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Abstract

Measurements of the associated production of a Z boson with at least one jet orig-
inating from a b quark in proton-proton collisions at

√
s = 8 TeV are presented.

Differential cross sections are measured with data collected by the CMS experiment
corresponding to an integrated luminosity of 19.8 fb−1. Z bosons are reconstructed
through their decays to electrons and muons. Cross sections are measured as a func-
tion of observables characterizing the kinematics of the b jet and the Z boson. Ratios
of differential cross sections for the associated production with at least one b jet to the
associated production with any jet are also presented. The production of a Z boson
with at least two b jets is investigated, and differential cross sections are measured for
the dijet system. Results are compared to theoretical predictions, testing two different
flavour schemes for the choice of initial-state partons.
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1 Introduction
The associated production of vector bosons and jets (V+jets) in hadronic collisions is a large
background source in measurements of several standard model (SM) processes, Higgs boson
studies, and many searches for physics beyond the SM. Its description constitutes an important
benchmark for perturbative quantum chromodynamics (pQCD) predictions. Differential cross
sections as a function of kinematic observables characterizing V+jets topologies are sensitive to
the contributions from both the hard scattering process and the associated soft QCD radiation,
as well as to the parton distribution functions (PDFs). Among the V+jets processes, the case
in which a Z/γ∗ boson is produced in association with b quarks, pp → Z + (≥1b), hereafter
denoted as Z(1b), is particularly interesting. Antiquarks are also assumed in the notation, and
the Z/γ∗ interference contribution is considered to be part of the process. Within the SM, the
Z(1b) final state is the dominant background for studies of the associated production of Higgs
and Z bosons, in which the Higgs boson decays into a bb pair [1]. Many physics scenarios
beyond the SM predict final states with b quarks and Z bosons: new generations of heavy
quarks (b′, t′) decaying into Z(1b) [2], supersymmetric Higgs bosons produced in association
with b quarks [3], and extended SM scenarios with additional SU(2) doublets with enhanced
Zbb coupling [4]. The study of the associated production of Z bosons and b quark jets may also
provide information useful in describing an analogous process where a W boson is produced,
which is more difficult to measure because of higher background contamination.

This paper presents measurements of associated production of a Z boson and b quark jets us-
ing proton-proton collision data at 8 TeV collected with the CMS detector, corresponding to an
integrated luminosity of 19.8 fb−1. The Z boson is reconstructed through its leptonic decay into
an electron or muon pair, while the presence of b quarks is inferred from the characteristics of
jets (denoted as b jets) that originate from their hadronization products and subsequent decays.
In order to characterize Z(1b) production, fiducial differential cross sections are measured as a
function of five kinematic observables: the transverse momentum pT and pseudorapidity η of
the highest-pT b jet, the Z boson pT, the scalar sum of the transverse momenta of all jets regard-
less of the flavour of the parton producing them (HT), and the azimuthal angular difference
between the direction of the Z boson and the highest-pT b jet (∆φZb). Ratios of the differential
cross sections for Z(1b) and Z+jets production, inclusive in jet flavour, are also measured as a
function of these five observables. The cancellation of several systematic uncertainties in the
cross section ratio allows an even more precise comparison with theory than the differential
cross sections themselves.

Events with at least two b jets, henceforth Z(2b), contribute as background sources to other SM
and beyond-SM processes. The production dynamics of this kind of event are studied through
the measurement of the fiducial differential cross section as a function of observables character-
izing the kinematic properties of the dijet system formed by the leading and subleading (in pT)
b jets: the pT of these two jets; the Z boson pT; the invariant masses of the bb and Zbb systems
(Mbb and MZbb respectively); the angle ∆φbb between the two b jets in the plane transverse to
the beam axis and their separation in the η-φ plane (∆Rbb); the distance in the η-φ plane be-
tween the Z boson and the closer b jet (∆Rmin

Zb ); and the asymmetry in the distances in the η-φ
plane between the Z boson and the closer versus farther b jets (AZbb).

Previously, the cross section for the associated production of Z bosons and b jets was measured
in proton-antiproton collisions by the CDF [5] and D0 [6] Collaborations at the Fermilab Teva-
tron and in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS [7] and
CMS [8] Collaborations at the CERN LHC. The CMS Collaboration also studied Z(2b) produc-
tion by explicitly reconstructing b hadron decays [9], in order to explore the region where b
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quarks are emitted in an almost collinear topology. Previous measurements of the ratio of the
Z(1b) to the Z+jets inclusive cross section were published by the D0 Collaboration [10].

The paper is organized as follows: Section 2 is dedicated to the description of the CMS appa-
ratus and Section 3 to the data and simulated samples used in the analysis. Section 4 discusses
the lepton, jet, and b jet reconstruction and the event selection. Section 5 discusses background
estimation, while Section 6 is dedicated to the description of the unfolding procedure to cor-
rect data for detector effects. Section 7 presents a discussion of the systematic uncertainties. In
Section 8 the measured differential cross sections and the corresponding ratios are presented,
together with a discussion of the comparison with theoretical predictions. Finally, the results
are summarized in Section 9.

2 The CMS detector
A detailed description of the CMS detector, together with the definition of the coordinate sys-
tem used and the relevant kinematic variables, can be found in Ref. [11]. The central feature of
the CMS apparatus is a superconducting solenoid of 6 m internal diameter. The field volume
houses a silicon tracker, a crystal electromagnetic calorimeter (ECAL), and a brass and scin-
tillator hadron calorimeter, each composed of a barrel and two endcap sections. The magnet
flux-return yoke is instrumented with muon detectors. The silicon tracker measures charged
particles within the pseudorapidity range |η| < 2.5. It consists of 1440 silicon pixel and 15 148
silicon strip detector modules and is located in the 3.8 T field of the superconducting solenoid.
For nonisolated particles of 1 < pT < 10 GeV and |η| < 1.4, the track resolutions are typically
1.5% in pT and 25–90 (45–150) µm in the transverse (longitudinal) impact parameter [12]. The
electron momentum is estimated by combining the energy measurement in the ECAL with
the momentum measurement in the tracker. The momentum resolution for electrons with
pT ≈ 45 GeV from Z → ee decays ranges from 1.7% for nonshowering electrons in the bar-
rel region to 4.5% for showering electrons in the endcaps [13]. Muons are measured in the
pseudorapidity range |η| < 2.4, with detection planes made using three technologies: drift
tubes, cathode strip chambers, and resistive plate chambers. Matching muons to tracks mea-
sured in the silicon tracker results in a relative transverse momentum resolution for muons
with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The
pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [14]. Forward
calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors.

The CMS detector uses a two-level trigger system. The first level of the system, composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select the most interesting events in a fixed time interval of less than 4 µs. The high-level trigger
processor farm further decreases the event rate from around 100 kHz to less than 1 kHz before
data storage.

3 Event simulation
The associated production of a Z boson and jets is experimentally reconstructed as two
opposite-sign same-flavour electrons or muons accompanied by jets and can be mimicked by
various background sources: tt events, dibosons (WW, WZ, ZZ) and W bosons produced in
association with jets, single top quark events, as well as Z+jets events in which the Z boson
decays into τ+τ−. Diboson events with a leptonic Z boson decay and jets produced in the
hadronic decay of the other vector boson are not considered as part of the signal. Samples of
simulated events are used to model both the signal and the background processes. The MAD-
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GRAPH 5.1.3.30 [15] event generator is used to simulate Z+jets (including jets from b quarks),
W+jets, and tt events; this generator implements a leading-order (LO) matrix element calcula-
tion with up to four (three) additional partons in the final state for V+jets (tt) events, using the
CTEQ6L1 PDF set [16], which is based on the five flavour scheme (5FS). A detailed discussion
is given in Section 8.2. The parton-level events are interfaced with PYTHIA version 6.424 [17] for
parton showering, hadronization, and description of the multiple-parton interactions (MPIs).
The PYTHIA6 Z2* tune, which is based on the CTEQ6L1 PDF set, is used [18]. The matrix ele-
ment and parton shower calculations are matched using the kt-MLM algorithm [19]. The cross
section inclusive in jet multiplicity is rescaled to its next-to-next-to-leading-order (NNLO) pre-
diction, computed with FEWZ 3.1 [20, 21] for the Z+jets and W+jets processes, and with the
calculation of reference [22] for the tt process. To study systematic uncertainties, signal events
are also generated using MADGRAPH5 aMC@NLO [23] version 2.2.1, with next-to-leading-
order (NLO) matrix elements for zero, one, and two additional partons merged with the FXFX

algorithm [24], interfaced with PYTHIA version 8.205 [25] for showering and hadronization. In
this case the NNPDF 3.0 NLO PDF set [26] is used. Depending on the flavours included in
the matrix element calculation of the event or produced in the parton shower through gluon
splitting, the inclusive Z+jets sample can be divided into Z+b quark, c quark, and light-flavour
(u, d, s quark and gluon) jet subsamples. As explained in Section 6, the jet flavour identification
is based on the particle content of the final state.

Diboson events are simulated with PYTHIA6, and the inclusive cross section rescaled to the
NLO prediction provided by MCFM [27]. The single top quark contribution is evaluated using
POWHEG-BOX version 1.0 [28–32] interfaced with PYTHIA6 for parton showering, hadroniza-
tion, and MPI description. The contribution of multijet events is evaluated using PYTHIA6
generated events and found to be negligible.

Generated events are processed with a simulation of the CMS detector based on the GEANT4
toolkit [33]. Signals induced by additional pp interactions in the same or adjacent bunch cross-
ings, referred to as pileup, are simulated using events generated with PYTHIA6. The pileup
distribution in simulation is adjusted in order to reproduce the collision rates observed in data.
During the 2012 data taking, the average pileup rate was about 21 interactions per bunch cross-
ing.

4 Event selection
The analysis is based on an online trigger selection requiring events to contain a pair of elec-
tron or muon candidates with asymmetric minimum thresholds on their transverse momenta.
These threshold settings depended on the instantaneous luminosity and reached maximum
values of 17 GeV for the leading lepton and 8 GeV for the subleading one. Events are required
to contain a Z boson, reconstructed through its decay into an electron or muon pair, produced
in association with at least one or at least two hadronic jets. For the Z(1b) and Z(2b) event
selections the jets are also required to be identified as originating from the hadronization of a b
quark.

All the measured particles are reconstructed using the particle-flow (PF) algorithm [34, 35]. The
particle-flow event algorithm reconstructs and identifies each individual particle with an opti-
mized combination of information from the various elements of the CMS detector. The energy
of photons is obtained directly from the ECAL measurement, corrected for zero-suppression
effects. The energy of electrons is evaluated from a combination of the electron momentum at
the primary interaction vertex as determined by the tracker, the energy of the corresponding
ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
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originating from the electron track. The transverse momentum of the muons is obtained from
the curvature of the corresponding track. The energy of charged hadrons is determined from
a combination of the momentum measured in the tracker and the matching ECAL and HCAL
energy deposits, corrected for zero-suppression effects and for the response functions of the
calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the
corresponding corrected ECAL and HCAL energies.

The reconstructed leptons selected as candidate decay products of the Z boson must match
those that triggered the event and must be associated with the primary vertex of the event,
defined as the reconstructed vertex with the largest sum of p2

T of its constituent tracks. Re-
constructed electrons must satisfy a set of selection criteria designed to minimize misidentifi-
cation at a desired efficiency level [13]; the discriminating observables include the measured
shower shape in the ECAL and the spatial matching between the electromagnetic deposit in
the calorimeter and the reconstructed track associated with it. Additional requirements on
electron tracks are used to reject products of photon conversions. Electron isolation criteria
exploit the full PF-based event reconstruction, using particles within a cone around the elec-
tron direction with radius ∆R =

√
(∆φ)2 + (∆η)2 = 0.3. The isolation requirement is defined

by Irel = (Icharged + Iphoton + Ineutral)/pe
T < 0.15, where Icharged is the scalar pT sum of all the

charged hadrons, Iphoton is the scalar pT sum of all the photons, and Ineutral the scalar sum of pT
of all the neutral hadrons in the cone of interest. The notation pe

T refers to the transverse mo-
mentum of the reconstructed electron. Pileup can add extra particles, which affect the isolation
variable. Accordingly, only charged particles originating from the reconstructed primary ver-
tex are used in the calculation of Icharged. The photon and neutral hadronic contribution to the
isolation variable coming from pileup is subtracted using the jet area approach [36]. Electrons
must have pe

T > 20 GeV and be reconstructed within the pseudorapidity range |η| < 1.44 and
1.57 < |η| < 2.4, which exclude the barrel-endcap transition region.

Muon identification criteria are based on the fit quality for tracks measured in the tracker
and the muon detector [14]. Further selection criteria are added in order to reject muons
from cosmic rays. Muon isolation is computed using all particles reconstructed by the PF
algorithm within a cone of radius ∆R = 0.4 around the muon direction, requiring Irel =
(Icharged + Iphoton + Ineutral)/pµ

T < 0.2. Muons must have pµ
T > 20 GeV and |η| < 2.4. As in

the case of electrons, charged particles not originating from the primary vertex are excluded
from the isolation calculation. The pileup contribution to Iphoton and Ineutral is estimated as half
of the corresponding charged hadronic component and is subtracted in the definition of the Irel
variable.

The efficiencies for lepton trigger, reconstruction, identification, and isolation are measured
with the “tag-and-probe” technique [37] as a function of the lepton η and pT. A sample of
events containing a Z boson decaying into e+e− or µ+µ− is used for these studies. Efficiency
corrections (“scale factors”) of up to 1.2% (7.3%), dependent on lepton pT and η, are applied to
account for differences in the estimated efficiencies between data and simulation in the electron
(muon) channel.

The pair of selected same-flavour, opposite-sign, highest-pT isolated leptons is retained as a Z
boson candidate if the invariant mass M`` of the pair lies within the 71–111 GeV mass interval.
The overall efficiency of the trigger and event selection within the fiducial acceptance is 88%
for dimuons and 58% for dielectrons.

Jets are reconstructed using the anti-kt algorithm [38, 39] with a distance parameter of 0.5. In
order to suppress the contribution from pileup interactions, charged particles not associated
with the primary vertex are excluded from the clustering. Jets are required to be in the tracking



5

acceptance region |η| < 2.4 and to have pT > 30 GeV, thereby reducing the contribution from
the underlying event to less than 5%, where jets have a softer pT spectrum compared to jets
from the hard scattering process. Jets with a distance ∆R < 0.5 from the closer lepton used for
the Z boson decay reconstruction are not considered in the analysis. The jet energy scale (JES)
is calibrated using a factorized approach as described in Refs. [40, 41]. The jet energy resolution
(JER) in data is known to be worse than in the simulation; therefore the simulated resolution is
degraded to compensate for this effect as a function of the jet kinematics [40, 41].

Jets from b quarks are identified using the combined secondary vertex (CSV) b tagging al-
gorithm [42], a multivariate classifier that makes use of information about reconstructed sec-
ondary vertices as well as the impact parameters of the associated tracks with respect to the
primary vertex to discriminate b jets from c and light-flavour jets. The threshold applied to the
discriminating variable gives a b tagging efficiency of about 50% and a misidentification prob-
ability of 0.1% for light jets and 1% for c jets. Scale factors, measured in multijet events and
dependent on jet pT, are used to correct the b, c, and light-flavour jet efficiencies in the simula-
tion to match those observed in the data [42]. The scale factors for b jets are determined using
samples of events enriched in such a flavour of jets. This enrichment is obtained including both
multijet events containing a muon geometrically associated with a jet, with high probability of
originating from the semileptonic decay of a b hadron, and leptonic and semileptonic tt events,
where the leading pT jets are usually b jets. The scale factors are around 0.93, slowly decreasing
for jets with pT above 120 GeV. The scale factors for c jets are assumed the same as for b jets,
with an uncertainty twice as large. Relatively pure samples of c jets from W+ c events, selected
using identified muons within the jet, are used to validate this assumption. For light-flavour
jets, the same CSV algorithm yields scale factors between 1.1 and 1.4, depending on the jet
pT. The calculation is based on tracks with negative signed impact parameter and secondary
vertices with negative signed decay lengths, where the sign is defined by the relative direction
of the jet and the particle momentum. Finally, events are selected if they contain a Z boson
candidate and at least one b-tagged jet.

The missing transverse momentum vector ~pmiss
T is defined as the projection on the plane per-

pendicular to the beams of the negative vector sum of the momenta of all reconstructed par-
ticles in an event. Its magnitude is referred to as Emiss

T . The Emiss
T significance, introduced in

Ref. [43, 44], offers an event-by-event assessment of the consistency of the observed missing
energy with zero, given the reconstructed content of the event and known measurement res-
olutions. In order to suppress the background contamination from tt production, events with
Emiss

T significance greater than 30 are vetoed. This requirement provides a 13% tt background
rejection with no loss in signal efficiency.

The Z(1b) event selection described above yields 26443 (36843) events for the dielectron (dimuon)
channels. The exclusive b-tagged jet multiplicity and invariant mass distributions of the same
flavour dilepton are presented in Figs. 1 and 2, for the Z(1b) event selection for electron and
muon respectively. Data are compared with the simulations where the Z+jets events are de-
scribed by MADGRAPH +PYTHIA6, and good agreement is observed. In all figures, the sim-
ulated events are reweighted by scale factors in order to compensate for the residual data-to-
simulation discrepancies in lepton selection efficiency, JES and JER calibration, and b tagging
efficiency. The background contributions from Z+jets and tt events as adjusted in Section 5 are
included in Figs. 1 and 2.
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Figure 1: Exclusive b-tagged jet multiplicity distributions for Z(1b) events, for the electron (left)
and muon (right) decay channel of Z boson. Error bars account for statistical uncertainties in
data in the upper plots and in both data and simulation in the bottom ratio plots, that show the
data to MC ratio.
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Figure 2: Dilepton invariant mass distributions for Z(1b) events, for the electron (left) and
muon (right) Z boson decay channels. Error bars account for statistical uncertainties in data in
the upper plots and in both data and simulation in the bottom ratio plots, that show the data
to MC ratio.
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5 Background estimation
A Drell–Yan event in which a Z boson decays into τ+τ− may contribute to the dielectron or
dimuon signal events if both τ leptons decay into electrons or muons. These events are treated
as a background source and, being at the few per mil level, their contribution is evaluated from
simulation.

The process pp → tt → W+bW−b → `+`−bb + Emiss
T is the dominant non-Drell–Yan back-

ground source. The tt background contribution is estimated separately for Z+jets, Z(1b), and
Z(2b) events by using the signal selection criteria to produce samples of eµ pairs, which are
enriched in tt events with negligible signal contamination. For each measured observable
these samples provide the estimates of the tt background; residual non-tt backgrounds in them,
amounting to about 29%, 8% and 2% respectively, are subtracted using the simulated predic-
tion. The integrals of such estimates need to be rescaled by the ratio of the same-flavour lepton
to eµ yields. This ratio is determined using control samples for both the same-flavour lepton
and eµ selections by inverting the Emiss

T significance requirement, namely, Emiss
T significance

>30. For the same-flavour lepton samples, this selection removes the contribution from the
signal processes, while enhancing the fraction of tt events in the sample. The residual contam-
ination from other non-tt processes is similar in the same-lepton and eµ selections, amounting
to about 20%, 7%, 3% respectively, and is again taken into account using the simulation. The
ratio of the eµ to the ee or µµ yields in the control samples is used to rescale the estimates
of this background source for each lepton channel separately. The ratio is determined as the
scaling factor for the normalization of the binned dilepton invariant mass (M``) distribution in
the eµ sample that minimizes the difference of this distribution from the corresponding same-
lepton-flavour M`` distribution in a least-square fit procedure. The fit of the M`` distribution is
performed in the sideband regions 50–84 GeV and 100–200 GeV, to avoid any assumption about
the M`` shape for both opposite and same-sign lepton pairs in the Z peak region.

The remaining background sources are estimated using simulation. Diboson events may mimic
the Z+b final state when one or more leptons are not reconstructed or when a W or Z boson
decays hadronically into a qq pair (in particular a Z boson may decay into a genuine bb pair).
Single top quarks produced in association with either a W boson or one or more b jets may also
generate a signal-like signature. These events, together with W+jets, can mimic the signal if
a lepton of the same flavour is produced in the hadronization or if a hadron is misidentified.
The contribution of multijet events is found to be negligible, as has been previously observed
in other similar Z+jets analyses [45].

After subtraction of all non-Drell–Yan background contributions, the extraction of the Z(1b)
and Z(2b) event yields requires an evaluation of the purity of the b tagging selection, i.e. the
fraction of selected Drell–Yan events in which the desired number of b-tagged jets, at least one
or at least two, originate from the hadronization of a corresponding number of b quarks. This
fraction is determined from a study of the secondary vertex mass distribution of the leading
b-tagged jet, defined as the invariant mass of all the charged particles associated with its sec-
ondary vertices, assuming the pion mass for each considered particle. This evaluation is done
separately for dielectron and dimuon final states to avoid correlations between channels and to
simplify the combination. The secondary vertex mass distributions for b, c, and light-flavour
jets produced in association with Z bosons are obtained from the simulation based on the MAD-
GRAPH event generator interfaced with PYTHIA6 by using the 5FS scheme for PDFs. The sum
of the distributions is fitted to the observed distribution with an extended binned likelihood,
after subtraction of all non-Drell–Yan background contributions, by varying the three normal-
ization scale factors cb, cc, cudsg for the various components. The cc, cudsg factors are used for
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the subtraction of the respective components. This procedure reduces the dependence on the
normalization of the b hadron production and decay in the simulation because the expected
shape of the secondary vertex mass distribution is used. In the case of the Z(2b) selection,
as it can be seen in Fig. 1, the contamination from c and light-flavour jets is negligible and is
subtracted using simulation; only the cbb scaling factor for the genuine double b jet component
is determined from the fit, and it is used only to correct the relative proportion of Z(1b) and
Z(2b) events in the simulation, as discussed in Section 6.

The results of the fit to the secondary vertex mass distributions are presented in Fig. 3 for
the Z(1b) analysis, showing the flavour composition in each channel. Data-to-simulation scale
factors, as determined by the fit, are given in Table 1 for both event selections and Z boson decay
channels. The flavour composition of the selected sample after the scale factor corrections for
the Z(1b) samples is also shown.

The b-flavour contribution is constrained by the high secondary vertex mass region of the dis-
tribution of the CSV discriminating variable, while the c-flavour contribution is mostly im-
portant in the region between 1 and 2 GeV, and the light-flavour contribution below 1 GeV.
This results in a strong anticorrelation both between the b- and c-flavour and between c- and
light-flavour contributions, with an estimated correlation coefficient of about -0.6 in both cases,
whereas the correlation between the b- and light-flavour contributions is negligible. As a con-
sequence, a fluctuation in the small c quark component may cause a difference in the scale
factors between different lepton channels.

Table 1: Normalization scale factors and post-fit fractions for b, c and light-flavour (u, d, s quark
and gluon) components in the selected Z(1b) events, and scale factor for b in the selected Z(2b)
events, obtained from a fit to the secondary vertex mass distribution for dielectron and dimuon
final states. The quoted uncertainties are statistical only.

Event selection cb cc cudsg Z(1b) (%) Z+c (%) Z+udsg (%)
Z(1b) (ee) 0.91± 0.02 1.29± 0.13 1.70± 0.21 69.5± 1.8 19.0± 2.0 11.4± 1.4
Z(1b) (µµ) 0.91± 0.02 1.51± 0.12 1.18± 0.19 69.7± 1.5 22.4± 1.8 7.9± 1.2

Event selection cbb
Z(2b) (ee) 1.18± 0.12
Z(2b) (µµ) 1.17± 0.09

The signal yield for Z(1b) events is therefore obtained, for each bin of a distribution, from the
selected event yield Nselected as

NZ(1b) = Nselected
Z(1b) − Ntt − NMC

Dibosons − NMC
Others − ccNMC

Z+c − cudsgNMC
Z+udsg,

where Ntt, NMC
Dibosons, and NMC

Others are the tt, diboson, and other background contributions re-
spectively, ccNMC

Z+c and cudsgNZ+udsg are the numbers of Drell–Yan events in which the b-tagged
jets originate from either a c or a light-flavour parton, and the scale factors multiply the event
yields predicted by the simulation. For the calculation of the Z(2b) event yield a similar proce-
dure is applied:

NZ(2b) = Nselected
Z(2b) − Ntt − NMC

Dibosons − NMC
Others.

The cc and cudsg scale factors are also re-evaluated from subsamples obtained by dividing the
ranges of the studied observables into wide intervals, in order to study a possible correlation
with the observables themselves. The statistical uncertainty of these scale factors depends on
the chosen observable and binning, ranging from a factor of 2 up to 10 relative to the size of
the uncertainty of the default values obtained with the full sample. Because no statistically
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Figure 3: Distributions of the secondary vertex (SV) mass of the leading jet after the Z(1b)
selection with the Z boson decaying into electrons (left) and muons (right). The subsamples
corresponding to b-tagged jets originating from b, c, and light-flavour quarks or gluons are
shown, with normalizations determined in the fit to data. Non-Drell–Yan background sources
are subtracted. Error bars account for statistical uncertainties in data in the upper plots and in
both data and simulation in the bottom ratio plots.

significant dependence is observed, the scale factors estimated from the overall sample are
used.

The amount of background in the final event selection, estimated with the procedures discussed
above, can be observed in Fig. 1. For the Z(1b) selection, in the electrons (muons) samples the
Z+c contribution amounts to about 17% (20%), the Z+light flavour jets (including gluons) to
10% (7%), and the tt to 9% (8%). Other background contributions are globally below the 2%
level. The Z(1b) contribution in the corresponding selected sample is about 62% (63%) for the
electrons (muons) channel.

6 Unfolding
The differential event yields are corrected for event selection efficiencies and for detector reso-
lution effects back to the stable-particle level. For this purpose, the singular value decomposi-
tion (SVD) [46] unfolding technique, implemented in the ROOUNFOLD toolkit [47], is used. The
unfolding procedure is based on a response matrix, which describes the relationship between
the particle levels and measured values of a given observable due to the detector resolution
and acceptance. The response matrix is calculated using Z(1b) events that are generated with
MADGRAPH in the 5FS, interfaced to PYTHIA6, and followed by the detector simulation. Re-
sponse matrices are computed separately for the Z(1b) and Z(2b) selections. The proportion of
events with exactly one or at least two b quarks in the simulation is reweighted to match that
observed in data, as determined by the cbb scaling factor.

Fiducial cross sections are defined, based on event generator predictions at the particle level,
for leptons and jets reconstructed from the collection of all stable final-state particles, using
the same selection criteria as the data analysis. The two leptons (electrons or muons) with
the highest transverse momentum and with pT > 20 GeV and |η| < 2.4 are selected as Z boson
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decay products if their invariant mass is in the range of 71–111 GeV. Electromagnetic final-state
radiation effects are taken into account in the generator-level lepton definition by clustering all
photons in a cone of radius ∆R = 0.1 around the final-state leptons. The leptons selected as Z
boson decay products are then removed from the particle collection used for the jet clustering
at the generator level. The remaining particles, excluding neutrinos, are clustered into jets
using the anti-kt algorithm with a distance parameter of 0.5. Generated jets are selected if
their distance from the leptons forming the Z boson candidate is larger than ∆R = 0.5. Jets
originating from the hadronization of b quarks are selected if a b hadron is an ancestor of one
of the particles clustered in it, and this b hadron has a distance from the jet in the η-φ plane of
∆R ≤ 0.5. Jets and b jets are selected if they have pT > 30 GeV and lie in the pseudorapidity
range |η| < 2.4.

As a cross-check of the SVD technique, the unfolding is also performed with the iterative
D’Agostini method [48], leading to compatible results within the statistical uncertainties.

7 Systematic uncertainties
Several sources of systematic uncertainty affect the cross section measurement: the JES and
JER, the calculation of the unfolding response matrix, the estimation of the b quark fraction,
the background subtraction, the event selection efficiencies, the pileup description, and the
integrated luminosity. For every source other than the luminosity, the full analysis procedure
is repeated after the variation of the corresponding input values, and the difference of the
extracted cross section with respect to the central measurement is used as an estimate of the
uncertainty due to that source. The uncertainties are symmetrized, if not already symmetric.
The systematic uncertainties in the measured Z(1b) and Z(2b) differential cross sections are
summarized in Table 2 and in Tables 3 and 4, respectively.

Reconstructed jet energies must be corrected for several effects, such as pileup contamination,
instrumental noise, nonuniformities and nonlinearities in the detector response, and flavour
composition. The resulting uncertainty depends on the transverse momentum and pseudora-
pidity of the jet. The systematic effect due to the application of JES corrections in the data is
estimated by increasing and decreasing the correction parameters deviation from their nominal
values by one standard. The uncertainty for the JER correction is evaluated in the same way.

For the cross section measurement in a given bin, the systematic uncertainty induced by
the model used in the unfolding procedure is evaluated as the difference between the stan-
dard result and that obtained with an alternative model for unfolding, namely MADGRAPH5
aMC@NLO interfaced with PYTHIA8. This alternative model implements NLO hard scattering
matrix elements, compared to the LO matrix elements of MADGRAPH interfaced to PYTHIA6,
and also includes different details of the underlying event, hadronization, and particle decay
descriptions compared to the default choice. In order to evaluate the genuine model-induced
effects, the statistical uncertainties from the two simulated samples are subtracted in quadra-
ture from the difference; any negative results so obtained are replaced with zero. The uncer-
tainty associated with the size of the simulated sample used to compute the response matrix
elements is determined by producing replicas of the matrix whose elements are fluctuated ac-
cording to a Poisson distribution.

The uncertainty induced by the secondary vertex mass fit, used to extract the true flavour com-
position of the Z(1b) sample, is twofold. One part is due to the statistical uncertainty in the
cc, cudsg scale factors, whose effect is estimated by varying them up and down by one stan-
dard deviation, taking into account their correlation. This source of uncertainty is considered
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as part of the statistical uncertainty, because it is due to the finite size of the collision data
sample. The other part stems from the choice of the simulation model for the shape of the
secondary vertex mass distributions. This choice affects also the correction of the relative pro-
portion of different b multiplicities provided by the scale factor cbb. In addition, a systematic
uncertainty is associated, for both Z(1b) and Z(2b) samples, with the modelling of the c quark
and light-flavour contributions to each measured observable. Both of these model-induced un-
certainties, collectively indicated in the tables as “c, udsg background model”, are estimated
by replacing the default model given by MADGRAPH 5FS interfaced with PYTHIA6 with MAD-
GRAPH5 aMC@NLO 5FS interfaced with PYTHIA8. The scale factors, which are determined
from the alternative model, are in statistical agreement for dielectron and dimuon channels
within one standard deviation. The difference between the results obtained with the two mod-
els is therefore considered as safely accounting for possible residual discrepancies between data
and simulation.

For each lepton channel the systematic uncertainties in the lepton efficiency calculations for
triggering, reconstruction, identification, and isolation are estimated from the Z → `` “tag-
and-probe” measurements of data-to-simulation efficiency scale factors. The global effect of
the systematic uncertainty related to the scale factors is 1.5% in the dielectron final state and
2% in the dimuon final state. The uncertainties in the b tagging efficiency scale factors include
contributions from the pileup contamination, the gluon splitting rate in simulation (g → bb),
varied by ±50%, and the energy fraction carried by the b hadrons in the hadronization (varied
by ±5%) [42]. The global value of the b tagging systematic uncertainty amounts to 3% per b-
tagged jet. Scale factors for c jets, assumed equal to those for b jets, are assigned an uncertainty
twice as large as for the b jets.

The simulation is reweighted according to the generated primary vertex multiplicity and the
instantaneous luminosity in data to reproduce the observed primary vertex multiplicity distri-
bution, and provide a reliable representation of pileup. The minimum-bias event cross section
in simulation is tuned to provide the best agreement between data and simulation in the vertex
multiplicity distribution of Z → µµ events. The uncertainty associated with this procedure is
estimated by varying this minimum-bias cross section value by 5%.

The uncertainty in the tt background normalization is derived from the statistical uncertainties
of the same-flavour and eµ control samples and is included in the total statistical uncertainty.
The systematic uncertainty related to the diboson background (ZZ, WW, WZ) is evaluated by
varying the theoretical production cross sections by ±15% of their central values, correspond-
ing to about three standard deviations of the overall theoretical normalization uncertainty and
covering the typical differences between the theoretical and measured values. In addition, the
statistical uncertainty induced by the limited size of simulation samples is taken into account.

The systematic uncertainty in the integrated luminosity is 2.6% [49].

In the ratios of Z(1b) and Z(2b) to the inclusive Z+jets cross sections, the uncertainties are
simultaneously propagated to both the numerator and denominator, taking correlations into
account. The uncertainties in the energy scale, resolution, and efficiency corrections for re-
constructed leptons and jets are considered to be fully correlated, as is the uncertainty in the
integrated luminosity. Tables 2–4 summarize the ranges of variation of the uncertainties for
each observable measured with the Z(1b) and Z(2b) samples.
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Table 2: Uncertainties (in percent) in the differential cross sections as a function of the leading
b jet pT and |η|, the Z boson pT, HT, and ∆φZb between the Z boson and the leading b jet, for
the Z(1b) sample.

Uncertainty (%) dσ/dpT dσ/d|η| dσ/dpZ
T dσ/dHT dσ/d∆φZb

JER 0.3–1.7 0.1–0.6 0.2–2.6 0.4–1.9 0.1–2.2
JES 0.5–4.8 0.7–5.3 0.5–7.7 0.6–5.2 0.4–4.2
Unfolding (MC model) 0.0–19.2 0.2–2.2 0.0–18.1 0.0–10.2 0.0–9.2
Unfolding (MC statistics) 1.4–10.2 1.1–2.7 1.8–8.3 1.3–7.6 1.2–6.1
c, udsg background model 0.0–6.1 0.0–7.0 0.0–19.9 0.7–7.5 0.0–10.9
Electron (muon) efficiency 1.5 (2.0) 1.5 (2.0) 1.5 (2.0) 1.5 (2.0) 1.5 (2.0)
b tagging efficiency 3.0 3.0 3.0 3.0 3.0
Pileup 0.2–4.3 0.6–1.4 0.4–2.0 0.2–2.3 0.2–1.6
Background (systematic) 0.1–0.4 0.1–0.3 0.1–0.6 0.2–0.3 0.1–0.3
Background (statistical) 1.2–7.2 1.0–2.5 1.5–5.8 1.3–4.6 1.2–5.9
Integrated luminosity 2.6 2.6 2.6 2.6 2.6
Total syst. uncertainty (%) 5.5–21.7 5.2–10.6 5.6–22.8 8.4–13.8 6.0–13.3
Total stat. uncertainty (%) 2.6–8.8 3.0–5.4 2.9–8.6 3.1–6.0 3.1–7.0

Table 3: Uncertainties (in percent) in the differential cross sections as a function of the leading
and subleading b jet pT, the Z boson pT, the invariant mass of the two b-tagged jets, and the
invariant mass of the Z boson and the two b-tagged jets, for the Z(2b) sample.

Uncertainty (%) dσ/dpleading
T dσ/dpsubleading

T dσ/dpZ
T dσ/dMbb dσ/dMZbb

JER 0.3–8.3 0.7–7.9 0.1–3.8 0.9–4.1 2.9–12.0
JES 4.4–17.0 7.7–23.3 3.1–20.3 6.7–15.3 3.8–16.2
Unfolding (MC model) 0.0–74.4 0.0–52.6 0.0–53.6 0.0–37.8 0.0–57.3
Unfolding (MC statistics) 8.0–39.4 9.0–35.8 8.8–27.0 7.6–28.0 10.0–20.8
c, udsg background model 0.0–17.3 0.0–16.1 0.0–15.5 0.0–18.5 0.0–10.2
Electron (muon) efficiency 1.5 (2.0) 1.5 (2.0) 1.5 (2.0) 1.5 (2.0) 1.5 (2.0)
b tagging efficiency 6.0 6.0 6.0 6.0 6.0
Pileup 0.4–14.1 0.3–11.4 1.3–9.6 1.1–5.7 0.2–4.3
Background (systematic) 0.3–0.9 0.1–0.7 0.3–1.2 0.0–1.4 0.3–1.3
Background (statistical) 3.1–17.4 4.0–24.2 4.2–15.0 4.3–15.0 5.8–10.2
Integrated luminosity 2.6 2.6 2.6 2.6 2.6
Total syst. uncertainty (%) 17.2–89.4 19.7–61.7 17.8–56.6 14.5–52.9 17.9–65.4
Total stat. uncertainty (%) 6.1–34.1 7.6–44.5 10.4–23.5 7.9–28.0 11.2–19.9

8 Results and comparison with theoretical predictions
8.1 Observables

Differential cross sections as a function of a number of kinematic observables are measured in
order to characterize the production mechanisms of Z(1b) events.

For Z(1b) events, five kinematic observables are studied. First, pT and |η| of the leading-pT
b jet are measured, together with the Z boson pT. The distributions of these variables are
directly sensitive to the b quark PDF and initial-state gluon splitting and may show differ-
ences between different PDF flavour schemes. Searches for physics processes beyond the SM in
Lorentz-boosted topology events depend on precise knowledge of the Z boson pT distribution.
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Table 4: Uncertainties (in percent) in the differential cross sections as a function of ∆R and ∆φ
between the two b-tagged jets, ∆R between the Z boson and the closer b-tagged jet, and the
asymmetry AZbb, for the Z(2b) sample.

Uncertainty (%) dσ/d∆φbb dσ/d∆Rbb dσ/d∆Rmin
Zb dσ/dAZbb

JER 0.8–2.0 1.0–5.3 0.6–6.1 0.6–4.2
JES 5.6–10.7 6.6–20.5 4.2–13.1 5.1–9.1
Unfolding (MC model) 0.0–47.0 0.0–206 0.0–50.6 2.6–33.1
Unfolding (MC statistics) 6.3–11.5 6.4–30.7 8.2–25.6 7.5–30.5
c, udsg background model 0.0–3.4 0.0–10.3 0.0–14.2 0.0–12.3
Electron (muon) efficiency 1.5 (2.0) 1.5 (2.0) 1.5 (2.0) 1.5 (2.0)
b tagging efficiency 6.0 6.0 6.0 6.0
Pileup 0.4–2.4 1.3–3.5 0.5–4.6 1.2–6.1
Background (systematic) 0.1–0.8 0.1–0.8 0.2–1.3 0.2–0.7
Background (statistical) 3.4–5.0 3.7–9.4 3.6–15.9 3.3–8.8
Integrated luminosity 2.6 2.6 2.6 2.6
Total syst. uncertainty (%) 13.0–50.5 12.5–209 14.2–59.5 13.6–47.2
Total stat. uncertainty (%) 6.9–10.1 7.5–17.6 7.4–33.1 6.6–18.4

The scalar sum HT of the transverse momenta of all selected jets, regardless of their flavour, is
related to the structure of the hadronic system recoiling against the boson. The measurement
of this observable at high values is potentially sensitive to the presence of intermediate heavy
particles decaying hadronically, as predicted, for example, in some SUSY scenarios. Finally, the
topology of the system composed of the Z boson and b jet is studied by measuring the cross
section as a function of the azimuthal angular separation between the direction of the Z boson
and the direction of the highest-pT b jet, ∆φZb. This observable is also sensitive to the presence
of boosted particles decaying into a Z boson and b quarks.

Ratios of the differential cross sections for Z(1b) and Z+jets events, inclusive in the jet flavour,
are also measured:

R(x) =
dσ(Z+(≥1b))/dx

dσ(Z+jets)/dx
,

with x representing one of the five observables described above. The inclusive Z+jets event
selection is defined by releasing the requirement of a b-tagged jet in the Z(1b) selection. In
these ratios the kinematic observables referring to the highest-pT b-tagged jet from the Z(1b)
sample are used in the numerator, while for the denominator the observables related to the
highest-pT jet from the Z+jet sample are examined. Several systematic uncertainties cancel in
the ratios, allowing a precise comparison with theory.

For Z(2b) events, the cross section is measured as a function of the transverse momenta of the
Z boson and of the leading and subleading b jets. In addition, the cross section is studied as
a function of several variables explicitly related to the topology of the final state consisting of
a Z boson and the two highest-pT b jets. The invariant mass Mbb of the bb system and the
invariant mass MZbb of the Zbb system are studied, because their distributions are sensitive to
the presence of heavy intermediate particles.

Angular correlations between the b jets and between each b jet and the Z boson are described
by four observables, also studied in Ref. [9]. The azimuthal angular separation ∆φbb between
the directions of the two b jets in the transverse plane is useful to identify back-to-back config-
urations of the b quarks. The distance between the directions of the two b jets in the η-φ plane
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is defined as ∆Rbb =
√
(∆ηbb)

2 + (∆φbb)
2, where ∆ηbb is the separation in pseudorapidity be-

tween the two b jets. This variable is sensitive to the different production mechanisms of the
Z(2b) final-state b quarks. In particular, it is useful to discriminate between the contributions
whose scattering amplitudes are dominated by terms involving gluon splitting, g → bb, and
those where a Z boson is emitted from one of the final-state b quarks. The process qq → Zbb
contributes to both cases, while qg → ZbbX (with X an additional parton) contributes to the
former and gg→ Zbb to the latter. These contributions correspond, respectively, to the regions
where the two b quarks are almost collinear or mostly acollinear. Because two b jets must be
reconstructed, this measurement cannot be sensitive to low-angle gluon splitting, where the
distance between the jet-initiating partons is smaller than twice the jet size. This region is bet-
ter explored by searching directly for pairs of b hadrons close in space, as studied in Ref. [9],
whose decay products might be part of a single reconstructed jet. Another angular observable
of interest is ∆Rmin

Zb , the angular separation between the Z boson and the closer b jet in the η-φ
plane. This variable is useful for testing multileg tree-level and NLO corrections in which a Z
boson is radiated from a quark, because it is sensitive to event topologies with the Z boson in
the vicinity of one of the two b jets. Finally, the AZbb asymmetry between the b jet direction and
the Z boson direction is computed using a combination of ∆Rmin

Zb and ∆Rmax
Zb (the latter being

the η-φ separation between the Z boson and the farther b jet):

AZbb =
∆Rmax

Zb − ∆Rmin
Zb

∆Rmax
Zb + ∆Rmin

Zb
.

The AZbb asymmetry can provide an indirect test of pQCD validity at higher orders of the
perturbative series. A nonzero value of AZbb is related to the emission of additional gluon
radiation in the final state, while values of AZbb close to zero identify configurations in which
the two b jets are emitted symmetrically with respect to the Z boson direction.

8.2 Theoretical predictions

The measured differential cross sections for the associated production of Z bosons and b jets
are compared to several perturbative QCD theoretical calculations.

In pQCD the amplitude for this process can be computed using two alternative approaches. In
the four-flavour scheme (4FS) [50], the b quark mass is explicitly included in the predictions
and acts as an infrared cutoff, partly removing possible divergences in the matrix element cal-
culation. This approach corresponds to an effective QCD theory, with n f = 4 quark flavours
involved in the computation of the running of the strong coupling constant αS. In this scheme
no b quark PDF is used, and the b quark is always produced explicitly by the gluon splitting
g → bb process. In the 5FS [51] (where n f = 5), the gluon splitting contribution is included
within the b quark PDF, and the b quark mass is set to zero in the matrix element calculation.
The two schemes can be defined in such a way as to provide identical results when all orders in
pQCD are computed. However, differences appear in fixed-order predictions, where the differ-
ent ordering of terms in the matrix element expansion gives different results. The comparison
of different flavour schemes is interesting because, in pQCD, the evolution of the b quark PDF
as a function of the Bjorken x variable shows sizeable differences between tree-level calcula-
tions and those at NLO. These differences are introduced by singularities in the Altarelli–Parisi
splitting functions that are present only at NLO; they have no impact on the tree-level evolution
of the b quark PDF [52].

While NLO calculations are now available for both flavour schemes, LO calculations are still
interesting to study because they allow the inclusion of multiple additional light, hard partons
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in the matrix element. This feature is expected to provide a better description of the real hard
radiation, compared to fixed-order NLO calculations matched with parton showering.

The MADGRAPH plus PYTHIA 6 event generator, introduced in Section 3, describes signal
events at full detector simulation level and provides theoretical predictions at tree level for the
associated production of Z bosons and jets, including b jets. This calculation is based on the 5FS
using the LO MADGRAPH 5.1.3.30 matrix element generator, with up to four additional par-
tons in the matrix element calculation. The factorization and renormalization scales are chosen
on an event-by-event basis as the transverse mass of the event, clustered with the kt algorithm
down to a 2→2 topology, and kt computed at each vertex splitting, respectively [19, 53]. The
matrix element calculation is interfaced with PYTHIA version 6.424, using tune Z2* for parton
showering, hadronization, and description of MPI. The CTEQ6L1 PDF is adopted in the calcu-
lations. The Drell-Yan inclusive cross section is rescaled to the NNLO calculation provided by
FEWZ 3.1 [20, 21], which has a uncertainty of about 5%. This uncertainty is not propagated into
the figures presented below.

Theoretical predictions at tree level based on MADGRAPH matrix elements for the Z + 2b pro-
cess are also computed using the 4FS MSTW2008 LO PDF set [54]. The factorization and renor-
malization scales are defined as in the 5FS case. Also in this case, parton showering and had-
ronization are provided by PYTHIA6 with the tune Z2*. The inclusive cross section is rescaled
to the Z + 2b NLO calculation with MADGRAPH5 aMC@NLO [23] for the 4FS, which has an
estimated theoretical uncertainty of 15%, dominated by scale variations. This uncertainty is not
shown in the figures.

The event generator MADGRAPH5 aMC@NLO [23] version 2.2.1 is used to provide results at
NLO, combining matrix elements for zero, one, and two additional partons through the FXFX

algorithm [24]. The NNPDF 3.0 NLO PDF set [26], based on the 5FS, is used. Parton showering
and hadronization are performed by PYTHIA version 8.205 [25], using the CUETP8M1 tune [55].
The choice of QCD scales is the same as for the LO MADGRAPH prediction. This is the same
event generator that is used in Section 3 to study the systematic uncertainty in the secondary
vertex mass distribution.

The 5FS is also used to compute the NLO POWHEG prediction for a Z boson associated with
two extra partons, including b quarks [56]. Lower parton multiplicities are described in the
matrix element as well, but with no guarantee of NLO accuracy. The scale choice is based
on the MINLO approach [57]. The NNPDF 3.0 PDF set [26] is used, and the matrix element
calculation is matched with the PYTHIA8 parton shower evolution and hadronization, using
the CUETP8M1 tune.

For both MADGRAPH5 aMC@NLO and POWHEG, no further rescaling of the native cross sec-
tion is made. Theoretical systematic uncertainties in the predictions, caused by the choice of
the QCD factorization and renormalization scales and by the propagation of the uncertainties
in PDFs, are computed. The former are estimated by varying the QCD scales by factors of 2
and 0.5, while the latter are computed according to PDF authors’ prescriptions. The uncer-
tainty from varying the QCD scales is generally the dominant contribution. These theoretical
uncertainties are displayed in the figures only in the ratio plots, with the statistical uncertainty
shown separately, and add up to about 10% and 20% for the two calculations, respectively. For
LO calculations, only the statistical uncertainty of theoretical predictions is shown.
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8.3 Comparison with data

The measured differential cross sections, unfolded for detector effects, are compatible for the
two leptonic channels, and are therefore combined into an uncertainty-weighted average for a
single lepton flavour. Correlations between systematic uncertainties for the electron and muon
channels are taken into account in the combination. In particular, all uncertainties are treated
as fully correlated, with the exception of those related to lepton efficiencies, tt background es-
timates, and the statistical part of the subtraction of the c quark and udsg components from
Z+jets, and the statistical part of the unfolding uncertainty, which are treated as fully uncorre-
lated. All the cross sections are measured in the fiducial phase space defined at the generated
particle level for the unfolding procedure, as discussed in Section 6. No attempt is made to
disentangle b jet production in the hard scattering processes and in MPI.

The integral of the unfolded distributions gives the fiducial cross section, for a single lepton
type, for the production of Z(1b) events,

σfid(pp→ Z + (≥1b)) = 3.55± 0.12 (stat)± 0.21 (syst) pb,

and Z(2b) events,

σfid(pp→ Z + (≥2b)) = 0.331± 0.011 (stat)± 0.035 (syst) pb.

These measured values can be compared with the corresponding predictions at NLO of MAD-
GRAPH5 aMC@NLO interfaced with PYTHIA8 (described in Sec.8.2), 4.23+0.27

−0.37 pb for Z(1b) and
0.356+0.030

−0.031 pb for Z(2b). The prediction overestimates by about 20% the measured value for
Z(1b), while a reasonable agreement is found for Z(2b) within uncertainties.

The ratio of the cross sections in the fiducial phase space for the production of at least two and
at least one b jet is

σfid(pp→ Z + (≥2b))
σfid(pp→ Z + (≥1b))

= 0.093± 0.004 (stat)± 0.007 (syst),

to be compared with the theoretical prediction 0.084+0.002
−0.001 where the systematic uncertainties

are considered as fully correlated.

Results for the differential cross sections for the Z(1b) events are presented in Figs. 4–8, together
with the ratios to the corresponding observables for the inclusive Z+jets event selection. Where
applicable, the last bin also includes overflow values. A discrepancy of about 20% is seen
in the overall normalization for the 4FS-based prediction, of the same order of magnitude as
its estimated theoretical uncertainty. The POWHEG prediction tends to overestimate the cross
sections by about 25%.

Apart for the normalization difference, the pQCD calculation with massive b quarks (4FS)
seems to reproduce, slightly better, the shape of the observed distributions in the soft momen-
tum regime of b jets. For the leading b jet pT spectrum (Fig. 4), the ratio with data is reasonably
flat below 80 GeV, whereas it presents a clear slope in the higher pT range. A similar behaviour
is clear in the Z boson pT distribution below 130 GeV (Fig. 6) and in the HT spectrum below
200 GeV (Fig. 7). The POWHEG generator considerably overestimates the soft parts of the pT
and HT spectra. The leading b jet |η| spectrum shape is well reproduced by the MADGRAPH

4FS configuration (Fig. 5), while MADGRAPH 5FS calculation slightly overestimates the central
part of the spectrum. The shape of the distribution of the azimuthal angular separation ∆φZb
between the Z boson and the leading b jet is reproduced within uncertainties by all the calcula-
tions (Fig. 8). The NLO MADGRAPH5 aMC@NLO predictions have similar behaviour to those
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from LO MADGRAPH 5FS. As far as the NLO POWHEG-based prediction is concerned, it shows
a similar behaviour to MADGRAPH5 aMC@NLO, but the discrepancies are larger, reaching
about 40% at the peak of the Z boson pT spectrum. In general, the shape predicted by each
calculation compares with data, within uncertainties, in a similar way in the high Z boson pT
and HT regions, which are potentially sensitive to new physics contributions.

The underestimation of the normalization by MADGRAPH 4FS and the overestimation by POWHEG

are also observed in the ratio of Z(1b) and inclusive Z+jets processes (described by the MAD-
GRAPH generator in the 5FS). The pseudorapidity distribution (Fig. 5), with an almost flat
shape, clearly shows that the ratio for the 4FS-based prediction is about 4%, compared to the
5% of the 5FS-based calculations, while POWHEG predicts about 6%. The 4FS prediction also
fails to reproduce the ratio of the leading jet pT spectra (Fig. 4), which is clearly underestimated
below 80 GeV. In contrast, POWHEG overestimates the spectrum in the soft region by about
30%. Similar discrepancies, although less pronounced, are observed for HT and the Z boson pT.
The ratio as a function of the azimuthal separation between the Z boson and the b jet (Fig. 8) is
also slightly underestimated by the MADGRAPH 4FS prediction when the Z boson is approxi-
mately back-to-back with respect to the leading b jet, with a difference in the azimuthal angles
close to π.

The results for the differential cross sections measured with the Z(2b) event selection are shown
in Figs. 9–17. Within uncertainties, no global normalization discrepancy is observed, contrary
to the Z(1b) case. The leading and subleading jet spectra are slightly underestimated in the
soft region by the LO calculations (the leading b jet pT in the first two bins of Fig. 9 and the
subleading b jet pT in the first bin of Fig. 10), while the Z boson pT distribution is well repro-
duced, within uncertainties (Fig. 11). The 4FS predictions overestimate the data at the high end
of these pT distributions. The ratios of all theoretical predictions and the data show a slight
positive slope for the azimuthal separation (Fig. 14). All the other distributions are well re-
produced. In general, given the experimental uncertainties, the measurements do not strongly
discriminate between the theoretical predictions. The ratio of the MADGRAPH5 aMC@NLO
and POWHEG predictions based on NLO matrix elements with data shows a similar shape.

9 Summary
The process of associated production of jets, including b jets, and a Z boson decaying into lep-
ton pairs (` = e, µ) are measured in LHC pp collisions at

√
s = 8 TeV with the CMS experiment,

using a data set corresponding to an integrated luminosity of 19.8 fb−1. The measured fiducial
cross sections are compared to several theoretical predictions. The cross sections are measured
as a function of various kinematic observables describing the event topology with a Z boson
and at least one b jet: the pT and η of the leading b jet, the Z boson pT, the scalar sum HT
of the jet transverse momenta, and the azimuthal angular difference between the directions of
the leading b jet and the Z boson. A comparison is made of the unfolded data with leading-
order pQCD predictions based on matrix element calculations matched with parton showering,
testing models using the MADGRAPH event generator, or with the NLO calculations, merging
predictions for zero, one, and two extra jets with MADGRAPH5 aMC@NLO, or for the first
two jets with POWHEG in the MINLO approach. In most cases the theoretical predictions agree
with the data, although the normalization for MADGRAPH 4FS, which fails to describe simul-
taneously both the low- and high-pT b jet regions, is underestimated by 20%. The ratios of
differential cross sections for the production of a Z boson in association with at least one b jet
and the inclusive Z+jets production are measured and compared with theoretical expectations.
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Figure 4: Differential fiducial cross section for Z(1b) production as a function of the leading
b jet pT (left), and the cross section ratio for Z(1b) and Z+jets production as a function of the
leading b/inclusive (j) jet pT (right), compared with the MADGRAPH 5FS, MADGRAPH 4FS,
MADGRAPH5 aMC@NLO, and POWHEG MINLO theoretical predictions (shaded bands), nor-
malized to the theoretical cross sections described in the text. For each data point the statistical
and the total (sum in quadrature of statistical and systematic) uncertainties are represented by
the double error bar. The width of the shaded bands represents the uncertainty in the theo-
retical predictions, and, for NLO calculations, the inner darker area represents the statistical
component only.

The 4FS-based prediction fails to describe the shape of the ratio as a function of the leading b
jet pT, and discrepancies in the shape are also observed for high values of the Z boson pT.

The production of a Z boson in association with two b jets is also investigated. In this case the
kinematic observables are the transverse momenta of the leading and subleading b jets, the pT
of the Z boson, the separations of the b jets both in azimuthal angle and in the η-φ plane, the
minimal distance in the η-φ plane between the Z boson and a b jet, the asymmetry between the
minimal and the maximal distances between the Z boson and a b jet, and the invariant masses
of the bb and the Zbb systems. The measured distributions are generally well reproduced by
the predictions.
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Figure 5: Differential fiducial cross section for Z(1b) production as a function of the leading
b jet |η| (left), and the cross section ratio for Z(1b) and Z+jets production as a function of the
leading b/inclusive (j) jet |η| (right), compared with the MADGRAPH 5FS, MADGRAPH 4FS,
MADGRAPH5 aMC@NLO, and POWHEG MINLO theoretical predictions (shaded bands), nor-
malized to the theoretical cross sections described in the text. For each data point the statistical
and the total (sum in quadrature of statistical and systematic) uncertainties are represented by
the double error bar. The width of the shaded bands represents the uncertainty in the theoreti-
cal predictions, and, for NLO calculations, theoretical systematic uncertainties are added in the
ratio plots with the inner darker area representing the statistical component only.



20 9 Summary

0 50 100 150 200 250 300

 (
pb

/G
eV

)
TZ

 / 
dp

σd

-410

-310

-210

-110
Data

MadGraph 5FS + Pythia6

MadGraph 4FS + Pythia6

MadGraph-aMC@NLO + Pythia8

Powheg MINLO + Pythia8

 (8 TeV)-119.8 fbCMS

 ll) + at least 1 b jet→*(γZ/

 (R = 0.5) jetsTanti-k

| < 2.4jetη > 30 GeV, |
jet

T
p

0 50 100 150 200 250 300

/ D
at

a 
  

0.5

1

1.5 , stat. uncertainty onlyNNLOσMadGraph 5FS + Pythia6, normalized to  

, stat. uncertainty onlyNLOσMadGraph 4FS + Pythia6, normalized to  

0 50 100 150 200 250 300

T
he

or
y

0.5

1

1.5

, stat. + syst. uncertainties onlyNLOσMadGraph-aMC@NLO + Pythia8, normalized to  

 (GeV)
T

Z boson p
0 50 100 150 200 250 300

0.5

1

1.5

, stat. +syst. uncertainties onlyNLOσPowheg MINLO + Pythia8, normalized to 

0 50 100 150 200 250 300

] (
%

)
TZ

(Z
+

j) 
/ d

p
σ

] /
 [d

TZ
(Z

+
b)

 / 
dp

σ
[d

0

5

10

15

20
Data

MadGraph 5FS + Pythia6

MadGraph 4FS + Pythia6

MadGraph-aMC@NLO + Pythia8

Powheg MINLO + Pythia8

 (8 TeV)-119.8 fbCMS

 ll) + at least 1 b jet→*(γZ/

 (R = 0.5) jetsTanti-k

| < 2.4jetη > 30 GeV, |
jet

T
p

0 50 100 150 200 250 300

/ D
at

a 
  

0.5

1

1.5 , stat. uncertainty onlyNNLOσMadGraph 5FS + Pythia6, normalized to  

, stat. uncertainty onlyNLOσMadGraph 4FS + Pythia6, normalized to  

0 50 100 150 200 250 300

T
he

or
y

0.5

1

1.5

, stat. + syst. uncertainties onlyNLOσMadGraph-aMC@NLO + Pythia8, normalized to  

 (GeV)
T

Z boson p
0 50 100 150 200 250 300

0.5

1

1.5

, stat. +syst. uncertainties onlyNLOσPowheg MINLO + Pythia8, normalized to 

Figure 6: Differential fiducial cross section for Z(1b) production as a function of the Z boson pT
(left), and the cross section ratio for Z(1b) and Z+jets production as a function of the Z boson
pT (right), compared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO,
and POWHEG MINLO theoretical predictions (shaded bands), normalized to the theoretical cross
sections described in the text. For each data point the statistical and the total (sum in quadrature
of statistical and systematic) uncertainties are represented by the double error bar. The width
of the shaded bands represents the uncertainty in the theoretical predictions, and, for NLO
calculations, theoretical systematic uncertainties are added in the ratio plots with the inner
darker area representing the statistical component only.
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Figure 7: Differential fiducial cross section for Z(1b) production as a function of HT (left), and
the cross section ratio for Z(1b) and Z+jets production as a function of HT (right), compared
with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO, and POWHEG MINLO

theoretical predictions (shaded bands), normalized to the theoretical cross sections described in
the text. For each data point the statistical and the total (sum in quadrature of statistical and sys-
tematic) uncertainties are represented by the double error bar. The width of the shaded bands
represents the uncertainty in the theoretical predictions, and, for NLO calculations, theoretical
systematic uncertainties are added in the ratio plots with the inner darker area representing the
statistical component only.
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Figure 8: Differential fiducial cross section for Z(1b) production as a function of ∆φZb (left), and
the cross section ratio for Z(1b) and Z+jets production as a function of ∆φZ(b/j) (right), com-
pared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO, and POWHEG

MINLO theoretical predictions (shaded bands), normalized to the theoretical cross sections de-
scribed in the text. For each data point the statistical and the total (sum in quadrature of sta-
tistical and systematic) uncertainties are represented by the double error bar. The width of the
shaded bands represents the uncertainty in the theoretical predictions, and, for NLO calcula-
tions, theoretical systematic uncertainties are added in the ratio plots with the inner darker area
representing the statistical component only.
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Figure 9: Differential fiducial cross section for Z(2b) production as a function of the leading
b jet pT, compared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO,
and POWHEG MINLO theoretical predictions (shaded bands), normalized to the theoretical cross
sections described in the text. For each data point the statistical and the total (sum in quadrature
of statistical and systematic) uncertainties are represented by the double error bar. The width
of the shaded bands represents the uncertainty in the theoretical predictions, and, for NLO
calculations, theoretical systematic uncertainties are added in the ratio plots with the inner
darker area representing the statistical component only.
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Figure 10: Differential fiducial cross section for Z(2b) production as a function of the subleading
b jet pT, compared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO,
and POWHEG MINLO theoretical predictions (shaded bands), normalized to the theoretical cross
sections described in the text. For each data point the statistical and the total (sum in quadrature
of statistical and systematic) uncertainties are represented by the double error bar. The width
of the shaded bands represents the uncertainty in the theoretical predictions, and, for NLO
calculations, theoretical systematic uncertainties are added in the ratio plots with the inner
darker area representing the statistical component only.
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Figure 11: Differential fiducial cross section for Z(2b) production as a function of the Z boson
pT, compared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO, and
POWHEG MINLO theoretical predictions (shaded bands), normalized to the theoretical cross
sections described in the text. For each data point the statistical and the total (sum in quadrature
of statistical and systematic) uncertainties are represented by the double error bar. The width
of the shaded bands represents the uncertainty in the theoretical predictions, and, for NLO
calculations, theoretical systematic uncertainties are added in the ratio plots with the inner
darker area representing the statistical component only.
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Figure 12: Differential fiducial cross section for Z(2b) production as a function of the invari-
ant mass of the b jet pair, Mbb, compared with the MADGRAPH 5FS, MADGRAPH 4FS, MAD-
GRAPH5 aMC@NLO, and POWHEG MINLO theoretical predictions (shaded bands), normal-
ized to the theoretical cross sections described in the text. For each data point the statistical and
the total (sum in quadrature of statistical and systematic) uncertainties are represented by the
double error bar. The width of the shaded bands represents the uncertainty in the theoretical
predictions, and, for NLO calculations, theoretical systematic uncertainties are added in the
ratio plots with the inner darker area representing the statistical component only.
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Figure 13: Differential fiducial cross section for Z(2b) production as a function of the invari-
ant mass of the Zbb system, MZbb, compared with the MADGRAPH 5FS, MADGRAPH 4FS,
MADGRAPH5 aMC@NLO, and POWHEG MINLO theoretical predictions (shaded bands), nor-
malized to the theoretical cross sections described in the text. For each data point the statistical
and the total (sum in quadrature of statistical and systematic) uncertainties are represented by
the double error bar. The width of the shaded bands represents the uncertainty in the theoreti-
cal predictions, and, for NLO calculations, theoretical systematic uncertainties are added in the
ratio plots with the inner darker area representing the statistical component only.
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Figure 14: Differential fiducial cross section for Z(2b) production as a function of ∆φbb, com-
pared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO, and POWHEG

MINLO theoretical predictions (shaded bands), normalized to the theoretical cross sections de-
scribed in the text. For each data point the statistical and the total (sum in quadrature of sta-
tistical and systematic) uncertainties are represented by the double error bar. The width of the
shaded bands represents the uncertainty in the theoretical predictions, and, for NLO calcula-
tions, theoretical systematic uncertainties are added in the ratio plots with the inner darker area
representing the statistical component only.
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Figure 15: Differential fiducial cross section for Z(2b) production as a function of ∆Rbb, com-
pared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO, and POWHEG

MINLO theoretical predictions (shaded bands), normalized to the theoretical cross sections de-
scribed in the text. For each data point the statistical and the total (sum in quadrature of sta-
tistical and systematic) uncertainties are represented by the double error bar. The width of the
shaded bands represents the uncertainty in the theoretical predictions, and, for NLO calcula-
tions, theoretical systematic uncertainties are added in the ratio plots with the inner darker area
representing the statistical component only.
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Figure 16: Differential fiducial cross section for Z(2b) production as a function of ∆RZbmin, com-
pared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO, and POWHEG

MINLO theoretical predictions (shaded bands), normalized to the theoretical cross sections de-
scribed in the text. For each data point the statistical and the total (sum in quadrature of sta-
tistical and systematic) uncertainties are represented by the double error bar. The width of the
shaded bands represents the uncertainty in the theoretical predictions, and, for NLO calcula-
tions, theoretical systematic uncertainties are added in the ratio plots with the inner darker area
representing the statistical component only.
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Figure 17: Differential fiducial cross section for Z(2b) production as a function of AZbb, com-
pared with the MADGRAPH 5FS, MADGRAPH 4FS, MADGRAPH5 aMC@NLO, and POWHEG

MINLO theoretical predictions (shaded bands), normalized to the theoretical cross sections de-
scribed in the text. For each data point the statistical and the total (sum in quadrature of sta-
tistical and systematic) uncertainties are represented by the double error bar. The width of the
shaded bands represents the uncertainty in the theoretical predictions, and, for NLO calcula-
tions, theoretical systematic uncertainties are added in the ratio plots with the inner darker area
representing the statistical component only.
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fice; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-



28 References

Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the
Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Sci-
ence and Industrial Research, India; the HOMING PLUS programme of the Foundation for
Polish Science, cofinanced from European Union, Regional Development Fund, the Mobil-
ity Plus programme of the Ministry of Science and Higher Education, the National Science
Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202,
2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the
Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Pri-
orities Research Program by Qatar National Research Fund; the Programa Cları́n-COFUND
del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chu-
lalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advance-
ment Project (Thailand); and the Welch Foundation, contract C-1845.

References
[1] CMS Collaboration, “Search for the standard model Higgs boson produced in association

with a W or a Z boson and decaying to bottom quarks”, Phys. Rev. D 89 (2014) 012003,
doi:10.1103/PhysRevD.89.012003, arXiv:1310.3687.

[2] B. Holdom et al., “Four statements about the fourth generation”, PMC Phys. A 3 (2009) 4,
doi:10.1186/1754-0410-3-4, arXiv:0904.4698.

[3] L. J. Hall, D. Pinner, and J. T. Ruderman, “A natural SUSY Higgs near 126 GeV”, JHEP
04 (2012) 131, doi:10.1007/JHEP04(2012)131, arXiv:1112.2703.

[4] D. Choudhury, T. M. P. Tait, and C. E. M. Wagner, “Beautiful mirrors and precision
electroweak data”, Phys. Rev. D 65 (2002) 053002,
doi:10.1103/PhysRevD.65.053002, arXiv:hep-ph/0109097.

[5] CDF Collaboration, “Measurement of cross sections for b jet production in events with a
Z boson in pp collisions at

√
s = 1.96 TeV”, Phys. Rev. D 79 (2009) 052008,

doi:10.1103/PhysRevD.79.052008, arXiv:0812.4458.

[6] D0 Collaboration, “A measurement of the ratio of inclusive cross sections
σ(pp→ Z + b jet)/σ(pp→ Z + jet) at

√
s = 1.96 TeV”, Phys. Rev. D 83 (2011) 031105,

doi:10.1103/PhysRevD.83.031105, arXiv:1010.6203.

[7] ATLAS Collaboration, “Measurement of differential production cross-sections for a Z
boson in association with b-jets in 7 TeV proton-proton collisions with the ATLAS
detector”, JHEP 10 (2014) 141, doi:10.1007/JHEP10(2014)141,
arXiv:1407.3643.

[8] CMS Collaboration, “Measurement of the production cross sections for a Z boson and
one or more b jets in pp collisions at

√
s = 7 TeV”, JHEP 06 (2014) 120,

doi:10.1007/JHEP06(2014)120, arXiv:1402.1521.

[9] CMS Collaboration, “Measurement of the cross section and angular correlations for
associated production of a Z boson with b hadrons in pp collisions at

√
s = 7 TeV”, JHEP

12 (2013) 039, doi:10.1007/JHEP12(2013)039, arXiv:1310.1349.

[10] D0 Collaboration, “Measurement of the ratio of differential cross sections
σ(pp→ Z + b jet)/σ(pp→ Z + jet) in pp collisions at

√
s = 1.96 TeV”, Phys. Rev. D 87

(2013) 092010, doi:10.1103/PhysRevD.87.092010, arXiv:1301.2233.

http://dx.doi.org/10.1103/PhysRevD.89.012003
http://www.arXiv.org/abs/1310.3687
http://dx.doi.org/10.1186/1754-0410-3-4
http://www.arXiv.org/abs/0904.4698
http://dx.doi.org/10.1007/JHEP04(2012)131
http://www.arXiv.org/abs/1112.2703
http://dx.doi.org/10.1103/PhysRevD.65.053002
http://www.arXiv.org/abs/hep-ph/0109097
http://dx.doi.org/10.1103/PhysRevD.79.052008
http://www.arXiv.org/abs/0812.4458
http://dx.doi.org/10.1103/PhysRevD.83.031105
http://www.arXiv.org/abs/1010.6203
http://dx.doi.org/10.1007/JHEP10(2014)141
http://www.arXiv.org/abs/1407.3643
http://dx.doi.org/10.1007/JHEP06(2014)120
http://www.arXiv.org/abs/1402.1521
http://dx.doi.org/10.1007/JHEP12(2013)039
http://www.arXiv.org/abs/1310.1349
http://dx.doi.org/10.1103/PhysRevD.87.092010
http://www.arXiv.org/abs/1301.2233


References 29

[11] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004,
doi:10.1088/1748-0221/3/08/S08004.

[12] CMS Collaboration, “Description and performance of track and primary-vertex
reconstruction with the CMS tracker”, JINST 9 (2014) P10009,
doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[13] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS
detector in proton-proton collisions at

√
s = 8 TeV”, JINST 10 (2015) P06005,

doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[14] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at√
s = 7 TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002,

arXiv:1206.4071.

[15] J. Alwall et al., “MadGraph 5: going beyond”, JHEP 06 (2011) 128,
doi:10.1007/JHEP06(2011)128, arXiv:1106.0522.

[16] J. Pumplin et al., “New generation of parton distributions with uncertainties from global
QCD analysis”, JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012,
arXiv:hep-ph/0201195.
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RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
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V. Calvellia ,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea ,b, E. Robuttia, S. Tosia ,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
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