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A B S T R A C T

Association of oxidative stress with carcinogenesis is well known, but not understood well, as is pathophysiology
of oxidative stress generated during different types of anti-cancer treatments. Moreover, recent findings indicate
that cancer associated lipid peroxidation might eventually help defending adjacent nonmalignant cells from
cancer invasion. Therefore, untargeted metabolomics studies designed for advanced translational and clinical
studies are needed to understand the existing paradoxes in oncology, including those related to controversial
usage of antioxidants aiming to prevent or treat cancer. In this short review we have tried to put emphasis on the
importance of pathophysiology of oxidative stress and lipid peroxidation in cancer development in relation to
metabolic adaptation of particular types of cancer allowing us to conclude that adaptation to oxidative stress is
one of the main driving forces of cancer pathophysiology. With the help of metabolomics many novel findings
are being achieved thus encouraging further scientific breakthroughs. Combined with targeted qualitative and
quantitative methods, especially immunochemistry, further research might reveal bio-signatures of individual
patients and respective malignant diseases, leading to individualized treatment approach, according to the
concepts of modern integrative medicine.

1. Introduction

More than hundred types of malignant neoplasms affect humans
and are commonly denoted as cancer. Although very different in place
of origin and etiology they all share several common traits recognized
today as the hallmarks of cancer [1]. These have been relatively well
understood, suggesting pathophysiological association of oxidative
stress with carcinogenesis [2]. Yet, even today, cancer patients largely
depend on unspecific and often insufficient treatments, chemotherapy
and radiation, utilized decades ago, which are often generating oxida-
tive stress, too [3]. This paradox is further stressed by findings of car-
cinogenic as well as of selectively cytotoxic anti-cancer effects of pro-
ducts of lipid peroxidation, in particular of 4-hydroxnyonenal (HNE)
[4]. These, mostly recent, important findings request advanced

translational and clinical studies to understand the existing paradoxes
in oncology, especially those related to the controversial use of anti-
oxidants tending to prevent or even to treat cancer interfering with the
complex mechanisms of the endogenous antioxidant mechanisms,
which different between nonmalignant and cancer cells [2,5].

Aiming to improve biomedical understanding of systemic metabolic
changes caused by carcinogenesis and by anti-cancer treatments me-
tabolomics uses powerful tools in cancer research, diagnosis and
therapy. It goes hand in hand with other –omics, together giving a more
comprehensive picture. The ultimate goal of cancer research is finding
reliable and specific biomarkers for early detection of cancer cells
giving better survival prognosis for patients, along with finding specific
metabolic targets for cancer therapies or providing insights into the
mechanism of action of drugs used for anti-cancer treatments. Although
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metabolomics already gave numerous valuable information about car-
cinogenesis, its applications in cancer research and clinical practice still
remain elusive.

In metabolomics research many challenges exist tending to support
modern concepts of personalized and integrative medicine. One of the
major challenges is the sheer number of metabolites to be reckoned
with, which is in particular difficult in case of advanced cancer due to
its overall heterogenic nature [6]. Namely, although it is generally as-
sumed that each tumor originates from a single malignantly trans-
formed cell, with each cell division tumor cells progress forming neo-
plastic mass of mutually heterogenic cells with increasingly higher
mutagenic potential. Ultimately, they give birth to cancerous cells with
devastating metastatic phenotype and complex metabolic changes that
might differ among malignant cells of the same tumor [1]. Further
obstacles are found in xenometabolite interferences, sample collection,
sample preparation, specificity and sensitivity of the current machines
and methods utilized, while also tackling incomplete databases and
system networks for easy identification of metabolites and metabolic
pathways.

2. Metabolomics approach

2.1. The power of metabolomics

The 'omics' technologies (genomics, transcriptomics, proteomics,
and metabolomics) have already impacted considerably the life sci-
ences and yield important insights to advance our understanding of the
pathophysiology of common complex diseases like e.g., diabetes [7,8],
cardiovascular disease [9], asthma [10], Alzheimer [11] and cancer
[12], among others. Each of the 'omics' is important for studies of
complex biological systems and pathophysiological processes, com-
plementing each other and the findings provided by the other, more
targeted methods, especially by immunochemistry. However, metabo-
lomics, as a downstream endpoint of all biological processes represents
a core tool for a global assessment of metabolites within a biological
system and reveals a specific 'snapshot' of the metabolic fingerprints
under particular cellular processes that is closely related to the phe-
notype [13]. The metabolome consists of a complex mixture of thou-
sands of metabolites, small-molecular-weight intermediates (typically
with the molecular mass of 80–1500 Da), from a variety of metabolite
classes including sugars, amino acids, oligopeptides, lipids, organic
acids etc. The wide chemical diversity is further complicated by inter-
ferences of endogenous metabolome with the exogenous, i.e. with
chemicals originating from environmental contaminants, drugs, ad-
ditives, toxins and other xenobiotics [14–16]. Moreover, the size of the
human metabolome is still being under estimation and might even
exceed 100.000 molecules or more if we consider all intermediates and
secondary metabolites [15]. In this countenance metabolomics is in-
vestigating complex biochemical interactions among different meta-
bolites (metabolome) but is also building a global network to provide
unique insight into metabolic reactions underlying activities of the
proteins/peptides and gene expression in respect to the other bioactive
molecules, including those important for the onset and control of oxi-
dative stress and lipid peroxidation, as is the glutathione (GSH) system
(Fig. 1).

3. State-of-the-art technologies in metabolomics

The development of robust, high-throughput metabolomic plat-
forms, predominantly based on nuclear magnetic resonance (NMR) and
mass spectrometry (MS) greatly facilitate metabolomics to address
clinical questions as therapy and diet selection, treatment efficiency
estimation, monitoring and eventually discovering novel biomarkers
[16]. Due to the high complexity, compositional diversity of physico-
chemical properties and concentration magnitude, one of the major
analytical challenges in metabolomics is to generate a representative

coverage of the studied metabolome. Particularly the untargeted MS
based multiplatform approaches, characterized by high sensitivity and
reproducibility such as direct infusion MS (DIMS), liquid chromato-
graphy (LC-MS), gas chromatography (GC-MS) or capillary electro-
phoresis (CE-MS) significantly advances evaluating a complete set of
metabolites [16,17]. The LC-MS is capable of detecting the widest range
of metabolites, both small and large, polar and non-polar molecules, so
the resulting data contain thousands of 'metabolic features', where each
represents a unique mass-to-charge ratio in a given retention time
value. Relatively easy sample preparation is undoubtedly an advantage,
too. On the other hand, GC-MS with its strengths of high reproduci-
bility, separation and easy metabolite identification pave the way for
detection of small, volatile compounds (e.g., sugars, free fatty acids,
organic acids, amino acids or Krebs cycle metabolites), although the
technique has its limitations as sample derivatization is required. Ad-
ditionally, CE-MS platform associated with high resolution offers a
complementary approach for analysing polar or ionic compounds in
complex aqueous matrices. Apparently, a limitation of LC-MS, GC-MS
and CE-MS methods is the loss of spatial information that results upon
metabolite extraction from the samples. Therefore, advanced molecular
imaging approaches of metabolomics, such as MS-based matrix-assisted
laser desorption ionization (MALDI-IMS) [18], secondary ion MS
(SIMS) [19], desorption electrospray ionization (DESI) [20] or nanos-
tructure-initiator mass spectrometry (NIMS) [21] can be an important
alternative that provides positional information on the distribution of
endogenous metabolites as well as for detection of administrated
pharmaceuticals within tissues, thus offering a powerful tool to explore
and monitor the effects of e.g. cancer metabolic reprogramming.

4. Metabolomics workflow

All metabolomics studies follow a common methodological pipeline
from experimental design, sample collection and metabolite extraction,
through data collection and analysis to biological interpretation
[16,22]. To ensure a highest quality level of thus generated data, ex-
ceptional caution should be taken in each step of the workflow. In case
of cancer related studies, where apart of blood plasma/serum or urine
samples it is common to analyse tumor tissue, particular attention
should be given to the sample harvesting and metabolite extraction.
Tissues are complex structures composed of heterogeneous mixtures of
morphologically and functionally distinct cell types, which is in case of
cancer further complicated by the differences in cancer cell viability
and inflammatory response to cancer growth and decay. Therefore,
collection of representative and homogenous tissue sample requires
critical evaluation which is challenging in general, but even more dif-
ficult in case of cancer samples which might comprise well-oxygenated
regions around the growing rim, whereas the other, central regions
might be necrotic [23]. For the tissue analysis it is also important to
remove residual blood before storage to avoid the contamination
coming from blood metabolome. Additionally, the ongoing biochemical
reactions that could modify the metabolic content and provoke ex vivo
alteration of sample composition should be stopped as soon as possible
following sample harvesting (metabolism quenching) [23]. Such factors
among many others may result in increased biological variability,
which should be taken into account during data treatment and inter-
pretation of thus obtained results.

5. Oxygen metabolism and redox balance

Aerobic organisms have evolved towards oxygen consumption to
gain more efficient production of energy. In higher organisms oxygen is
also involved in immunological responses, detoxification of xenobiotics,
inflammation and neurotransmitter catabolism [24]. One of the con-
sequences of oxygen metabolism is also production of reactive oxygen
species (ROS), which are short-lived and very reactive, so they can react
with all biological molecules, changing their structure and function.
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Under physiological conditions, ROS are constantly produced and re-
moved within the cells. Although generally considered as harmful by-
products of oxygen metabolism, ROS also have important physiological
functions in signal transduction and immunological response [24]. A
complex interplay between ROS generation, ROS signalling and ROS-
induced damage are often species- and tissue-dependent being kept
under control of elaborate enzymatic and non-enzymatic antioxidant
defence systems [25]. However, overproduction of ROS or deregulation
of antioxidant systems can lead to localized or systemic oxidative stress
[26]. In its acute form moderate oxidative stress can boost cellular
antioxidant capacities with positive, hormetic effects [27]. However,
more severe, and especially chronic oxidative stress can lead to many
deleterious effects on molecular level generating oxidized forms of
proteins, lipids and DNA [28]. Harmful effects of chronic oxidative
stress consider faster aging, DNA mutations, epigenetic changes that in
worst cases cumulate with development and progression of many dis-
eases including malignant alterations and cellular death [29]. Many
processes at the cellular level depend on the potency to regenerate and
maintain the optimal reducing power of the cell, which is mirrored
trough cellular redox state/balance [30]. When cells have wakened
their redox buffering potential or when it is being compromised by
overproduction of ROS, cellular redox state shifts more towards oxi-
dation and the cell is likely to be susceptible to oxidative damage. Non-
enzymatic antioxidants are usually consumed and enzymatic induced
under such circumstances, including utilization of major cellular anti-
oxidant, glutathione (GSH) and nicotinamide adenine dinucleotide
phosphate (NADPH) [31]. Working in tandem with endogenous anti-
oxidants, cellular redox balance is also dependent on essential nutrients

that are taken by food sources such as vitamins C and E, tannins, car-
otenes, dietary polyphenols and bioflavonoids, largely originating from
vegetable food sources [32]. Therefore, success of any organism to
defend against harmful oxidative stress largely depends on combination
of inherited genetic as well as on the environmental factors. Type of
food we eat, smoking habits and alcohol consumption as well as phy-
sical exercise, chemical agents and radiation give bases towards oc-
currence of oxidative stress and the readiness of an organism to defends
against it [33].

6. Pathophysiology of oxidative stress

There are complex relations between oxidative stress and many
pathophysiological conditions that might have beneficial consequences,
as is inflammatory response to pathogens, but could also be harmful,
initiating or enhancing degenerative, metabolic and auto-immune dis-
eases or cancer development [34]. Hence, pathophysiology of oxidative
stress should not be viewed as a hit or miss kind of event, but more as a
cumulatively progressive process that gives fertile ground for devel-
opment and progression of different, mostly stress and age associated
diseases [29,35]. In a causally-consequential scheme of pathophy-
siology oxidative stress can be viewed as a cause and as a consequence
of various diseases, giving significance to the idea of personalized and
integrative medicine [36]. That is in a large part dependent on the
assumption that harmful long-term effects of oxidative stress can still be
prevented, treated and even reversed if monitored well and in time
[37]. One of the goals of the preventive medicine approach should be a
definition of the health state of an organism trough a personalized

Fig. 1. Global biological network displaying complex interactions of altered metabolites (colored in red) reported to be connected with the redox signalling and cancer with other specific
pathway-associated metabolites (fuchsia), enzymatic reactions (orange), enzymes (green) and related genes (blue). The study of the metabolome can be applied independently, or for
global aspect in combination with other functional levels such as genomics, transcriptomics or proteomics systems. Genomics gives an overview of the genetic information provided by the
DNA, transcriptomics looks into gene expression patterns, proteomics studies dynamic protein products and their interactions, while metabolomics is an intermediate step in under-
standing organism's entire metabolism and represents the closest link to phenotype. Image created by the Cytoscape ver. 3.5.1 platform for visualizing molecular interaction networks and
biological pathways [112].
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medicine approach and systematic monitoring of oxidative stress oc-
currence from young age throughout one's lifespan. The challenges of
such an oxidative stress research lies in finding reliable and specific
biomarkers of oxidative stress in respect to specific pathophysiological
conditions and diseases [38,39]. Direct biomarkers of oxidative stress,
ROS, especially free radicals are short-lived, labile and, accordingly,
hard to measure. Therefore, more stable, secondary products/metabo-
lites of oxidative stress are mainly utilized in scientific research. They
include oxidized forms of proteins, lipids and DNA as well as their
degradation products [40,41]. A complementary way of assessing onset
of oxidative stress is by determination of antioxidants and their related
metabolites [42]. So far, biomarkers of oxidative stress were considered
to be too variable and highly unspecific for utilization in medical di-
agnostics of a specific disease. In scientific and clinical research they
were mostly utilized to assess involvement of oxidative stress in a
certain type of disease, but were usually considered too much un-
specific to give specific clues regarding diagnosis or therapy [38]. With
development of metabolomics, a new window of possibilities is
opening, where many more biomarkers of oxidative stress could be
assessed in one sample. At the same time metabolomics could generate
more complex pathophysiological and metabolic schemes but could
also give greater potential for solving puzzles that go beyond general-
ization and more towards specific and personalized approach in
fighting human diseases. To do so, metabolomics should be combined
with targeted, specific analysis like immunochemistry.

7. Oxidative stress and cancer metabolic switch

Malignant alterations at genetic level are the main pathological
driving force of carcinogenesis, often being associated with oxidative
stress [43]. ROS are the most important naturally occurring mutagenic
factors in the organism that cause genetic instability within the cells.
Multiple biochemical reactions where oxygen is metabolized can lead to
generation of reactive toxic intermediates that may cause DNA damage
[44]. From evolutionary point of view, at a normal rate, harmless
mutagenesis gives an advantage for the cell or organism to adapt to new
conditions via mutagenic changes of DNA. Chronic oxidative stress
mimics this naturally occurring process but on a much larger scale,
giving more rigorous pressure on the cells and ultimately forcing cells
to adapt to these new conditions or end in cell death [28,45]. Many
adaptive changes, cumulatively increasing over longer periods of time,
need to occur within one cell for malignant transformation to take
place. There are many examples how genetic mutations (inherited or
acquired) lead to increased ROS production, which causes DNA damage
and contributes to malignant transformation [45,46]. Therefore, cancer
cells in a way depend on this highly instable and mutagenic environ-
ment of oxidative stress.

Beside general characteristics, described as hallmarks of cancer,
these highly resistant transformed cells are characterized by different
metabolic patterns supporting sustained proliferation of cancer cells
and higher resistance to oxidative stress [45,47]. Generally speaking,
metabolism of developed tumors is different from that of normal cells.
However, large diversity also exists between different tumor types.
Depending on their tissue origin tumor cells retain a heterogeneous
expression of tissue specific genes and a metabolic networks resembling
that of the original tissue that tumor arose from [47,48]. Cumulatively,
metabolic phenotype of every tumor is a complex interplay of genetic
mutations favoring tumorigenesis, specific metabolic prints of tissue of
tumor origin and metabolic “cross talk” between tumor and its micro-
environment and nutrient uptake [48–50]. Symbiotic metabolic re-
lationship also exists between cancer cells and supportive, non-malig-
nant stromal cells that form jointly heterogeneous tumor mass [51]. In
addition, only a small part of cells with mutated genome exhibit me-
tabolic phenotypes that support continuous proliferation, while all of
them have to adapt their metabolic requirements to survive within
harsh condition of the surrounding wildly growing malignant cells [47].

All these diverse metabolic networks are still far from reach of under-
standing, at least in a way that would be useful in exploiting cancer
dependent metabolic alterations in new therapeutic approaches.

Oxidative stress is involved in all aspects of tumor development and
progression, but often also in anti-cancer therapies [45]. Strong impact
of oxidative stress on tumor development can be viewed at the sites of
chronic inflammation that causes oxidative stress mostly through
complex reactions of cellular immune system, but also through cytokine
bioactivities [28]. Increased production of ROS is observed upon acti-
vation of many different oncogenes or mutations of tumor suppressor
genes further influencing additional DNA mutations [45]. Increased
ROS production is also involved in induction of angiogenesis, epithelial-
mesenchymal transition (EMT) and “cross-talking” with surrounding
cells that in return support tumorigenesis together driving forward
tumor development [45]. Thus, oxidative stress has pivotal role in
metabolic switch that drives cells towards adaptation to carcinogenic
stressors and malignant transformation. Maybe the most striking me-
tabolic feature of many tumors is strong dependence on anaerobic
glycolysis despite functional mitochondria and oxygen availability
[52]. Explanation behind this switch may lie in the fact that despite
being energetically less efficient process, glycolysis generates ATP at a
much faster rate or by avoiding mitochondrial oxidative phosphoryla-
tion, cancer cells are also protected from additional source of ROS that
could prove to be deleterious in these highly proliferating and altered
metabolizing conditions already burdened by enhanced ROS produc-
tion [53–55]. In addition, it is viewed by many that importance of
glycolysis in this matter is to support high proliferating cancer cells
with substrates of pentose phosphate pathway (PPP) for nucleotide
synthesis as well as for the NADPH production, further supporting
cellular redox balance and protection against oxidative stress [56,57].
Intensive glycolysis of cancer cells is accompanied by increased pro-
duction of lactate that is exported in surrounding tissue causing highly
acidic microenvironment, which can be further supported by in-
flammation. Local acidosis drives tumor cells to adapt and develop
phenotype resistant to acid-induced cell toxicity giving them strong
advantage towards more proliferation and invasion [58]. Interestingly,
not all tumor types show intense glycolysis. This metabolic phenotype
is mostly observed in rapidly growing cancer cells. Some evidence
suggests that metabolic utilization of both glycolysis and mitochondrial
oxidative phosphorylation in tumor cells could be rapidly switched in
favor of one or the other mainly depending on micro-environmental
challenges as in the case of low glucose levels [59,60]. A high metabolic
rate of cancer cells is accompanied by increased ROS production.
However, this increment in ROS is not as damaging for tumor cells as it
would be for normal counterpart cells, because tumor cells can induce
new, cancer specific mechanisms of redox balance which is the back-
bone of their adaptive process supporting high proliferative rates while
surviving intensive tumorigenic metabolic rates and harsh tumor mi-
croenvironment [45]. Such an increased resistance to oxidative stress
could be one of the major advantages acquired by the transforming cells
allowing them more efficient bypass of ROS damage while also giving
them an important leverage compared to normal cells in the fighting
chances for survival [45]. On the other hand, cancer invasion as well as
inflammatory response to cancer can also induce lipid peroxidation in
adjacent non-malignant tissue that can response by increased lipid
peroxidation generating cytotoxic lipid peroxidation product HNE to
defend themselves and the organism against invading cancer even by
formation of the protein adducts of HNE [61,62]. Hence, it is not sur-
prising that among common metabolic features of cancer cells is al-
teration of the biomembrane lipid profile by reducing PUFAs to prevent
lipid peroxidation, since thus generated HNE can exert more potent
cytotoxic, pro-necrotic and pro-apoptotic effects for cancer than for
nonmalignant cells, also regulating activities of numerous genes, en-
zymes and cytokines involved in the growth regulation and oxidative
homeostasis [63,64]. Therefore, metabolomic analysis targeting lipid
metabolism and oxidative stress in cancer should be complemented by
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quantitative and qualitative immunochemical analysis for the lipid
peroxidation products, notably for HNE-protein adducts, well known
already as important biomarker of oxidative stress in various diseases,
including cancer [65,66].

8. Metabolomics insights into redox state of cancer

Most metabolomics studies featured in this review used an un-
targeted approach on platforms mostly utilized in metabolomics re-
search; HPLC-MS, GC-MS, CE-MS or NMR while also using different
biological samples; urine, plasma, serum, tissue and cultured cells.
Relevant findings of altered metabolomic patterns in cancer reflecting
oxidative stress have been summarized. It is important to mention that
non-targeted analysis is not the best way to measure labile compounds
that are very easily oxidized such as glutathione (GSH) and attention
should be paid to experimental conditions when evaluating such re-
sults, because rapid changes of GSH are well known, mainly in blood,
unless collected under especial conditions.

Glutathione plays a central role in cellular antioxidant defence
system. Its participation in cellular metabolic redox processes and ROS
scavenging is ubiquitous in aerobic organisms [67]. A relatively simple
structure of this soluble tripeptide does not reveal its powerful versatile
bioactivities especially its antioxidant properties. GSH is a non-enzy-
matic antioxidant synthesized intracellularly from cysteine (Cys), gly-
cine (Gly) and glutamate (Glu) and is highly abundant in all major cell
compartments like cytosol, nuclei and mitochondria. In the nucleus
GSH protects sulfhydryl groups of proteins that are essential for DNA
repair and expression. Its major antioxidant properties are further
manifested in direct scavenging of hydroxyl radicals and singlet oxygen,
while it can also detoxify hydrogen peroxide (H2O2), lipid peroxides
and even HNE in tandem with enzymatic action of glutathione perox-
idase (GPx) and glutathione transferases. GSH is also involved in re-
ductive regeneration of important antioxidants including water soluble
vitamin C and lipid soluble vitamin E [67]. The oxidized form of GSH is
glutathione disulfide (GSSG), formed by oxidation of two molecules of
GSH. The GSSG is usually formed during reduction of organic hydro-
peroxides (ROOH) and inorganic peroxides like H2O2 in enzymatic re-
action catalyzed by GPx or peroxiredoxins. In return, GSSG can be re-
duced back to GSH in tandem enzymatic action of glutathione reductase
(GR) and the reducing equivalent NADPHH+. Therefore, the GSH:
GSSG ratio is considered as an important indicator of redox balance in
cells, with a higher ratio signifying less oxidative stress [68].

It is not surprising that GSH metabolism was found to be largely
perturbed in different cancer types in many of the studies mentioned in
this paper. The human liver tumor cell line, HepG2 exhibited significant
reduction of GSH upon treatment with H2O2, while the same cells pre-
treated with vitamin E and GSH showed increased GSH in comparison
to control [69]. Another study on non-small-cell lung cancer cells
(NSCLC) examined metabolic patterns between three isogenic cell
clones harboring different KRAS mutations at most frequently mutated
loci, codon-12. In general, KRAS mutations lead to continuous activa-
tion of pathways that increase proliferation and avoid apoptosis such as
MAPK and PI3K/AKT7/mTOR pathways [70]. The intracellular redox
state of the KRAS mutants, measured by GSH, GSSG and the ratio GSH/
GSSG was comparable to the wild type. Despite that, KRAS mutants
showed metabolic shift towards an oxidized state. In addition, small but
significant differences of redox state could also be observed between
different KRAS mutants [71]. Metabolic profiling of three different
breast cancer cell lines (MDA-MB-231, −453 and BT-474) showed
significant decreases in GSH as well as GSH/GSSG ratios compared to
the control epithelial cell line MCF-10A [72]. In reference to these re-
sults the GSH/GSSG ratio was found to be significantly decreased in the
blood of breast cancer patients when compared to control subjects [73].
A highly malignant form of renal cancer is associated with mutations in
an enzyme of tricarboxylic cycle (TCA), the fumarate hydratase (FH)
[74]. An interesting study based on a computational predictive model

followed by metabolomic analysis revealed induction of chronic oxi-
dative stress in cells deficient in FH in a process of continuous GSH
depletion [46]. In this in vitro mouse model of FH-deficient kidney cells
(Fh1Δ/Δ) fumarate was found to be aberrantly accumulated and con-
sequently GSH was succinated in non-ezymatic reaction forming suc-
cinic-GSH. In this case GSH succination ultimately led to larger steady-
state pool of GSH by provoking compensational biosynthesis of new
GSH. However, despite this fact, cells were affected by disturbed redox
balance in consequence to NADPHH+ depletion that was being ex-
hausted for newly synthesized GSH [46]. Persistent oxidative stress
elicited by succination of GSH induced cellular senescence in vitro and
in vivo and provoked initiation of renal cancer in the mouse model
when senescence was bypassed [46]. The MYCN gene is amplified and
overexpressed in a large proportion of high stage neuroblastoma pa-
tients and has been recognized as a key driver of tumorigenesis. TH-
MYCN transgenic mice expressing human MYCN gene develop murine
equivalent of neuroblastoma with all the main signatures of human
disease [75]. An interesting in vivo study that examined neuroblastoma
of TH-MYCN mice in three different stages of tumor development (pre-
tumor, early tumor and advanced tumor) revealed high dependence of
carcinogenesis on the GSH metabolism and activities. The most striking
difference in GSH production, compared to wild type, was observed in
advanced tumors [76]. Complementary to that, the same study showed
increased levels of endogenously produced amino acids, which com-
prise main building blocks for glutathione synthesis (Cys, Glu and Gly)
and also glutamine that is readily converted to glucose when needed.
Elevated levels of 5-oxoproline and cysteine-glutathione disulfide
(CSSG) were also found [76]. The 5-oxoproline is uncommon naturally
occurring amino acid derivative that is converted to glutamate by 5-
oxoprolinase in the glutathione cycle [77], while CSSG is a molecule
that is formed upon oxidative stress of glutathione [78]. Thus, both
CSSG and GSSG can be considered as biomarkers of oxidative stress.
Significant alterations in CSSG levels were specifically observed in ad-
vanced stage of cancer [76]. The CSSG levels were also found to be
highly upregulated in cancer tissue in a mouse xenograft model of
human kidney cancer [78]. Furthermore, in three different clinical
studies that included cancer tissue analysis of head and neck squamous
cell carcinoma (HNSCC), breast cancer (ER+/ER-) and oral cancer,
metabolomics again revealed strong dependence of analyzed cancer
cells on the increased GSH [79–81]. Investigating oral cancer tissue
showed that beside increase in oxidized and reduced form of GSH,
many metabolites involved in GSH biosynthetic pathway were also
strongly upregulated (Table 1) [79]. In HNSCC, a high increase of GSH
was also observed as well as increase in amino acids Gly, Gln and Glu
further supporting GSH synthesis [80]. Both, estrogen-receptor positive
cancers (ER+) and estrogen-receptor negative cancers (ER-) showed
increased glutathione levels (GSH and GSSG) compared to adjacent
healthy tissue. However, ER- cancer cells exhibited higher glutathione
levels compared to ER+ cancers, suggesting increased GSH synthesis in
order to counteract higher levels of oxidative stress in ER- cancers.
Complementary to these findings CSSG levels were also found to be
more increased in ER- patients [81]. Importance of the redox balance in
malignant transformation was further corroborated in a clinical study
comparing metabolic signatures in the progression of hepatocellular
carcinogenesis from hepatitis B virus (HBV) and liver cirrhosis (LC) to
hepatocellular carcinoma (HCC) [82]. A significant increase in all
amino acids related to GSH synthesis including 5-oxoproline were ob-
served in serums of HCC patients [82]. In addition, HCC patients
showed a high increase of glucose 6-phosphate (G6P), the starting point
of glycolysis but also PPP, important source of NADPHH+ for the
generation of reduced GSH [82]. Similar results were obtained in an-
other large clinical study where the metabolic profiling of tissue sam-
ples from patients with colorectal cancer was performed. Again, there
was a significant increase in all GSH building amino acids including 5-
oxoproline, revealing strong dependence of colorectal cancer cells to
increased GSH consumption [83]. In addition, 2-aminobutyric acid
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(2AB), a key intermediate in the biosynthesis of ophthalmic acid (OPA)
was significantly elevated in cancer patients. Since OPA is a tripeptide
analogue of glutathione in which the cysteine group is replaced by 2AB
[84], OPA can be synthesized from 2AB and glutamate by the enzyme γ-
glutamyl-cysteine-synthetase (GCS) to form c-glutamyl-2 aminobuty-
rate, which can be further catalyzed by glutathione synthetase (GS) to
form OPA, which was previously reported to be potential biomarker for
hepatic GSH depletion following oxidative stress [84] and was also
found to be upregulated in breast cancer study mentioned previously,
showing higher levels in ER- compared to ER+ cancers [81,84].
Complementary to that, high 2AB levels can also reflect increased
oxidative stress [84]. Few other clinical studies considering metabo-
lomics approach showed upregulation of 2AB in esophageal carcinoma
and oral cancer [79,85]. Additionally, in a clinical study that explored
metabolic patterns of primary epithelial ovarian cancer (EOC) and
metastatic tumors originating from primary ovarian cancer (MOC) 2AB
was elevated in both [86]. In this study, OPA was also found to be
significantly upregulated but only in MOC patients. Another interesting
biomarkers of cancer that can be connected to perturbed GSH meta-
bolism are γ-glutamyl dipeptides. These were found to be upregulated
in the serum of hepatocellular carcinoma patients [87,88]. In general,
γ-glutamyl dipeptides are synthesized by ligation of glutamate with
various amino acids and amines by the action of GCS being feedback-
inhibited by GSH and the levels of γ-glutamyl dipeptides that are in-
dicative of the amount of cellular GSH [87]. The 2-hydroxybutyric acid
(2HB) can also be considered as one of the distinguishing features in
relation to GSH metabolism. It is primarily produced in mammalian
hepatic tissues, which catabolize threonine or synthesize glutathione.
Under conditions of intense oxidative stress hepatic glutathione
synthesis is increased and in high demand for cysteine. In such cases
homocysteine is diverted from the transmethylation pathway transfer-
ring methionine by this pathway to cystathionine, which is further
cleaved to cysteine and finally incorporated into glutathione. The 2HB
is then released as a by-product of cystathionine conversion to cysteine,
which was found to be increased in sera of patients suffering from he-
patocellular carcinoma as well as in cancer tissue of EOC and MOC
patients in the same study mentioned earlier [86,88].

Among the most important nutrients for a healthy redox balance in
human organism are tocopherol (vitamin E) and ascorbic acid (vitamin
C), which were also found to be perturbed in some cancers (Table 1). In
the metabolomic study using sera samples of clinically silent glio-
blastoma cases were compared with matching sera of patients with the
manifested glioblastoma to find that high levels of α-tocopherol and γ-
tocopherol in the sera of patients with clinically silent tumors implying
possible connection of increased blood tocopherol levels with initiation
of glioblastoma [89]. However, it may be also possible that even in such
cases tocopherol could still have its primarily have (ineffective) pre-
ventive role as antioxidant to terminate the onset of lipid peroxidation
in glial cells, since lipid peroxidation is known to occur with intensity
proportion to the level of malignancy of this particular brain tumors
[90,91]. Namely, tocopherol is an essential micronutrient involved in
various oxidative stress-related processes, especially protection of un-
saturated fatty acids from oxidation [92]. Another clinical metabo-
lomics study of esophageal squamous cell carcinoma (ESCC) that also
included lymph node metastasis again found decreased levels of α-to-
copherol and γ-tocopherol in the sera of patients with developed can-
cers [93]. On the other hand; a few metabolic analysis of cancer tissue
samples detected increased levels of α- and γ-tocopherol [81,86,94], as
in case of ER- breast cancer patients who had significantly increased
tocopherol levels if compared to the patients with ER+ cancer [81],
while tocopherol levels were in malignant tissue higher than in adjacent
mammary gland tissue. Similarly, vitamin C was shown to be sig-
nificantly increased in tissue of breast cancer patients, again with much
higher levels measured in ER- cases. In an ovarian cancer study, me-
tastatic ovarian cancer (MOC) cases showed striking increase in δ- and
γ-tocopherol when compared with primary epithelial ovarian cancerTa
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(EOC) and control samples. Interestingly, EOC patients did not show
any difference if compared to control [86].

In another study, the plasma samples of patients with primary EOC
were compared with plasma obtained from surgically treated EOC pa-
tients and from those with recurrent EOC [95]. Biomarkers of oxidative
stress like 3-indolepropionic acid and 3-indoxylsulfate were down-
regulated in recurring EOC patients and downregulation of 3-in-
dolepropionic acid was also observed in primary EOC patients. The 3-
indolepropionic acid is a product of tryptophan deamination that has
been previously found to have antioxidant properties protecting at least
some cells, including neurons from ischemia-induced DNA damage and
lipid peroxidation [95,96]. On the other hand, 3-indoxylsulfate has
been shown to propagate oxidative stress by strongly decreasing cir-
culating levels of glutathione [85,97]. In contrast to this result, urine
levels of 3-indoxylsulfate were found to be upregulated in patients with
esophageal carcinoma invoking the possible role of 3-indoxylsulfate
induced oxidative damage in the malignant transformation of esopha-
geal cancer [85]. Another reducing agent with strong antioxidant
properties in blood, uric acid, was found to be downregulated in plasma
samples of recurring EOC patients [95]. In another study of adeno-
carcinoma type non-small-cell lung cancer (NSCLC) metabolic profiling
of tissue samples revealed increased levels of uric acid [94]. Kynurenine
(Kyn) and xanthine are metabolites also found to be related to oxidative
stress occurrence in complex networks of cancer metabolism. Kyn is the
first product in the pathway of Trp degradation and has several im-
portant biological processes. In addition, it also exhibits pro-oxidant
effects. For example, aerobic irradiation of Kyn produces superoxide
radical that leads to cytochrome C reduction while increased levels of
Kyn have been shown to cause cell death through ROS pathway in
natural killer (NK) cells [98–100]. Xanthine is an intermediate in the
purine degradation process whose production might be accompanied by
generation of H2O2. This process is mediated by xanthine oxidase form
of the xanthine oxidoreductase (XOR) [101]. Both, kynurenine and
xanthine have been found to be specifically upregulated in different
cancers (Table 1). A complete list of selected metabolites that were
shown to be in any case connected to metabolic perturbations related to
oxidative stress are considered in Table 1.

9. Conclusions

In this short review we have tried to put emphasis on the im-
portance of pathophysiology of oxidative stress in cancer development
in relation to metabolic adaptation of particular cancer cells and ad-
jacent non-malignant cells with respect to the main stages of carcino-
genesis according to the recent data obtained in this challenging field of
cancer metabolomics. Our focus was primarily on biomarkers of oxi-
dative stress. Comprehensive evidence gathered here, reveals a crucial
role of oxidative stress in cancer development and progression. Yet, our
understanding of the redox-related perturbations in cancer metabolism
is still at the beginning, needing much more work before its exploitation
in therapies and diagnosis. According to the collected data, we have
prepared global biological network displaying complex interactions of
altered metabolites (colored red) summed up in our review that were
reported to be connected with the redox signalling in cancer and also
with other specific pathway-associated metabolites (Fig. 1). Ad-
ditionally, in Fig. 2. we have shown schematic representation of sig-
nificantly altered metabolic pathways associated with the altered redox
signalling in cancer, addressed in this paper.

In conclusion, we can claim that adaptation to oxidative stress is one
of the main driving forces of cancer development, while thus generated
lipid peroxidation might eventually help defending adjacent non-ma-
lignant cells from cancer invasion. Putting together parts of cancer
puzzle is one of the main challenges in modern medicine and research.
With the help of metabolomics approach many novel findings are now
being revealed, giving a great promise for future scientific break-
throughs, thus supporting modern concepts of integrative medicine
focused on pathophysiology of oxidative stress in cancer [107–111].

Conflicts of interest

None.

Dedication

On behalf of friends, pupils and followers of Hermann Esterbauer,
the authors dedicate this paper to the memory on “Hermann of the
Aldehydes” who passed away from cancer twenty years ago.

Acknowledgments

This work has been supported by offset project CRO_A-00033
"Technology & Know-how Transfer in Metabolomics and Establishment
of Latest Scientific Equipment in Zagreb", funded by company Patria.

References

[1] D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell 100 (2000) 57–70.
[2] L. Milkovic, W. Siems, R. Siems, N. Zarkovic, Oxidative stress and antioxidants in

carcinogenesis and integrative therapy of cancer, Curr. Pharm. Des. 20 (2014)
6529–6542.

[3] V. Stepanic, A.C. Gasparovic, K.G. Troselj, D. Amic, N. Zarkovic, Selected attri-
butes of polyphenols in targeting oxidative stress in cancer, Curr. Top. Med. Chem.
15 (2015) 496–509.

[4] G. Bauer, N. Zarkovic, Revealing mechanisms of selective, concentration-depen-
dent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through
inactivation of membrane-associated catalase, Free Radic. Biol. Med. 81 (2015)
128–144.

[5] L. Milkovic, N. Zarkovic, L. Saso, Controversy about pharmacological modulation
of Nrf2 for cancer therapy, Redox Biol. 12 (2017) 727–732.

[6] C.E. Meacham, S.J. Morrison, Tumour heterogeneity and cancer cell plasticity,
Nature 501 (2013) 328–337.

[7] A. Floegel, N. Stefan, Z. Yu, K. Mühlenbruch, D. Drogan, H.G. Joost, et al.,
Identification of serum metabolites associated with risk of type 2 diabetes using a
targeted metabolomic approach, Diabetes 62 (2013) 639–648.

[8] D. Dudzik, M. Zorawski, M. Skotnicki, W. Zarzycki, A. García, S. Angulo, et al.,
GC–MS based Gestational Diabetes Mellitus longitudinal study: identification of 2-
and 3-hydroxybutyrate as potential prognostic biomarkers, J. Pharm. Biomed.
Anal. (2017).

[9] C.M. Laborde, L. Mourino-Alvarez, M. Posada-Ayala, G. Alvarez-Llamas,

Fig. 2. Schematic representation of significantly altered metabolic pathways associated
with the altered redox signalling in cancer. The metabolite ID matching with KEGG and
HMDB was possible for 72 hits, the analysis was adjusted by a hypergeometric algorithm,
and the impact on pathway topology was based on relative-betweenness centrality.
Metabolic pathway analysis were performed using MetaboAnalyst 3.0 software [113].

L. Andrisic et al. Redox Biology 14 (2018) 47–58

56

http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref1
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref2
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref2
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref2
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref3
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref3
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref3
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref4
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref4
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref4
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref4
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref5
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref5
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref6
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref6
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref7
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref7
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref7
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref8
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref8
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref8
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref8
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref9


M.G. Serranillos-Reus, J. Moreu, et al., Plasma metabolomics reveals a potential
panel of biomarkers for early diagnosis in acute coronary syndrome, Metabolomics
10 (2014) 414–424.

[10] S.N. Reinke, H. Gallart-Ayala, C. Gómez, A. Checa, A. Fauland, S. Naz, et al.,
Metabolomics analysis identifies different metabotypes of asthma severity, Eur.
Respir. J. 49 (2017) 1601740.

[11] R. González-Domínguez, T. García-Barrera, J.L. Gómez-Ariza, Metabolite profiling
for the identification of altered metabolic pathways in Alzheimer's disease, J.
Pharm. Biomed. Anal. 107 (2015) 75–81.

[12] E.G. Armitage, C. Barbas, Metabolomics in cancer biomarker discovery: current
trends and future perspectives, J. Pharm. Biomed. Anal. 87 (2014) 1–11.

[13] J.K. Nicholson, J.C. Lindon, Systems biology: metabonomics, Nature 455 (2008)
1054–1056.

[14] D. Vuckovic, Current trends and challenges in sample preparation for global me-
tabolomics using liquid chromatography-mass spectrometry, Anal. Bioanal. Chem.
403 (2012) 1523–1548.

[15] D.S. Wishart, D. Tzur, C. Knox, R. Eisner, A.C. Guo, N. Young, et al., HMDB: the
human metabolome database, Nucleic Acids Res. 35 (2007) D521–D526.

[16] W.B. Dunn, D.I. Broadhurst, H.J. Atherton, R. Goodacre, J.L. Griffin, Systems level
studies of mammalian metabolomes: the roles of mass spectrometry and nuclear
magnetic resonance spectroscopy, Chem. Soc. Rev. 40 (2011) 387–426.

[17] A. Alonso, S. Marsal, A. Julià, Analytical methods in untargeted metabolomics:
state of the art in 2015, Front. Bioeng. Biotechnol. 3 (2015) 23.

[18] D.S. Cornett, M.L. Reyzer, P. Chaurand, R.M. Caprioli, MALDI imaging mass
spectrometry: molecular snapshots of biochemical systems, Nat. Methods 4 (2007)
828–833.

[19] R.F.S. Lee, S. Theiner, A. Meibom, G. Koellensperger, B.K. Keppler, P.J. Dyson,
Application of imaging mass spectrometry approaches to facilitate metal-based
anticancer drug research, Metallomics 9 (2017) 365–381.

[20] L.S. Eberlin, X. Liu, C.R. Ferreira, S. Santagata, N.Y.R. Agar, R.G. Cooks,
Desorption electrospray ionization then MALDI mass spectrometry imaging of
lipid and protein distributions in single tissue sections, Anal. Chem. 83 (2011)
8366–8371.

[21] M.P. Greving, G.J. Patti, G. Siuzdak, Nanostructure-initiator mass spectrometry
metabolite analysis and imaging, Anal. Chem. 83 (2011) 2–7.

[22] V.V. Hernandes, C. Barbas, D. Dudzik, A review of blood sample handling and pre-
processing for metabolomics studies, Electrophoresis (2017).

[23] E.J. Want, P. Masson, F. Michopoulos, I.D. Wilson, G. Theodoridis, R.S. Plumb,
et al., Global metabolic profiling of animal and human tissues via UPLC-MS, Nat.
Protoc. 8 (2013) 17–32.

[24] M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress,
Curr. Biol. 24 (2014) R453–R462.

[25] E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative stress and
antioxidant defense, World Allergy Organ. J. 5 (2012) 9–19.

[26] B. Halliwell, Biochemistry of oxidative stress: figure 1, Biochem. Soc. Trans. 35
(2007) 1147–1150.

[27] M. Antoncic-Svetina, D. Sentija, A. Cipak, D. Milicic, A. Meinitzer, F. Tatzber,
et al., Ergometry induces systemic oxidative stress in healthy human subjects,
Tohoku J. Exp. Med. 221 (2010) 43–48.

[28] S. Reuter, S.C. Gupta, M.M. Chaturvedi, B.B. Aggarwal, Oxidative stress, in-
flammation, and cancer: how are they linked? Free Radic. Biol. Med. 49 (2010)
1603–1616.

[29] S. Di Meo, T.T. Reed, P. Venditti, V.M. Victor, Role of ROS and RNS sources in
physiological and pathological conditions, Oxid. Med. Cell. Longev. 2016 (2016)
1245049.

[30] D. Trachootham, W. Lu, M. a. Ogasawara, R.-D.V. Nilsa, P. Huang, Redox reg-
ulation of cell survival, Antioxid. Redox Signal. 10 (2008) 1343–1374.

[31] J.K. Willcox, S.L. Ash, G.L. Catignani, Antioxidants and prevention of chronic
disease, Crit. Rev. Food Sci. Nutr. 44 (2004) 275–295.

[32] V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional
foods: impact on human health, Pharmacogn. Rev. 4 (2010) 118–126.

[33] P. Kovacic, J.D. Jacintho, Mechanisms of carcinogenesis: focus on oxidative stress
and electron transfer, Curr. Med. Chem. 8 (2001) 773–796.

[34] R.S. Sohal, R. Weindruch, Oxidative stress, caloric restriction, and aging, Science
273 (1996) 59–63.

[35] A.D. Romano, G. Serviddio, A. de Matthaeis, F. Bellanti, G. Vendemiale, Oxidative
stress and aging., J. Nephrol. 23 Suppl 15 (n.d.)S29–S36.

[36] M. Jaganjac, T. Čačev, A. Čipak, S. Kapitanović, K. Gall Trošelj, N. Zarković, Even
stressed cells are individuals: second messengers of free radicals in pathophy-
siology of cancer, Croat. Med. J. 53 (2012) 304–309.

[37] A. Cipak Gasparovic, N. Zarkovic, K. Zarkovic, K. Semen, D. Kaminskyy,
O. Yelisyeyeva, et al., Biomarkers of oxidative and nitro-oxidative stress: con-
ventional and novel approaches, Br. J. Pharmacol. 174 (2017) 1771–1783.

[38] J. Frijhoff, P.G. Winyard, N. Zarkovic, S.S. Davies, R. Stocker, D. Cheng, et al.,
Clinical relevance of biomarkers of oxidative stress, 23 (2015).

[39] J. Egea, I. Fabregat, Y.M. Frapart, P. Ghezzi, A. Görlach, T. Kietzmann, et al.,
European contribution to the study of ROS: a summary of the findings and pro-
spects for the future from the COST action BM1203 (EU-ROS), Redox Biol. 13
(2017) 94–162.

[40] S. Toyokuni, The origin and future of oxidative stress pathology: from the re-
cognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-
thermal plasma therapy, Pathol. Int. 66 (2016) 245–259.

[41] E. Ho, K. Karimi Galougahi, C.-C. Liu, R. Bhindi, G.A. Figtree, Biological markers
of oxidative stress: applications to cardiovascular research and practice, Redox
Biol. 1 (2013) 483–491.

[42] A. Somogyi, K. Rosta, P. Pusztai, Z. Tulassay, G. Nagy, Antioxidant measurements,

Physiol. Meas. 28 (2007) R41–R55.
[43] B. Sadikovic, K. Al-Romaih, J.A. Squire, M. Zielenska, Cause and consequences of

genetic and epigenetic alterations in human cancer, Curr. Genom. 9 (2008)
394–408.

[44] J.E. Klaunig, L.M. Kamendulis, B.A. Hocevar, Oxidative stress and oxidative da-
mage in carcinogenesis, Toxicol. Pathol. 38 (2010) 96–109.

[45] V. Sosa, T. Moliné, R. Somoza, R. Paciucci, H. Kondoh, M.E. LLeonart, Oxidative
stress and cancer: an overview, Ageing Res. Rev. 12 (2013) 376–390.

[46] L. Zheng, S. Cardaci, L. Jerby, E.D. MacKenzie, M. Sciacovelli, T.I. Johnson, et al.,
Fumarate induces redox-dependent senescence by modifying glutathione meta-
bolism, Nat. Commun. 6 (2015) 6001.

[47] M.G. Vander Heiden, Exploiting tumor metabolism: challenges for clinical trans-
lation, J. Clin. Invest. 123 (2013) 3648–3651.

[48] M.O. Yuneva, T.W.M. Fan, T.D. Allen, R.M. Higashi, D.V. Ferraris, T. Tsukamoto,
et al., The metabolic profile of tumors depends on both the responsible genetic
lesion and tissue type, Cell Metab. 15 (2012) 157–170.

[49] J. Yun, C. Rago, I. Cheong, R. Pagliarini, P. Angenendt, H. Rajagopalan, et al.,
Glucose deprivation contributes to the development of KRAS pathway mutations
in tumor cells (80-.). (325), Science (2009) 1555–1559.

[50] C.M. Metallo, P.A. Gameiro, E.L. Bell, K.R. Mattaini, J. Yang, K. Hiller, et al.,
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia,
Nature 481 (2011) 380–384.

[51] F. Sotgia, U.E. Martinez-Outschoorn, A. Howell, R.G. Pestell, S. Pavlides,
M.P. Lisanti, Caveolin-1 and cancer metabolism in the tumor microenvironment:
markers, models, and mechanisms, Annu. Rev. Pathol. Mech. Dis. 7 (2012)
423–467.

[52] J.-w. Kim, C.V. Dang, Cancer's molecular sweet tooth and the Warburg effect,
Cancer Res. 66 (2006) 8927–8930.

[53] A.E. Vaughn, M. Deshmukh, Glucose metabolism inhibits apoptosis in neurons and
cancer cells by redox inactivation of cytochrome c, Nat. Cell Biol. 10 (2008)
1477–1483.

[54] H. Kondoh, M.E. Lleonart, J. Gil, J. Wang, P. Degan, G. Peters, et al., Glycolytic
enzymes can modulate cellular life span, Cancer Res. 65 (2005) 177–185.

[55] H. Kondoh, M.E. Lleonart, D. Bernard, J. Gil, Protection from oxidative stress by
enhanced glycolysis; a possible mechanism of cellular immortalization, Histol.
Histopathol. 22 (2007) 85–90.

[56] F. Weinberg, N.S. Chandel, Mitochondrial metabolism and cancer, Ann. N. Y.
Acad. Sci. 1177 (2009) 66–73.

[57] H. Kondoh, M.E. Lleonart, Y. Nakashima, M. Yokode, M. Tanaka, D. Bernard, et al.,
A high glycolytic flux supports the proliferative potential of murine embryonic
stem cells, Antioxid. Redox Signal. 9 (2007) 293–299.

[58] R.A. Gatenby, R.J. Gillies, Why do cancers have high aerobic glycolysis? Nat. Rev.
Cancer 4 (2004) 891–899.

[59] K. Smolková, N. Bellance, F. Scandurra, E. Génot, E. Gnaiger, L. Plecitá-Hlavatá,
et al., Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia
and hypoxia, J. Bioenerg. Biomembr. 42 (2010) 55–67.

[60] R. Rossignol, R. Gilkerson, R. Aggeler, K. Yamagata, S.J. Remington, R.A. Capaldi,
Energy substrate modulates mitochondrial structure and oxidative capacity in
cancer cells, Cancer Res. 64 (2004) 985–993.

[61] H. Zhong, M. Xiao, K. Zarkovic, M. Zhu, R. Sa, J. Lu, et al., Mitochondrial control
of apoptosis through modulation of cardiolipin oxidation in hepatocellular carci-
noma: a novel link between oxidative stress and cancer, Free Radic. Biol. Med. 102
(2017) 67–76.

[62] N.P. Živković, M. Petrovečki, T. Lončarić, I. Nikolić, G. Waeg, M. Jaganjac, et al.,
Positron emission tomography-computed tomography and 4-hydroxynonenal-
histidine immunohistochemistry reveal differential onset of lipid peroxidation in
primary lung cancer and in pulmonary metastasis of remote malignancies, Redox
Biol. 11 (2017) 600–605.

[63] N. Zarkovic, A. Cipak, M. Jaganjac, S. Borovic, K. Zarkovic, Pathophysiological
relevance of aldehydic protein modifications, J. Proteom. 92 (2013) 239–247.

[64] S. Beloribi-Djefaflia, S. Vasseur, F. Guillaumond, Lipid metabolic reprogramming
in cancer cells, Oncogenesis 5 (2016) e189.

[65] N. Zarkovic, 4-hydroxynonenal as a bioactive marker of pathophysiological pro-
cesses., Mol. Aspects Med. 24 (n.d.) 281–291.

[66] K. Zarkovic, A. Jakovcevic, N. Zarkovic, Contribution of the HNE-im-
munohistochemistry to modern pathological concepts of major human diseases,
Free Radic. Biol. Med. 111 (2017) 110–126.

[67] K. Aquilano, S. Baldelli, M.R. Ciriolo, Glutathione: new roles in redox signaling for
an old antioxidant, Front. Pharmacol. 5 (2014) 196.

[68] S. Sentellas, O. Morales-Ibanez, M. Zanuy, J.J. Albertí, GSSG/GSH ratios in cryo-
preserved rat and human hepatocytes as a biomarker for drug induced oxidative
stress, Toxicol. Vitr. 28 (2014) 1006–1015.

[69] N. Wang, J. Wei, Y. Liu, D. Pei, Q. Hu, Y. Wang, et al., Discovery of biomarkers for
oxidative stress based on cellular metabolomics, Biomarkers 21 (2016) 449–457.

[70] A.T. Shaw, M.M. Winslow, M. Magendantz, C. Ouyang, J. Dowdle,
A. Subramanian, et al., Selective killing of K-RAS mutant cancer cells by small
molecule inducers of oxidative stress, Proc. Natl. Acad. Sci. 108 (2011)
8773–8778.

[71] L. Brunelli, E. Caiola, M. Marabese, M. Broggini, R. Pastorelli, Capturing the me-
tabolomic diversity of KRAS mutants in non-small-cell lung cancer cells,
Oncotarget 5 (2014) 4722–4731.

[72] L. Willmann, M. Schlimpert, M. Hirschfeld, T. Erbes, H. Neubauer, E. Stickeler,
et al., Alterations of the exo- and endometabolite profiles in breast cancer cell
lines: a mass spectrometry-based metabolomics approach, Anal. Chim. Acta 925
(2016) 34–42.

[73] C.-C. Yeh, M.-F. Hou, S.-M. Tsai, S.-K. Lin, J.-K. Hsiao, J.-C. Huang, et al.,

L. Andrisic et al. Redox Biology 14 (2018) 47–58

57

http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref9
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref9
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref9
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref10
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref10
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref10
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref11
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref11
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref11
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref12
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref12
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref13
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref13
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref14
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref14
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref14
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref15
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref15
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref16
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref16
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref16
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref17
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref17
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref18
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref18
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref18
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref19
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref19
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref19
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref20
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref20
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref20
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref20
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref21
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref21
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref22
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref22
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref23
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref23
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref23
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref24
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref24
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref25
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref25
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref26
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref26
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref27
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref27
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref27
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref28
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref28
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref28
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref29
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref29
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref29
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref30
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref30
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref31
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref31
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref32
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref32
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref33
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref33
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref34
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref34
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref35
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref35
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref35
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref36
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref36
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref36
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref37
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref37
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref38
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref38
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref38
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref38
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref39
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref39
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref39
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref40
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref40
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref40
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref41
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref41
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref42
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref42
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref42
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref43
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref43
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref44
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref44
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref45
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref45
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref45
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref46
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref46
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref47
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref47
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref47
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref48
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref48
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref48
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref49
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref49
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref49
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref50
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref50
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref50
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref50
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref51
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref51
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref52
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref52
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref52
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref53
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref53
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref54
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref54
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref54
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref55
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref55
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref56
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref56
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref56
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref57
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref57
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref58
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref58
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref58
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref59
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref59
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref59
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref60
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref60
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref60
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref60
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref61
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref61
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref61
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref61
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref61
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref62
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref62
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref63
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref63
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref64
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref64
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref64
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref65
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref65
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref66
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref66
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref66
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref67
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref67
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref68
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref68
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref68
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref68
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref69
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref69
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref69
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref70
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref70
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref70
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref70
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref71


Superoxide anion radical, lipid peroxides and antioxidant status in the blood of
patients with breast cancer, Clin. Chim. Acta 361 (2005) 104–111.

[74] A. King, M.A. Selak, E. Gottlieb, Succinate dehydrogenase and fumarate hydratase:
linking mitochondrial dysfunction and cancer, Oncogene 25 (2006) 4675–4682.

[75] L. Chesler, W.A. Weiss, Genetically engineered murine models – contribution to
our understanding of the genetics, molecular pathology and therapeutic targeting
of neuroblastoma, Semin. Cancer Biol. 21 (2011) 245–255.

[76] D.R. Carter, S.K. Sutton, M. Pajic, J. Murray, E.O. Sekyere, J. Fletcher, et al.,
Glutathione biosynthesis is upregulated at the initiation of MYCN-driven neuro-
blastoma tumorigenesis, Mol. Oncol. 10 (2016) 866–878.

[77] M. Emmett, Acetaminophen toxicity and 5-oxoproline (pyroglutamic acid): a tale
of two cycles, one an ATP-depleting futile cycle and the other a useful cycle, Clin.
J. Am. Soc. Nephrol. 9 (2014) 191–200.

[78] S. Ganti, S.L. Taylor, O. Abu Aboud, J. Yang, C. Evans, M.V. Osier, et al., Kidney
tumor biomarkers revealed by simultaneous multiple matrix metabolomics ana-
lysis, Cancer Res. 72 (2012) 3471–3479.

[79] S. Ishikawa, M. Sugimoto, K. Kitabatake, A. Sugano, M. Nakamura, M. Kaneko,
et al., Identification of salivary metabolomic biomarkers for oral cancer screening,
Sci. Rep. 6 (2016) 31520.

[80] B.S. Somashekar, P. Kamarajan, T. Danciu, Y.L. Kapila, A.M. Chinnaiyan,
T.M. Rajendiran, et al., Magic angle spinning NMR-based metabolic profiling of
head and neck squamous cell carcinoma tissues, J. Proteome Res. 10 (2011)
5232–5241.

[81] X. Tang, C.-C. Lin, I. Spasojevic, E.S. Iversen, J.-T. Chi, J.R. Marks, A joint analysis
of metabolomics and genetics of breast cancer, Breast Cancer Res. 16 (2014) 415.

[82] R. Gao, J. Cheng, C. Fan, X. Shi, Y. Cao, B. Sun, et al., Serum metabolomics to
identify the liver disease-specific biomarkers for the progression of hepatitis to
hepatocellular carcinoma, Sci. Rep. 5 (2016) 18175.

[83] Y. Qiu, G. Cai, B. Zhou, D. Li, A. Zhao, G. Xie, et al., A distinct metabolic signature
of human colorectal cancer with prognostic potential, Clin. Cancer Res. 20 (2014)
2136–2146.

[84] T. Soga, R. Baran, M. Suematsu, Y. Ueno, S. Ikeda, T. Sakurakawa, et al.,
Differential metabolomics reveals ophthalmic acid as an oxidative stress bio-
marker indicating hepatic glutathione consumption, J. Biol. Chem. 281 (2006)
16768–16776.

[85] V.W. Davis, D.E. Schiller, D. Eurich, M.B. Sawyer, Urinary metabolomic signature
of esophageal cancer and Barrett's esophagus, World J. Surg. Oncol. 10 (2012)
271.

[86] M.Y. Fong, J. McDunn, S.S. Kakar, Identification of metabolites in the normal
ovary and their transformation in primary and metastatic ovarian cancer, PLoS
One 6 (2011) e19963.

[87] T. Soga, M. Sugimoto, M. Honma, M. Mori, K. Igarashi, K. Kashikura, et al., Serum
metabolomics reveals γ-glutamyl dipeptides as biomarkers for discrimination
among different forms of liver disease, J. Hepatol. 55 (2011) 896–905.

[88] A.I. Fitian, D.R. Nelson, C. Liu, Y. Xu, M. Ararat, R. Cabrera, Integrated metabo-
lomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/
MS and UPLC/MS-MS, Liver Int. 34 (2014) 1428–1444.

[89] B. Björkblom, C. Wibom, P. Jonsson, L. Mörén, U. Andersson, T. Børge
Johannesen, et al., Metabolomic screening of pre-diagnostic serum samples
identifies association between α- and γ-tocopherols and glioblastoma risk,
Oncotarget 7 (2016) 37043–37053.

[90] K. Zarkovic, G. Juric, G. Waeg, D. Kolenc, N. Zarkovic, Immunohistochemical
appearance of HNE-protein conjugates in human astrocytomas, Biofactors 24
(2005) 33–40.

[91] G. Juric-Sekhar, K. Zarkovic, G. Waeg, A. Cipak, N. Zarkovic, Distribution of 4-
hydroxynonenal-protein conjugates as a marker of lipid peroxidation and para-
meter of malignancy in astrocytic and ependymal tumors of the brain., Tumori. 95
(n.d.) 762–768.

[92] S. Rizvi, S.T. Raza, F. Ahmed, A. Ahmad, S. Abbas, F. Mahdi, The role of vitamin e

in human health and some diseases, Sultan Qaboos Univ. Med. J. 14 (2014)
e157–65.

[93] H. Jin, F. Qiao, L. Chen, C. Lu, L. Xu, X. Gao, Serum metabolomic signatures of
lymph node metastasis of esophageal squamous cell carcinoma, J. Proteome Res.
13 (2014) 4091–4103.

[94] W.R. Wikoff, D. Grapov, J.F. Fahrmann, B. DeFelice, W.N. Rom, H.I. Pass, et al.,
Metabolomic markers of altered nucleotide metabolism in early stage adeno-
carcinoma, Cancer Prev. Res. 8 (2015) 410–418.

[95] C. Ke, A. Li, Y. Hou, M. Sun, K. Yang, J. Cheng, et al., Metabolic phenotyping for
monitoring ovarian cancer patients, Sci. Rep. 6 (2016) 23334.

[96] I.K. Hwang, K.-Y. Yoo, H. Li, O.K. Park, C.H. Lee, J.H. Choi, et al., Indole-3-pro-
pionic acid attenuates neuronal damage and oxidative stress in the ischemic hip-
pocampus, J. Neurosci. Res. 87 (2009) 2126–2137.

[97] E.I. Sihvo, T. Ruohtula, M.I. Auvinen, A. Koivistoinen, A.L. Harjula, J.A. Salo,
Simultaneous progression of oxidative stress and angiogenesis in malignant
transformation of Barrett esophagus, J. Thorac. Cardiovasc. Surg. 126 (2003)
1952–1957.

[98] Q. Wang, D. Liu, P. Song, M.-H. Zou, Tryptophan-kynurenine pathway is dysre-
gulated in inflammation, and immune activation, Front. Biosci. (Landmark Ed.) 20
(2015) 1116–1143.

[99] H. Song, H. Park, Y.-S. Kim, K.D. Kim, H.-K. Lee, D.-H. Cho, et al., L-Kynurenine-
induced apoptosis in human NK cells is mediated by reactive oxygen species, Int.
Immunopharmacol. 11 (2011) 932–938.

[100] P. Buczko, A. Zalewska, I. Szarmach, Saliva and oxidative stress in oral cavity and
in some systemic disorders, J. Physiol. Pharmacol. 66 (2015) 3–9.

[101] J. Maiuolo, F. Oppedisano, S. Gratteri, C. Muscoli, V. Mollace, Regulation of uric
acid metabolism and excretion, Int. J. Cardiol. 213 (2016) 8–14.

[102] J. Gu, X. Hu, W. Shao, T. Ji, W. Yang, H. Zhuo, et al., Metabolomic analysis reveals
altered metabolic pathways in a rat model of gastric carcinogenesis, Oncotarget 7
(2016) 60053–60073.

[103] T. Abaffy, M.G. Möller, D.D. Riemer, C. Milikowski, R.A. DeFazio, Comparative
analysis of volatile metabolomics signals from melanoma and benign skin: a pilot
study, Metabolomics 9 (2013) 998–1008.

[104] U. Kalluri, M. Naiker, M.A. Myers, Cell culture metabolomics in the diagnosis of
lung cancer—the influence of cell culture conditions, J. Breath. Res. 8 (2014)
027109.

[105] F. Li, A.D. Patterson, K.W. Krausz, C. Jiang, H. Bi, A.L. Sowers, et al.,
Metabolomics reveals that tumor xenografts induce liver dysfunction, Mol. Cell.
Proteom. 12 (2013) 2126–2135.

[106] C.M. Jones, M.E. Monge, J. Kim, M.M. Matzuk, F.M. Fernández, Metabolomic
serum profiling detects early-stage high-grade serous ovarian cancer in a mouse
model, J. Proteome Res. 14 (2015) 917–927.

[107] A. Negre-Salvayre, N. Auge, V. Ayala, H. Basaga, J. Boada, R. Brenke, et al.,
Pathological aspects of lipid peroxidation, Free Radic. Res. 44 (2010) 1125–1171.

[108] A. Gęgotek, J. Nikliński, N. Žarković, K. Žarković, G. Waeg, W. Łuczaj, et al., Lipid
mediators involved in the oxidative stress and antioxidant defence of human lung
cancer cells, Redox Biol. 9 (2016) 210–219.

[109] A.C. Gasparovic, L. Milkovic, S.B. Sunjic, N. Zarkovic, Cancer growth regulation by
4-hydroxynonenal, Free Radic. Biol. Med. (2017) 0–1.

[110] M. Fedorova, N. Zarkovic, Preface to the special issue on 4-hydroxynonenal and
related lipid oxidation products, Free Radic. Biol. Med. 111 (2017) 1.

[111] G. Poli, N. Zarkovic, Editorial introduction to the special issue on 4-hydro-
xynonenal and related lipid oxidation products, Free Radic. Biol. Med. 111
(2017) 2–5.

[112] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, et al.,
Cytoscape: a software environment for integrated models of biomolecular inter-
action networks, Genome Res. 13 (2003) 2498–2504.

[113] J. Xia, I.V. Sinelnikov, B. Han, D.S. Wishart, MetaboAnalyst 3.0-making metabo-
lomics more meaningful, Nucleic Acids Res. 43 (2015) W251–W257.

L. Andrisic et al. Redox Biology 14 (2018) 47–58

58

http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref71
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref71
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref72
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref72
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref73
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref73
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref73
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref74
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref74
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref74
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref75
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref75
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref75
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref76
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref76
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref76
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref77
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref77
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref77
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref78
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref78
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref78
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref78
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref79
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref79
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref80
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref80
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref80
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref81
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref81
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref81
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref82
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref82
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref82
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref82
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref83
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref83
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref83
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref84
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref84
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref84
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref85
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref85
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref85
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref86
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref86
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref86
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref87
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref87
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref87
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref87
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref88
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref88
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref88
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref89
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref89
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref89
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref90
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref90
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref90
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref91
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref91
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref91
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref92
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref92
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref93
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref93
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref93
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref94
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref94
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref94
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref94
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref95
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref95
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref95
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref96
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref96
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref96
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref97
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref97
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref98
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref98
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref99
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref99
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref99
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref100
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref100
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref100
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref101
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref101
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref101
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref102
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref102
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref102
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref103
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref103
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref103
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref104
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref104
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref105
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref105
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref105
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref106
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref106
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref107
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref107
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref108
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref108
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref108
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref109
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref109
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref109
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref110
http://refhub.elsevier.com/S2213-2317(17)30545-1/sbref110

	Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer
	Introduction
	Metabolomics approach
	The power of metabolomics

	State-of-the-art technologies in metabolomics
	Metabolomics workflow
	Oxygen metabolism and redox balance
	Pathophysiology of oxidative stress
	Oxidative stress and cancer metabolic switch
	Metabolomics insights into redox state of cancer
	Conclusions
	Conflicts of interest
	Dedication
	Acknowledgments
	References




