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Abstract 

The aim of this study was to determine whether treatment of male CBA/H mice with 17-β 

estradiol (E2) had protective effect on survival and hepatic oxidative damage of lipids and 

proteins against hyperoxia. Furthermore, we wanted to explore the effect of E2 treatment on the 

expression of sex-specific cytochrome P450 isoforms, and their possible involvement in E2-

induced resistance to hyperoxia. Lipid peroxidation and protein carbonylation were analysed 

spectrophotometrically and were used as a measure of lipid and protein oxidative damage. Real 

time PCR and western blot analysis were used to measure both gene and protein expression 

levels of Cyp2E1, Cyp7B1 and Cyp2A4, respectively. We found that treatment of male CBA/H 

mice with E2 increased survival upon hyperoxia exposure, and provided protection against 

hepatic lipid and protein oxidative damage. Hyperoxia had feminizing effect on the expression 

of sex-specific CYPs, which resembled the lifespan-promoting conditions. E2 administration 

had the opposite effect on the expression pattern of these CYPs in hyperoxic versus normoxic 

conditions. Results of this research proposed possible male strategy in adaptive response to 

oxidative stress, which may finally result in their longer lifespan. 

 

 

Keywords: liver, mice, hyperoxia, CYP, sex-dimorphic, 17β-estradiol. 
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Introduction 

Exposure to increased concentrations of oxygen (hyperoxia) is routinely used to treat several 

conditions like hypoxemia, acute respiratory failure and acute carbon monoxide poisoning [1]. 

However, the prolonged administration of high oxygen concentration results in tissue damage. 

Reactive oxygen species (ROS) are generated at increased rate in cells and tissues during 

hyperoxia, causing oxidative damage of biological molecules [2]. Moreover, hyperoxia causes 

inflammatory response which aggravates oxygen toxicity, resulting in lethality of experimental 

animals after prolonged exposure [3].  

Susceptibility to hyperoxia is found to reflect the longevity potential of the species and 

hyperoxia-induced gene expression pattern resembles aging process [4].  

Cytochrome P450 enzymes (Cyp) constitute a family of monooxygenases that play important 

role in the oxidative metabolism and detoxification of pollutants and carcinogens. Also, Cyp 

enzymes catalyse biosynthesis of endogenous compounds such as fatty acids and steroid 

hormones [5]. Their regulation is controlled by sex, age, tissue and hormones. Cyp2E1 has 

important role in the metabolism of ethanol, glycerol and fatty acids  and participates in 

depletion of lipid peroxidation substrates [6] and is implicated hyperoxia susceptibility. 

Cyp7B1 (oxysterol-7 α hydroxylase) is male-predominant isoform in liver of adult mice and its 

sex-related expression is dependent on androgen signalling [7]. Cyp7B1 plays a key role in the 

metabolism of the cholesterol, oxysterols and bile acids [8]. Cyp2A4 (steroid 15α-hydroxylase) 

is female-predominant isoform responsible for the hydroxylation of testosterone and 

progesterone, with suppressed expression in male liver [9]. Sex-specific pattern of Cyp7B1 and 

Cyp2A4 expression in mice is established in puberty by sex-related differences in secretion of 

growth hormone (GH) [10]. Female sex hormone 17 beta-estradiol (E2) has well-established 

cytoprotective effect during oxidative stress. Its depletion contributes to pathogenesis of age-

related diseases [11]. Also, E2 is responsible for females’ longer lifespan and their overall better 
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protection to oxidative stress [12]. We have shown that female CBA/H mice were more resistant 

to hyperoxia and had higher survival compared to their male counterparts. The observed 

differences in survival were rather due to liver oxidative damage found exclusively in males, 

than to acute lung injury which was not severe enough to induce death [13]. Also, treatment of 

male mice with E2 efficiently activated their hepatic antioxidative system in physiological 

conditions [14]. With this in mind, we hypothesized that E2 could serve as a protective factor 

in conditions of acute oxidative stress in male CBA/H mice. Moreover, we wanted to determine 

if protective response of E2 was associated with altered expression of sex-dependent Cyps.  
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Materials and Methods 

Animals and experimental design 

The experiments were performed in accordance with the current laws of the Republic of Croatia 

and with the guidelines of the European Community Council Directive of November 24, 1986 

(86/609/EEC). Total of 32 male CBA/H mice aged 4 months from the breeding colony of the 

Ruđer Bošković Institute (Zagreb, Croatia) were used for all experiments. The animals were 

maintained under the following laboratory conditions: three to a cage; light on from 06:00 to 

18:00; 22±2oC room temperature; access to food pellets and tap water ad libitum. 

For the E2 administration, a pellet containing E2 (50 μg, Innovative research of America, 

Sarasota, FL) was placed into the interscalpular subcutaneous space releasing a constant dose 

of 830 ng of E2 daily for 37 days. Another set of animal was used as an untreated control. 

After 37 days E2 treated and untreated animals were subjected to experimental protocols.  

For survival analysis, E2-treated and E2-untreated animals (n=6 per group) were placed in 

oxygen chamber (Đuro Đaković, Slavonski Brod, Croatia) and exposed to oxygen conditions 

for 48 hours, by flushing the chamber with pure oxygen (25 L/min for 10 minutes) to replace 

air. Concentration of O2 in the chamber was determined using O2 sensor (0-100% Dräger PacIII, 

Lübek, Germany) (Figure 1A). Surviving animals were counted to establish a role of E2 

treatment on survival in hyperoxia conditions and euthanized.  

For biochemical analysis another set of CBA/H mice was used. Animals were divided randomly 

into E2-treated and E2-untreated group. E2 treatment procedure was made in same fashion as for 

the survival study. After E2 treatment animal were exposed to hyperoxia conditions for 44 h to 

approach the conditions where we previously noticed significant differences in mortality 

between male and female mice [13], yet allow survival of all animals in order to perform further 

analysis. Control animals were placed in hyperoxic chamber exposed to ambient air. After 
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sacrifice, portion of the same liver were used for all analyses as shown in Figure 1B. Samples 

were snap frozen and stored on –80˚C until analysis. 

Lipid peroxidation (LPO) 

Lipid peroxidation was assessed by measurement of malondialdehyde (MDA) reaction with 

thiobarbituric acid following the formation of thiobarbituric reactive substances (TBARS), 

according to Ohkawa et al [15]. In brief, liver tissue was homogenized (10% w/v) using an ice-

packed Potter-Elvehjem homogenizer (Braun, Biotech. Int., Germany) in RIPA buffer 

containing protease inhibitors. Homogenates were sonificated for 30 sec, and centrifuged on 

3000g for 15 minutes at +4oC. Supernatants were treated with 10% trichloroethanoic acid 

(TCA) (1:2 v/v). After protein precipitation, equal volume of thiobarbituric acid (TBA) was 

added, and samples were incubated for 60 min at 95oC. Absorbance of each sample was 

measured on plate reader at 532nm. The results were expressed as nmol TBARS/mg of protein 

in liver supernatant according to a standard curve which was prepared with serial dilutions of 

1,1,3,3-tetramethoxypropane.  

Protein carbonylation 

Protein carbonyls in liver supernatants were determined according to [16]. Samples in PBS with 

protease inhibitors (Roche Diagnostics, Penzberg, Germany) were supplemented with lipid 

removal agent (Sigma 13360-U) and incubated at room temperature for 1h, then centrifuged for 

20 minutes at 13000 rpm. Supernatants were diluted to 10ug/ml, loaded into Maxisorb wells 

(Sigma Aldrich, St.Louis, MO, USA) and incubated overnight at 4°C to allow proteins to adsorb 

to the surface. Adsorbed proteins were derivatized using 12 μg/mL2,4-dinitrophenylhydrazine 

(DNPH). Derivatized dinitrophenol (DNP)-carbonyl was detected by rabbit anti-DNP primary 

antibody (D9656, Sigma Aldrich, St.Louis, MO, USA) and goat anti-rabbit secondary antibody 

conjugated to HRP (Jackson ImmunoResearch, West Grove, PA, USA). 1ug/uL antibody stocks 
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were used at a 1:7000 dilution. Samples were then incubated with enzyme substrate 3,3′,5,5′-

tetramethylbenzidine (Sigma Aldrich, St.Louis, MO, USA) until colour developed, and the 

reaction was stopped using 0.3M H2SO4. Absorbance was measured by a microplate reader at 

450nm.  

Fatty acid analysis 

For the detection of fatty acids liver was homogenised in PBS. Total lipids were extracted from 

homogenates according to [17]. The lipid extract was treated with 0.5M KOH/MeOH for 20 

min at room temperature, and the corresponding fatty acid methyl esters (FAMEs) were formed 

and analysed by gas chromatography (GC). GC analyses of total fatty acids were performed by 

Varian 450-GC equipped with a flame ionization detector. A Stabilwax column (crossbond 

carbowax polyethylene glycol, 60m×0.25mm) was used as a stationary phase at a programmed 

temperature with helium as the carrier gas. The heating was carried out at a temperature of 150 

°C for 1 min followed by an increase of  1°C/min up to 250°C. Methyl esters were identified 

by comparison with the retention times of authentic samples.  

RNA isolation and real-time PCR analysis 

Total RNA was extracted from individual mouse livers in each group (n=3) using TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.  Reverse 

transcription and real-time PCR analysis were done as described previously [18], to quantify 

relative mRNA expression of cyp2E1, cyp7B1 and cyp2A4. Using the 2−ΔΔCt method, data are 

presented as the fold-change in gene expression normalized to endogenous reference gene (β-

actin) and relative to the untreated control. Assays used in this study are listed in Table 1. All 

reactions were carried out in triplicate. 

Table 1 here. 
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SDS-PAGE and Western blotting 

Liver was homogenized with RIPA buffer supplemented with proteinase inhibitors (10% w/v) 

using an ice-jacketed Potter–Elvehjem homogenizer (1.300×g). After sonification (3×30s), 

whole liver homogenates were centrifuged at 16.000g for 20 min at +4ºC. Supernatant was 

collected and total cellular proteins (75 μg per lane) were resolved by denaturing SDS-PAGE, 

and transferred onto a PVDF membrane (Bio-Rad, Hercules, CA, USA). Membranes were 

blocked in 5% nonfat dry milk in TN buffer (50 mM TRIS, 150 mM NaCl, pH = 7.4) overnight 

at +4°C. Membranes were incubated with primary polyclonal goat antibody against Cyp7B1 

(Santa Cruz Biotechnology Inc, TX, USA) (diluted 1:200 and incubated overnight at +4°C), 

followed by incubation with donkey anti-goat IgG, horseradish peroxidase-conjugated 

secondary antibody (BioRad, Hercules, CA, USA) for 1 h at room temperature. For Cyp2E1 

protein detection, membranes were incubated with primary polyclonal rabbit antibody against 

Cyp2E1 (Abcam, Cambridge, UK), diluted 1:200 and incubated overnight at +4°C, followed 

by incubation with donkey anti-rabbit IgG, horseradish peroxidase-conjugated, secondary 

antibody (Amersham Biosciences Inc., USA) for 1h at room temperature. For Cyp2A4 protein 

detection, membranes were incubated with primary polyclonal rabbit antibody against Cyp2A 

(Santa Cruz Biotechnology Inc., TX, USA) diluted 1:200 and incubated overnight at +4°C, 

followed by incubation with donkey anti-rabbit IgG, horseradish peroxidase-conjugated 

secondary antibody (Amersham Biosciences Inc., USA) for 1 h at room temperature. Equality 

of loading was confirmed using AmidoBlack (Sigma Aldrich, St.Louis, USA), which was also 

used for normalization of the bands (Einecke et al. 2006). The chemiluminescence signals were 

detected and analysed with the Alliance 4.7 Imaging System (UVITEC,Cambridge, UK). The 

blots were repeated at least three times and representative blots are presented.  
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Protein concentration 

Protein concentration in all samples was determined using BCA protein assay (Thermo 

Scientific, Rockford, USA). 

Statistical analysis  

Statistical analyses of data were performed using R v2.15.3 (CRAN, http://cran.r-project.org ) 

and RStudio for Windows, v 0.97 (http://www.rstudio.com/). All groups were tested for 

normality of distribution using Shapiro-Wilk test. Since data followed normal distribution, the 

differences between multiple groups were compared with one-way parametric ANOVA, 

followed by Tukey’s post-hoc test for testing differences between multiple groups. For all tests 

significance level was set at p<0.05.  
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Results 

The effect of E2 and hyperoxia on total body mass of male CBA/H mice exposed to normobaric 

hyperoxia for 44 hours 

In order to evaluate the efficacy of E2 implementation, we determined total body masses in all 

groups of animals on 37th day post implementation. E2 induced significant decrease in the 

average body mass compared to untreated male mice in normoxic conditions (p<0.001, N vs. 

N+E2). Hyperoxia-exposed animals had lower body mass compared to their normoxic 

littermates (p=0.020, N vs. H). Also, E2 treatment additionally decreased body mass in 

hyperoxia-treated group, compared to hyperoxia-treated group alone (p=0.031, H vs. H+E2) 

(Figure 2).  

The effect of E2 on survival of male CBA/H mice exposed to normobaric hyperoxia for 44 hours 

In order to determine whether E2 has beneficial effect on survival of males subjected to 

hyperoxia, we have determined the rate of survival of a normobaric hyperoxia treatment for 48 

hours and the results were evaluated using Pearson Chi-Square test. The fraction of male mice 

treated with E2 that survived the hyperoxia was higher compared to their corresponding control, 

but without reaching significance due to small number of samples (χ2 (1) = 2.4, p = 0.121). 

None of males untreated with E2 (H) survived the treatment, while 2 out of 6 males treated with 

E2 (H+E2) survived the treatment.  

The effect of E2 on hepatic lipid peroxidation (LPO) of male CBA/H mice exposed to 

normobaric hyperoxia for 44 hours 

As a measure of lipid oxidative damage, LPO was evaluated by measuring TBARS level in 

liver homogenates of 4 months old male CBA/H mice subjected to hyperoxia. LPO was 

markedly increased in hyperoxia-exposed males compared to their corresponding normoxic 
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control (ap=0.001, N vs. H). Although E2 administration decreased LPO in hyperoxia conditions 

(cp=0.011, H vs. H+E2), it still remained significantly elevated, when compared to normoxic 

group alone (bp=0.007, N vs. H+E2) (Figure 3). 

The effect of E2 on hepatic carbonyl content in male CBA/H mice exposed to normobaric 

hyperoxia for 44 hours 

In order to investigate the effect of E2 on protein oxidative damage in hyperoxia-treated mice, 

we determined protein carbonylation. The level of carbonylated proteins markedly increased in 

hyperoxia-exposed mice, compared to their corresponding normoxic group (ap=0.003, N vs. H). 

The administration of E2 in normoxic conditions caused even greater difference between this 

group and hyperoxia-treated animals (bp=0.001, N+E2 vs. H). In hyperoxic conditions, E2 

markedly decreased protein oxidative damage, compared to hyperoxia-treated mice alone 

(cp=0.005, H vs H+E2) (Figure 4). 

The effect of E2 on total fatty acid content in the liver of male CBA/H mice exposed to 

normobaric hyperoxia for 44 hours 

Since we have found that hyperoxia causes substantial increase in LPO damage, we analysed 

changes in total fatty acid profile in response to hyperoxia and E2 treatment. The percentage of 

total fatty acids was not significantly changed in any group of mice, compared to normoxic 

group, mainly due to large intravariability of the samples (Table 2). However, we found that 

the omega-6/omega-3 fatty acid ratio, known as a measure of proinflammatory potential, was 

significantly increased in hyperoxia-exposed group of mice compared to both normoxic 

(ap=0.040, N vs. H) and E2-treated normoxic group (cp=0.017, N+E2 vs. H). In hyperoxic group 

E2 administration failed to decrease omega-6/omega-3 fatty acid ratio back to normoxic group 

(bp=0.026, N vs. H+E2; 
dp=0.008, N+E2 vs. H+E2) (Figure 5). 

Table 2 here 
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The effect of E2 on Cyp2E1 expression in the liver of male CBA/H mice exposed to normobaric 

hyperoxia for 44 hours 

We determined gene expression and protein expression levels of Cyp2E1 to evaluate if 

beneficial effect of E2 in hyperoxia conditions has any association with the changes in the 

expression of this Cyp. We have found marked increase in cyp2E1 gene expression in E2-treated 

normoxic males, compared to their corresponding normoxic group (fold-change 3.09±0.74; 

ap=0.004, N vs. N+E2) (Figure 6A). However, due to large sample variation and small size of 

the sample, this difference was not followed on protein level, and no change in protein 

expression level was observed. (Figure 6B).  

The effect of E2 on Cyp7B1 expression in the liver of male CBA/H mice exposed to normobaric 

hyperoxia for 44 hours 

We determined gene and protein expression profile of Cyp7B1 upon hyperoxia and E2 

administration using Real-time PCR and Western blot analysis. Real-time PCR showed 

significant downregulation of cyp7B1 gene in hyperoxia-treated group, (fold-change -

2.26±0.35; ap=0.033, N vs. H) and E2 administration decreased cyp7B1 mRNA level even more 

(fold-change -2.49±0.35; bp=0.001, N vs. H+E2) (Figure 7A). Protein expression pattern 

followed mRNA level, with the lowest content in hyperoxia exposed animals treated with E2 

compared to all other groups (ap=0.002, N vs. H+E2; 
bp=0.001, N+E2 vs. H+E2; 

cp=0.016, H 

vs. H+E2) (Figure 7B). 

The effect of E2 on Cyp2A4 expression in the liver of male CBA/H mice exposed to normobaric 

hyperoxia for 44 hours 

We determined gene and protein expression profile of Cyp2A4 upon hyperoxia and E2 

administration using Real-time PCR and Western blot analysis. Significant increase in cyp2A4 

gene expression was found only in hyperoxia-treated group, compared to normoxic group of 
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mice (fold-change 4.27±1.72, ap=0.031, N vs. H), although the tendency towards the increase 

of cyp2A4 mRNA level was present across all experimental groups (Figure 8A). Protein level 

of Cyp2A followed mRNA level in hyperoxia-treated males, but was found to be only 

marginally increased compared to normoxic group (ap=0.050, N vs. H). However, E2 

administration markedly decreased level of Cyp2A protein under hyperoxic conditions 

(dp=0.001, H vs. H+E2) and was also found significantly lower compared to normoxic group of 

animals (bp=0.003, N vs. H+E2; 
cp=0.015, N+E2 vs. H+E2) (Figure 8B). 
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Discussion 

Hyperoxia presents a useful model for studying aging, oxidative stress and metabolic disorders. 

Resistance to hyperoxia is found to be female predominant in adult animals [19], We found that 

hyperoxia induced significant sex-related changes in liver oxidative/antioxidative status which 

were reflected in higher mortality rate of adult male mice [13], and also found that treatment of 

male mice with E2 could efficiently boost antioxidative system in the liver [14]. In this study 

we have shown that treatment of adult male mice with E2 increased the survival rate after 48h 

of hyperoxia exposure. Furthermore, we found that E2 treatment was effective in their 

protection against oxidative damage of lipids and proteins. Since hyperoxia exposure is 

associated with changes in lipid metabolism that contributes to oxygen susceptibility and 

eventually results in liver pathology, we have investigated the impact of hyperoxia and E2 

treatment on total fatty acid content. Although percentage of total fatty acids remained constant 

with respect to hyperoxia and/or E2 administration, we noticed that hyperoxia shifted the ratio 

of ω-6/ω-3 fatty acids towards proinflammatory profile and E2 treatment was ineffective in 

ameliorating this event. This results suggest that hyperoxia may be considered as one of the 

causing factors for altered lipid metabolism that could finally lead to pathologic conditions and 

liver disease [20]. Cyp2E1 enzyme plays a major role in fatty acid metabolism. Its activity is 

usually increased in various pathophysiological states linked with altered lipid metabolism such 

as diabetes [21] increased caloric intake [22] and in ketosis during excessive fat consumption 

[23]. Although Cyp2E1 is usually linked with increased ROS production [24], there are several 

evidence of protective role of Cyp2E1. Furthermore, Cyp2E1 participates in depletion of lipid 

peroxidation substrates, and is found to have protective effect on lipid oxidative damage by 

decreasing amount of lipid peroxidation substrates [25]. We have previously found that the 

level of hepatic cyp2E1 mRNA expression was higher in hyperoxia-exposed adult female 

CBA/H mice in comparison to males, and this increase was in association with their lower level 
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of MDA [26]. In our present study we observed that E2 treatment of normoxic male mice lead 

to increase of cyp2E1 mRNA, which was not in correlation with the expression of Cyp2E1 

protein. In addition, E2 had no effect on Cyp2E1 expression level in hyperoxia. The observed 

discrepancies can be explained with a complex regulation of Cyp2E1 that involves stabilization 

of mRNA, in addition to RNA expression (Kocarek et al. 2000), and protein stabilization with 

the substrate [27], but further investigations are needeed to explain this mechanism in more 

details. 

Male-predominant isoform Cyp7B1, in addition to bile acids synthesis, is responsible for the 

aromatization of sex hormone intermediates, which gives this Cyp isoform an important role in 

the maintenance of masculine properties [28]. The results of the present study revealed that E2 

administration in normoxic conditions did not result with significant changes in the expression 

of Cyp7B1. Li-Hawkinsk and co-workers [7] have found that E2 treatment lead to increase of 

hepatic Cyp7B1 protein in male mice, but these mice received significantly higher 

concentration of E2 than concentration used in our study. Hyperoxic exposure induced marked 

downregulation of Cyp7B1, which represents a male-to-female shift in the expression of this 

isoform. Even more, in E2-treated males exposed to hyperoxia, the expression of the Cyp7B1 

protein was downregulated to a level of no detection. Similar male-to-female shift in the 

expression pattern of this gene has been observed in lifespan-promoting conditions, such as in 

long-lived Ames dwarf mice [29] and in the regime that is known to increase the lifespan in 

various model organisms [30]. This finding suggests that combination of E2 treatment and  

hyperoxia could be used as a beneficial agents in amelioration of age-related diseases and 

potential elongation of lifespan.  

Expression of the female-predominant isoform Cyp2A4 in males was increased after hyperoxia, 

which also represents the shift towards female phenotype. In normoxic conditions, E2 

administration did not cause significant increase in the expression of Cyp2A, probably due to 
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small sample size, although such trend was noticed. However, in E2-treated group exposed to 

hyperoxia, the expression of Cyp2A protein was downregulated in similar manner as observed 

for Cyp7B1 protein. Other studies also suggested partial feminization of males as one of the 

protective mechanisms in response to stress in other experimental models [31]. According to 

some authors [32], shift to feminine gene expression may be responsible for the lifespan 

extension in conditions of CR. Experiments performed on C.elegans confirmed that short-term 

hyperoxia promoted lifespan [33]. Although mice in our model were subjected to sublethal 

exposure to hyperoxia, interestingly, CYP expression pattern was similar to that noticed in 

lifespan promoting conditions. However, due to excessive exposure to hyperoxia, mice were 

probably unable to achieve sufficient level of protection. Furthermore, our data suggest that E2 

achieves protective role by raising the level of antioxidative protection and modulating sex-

specific genes towards protective, female-specific pattern of expression against hyperoxia. 

However, more studies are needed to find possible strategies to achieve efficient level of 

protection against oxidative stress, in order to retard the aging process and minimizing 

deleterious side effects of E2 administration. 
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Conclusion 

Our study showed that hyperoxia induced hepatic oxidative damage of lipids, proteins and 

shifted omega-6/omega-3 ratio towards proinflammatory state in male CBA/H mice. E2 

administration protected against hyperoxia by increasing survival, and lowering oxidative 

damage. Hyperoxia induced male-to-female shift in the expression of male-predominant 

Cyp7B1 and female-predominant Cyp2A4. Combined effect of hyperoxia and E2 induced 

additional downregulation in male-predominant Cyp7B1, and unexpectedly, the female-

predominant Cyp2A4. Although exact reason for the observed pattern of Cyp2A4 upon 

combined effect of hyperoxia and E2 is unknown, the interesting fact is that E2 has the opposite 

effect on the expression pattern of these Cyps in hyperoxia, in comparison to physiological 

conditions. The observed feminization of male-specific Cyps with E2 administration under the 

conditions of hyperoxia may be a part of males’ attempt in activation of adaptive response to 

hyperoxia, which may eventually lead to their longer lifespan. 
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Legends to figures 

Figure 1. Scheme of the experimental design, number of animals and experimental groups. (A) 

survival study (B) Biochemical analyses 

Figure 2. Effect of hyperoxia and E2 administration on total body mass of male CBA/H mice 

on 37th day post-surgery. The results are presented as mean ± S.D. from 6 animals per group. 

ap<0.001, N vs. N+E2; 
bp=0.020, N vs. H; cp=0.031, H vs. H+E2. 

Figure 3. Effect of E2 administration on TBARS level in liver supernatants of normoxia and 

hyperoxia-exposed male CBA/H mice. Data present mean ± S.D. from 6 animals per group. N-

animals exposed to normoxia untreated with E2, N+E2-animals exposed to normoxia treated 

with E2, H-hyperoxia exposed animals untreated with E2, H+E2-animals exposed to hyperoxia 

treated with E2. 
ap=0.001, N vs. H; bp=0.007, N vs. H+E2; 

cp=0.011, H vs. H+E2. 

Figure 4.  Effect of E2 administration on protein carbonylation in liver supernatants of 

normoxia and hyperoxia- exposed male CBA/H mice. The results are presented as mean ± S.D. 

from 6 animals per group. N-animals exposed to normoxia untreated with E2, N+E2-animals 

exposed to normoxia treated with E2, H-hyperoxia exposed animals untreated with E2, H+E2-

animals exposed to hyperoxia treated with E2. 
ap=0.003, N vs.H; bp=0.001, N+E2 vs. H; 

cp=0.005, H vs. H+E2. 

Figure 5. Effect of E2 administration on omega-6/omega-3 fatty acid ratio in liver supernatants 

of normoxia and hyperoxia-exposed male CBA/H mice. The results are presented as mean ± 

S.D. from 6 animals per group. N-animals exposed to normoxia untreated with E2, N+E2-

animals exposed to normoxia treated with E2, H-hyperoxia exposed animals untreated with E2, 

H+E2-animals exposed to hyperoxia treated with E2. 
ap=0.040, N vs. H; dp=0.008, N+E2 vs. 

H+E2. 
bp=0.026, N vs. H+E2; 

cp=0.017, N+E2 vs. H. 
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Figure 6. Effect of E2 administration on cyp2E1 gene expression in liver of normoxia and 

hyperoxia-exposed male CBA/H mice. The fold-change in gene expression was calculated 

using the 2-ΔΔCT method and β-actin as the endogenous control. The results are presented as 

fold-change ± S.E. ap=0.004, N vs. N+E2 (A). Western blot analysis of Cyp2E1 protein level in 

liver of normoxia and hyperoxia-exposed male CBA/H mice. Results are presented as mean ± 

S.D. Amidoblack was used as a loading control. Representative immunoblots are shown (B). 

Figure 7. Effect of E2 administration on CYP7B1 gene expression in liver of normoxia and 

hyperoxia-exposed male CBA/H mice. The fold change in gene expression was calculated using 

the 2-ΔΔCT method and β-actin as the endogenous control. The results are presented as fold-

change ± S.E. ap=0.033, N vs. H; bp= 0.001, N vs.H+E2 (A). Western blot analysis of Cyp7B1 

protein level in liver of normoxia and hyperoxia-exposed male CBA/H mice. Results are 

presented as mean ± S.D. Amidoblack was used as a loading control. Representative 

immunoblots are shown. ap=0.002, N vs. H+E2; 
bp=0.001, N+E2 vs. H+E2; 

cp=0.016, H vs. 

H+E2 (B). 

Figure 8. Effect of E2 administration on Cyp2A4 gene expression in liver of normoxia and 

hyperoxia-exposed male CBA/H mice. The fold change in gene expression was calculated using 

the 2-ΔΔCT method and β-actin as the endogenous control. The results are presented as fold-

change ± S.E. ap=0.031, N vs. H (A). Western blot analysis of Cyp2A protein level in liver of 

normoxia and hyperoxia-exposed male CBA/H mice. Results are presented as mean ± S.D. 

Amidoblack was used as a loading control. Representative immunoblots are shown. ap=0.050, 

N vs. H; bp=0.003, N vs. H+E2; 
cp=0.015, N+E2 vs. H+E2; 

dp=0.001, H vs. H+E2 (B). 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A

B

Adult male CBA mice (n=12)

E2 treated
(n=6)

E2 untrearted
(n=6)

Hyperoxia
exposed

48 hours 

Hyperoxia
exposed

Adult male CBA mice (n=20)

E2 treated
(n=10)

E2 untrearted
(n=10)

Normoxia
exposed
(N+E2)
(n=5)

Hyperoxia
exposed
(H+E2)
(n=5)

Normoxia
exposed
(N-E2)
(n=5)

Hyperoxia
exposed
(H-E2)
(n=5)

LPO, Carbonyl
content, FA analysis

n=5
WB, Real Time PCR

n=3

Survival study

44 hours

Figure 1 Click here to download Figure Figure 1.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302911&guid=ae179b3d-e599-490a-87bb-1d4a23908104&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302911&guid=ae179b3d-e599-490a-87bb-1d4a23908104&scheme=1


0

10

20

30

40

50

N N+E2 H H+E2

b
o

d
y 

m
as

s 
(g

)

a, b

c

Figure 2 Click here to download Figure Figure 2.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302912&guid=13f1704f-b2c7-492b-bbed-a7189e4021c3&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302912&guid=13f1704f-b2c7-492b-bbed-a7189e4021c3&scheme=1


M
D

A
 u

g/
m

g 
p

ro
t

0

0.5

1

1.5

2

2.5

3

N N+E2 H H+E2

a, b

c

Figure 3 Click here to download Figure Figure 3.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302913&guid=df9601e0-027a-4245-a375-e1762bd1cf0b&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302913&guid=df9601e0-027a-4245-a375-e1762bd1cf0b&scheme=1


0

0.5

1

1.5

2

N N+E2 H H+E2

p
ro

te
in

 c
ar

b
o

n
yl

 c
o

n
te

n
t 

(n
m

o
l/

m
g 

p
ro

te
in

)

a
b

c

Figure 4 Click here to download Figure Figure 4.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302914&guid=c6011994-9d4d-479b-a694-288cd29d5ce1&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302914&guid=c6011994-9d4d-479b-a694-288cd29d5ce1&scheme=1


0

1

2

3

4

5

6

7

N N+E2 H H+E2

o
m

eg
a-

6
/o

m
eg

a-
3

 r
at

io

c, da, b

Figure 5 Click here to download Figure Figure 5.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302915&guid=a21c532e-893e-400f-b0d3-74bea37ba13f&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302915&guid=a21c532e-893e-400f-b0d3-74bea37ba13f&scheme=1


0

50

100

150

200

N N+E2 H H+E2

C
yp

2
E1

 p
ro

te
in

 le
ve

l r
at

io
/N

B

A

0.1

1

10

fo
ld

-c
h

an
ge

 in
 c

yp
2

E1
 g

en
e 

ex
p

re
ss

io
n

 
(l

o
g 

sc
al

e)

N N+E2 H H+E2

a

Figure 6 Click here to download Figure Figure 6.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302916&guid=8cb87f79-e5e5-4ea1-86ca-c777dc336926&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302916&guid=8cb87f79-e5e5-4ea1-86ca-c777dc336926&scheme=1


A

0.01

0.1

1

10

0 0 0 0

fo
ld

-c
h

an
ge

 in
 c

yp
7

B
1

 g
en

e 
ex

p
re

ss
io

n
 

le
ve

l (
lo

g 
sc

al
e)

N N+E2 H H+E2

a, b

0

50

100

150

200

N N+E2 H H+E2

C
yp

7
B

1
 p

ro
te

in
 le

ve
l r

at
io

/N

a, b, c

Figure 7 Click here to download Figure Figure 7.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302917&guid=e0cf9c35-1a59-4555-b567-a6cee1f228e1&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302917&guid=e0cf9c35-1a59-4555-b567-a6cee1f228e1&scheme=1


B

A

0.1

1

10

100

0

fo
ld

-c
h

an
ge

 in
 C

yp
2

a4
 g

en
e 

ex
p

re
ss

io
n

 
(l

o
g 

sc
al

e)

N N+E2 H H+E2

p=0.031

0

100

200

300

400

N N+E2 H H+E2

C
yp

2
A

 p
ro

te
in

 le
ve

l r
at

io
/N

a, b
c

d

Figure 8 Click here to download Figure Figure 8.xlsx 

http://www.editorialmanager.com/mcbi/download.aspx?id=302918&guid=0a5eee64-6026-4454-af96-b4f20835444c&scheme=1
http://www.editorialmanager.com/mcbi/download.aspx?id=302918&guid=0a5eee64-6026-4454-af96-b4f20835444c&scheme=1


Table 1. Assays used for real-time PCR analysis. 

 

Gene ID Product 

size 

Cyp2e1 Mm00491127_m1 83 

Cyp7b1 Mm00484157_m1 62 

Cyp2a4 Mm00487248_g1 75 

Beta-actin Mm00607939_s1 115 
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Table 2. Total fatty acid content in the liver of male CBA/H mice exposed to normobaric 

hyperoxia for 44 hours 
 

group saturated unsaturated polyunsaturated 

N 37.5±2.3 22.7±6.2 39.8±4.1 

N+E2 37.6±2.2 25.7±5.8 36.6±4.5 

H 34.7±2.4 26.8±4.3 38.5±3.5 

H+E2 36.3±3.4 24.7±3.4 38.9±1.6 

    

 C-16:0 C-16:1 C-18:0 

N 25.1±0.8 2.0±0.7 12.0±2.2 

N+E2 25.4±0.9 2.0±0.6 11.8±2.0 

H 23.9±1.1 2.4±0.5 10.3±2.0 

H+E2 24.5±1.1 2.5±0.4 11.6±2.4 

    

 C-18:1 C-18:2 C-18:3 

N 17.2±4.5 18.5±0.8 0.3±0.1 

N+E2 19.5±4.7 16.7±3 0.3±0.1 

H 20.9±3.5 20.6±3.5 0.6±0.3 

H+E2 18.9±2.9 20.1±2.1 0.5±0.2 

    

 C-20:4 C-22:5 C-22:6 

N 10.2±2.2 0.7±0.0 9.3±1.4 

N+E2 9.5±2.2 0.6±0.1 8.7±1.0 

H 8.0±1.9 0.7±0.1 7.6±1.0 

H+E2 9.0±1.7 0.6±0.1 7.8±0.8 
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