensing strategy for biorecognition

Depolarization

AChE \rightarrow [ES] \rightarrow Ch + AC

AChE biocatalytic activity

AChE - floating-gate EnFET

EnFET dose response to ACh and the competitive inhibitor CCh

Model Fitting

The device's response is affected by both protons and dipoles

Direct detection of biorecognition via dipole sensing mechanism

J Am Chem Soc 2009, 131, 4788

Biosens. Bioelectron. **2009**, 24, 2384 IEEE Sens. J. **2011**, 11, 2007 Inter. J. Uncon. Comp. **2012**, 8, 325

Peptide Monolayer as Enzyme Substrate

Electrochemical Impedance Spectroscopy

Ferricyanide $[Fe^{3+}(CN)_6]^{3-}$ + $e^- \rightarrow [Fe^{2+}(CN)_6]^{4-}$ Ferrocyanide

Formation of densely packed peptide-monolayer on Gold electrode

Phosphorylation kinetics

Peptide monolayer on Au electrode: Redox couple free AC-impedance study

Phosphorylation/dephosphorylation of peptidic monolayer on Au electrode

Au-CGGGPPRRSSIRNAH

AFM topography changes of peptide monolayer following kinase & phosphatase enzymatic activity

Kinase-Phosphatase Biosensor

Langmuir **2011**, 27, 11212-11221 Biopolymers **2015**, *104*, 515-520 *Chem. Sci.* **2015**, *6*, 4756 – 4766 *Sci. Reports* **2016**, *6*, 36793

Cyclic voltammograms of peptide phosphorylation and dephosphorylation

Electrode - Peptide

PKC - ALP

$[Fe^{3+}(CN)_6]^{3-}+e^- \rightarrow [Fe^{2+}(CN)_6]^{4-}$

PKC Dose response Impedimetric vs. Amperometric Sensing

Structural Model

Biosensor for early detection of lung cancer

- * Lung cancer is one of the most lethal kinds of cancer
- * Due to late discovery of the disease, only 10-15% of the patients recover
- * only 10% of the patients are non-smokers

Biomarker discovery via Phosphoproteomics

央研究院

HDGF

Hepatoma Derived Growth Factor

- * A mitotic factor
- * Highly expressed in embryonic development
- * Related to many kinds of cancer, including lung cancer
- * In vitro experiments showed that ERK2 phosphorylates Ser165

Mao, J. et al., *Cancer Sci*. 2008 Everett, A. D. et al., *BMC Cell Biol*. 2011

Design a kinase specific biosensor for early detection of lung cancer

ERK2 phosphorylation is reversible

Amit E. et al., Chem. Sci. 2015

Sensitivity and reversibility of the HDGF biomarker

(■) - peptide (●) - ERK2 (▲) - AP

Selectivity of the HDGF biomarker

AFM measurements the surface is rougher after phosphorylation

Zhuravel R. et al., Sci. Reports 2016

High resolution AFM Characterization and analysis

$$R_{RMS} = \sqrt{\frac{1}{n} \sum (Z - Z_{mean})^2}$$

High resolution roughness analysis

- Global roughness increases upon phosphorylation and recovers upon dephosphorylation
- Local roughness analysis reveals a bi-modal distribution with smooth-rough transition and up-shifting

Ions Biosensing

Impairment of serum Zn²⁺ to Cu²⁺ ratio was found to correlate with many disease states, including immunological and inflammatory disorders, autism, Alzheimer's disease, skin diseases and cancer.

GGH sensing platform

DFT calculation of the ion binding energy per N-Cu bond

Impedimetric sensing of GGH-Cu(II)

AFM Topography

Cu(II) Ions Biosensor

Summary and outlook

 Sensitive biosensor for neurotransmitters: nerve-gas detectors & artificial synapse

 Highly selective biosensor for kinases: cancer diagnostics and drug screening

Peptide based metal-ions sensor: novel environmental & medical applications

Oxytocin, The Love Hormone

ACS Omega **2017**, *2*, 8770–8778.

HN

-NH

 NH_2

H₂N-Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-CONH₂

HO

Oxytocin Conformations

Oxytocin assembly on oxide surfaces via Cu free click chemistry

AR-FTIR spectra of oxytocin assembly surface coupling by click chemistry

XPS spectra of oxytocin monolayer <u>before and after incubation in 1 µM Zn²⁺ and Cu²⁺ solutions</u>

AFM topography of oxytocin sensor following ion binding

RMS roughness

$$1 \text{ nM Zn}^{2+}$$
 1 nM Cu^{2+}
 $\rho = 2.9 \text{ Å}$
 $\rho = 4.8 \text{ Å}$
 $\rho = 2.0 \text{ Å}$

Nyquist plots for Oxytocin assembly on GC electrodes

Redox couple diffusion pathway through the oxytocin layer to the electrode

Θ CPESR CPEST Rs Θ 6 Rst Ws RSR H₂N **Two diffusion** pathways: **OT-Ring OT-Tail** 0=

OT-Sensor dose response to Zn²⁺

Limit of detection = 100 fM for Zn⁺⁺

OT-Sensor dose response to Cu²⁺

Limit of detection = 500 fM for Cu⁺⁺

OT-Sensor response towards various metal ions

M²⁺ in 1nM concentration

Selectivity via OT N-methylation

N-Methyl Oxytocin

Dose response to Zn²⁺ before and after methylation of OT

Selectivity via OT N-methylation

Dose response to Cu²⁺ before and after methylation of OT

Selective detection of 1 nM Zn²⁺ & negligible response from 1 nM Cu²⁺

pyrophosphate (PP) and thiourea (TU) masking agents

OT-Sensor selectivity towards zinc and copper ions

Selectivity by pH change

Selective detection of 1 nM Cu²⁺ at pH 10.0 and negligible response from 1 nM Zn²⁺at the same pH

Multiple Sclerosis (MS) the immune system attacks myelin sheaths

Sera samples diagnosis healthy vs. MS patients

	EIS of OT-Sensor		ICP-MS	
Sera sample	Zn²+ [nM]	Cu²+ [nM]	Zn²+[nM]	Cu ²⁺ [nM]
Healthy	57.5	8.5	54.7	9•4
MS	8.6 - 11.5	5.3 - 4.0	9.6 - 10.6	4.4 - 4.5

Zn²⁺ to Cu²⁺ ratio in healthy ~ 6 and MS patients ~ 2

Summary

- Conformationally adaptive biosensors
- Micro- to Pico-molar sensitivity to Zn²⁺ or Cu²⁺
- Selectivity for Zn²⁺ or Cu²⁺ was demonstrated:

masking, pH and N-Me

- Diagnosis: Zn²⁺ to Cu²⁺ ratio in Multiple Sclerosis
 - Point-of-care sensing devices

Team: Nina Korbakov, Eli Goykhman, Naàma Peor, Ruth Sfez, Noemi Zenou, Elza Snir, Shir Elbaz, Ohad Solomon, Einav Amit, Jörg Buchwald, Rofeamor Obena, YiTing Wang, Roman Zhuravel

Academia Sinica: Yu-Ju Chen Hebrew Univ. - Assaf Friedler & Danny Porath

Technical Univ. of Dresden – Rafael Gutierrez & Giovanni Cuniberti

Kiran Kumar Tadi, Evgeniy Mervinetsky, Israel Alshanski, Yehonatan Hamo, Panayiota Petrou, Dimitrios M. Karussis, Gerard Marx, Chaim Gilon, Mattan Hurevich H2020: RECORD-IT