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Summary

Protein quality control mechanisms, required for normal cellular

functioning, encompass multiple functions related to protein

production and maintenance. However, the existence of commu-

nication between proteostasis and metabolic networks and its

underlying mechanisms remain elusive. Here, we report that

enhanced chaperone activity and consequent improved proteosta-

sis are sensed by TORC1 via the activity of Hsp82. Chaperone

enrichment decreases the level of Hsp82,which deactivates TORC1

and leads to activation of Snf1/AMPK, regardless of glucose

availability. This mechanism culminates in the extension of yeast

replicative lifespan (RLS) that is fully reliant on both TORC1

deactivation and Snf1/AMPK activation. Specifically, we identify

oxygen consumption increase as the downstream effect of Snf1

activation responsible for the entire RLS extension. Our results set

a novel paradigm for the role of proteostasis in aging: modulation

of themisfoldedprotein level can affect cellularmetabolic features

aswell asmitochondrial activityandconsequentlymodify lifespan.

The described mechanism is expected to open new avenues for

research of aging and age-related diseases.

Key words: ageing; glucose starvation; mitochondria; protein

chaperones; replicative lifespan; Snf1/AMPK; TORC1; yeast.

Introduction

Protein homeostasis (proteostasis) encompasses the equilibrium between

synthesis, conformational maintenance, and degradation of damaged

proteins. While protein synthesis has a critical role in making the

proteome and promoting cell growth, failure to eliminate misfolded

proteins can lead to inactivation of functional proteins as well as cell

degeneration and death. Cellular proteostasis is maintained by a

network of molecular chaperones, protein degradation machineries,

and stress–response pathways, whose coordinated action senses and

counteracts protein misfolding (Wolff et al., 2014). Molecular chaper-

ones, including the heat-shock proteins (HSPs), are ubiquitously present

cellular proteins, which display a wide spectrum of folding-oriented

activities, coping with regular protein folding events, as well as stress-

induced protein misfolding (Morano et al., 1998). The efficiency of

proteostasis may decline, with well-described consequences, especially in

the context of numerous diseases and aging (Labbadia & Morimoto,

2015). As a result of such a decline, proteins cannot maintain their native

fold or perform their function and, consequently, cells promote the

removal of damaged proteins through their degradation, refolding, and/

or aggregation (Brandvold & Morimoto, 2015). On the other hand, the

research on phenotypes related to the alleviation of protein misfolding is

not keeping pace. The improvement of disaggregase activity in yeast was

found to diminish the accumulation of insoluble aggregates during aging

and restored degradation of 26S proteasome substrates in aged cells

(Andersson et al., 2013). Because of extensive interest, the cell-wide

response to the enrichment in chaperone activity has not received any

attention.

Despite the indisputable importance of cellular proteostasis on

multiple levels, the relationships between proteostasis and other cellular

pathways remain poorly understood. While signaling networks have

evolved to convey information on any changes among themselves and

turn them into critical decisions regarding cellular destiny, little is known

about the role of molecular chaperones in the regulation of metabolic

networks (Rowland et al., 2012).

Here, we investigate the cellular response to improved proteostasis

resulting from enhanced chaperone activity and how it communicates

with the metabolic networks, using budding yeast as a model system.

We show that the response to protein misfolding alleviation is a

phenocopy of the glucose starvation response. This outcome relies on

deactivation of TORC1 and consequent activation of the Snf1 kinase, a

yeast ortholog of mammalian AMPK. Further, our results reveal the role

of Tor1 kinase as a sensor of improved chaperone function and protein

folding environment. Remarkably, all mutants characterized by improved

proteostasis display an extension of the replicative lifespan (RLS). We

identify the increase in cellular respiratory activity as the trigger of the

RLS extension, dependent on TORC1 deactivation and Snf1 activation,

thus demonstrating that the observed lifespan extension fully relies on

the metabolic changes originating from proteostasis improvement. The

data presented here demonstrate that, in the context of normal cellular

functioning, as well as aging, the role of protein chaperones goes

beyond the management of misfolded proteins, with downstream

effects on cellular metabolism and mitochondrial network.

Results

Differential gene expression in chaperone-enriched strains

reveals a phenocopy of glucose starvation

To decrease the amount of misfolded proteins, we independently

overexpressed protein chaperones located in different cellular
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compartments—nascent polypeptide-associated complex (NAC, EGD2),

cytosolic T-complex (TCP1), mitochondrial HSP70 (SSC1), and HSP70

family chaperone from the endoplasmic reticulum (LHS1). For brevity, we

termed these mutants chaperone-enriched strains (ChESs). The level of

enrichment with each chaperone was estimated by flow cytometry. We

find the Egd2, Lhs1, and Tcp1 enriched threefold, while Ssc1 is enriched

2.5-fold (Fig. S1A, Supporting information). We next evaluated whether

such enrichment in chaperone function results in decrease in misfolded

protein amount. ChESs display, on average, a 40% decrease in protein

carbonylation (PC) level (Fig. 1A). Even though PC has long been

considered as a marker of oxidative stress, it has been shown that

misfolded proteins and proteins characterized by decreased conforma-

tional stability are more prone to PC (Vidovic et al., 2014), rendering it

an indicator of protein folding quality. Moreover, a strong downregu-

lation of the Hsp90 chaperone is observed, relative to the control

(Figs 1B and S1B, Supporting information). In addition, the level of

Hsp104-dependent protein aggregation is decreased in ChES from ~4%

of cells with aggregates in the control strain to ~1% in ChES (Figs 1C

and S2, Supporting information). Together, these observations suggest

that the chaperone enrichment indeed led to a decrease in the extent of

protein misfolding.

As an additional control, we have enriched the cells with the

inactivated version of each chaperone (iChES, Fig. S3, Supporting

information, for details, see Experimental procedures) and detected a

subtle increase in Hsp104-dependent protein aggregation from 4% of

cells with aggregates to 7–8% (Figs S1C and S2, Supporting informa-

tion). This increase in cellular fraction containing aggregates was

accompanied by an average of 15% increase in protein carbonylation

level (Fig. S1D, Supporting information).

With the aim of uncovering general trends in gene expression in

ChES, we applied RNA sequencing (RNASeq) (results summarized in

Table S1, Supporting information). The most striking results are the

downregulation of key glycolytic and TCA cycle enzymes, strongly

arguing toward the repression of glycolysis and the TCA cycle (Fig. 1D).

The increased expression levels of the respiratory chain subunits suggest

an increase in respiration in ChES (Fig. 1D). Additionally, strong

upregulation of POX1 (encoding fatty-acyl coenzyme A oxidase) and

POT1 (encoding 3-ketoacyl-CoA thiolase) in ChES brings forward fatty

acids as the preferred energy source (Fig. 1D). The results obtained by

RNASeq were confirmed by qPCR, where target genes display similar

trends as observed by RNASeq (Fig. 1E). Clearly, differential gene

expression in ChES displays a glucose starvation-like response (Lin et al.,

2002).

Moreover, several genes typically upregulated during the heat-shock

response (e.g., Hsp90, Hsp150, and Hsp26) are downregulated in ChES,

indicating a decrease in proteotoxic stress to below the basal levels

observed in the control strain (Fig. 1D, Table S1, Supporting informa-

tion). Furthermore, SOD1, cytosolic copper–zinc superoxide dismutase,

and SOD2, mitochondrial manganese superoxide dismutase, are both

significantly downregulated in ChES relative to the control, suggesting

an overall decrease in the reactive oxygen species (ROS) level (Table S1,

Supporting information). To confirm this observation, we monitored

fluorescence that results from the reaction of 20,70-dichlorodihydro-
fluorescein (H2DCF) with intracellular ROS, using a FACS-based proce-

dure. ChES mutants showed an average of 40% decrease in ROS levels

compared to the control strain (Fig. S1E, Supporting information).

The iChES strains (Fig. S3, Supporting information), enriched in the

inactivated version of each chaperone, do not exhibit a decrease in

glycolytic and TCA cycle enzymes’ expression level, or an increase in the

respiratory chain component expression (Figs 1F and S1F, Supporting

information). These results suggest that the differential gene expression

pattern detected in ChES is reliant on increased chaperone activity and/

or the beneficial consequences that it has on protein folding environ-

ment. However, strong upregulation of POT1 and POX1, observed also

in iChES (Figs 1F and S1F, Supporting information), suggests that the

increase in the fatty acid oxidation is not related to the increased

chaperone activity in ChES. The mechanism and the role of increased

fatty acid oxidation in ChES and iChES remain unclear based on the

presented data and will be the subject of future research.

ChESs are characterized by increased oxygen consumption

We further explored the glucose starvation-like phenotype suggested by

the ChES transcriptome. We first measured O2 consumption in ChES,

mimicking flask culture conditions (30 °C temperature, with stirring).

The growth curves of studied strains with the labeled point at which we

have harvested the cells are shown in Fig. S4A (Supporting information).

All of the ChESs exhibited, on average, a twofold increase in O2

consumption in comparison with the control strain, with most prominent

change observed in EGD2 overexpression followed by TCP1, LHS1, and

SSC1 (Fig. 2A). Petite strain, which has no functional electron transport

chain, was included as a negative control and showed respiration

deficiency. Moreover, the iChESs, enriched in inactivated version of each

chaperone, display no increase in the oxygen consumption (Fig. S4B,

Supporting information), suggesting that the increase in respiratory

activity in ChES stems from the activity of studied chaperones.

As elevated O2 consumption can be a result of enhancedmitochondrial

capacity, we measured the mitochondrial mass. 10-N-Nonyl acridine

orange (NAO) fluorescence, indicative of cardiolipin content/mitochon-

drialmass, displayedan increase inChES compared to the control (Fig. 2B).

On the other hand, no significant difference in fluorescence intensity was

observed after 3,30-dihexyloxacarbocyanine iodide (DiOC6(3)) staining

betweenany of theChES strains and the control, reportingnodifference in

the inner mitochondrial membrane potential (Fig. 2C). Using MitoLoc

plasmid,where GFP is fused to the fungal mitochondrial localization signal

of the F0-ATPase subunit 9 (preSU9) of Neurospora crassa, we character-

ized the mitochondrial network using spinning disk confocal microscopy.

We found the strains to display a strong increase in mitochondrial volume

(Figs 2D and S4C, Supporting information), in accordance with the

increased NAO fluorescence in ChES (Fig. 2B) and increased oxygen

consumption (Fig. 2A).

To further characterize the respiratory chain (RC) in ChES, mitochon-

dria were solubilized in digitonin and subjected to the blue native PAGE

analysis for the assembly state of the RC complexes, as well as for the

measurement of their in vitro activity. We have found no significant

difference between the strains indicating that the amount of RC

complexes per mitochondrion is similar in ChES and control strains, and

that the increased oxygen consumption results from increased mito-

chondrial mass (Fig. S4D, Supporting information).

Snf1/AMPK activation is responsible for the glucose

starvation phenocopy in ChES

Based on the literature related to the glucose starvation-like phenotype

observed in ChES, we hypothesized that this phenotype could be a result

of the activation of Snf1 kinase, a major regulator of glucose metabolism

in yeast (reviewed in Hedbacker & Carlson, 2009). Therefore, to estimate

the Snf1 activity in the studied strains, we measured the level of

phosphorylated Snf1 by Western blot and detected its increase in ChES

relative to the control (Figs 3A and S5A, Supporting information).
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Further, we have overexpressed each of the four chaperones in the

genetic background of Snf1 deletion and measured the differences in

the related gene expression patterns by qPCR (Figs 3B and S5B,

Supporting information, compared with Fig. 1E). The absence of Snf1

itself yields numerous changes in gene expression: a significant

upregulation of glycolytic and TCA cycle enzymes, as well as OxPhos

complexes (Figs 3C and S5B, Supporting information). The presence of

the empty plasmid in the Snf1-deficient background does not influence

this expression pattern. Upon chaperone enrichment in Snf1-deficient

background, the glucose starvation-like response characteristic of

chaperone enrichment in the WT background is now absent (Figs 3B

and S5B, Supporting information). Consistently, the increase in oxygen

consumption does not occur upon chaperone overexpression in the

absence of Snf1 (Fig. 3C). These results strongly suggest that Snf1 kinase

receives the information about the cellular proteostasis and, via its

canonical activity, modulates metabolism. However, the question

persists: how does the information on alleviation of protein misfolding

reach Snf1 kinase, that is which cellular component is responsible for

sensing the folding environment and relaying the message on to the

metabolic networks?

Tor1 acts as a sensor of folding environment and a negative

regulator of Snf1

Given the known interplay between TOR and Snf1, we hypothesized the

potential involvement of the TORC1 complex as a mediator between the

folding environment and metabolism (Su et al., 2016). Hence, we

measured the amount of newly translated proteins within one gener-

ation time of each studied strain. The results show that the ChESs

perform significantly less translation relative to the control (Figs 4A and

Fig. 1 Enrichment in chaperone activity alleviates protein damage and activates a glucose starvation-like response. (A) Protein carbonylation (PC) is decreased in the ChES.

As a control, wild-type yeast with an empty vector was used. Data on the graph are mean � SD from at least three independent cultures, each performed in technical triplicate.

P values were calculated using ANOVA plus post hoc. ***P < 0.001; **P < 0.01; *P < 0.05. (B) Hsp82 levels are decreased in ChES. Hsp82-specific band intensity was

normalized to the intensity of b-actin (loading control). Control is wild-type yeast with an empty vector. Data on the graph are mean � SD from at least three independent

cultures, each performed in technical triplicate. P values were calculated using ANOVA plus post hoc. ***P < 0.001; **P < 0.01; *P < 0.05. (C) ChESs are characterized by

decreasedprotein aggregationpropensity. Protein aggregation propensity is expressed as the fraction of cellswith at least one aggregate.More than1000 cellswere screened for

aggregates starting from two independent exponential yeast cultures for each strain. Control is wild-type yeast with an empty vector. Data on the graph are mean � SD

from two independent cultures. P values were calculated using ANOVA plus post hoc. ***P < 0.001; **P < 0.01; *P < 0.05. (D) Differential gene expression in ChES reveals a

glucose starvation-like response. Heat map displays RNASeq-derived differential expression (contrasted to control) of selected genes, grouped according to their respective

metabolic pathways. Gray X signs indicate statistically insignificant fold changes. Gene names are indicated on the left of each heat map. (E) qPCR measurement of differential

gene expression confirms a glucose starvation response phenocopy in ChES. Color of the squares on the heat map corresponds to the mean value of the log fold change

from three biological and three technical replicates. UBC6 was used for normalization. Control is wild-type yeast with an empty vector. (F) Enrichment in inactivated versions of

each chaperone (iChES) does not phenocopy glucose starvation response. Color of the squares on the heat map corresponds to the mean value of the log fold change from

three biological and three technical replicates. UBC6 was used for normalization. Control is wild-type yeast with an empty vector.

Proteostasis modulates glucose metabolism, M. Peri�c et al. 3
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S5C, Supporting information), suggesting a decrease in the TORC1

activity. In addition, ChESs display significantly lower levels of Sch9

phosphorylation, confirming TORC1 deactivation (Figs 4B and S5D,

Supporting information). In addition, this result shows that the amount

of newly translated proteins also serves as a proxy for TORC1 activity.

Therefore, deactivation of TORC1 may be a critical part of the response

to the chaperone enrichment, and the related alleviation of protein

misfolding. To test this hypothesis, we introduced I1954V mutation into

Tor1 kinase, rendering it constitutively active and unable to undergo

deactivation (caTor1) (Hardt et al., 2011). The amount of newly

translated proteins has confirmed the increase in the translation activity

in the caTor1 strain (Figs 4A and S5C, Supporting information). We have

further evaluated whether the activity of TORC1 affects the phospho-

rylation level of Snf1. Constitutive activity of Tor1 has resulted in a sharp

decrease in the Snf1 phosphorylation level, reporting on a decline in its

activity (Figs 4C and S5E, Supporting information). On the contrary,

absence of Tor1 resulted in increased phosphorylation/activity of Snf1,

compared to the control strain. While a direct interaction between Tor1

and Snf1 is not implied, these two observations indicate that Tor1

kinase may serve as a negative regulator of Snf1, in agreement with

published data (Orlova et al., 2006). Further, the overexpression of each

of the four chaperones in the caTor1 background does not result in the

activation of Snf1 (Figs 4C and S5E, Supporting information). Oxygen

consumption remains unchanged in strains with chaperone enrichment

in the caTor1 genetic background (Fig. 4D), confirming the absence of

phenotype related to Snf1 activation and identifying Tor1 deactivation

as a central event responsible for Snf1 activation in ChES. This result is

supported by the differential gene expression in caTor1 with chaperone

enrichment showing the lack of response typical for chaperone

enrichment in the control background (Figs 4E and S5F, Supporting

information).

To further elucidate the role of Tor1-Snf1 cross talk in mitochon-

drial activity, we have measured oxygen consumption in DTor1
mutant, as well as in DSnf1 mutant treated with 100 nM torin, an

inhibitor of TORC1. It should be noted that treating DSnf1 with torin

is an experiment designed to replace the double deletion mutant

DTor1DSnf1, which has proven difficult to make, presumably due

fitness defects or no viability. Importantly, DTor1 mutant as well as

Fig. 2 Enrichment in chaperone activity is accompanied by increased oxygen consumption and hyperfused mitochondria. (A) Oxygen consumption rates are increased in

ChES. Control is wild-type yeast with an empty vector. Data on the graph are mean � SD from three biological and three technical replicates. P values were calculated using

ANOVA plus post hoc. ***P < 0.001; **P < 0.01; *P < 0.05. (B) Mitochondrial biomass is increased in ChES. Data are mean � SD from at least three independent cultures,

each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). (C) Mitochondrial membrane potential-related fluorescence via DiOC6(3) is

unchanged. Data are mean � SD from at least three independent cultures, each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). (D)

Mitochondria display an increase in volume. More than 300 cells from two biological replicates were inspected, and the images here display representative examples.
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ª 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



the wild-type yeast treated with torin displays consistent phenotype,

as detailed below. The oxygen consumption in the DTor1 mutant as

well as in the wild-type strain treated with torin is increased by almost

twofold, similar to the ChES strains (Fig. 5A). This increase in oxygen

consumption is abrogated in the torin-treated DSnf1. Moreover, the

differential gene expression of the DTor1 mutant and the wild-type

strain treated with torin resembles the one of the ChESs: Increased

expression levels of the respiratory chain complexes, as well as

glycolysis repression, are the major features of this mutant (Figs 5B

and S5G, Supporting information). Upon chaperone enrichment in the

DTor1 background, no changes in the oxygen consumption or

differential gene expression can be observed relative to the ones of

the DTor1 strain (Fig. 5B,C). In the torin-treated DSnf1, the differential

gene expression displays a strong repression of glycolysis, TCA cycle,

as well as respiration, consistent with the growth arrest and cell death

observed in this condition. This strongly suggests that the TORC1

activity is essential for the viability/survival of the DSnf1 mutant

(Figs 5D and S5H, Supporting information).

Tor1 kinase activity responds to the level of Hsp82

Next, we set out to tackle the question of how TORC1 senses the protein

folding environment. As downregulation of the Hsp82 level was observed

in ChES, we hypothesized its role in relaying the information on protein

folding status to TORC1. Therefore, we overexpressed Hsp82 (an average

of twofold increase in expression level, Fig. S1A, Supporting information),

in combinationwith each of the other chaperones, andmeasured the level

of Snf1 activation via its phosphorylation. The results show that Snf1

phosphorylation increase, typical of the ChES, is absent when Hsp82 is

overexpressed as well (Figs 5E and S6A, Supporting information). Further,

the level of newly translated proteins is slightly increased upon overex-

pression of Hsp82 in the control strain; however, it remains unchanged

when each of the studied chaperones is overexpressed together with

Hsp82, suggesting that TORC1 deactivation is absent (Figs 5F and S6B).

These results point toward the connection between Hsp82 downregula-

tion andTORC1deactivation inChESand strongly suggest that Tor1 kinase

senses the protein folding environment via the level of Hsp82.

Fig. 3 Snf1/AMPK deletion suppresses the glucose starvation-like response in ChES. (A) The level of phosphorylated Snf1 is increased in ChES. Data represent quantification

(ImageJ) of Western blot results from three independent experiments. Phospho-Snf1 band intensity was normalized to the intensity of total Snf1 and b-actin (loading

control). Control is wild-type yeast with an empty vector. Data are mean � SD from three independent cultures, each performed in triplicate. ***P < 0.001; **P < 0.01;

*P < 0.05 (ANOVA plus post hoc). (B) Snf1 is required to trigger the glucose starvation-like response by enhanced chaperone activity. Transcript levels of target

genes in ChES in the absence of Snf1 are compared to the control (wild-type yeast with an empty plasmid). UBC6 was used for normalization. Color of the squares on

the heat map corresponds to the mean value of the log fold change from three biological and three technical replicates. (C) Oxygen consumption of the ChES declines

in the absence of Snf1. In brackets are the mean values of oxygen consumption of the corresponding ChES in the wild-type background, added for comparison. As a

control strain, the DSnf1 yeast with an empty vector was used. Data are mean � SD from at least three independent cultures, each performed in triplicate. ***P < 0.001;

**P < 0.01; *P < 0.05 (ANOVA plus post hoc).
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Crucially, these results demonstrate that TORC1 acts as a ‘messenger’

between the folding environment and metabolism: Itself responsive of

the status of folding environment, TORC1 is able to communicate with

Snf1 kinase via its negative regulation.

To further verify the involvement of Hsp82 in the TORC1-related

chaperone activity sensing, we have used geldanamycin, an Hsp82

inhibitor, and measured the differential gene expression and mito-

chondrial activity under these conditions. We have found that Hsp82

inhibition by geldanamycin results in similar changes in gene expres-

sion as those observed in the ChES (Figs 5G and S6C, Supporting

information), with glycolysis and TCA cycle repression and respiration

activation being the main features. These results demonstrate that

Hsp82 inhibition/downregulation may be one of the most proximal

events of this signaling cascade. Moreover, this scenario is further

corroborated by the increased oxygen consumption in the wild-type

strain treated with geldanamycin (Fig. 5H). Interestingly, fatty acid

oxidation-related POT1 and POX1 display a significant upregulation

upon geldanamycin treatment, contrary to the previous results

showing that FA oxidation increase is not related to enriched

chaperone activity and reduced Hsp82 levels in the wild-type

background (ChES). On the other hand, when treated with gel-

danamycin, the strain exhibiting constitutive Tor1 activity (caTor1)

does not experience the same changes: The differential gene

expression is similar to the one of the caTor1 strain in the absence

of geldanamycin and is characterized by upregulation of glycolytic

enzymes and an overall unchanged expression levels of key compo-

nents of the respiratory chain (Fig. 5G). Moreover, geldanamycin

treatment of the caTor1 strain does not result in increased oxygen

consumption relative to the caTor1 in the absence of geldanamycin

and to the wild-type control strain (Fig. 5H). These results further

demonstrate that Hsp82 inhibition is a trigger event leading to TORC1

deactivation, Snf1 activation, and the consequent glucose starvation-

like phenotype in ChES. Furthermore, these results underscore the

importance of TORC1 deactivation in the observed signaling cascade.

Fig. 4 TORC1 undergoes deactivation upon chaperone enrichment and negatively regulates Snf1/AMPK. (A) The amount of newly translated proteins is decreased in ChES.

Data represent quantification (ImageJ) of Western blot results from three independent experiments (mean with SD). ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post

hoc). (B) ChESs display a decreased level of phosphorylated Sch9. Sch9 is a downstream target of Tor1 kinase; thus, TOR deactivation is confirmed in ChES. Data represent

quantification (ImageJ) of Western blot results from three independent experiments. Phospho-Sch9 band intensity was normalized to the total level of Sch9 and to the

intensity of b-actin (loading control). Control is wild-type yeast with an empty vector. Data are mean � SD from at least three independent cultures, each performed in

triplicate. ***P < 0.001; **P < 0.01; *P <0.05 (ANOVA plus post hoc). (C) Tor1 acts as a negative regulator of Snf1. The level of phosphorylated Snf1 is measured in the

caTor1 strain and Tor1-null strain and chaperone enrichment in the background of caTor1. Data represent quantification (ImageJ) of Western blot results from three

independent experiments. Phospho-Snf1 band intensity was normalized to the intensity of total Snf1 and b-actin (loading control). Control is wild-type yeast with an empty

vector. Data are mean � SD from at least three independent cultures, each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc).

(D) Oxygen consumption rates remain unchanged in the case of chaperone enrichment in the caTor1 background. Control is wild-type yeast with an empty vector. Data are

mean � SD from at least three independent cultures, each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). (E) The differential

gene expression (by qPCR) characteristic of chaperone enrichment in the caTor1 background does not phenocopy glucose starvation response. Color of the squares on the

heat map corresponds to the mean value of the log fold change from three biological and three technical replicates. UBC6 was used for normalization. Control is

wild-type yeast with an empty vector.
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Chaperone enrichment results in RLS extension

Replicative lifespan (RLS) is measured as the maximum number of

divisions mother cells go through before the onset of senescence. The

control strain produced a maximum of 18 buds during its RLS (Fig. 6A).

We acknowledge that this RLS is shorter than reported in the literature

for a related S288C wild-type strain. However, one possible reason for

this is the fact that we have monitored RLS constantly at 30 °C and the

plates with cells were never placed to 4 °C during their lifespans, a

widely used RLS extending practice.

The largest effect on RLS, with a 67% lifespan extension compared to

the empty vector control, was achieved by overexpressing the Egd2, a

subunit of the nascent polypeptide-associated complex (NAC). Overex-

pression of Tcp1, cytosolic T-complex, also had a beneficial effect on

RLS, extending it by 61% compared to the control, as well as Lhs1, an ER

Hsp70 chaperone, which yielded 56% RLS increase. Finally, the

Fig. 5 Downregulation of Hsp82 is required for the TORC1 deactivation and Snf1 activation in ChES. (A) Oxygen consumption is increased in theDTor1 strain; however, TORC1

deactivation of DSnf1 strain causes a strong respiration decline. Control is wild-type yeast with an empty vector. Data are mean � SD from at least three independent

cultures, each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). (B) Differential gene expression in DTor1 strain shows a phenocopy of the

glucose starvation response. The detected response is consistent with the one found in ChES and is consistent with increased Snf1 activation. Chaperone enrichment of the

DTor1 background does not lead to any further changes in the gene expression pattern. Color of the squares on the heat map corresponds to the mean value of the log fold

change from three biological and three technical replicates. UBC6 was used for normalization. Control is wild-type yeast with an empty vector. (C) Oxygen consumption

does not change upon chaperone enrichment in the DTor1 background. Control is wild-type yeast with an empty vector. Data are mean � SD from at least three independent

cultures, each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). (D) Simultaneous deactivation of the TOR (by 100 nM torin) and

Snf1/AMPK pathways leads to a strong downregulation of almost all metabolic activities. Color of the squares on the heat map corresponds to the mean value of the log fold

change from three biological and three technical replicates. UBC6 was used for normalization. Control is wild-type yeast with an empty vector. (E) The level of Snf1

phosphorylation upon simultaneous enrichment in each studied chaperone and the Hsp82 remains at the level observed in the control strain (Hsp82 enrichment in the wild-type

yeast background) and does not undergo an increase. Data represent quantification (ImageJ) of Western blot results from three independent experiments. Phospho-Snf1 band

intensity was normalized to the intensity of total Snf1 and b-actin (loading control). Data are mean � SD from at least three independent cultures, each performed in

triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). (F) The amount of newly translated proteins upon simultaneous enrichment in each studied chaperone

and the Hsp82 does not display the characteristic decrease, but rather a slight increase in translation activity. Data represent quantification (ImageJ) of Western blot results

from three independent experiments (mean with SD). ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc). (G) Inhibition of Hsp82 by geldanamycin in the

wild-type strain (control) leads to the differential gene expression characteristic of ChES. Such gene expression pattern is consistent with TOR deactivation, albeit absent in the

case of geldanamycin treatment of the strain with constitutively active TOR activity. Color of the squares on the heat map corresponds to the mean value of the log fold

change from three biological and three technical replicates. UBC6 was used for normalization. (H) Inhibition of Hsp82 by geldanamycin leads to an increase in the oxygen

consumption in the control strain, however, not in the strain with constitutively active TOR (caTor1). Control is wild-type yeast. Data are mean � SD from at least three

independent cultures, each performed in triplicate. ***P < 0.001; **P < 0.01; *P < 0.05 (ANOVA plus post hoc).
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overexpression of Ssc1, the mitochondrial HSP70, resulted in 33%

lifespan extension relative to the empty vector control. Median RLS is not

affected and is ~12 generations for the studied strains (Fig. 6A).

The observed extension of the RLS in ChES is mainly limited to the

final part of the survival curve. Therefore, to exclude the possibility that

the effect we see is a consequence of several resistant cells refusing to

die, normally present in each population, we have calculated the area

under the curve corresponding to the final lifespan stage (AUClate) (see

Methods for details). The AUClate, normalized to the total AUC under the

entire survival curve (AUCtotal), in the control strain reports that 0.66%

of the studied population reaches the late life stage. On the other hand,

ChESs show an increase in this parameter, with 4–10% of the

population reaching the late life stage in the four ChESs. This result

further speaks in favor of the increased longevity of the ChES, while the

question remains what is its underlying mechanism.

To facilitate the comparison with the literature, we have performed

a subset of RLS measurements at 30 °C with overnight storing of

plates at 4 °C. Our control strain (wild-type with the empty vector)

displays a mean RLS of ~30 generations with a maximum RLS of ~50

generations (Fig. S7A, Supporting information). Compared to the

same strain with continuous monitoring at 30 °C, this represents a

dramatic extension of RLS. Enrichment in Egd2 and Lhs1 further

extends the RLS with mean RLS around 40 generation and maximum

RLS more than 60 generation (Fig. S7A, Supporting information). As

these results clearly demonstrate that overnight refrigeration of plates

yields an effect on yeast RLS, which has yet to be investigated, we

continue to present the RLS measurements with constant monitoring

at 30 °C. Such effect of overnight refrigeration is not surprising: It is

well known that extended periods (4–12 h) at 4 and 10°C in

budding yeast induce the expression of many chaperones (Hsp26,

Hsp42, Hsp104, Hsp70), trehalose synthesis genes, and antioxidant

protection from which the cell can and does benefit immensely

(Aguilera et al., 2007).

Snf1/AMPK activation is essential for the chaperone-

mediated lifespan extension

To test its involvement in the RLS extension, we determined RLS of ChES

in the absence of Snf1 kinase. As all the strains tested so far displayed

similar phenotype, we decided to limit the laborious RLS measurements

to ChES overexpressing Lhs1 and Egd2. The deletion of Snf1 kinase itself

resulted in an extended RLS with the maximum number of generations

of 24 and the median of 15 generations. Although this is not a large RLS

extension, the displayed trend is opposite from the published data that

report on a decreased RLS in the absence of Snf1 (Ashrafi et al., 2000).

One potential reason could be the difference in experimental conditions

of micromanipulation that, in our case, was performed continuously at

30 °C, and not with overnight refrigeration as in Ashrafi et al. However,

in the absence of Snf1, RLS of these two ChES mutants is comparable to

that of the control strain; that is, there is a loss of the chaperone-

mediated RLS extension when compared to the ChES (Fig. 6B, compared

to Fig. 6A). Thus, we conclude that the Snf1 kinase is essential for the

observed RLS extension.

Tor1 deactivation is essential for the chaperone-mediated

lifespan extension

To investigate the role that TOR deactivation has in the RLS extension

observed in ChES, we have overexpressed each chaperone in the

background with constitutively active Tor1 kinase (caTor1) background.

As above, we have limited the RLS measurement to the strains enriched

in Lhs1 and Egd2.

The maximum number of generations that the caTor1 strain goes

through is 20, thereby displaying no significant difference from the

control strain (Fig. 6C). Moreover, enrichment in Lhs1 and Egd2 in the

caTor1 background did not yield any changes in maximum RLS

compared to the control, however, and led to a strong reduction of

RLS compared to the one observed in ChES. The observed maximum

number of generations is 18 for Lhs1 enrichment and 20 for Egd2

enrichment in the background of caTor1 (Fig. 6C). In the case of Lhs1

enrichment, the median RLS has decreased to only nine generations.

Based on these results, we conclude that the deactivation of Tor1 kinase

is an essential part of the mechanism responsible for the observed RLS

extension.

Respiration increase is essential for the chaperone-mediated

lifespan extension

Respiration increase during carbon starvation (CS) has been identified as

the most likely event responsible for the CS-driven RLS extension (Lin

et al., 2002). To investigate whether that is also the case in ChES, we

have overexpressed the chaperones in the respiration-deficient, petite

(q-) strain. While the petite strain itself displays an extended median and

maximum RLS relative to the control strain (16 and 24 generations,

respectively), consistent with previous observations (Woo & Poyton,

2009), the chaperone enrichment in the petite background does not

result in further RLS extension, with only 23 (Lhs1 enrichment) and 24

(Egd2 enrichment) generations (Fig. 6D). This result underscores the

importance of respiration increase during chaperone enrichment in the

RLS extension.

Discussion

The relationship between cellular proteostasis and the metabolic

processes can be considered a central homeostatic mechanism, and

its importance is unequivocal. Yet, almost nothing is known about this

connection and its role in cellular functioning. More specifically, it is

vague which pathway performs the sensing of the folding environment,

as well as if and how such information is relayed to other cellular

networks. Furthermore, while it is rather well described how a cell

responds to proteotoxic stress in the context of stress responses,

nothing is known about cellular response to alleviation of protein

misfolding.

Here, we present a new perspective from which cellular proteostasis is

implicated in basic cellular functioning via its cross talk with metabolism

andmitochondrial function.We demonstrate that protein chaperones are

not only managers of misfolded proteins, but also act as some of the key

determinants of cellular metabolic activity. Although we cannot rule out

thepossibility that the four chaperones employed in this studyhave specific

regulatory roles regarding Hsp82, our results suggest that alleviation of

protein misfolding impacts mitochondrial function and metabolic activity.

The transcriptome analysis reveals that the chaperone-enriched

strains (ChESs) have activated a response that is a phenocopy of the

response to glucose starvation and that relies on their chaperoning

activity. This response is characterized by a reduction in the glycolytic

and the TCA cycle activity accompanied by an increase in oxygen

consumption (Lin et al., 2002).

Our results implicate Snf1 kinase in the integration of signals of

protein folding environment status with carbon metabolism (Fig. 6E).

As evidenced by the differential gene expression characteristic of
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chaperone enrichment in the absence of Snf1, Snf1 activation is

responsible for the metabolic reprogramming observed in ChES.

Usually, cell growth in limited glucose availability activates the Snf1

kinase by its phosphorylation (Hong et al., 2003), resulting in

transcriptional activation of genes encoding for enzymes involved in

gluconeogenesis, fatty acid oxidation, and respiration (Busti et al.,

2010), as well as repression of glycolysis. A response reciprocal to this

one was observed in our previous work: Mild proteotoxic stress

resulted in a decline in respiration, activation of the pentose phosphate

pathway as well as induction of antioxidative protection and protein

maintenance machineries (Peri�c et al., 2016).

Furthermore, our results indicate that when the folding environment

is impeccable, the cell reduces the level of new protein synthesis.

Presumably, there are two possible reasons for this: First, the energy is

invested into protein maintenance rather than synthesis, and second, the

damage-induced protein degradation may be decreased, also resulting in

the lower need for new synthesis. In this context, we uncovered a dual

role of the TORC1 complex (Fig. 6E):

1 Tor1 kinase as a messenger delivering the information on the status

of the folding environment as the negative regulator of Snf1 kinase.

2 Tor1 kinase as a sensor of the folding environment improvement,

resulting in its deactivation.

The interplay between the TOR pathway and proteostasis has already

been studied in human cultured cells where a key role of the mTORC1

has been proposed in response to proteotoxic stress (Chou et al., 2012).

Further, it has been demonstrated that reduction in mTORC1 levels by

RNA interference leads to increased sensitivity to heat shock. This effect

was accompanied by a drastic reduction in ability to synthesize heat-

shock proteins (HSPs), including Hsp70, Hsp90, and Hsp110 (Chou et al.,

2012). Another study demonstrated that cells are able to distinguish

between moderate and severe proteotoxicity and that mTORC1 complex

is in charge of sensing the misfolded proteins (Qian et al., 2010).

Levels of TOR pathway activity directly modulate cellular metabolism,

in part by shifting the balance between modes of energy production and

usage. We have shown that chaperone gain of function indeed decreases

TOR activity, thereby decreasing the amount of newly synthesized

Fig. 6 Replicative lifespan extension relies on TOR deactivation and Snf1 activation and is caused by the respiration increase in ChES. (A) Replicative lifespan is extended in

ChES. The number of cells is 103, 120, 112, 129, and 127 for the wild-type with an empty plasmid, oe SSC1, oe LHS1, oe EGD2, and oe TCP1, respectively. The table below

the graph displays the percentage of the studied population that is still alive in the late life stage of the RLS. P values are 0.0009 (LHS1 and EGD2), 0.0004 (TCP1), and 0.0081

(0.0081). (B) Replicative lifespan extension in ChES is abolished in the absence of Snf1. The number of cells is 103 (control, wild-type with an empty plasmid), 95 (DSnf1), 79
(DSnf1+LHS1), 95 (DSnf1+EGD2). P value for DSnf1 relative to control RLS is <0.0001. P values for DSnf1+LHS1 and DSnf1+EGD2 relative to the control are >0.05. (C)
Replicative lifespan extension in ChES is abolished when the TOR pathway displays constitutive activity. The number of cells is 103 (control, wild-type with an empty plasmid),

94 (caTor1), 89 (caTor1+LHS1), 94 (caTor1+EGD2). P values for the RLS of caTor1, caTor1+LHS1, and caTor1+EGD2 compared to the control are >0.05. (D) Replicative
lifespan extension in ChES fully relies on the respiration increase and is absent in the case of chaperone enrichment in the respiration-deficient background petite. The

number of cells is 103 (control, wild-type with an empty plasmid), 100 (petite), 97 (petite+LHS1), 99 (petite+EGD2). P value for the petite strain relative to control is <0.0001.
P values for petite+LHS1 and petite+EGD2 relative to control are 0.048 and 0.044, respectively. The data shown are pooled from three independent experiments for each

strain. Oe stands for overexpression. Significance of the results was tested with log-rank (Mantel–Cox) test. (E) The proposed mechanism of enhanced chaperone activity

sensing via Tor1-Snf1 cross talk. Tor1 is in charge of sensing of improved protein folding environment via Hsp82, resulting in its decreased activity. The consequent activation

of Snf1 kinase results in repression of glycolysis and the TCA cycle, as well as activation of respiration. Increased respiratory activity triggers replicative lifespan extension.
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proteins, and, on the other hand, activating Snf1 kinase and a glucose

starvation-like response. Consistent with our observations, previously

obtained immunochemical data in human cell cultures indicate that

nitrogen limitation improves Snf1 phosphorylation, thereby showing that

Snf1 is negatively regulated by the rapamycin-sensitive Tor kinase (Orlova

et al., 2006). As TORC1 deactivation and Snf1 activation are responses to

nitrogen and carbon starvation, respectively, the possibility that TORC1

deactivation may serve as a signal for Snf1 activation is rather expected,

albeit different from their canonical relationship that posits Snf1

upstream of TOR. Moreover, it has been shown that a decreased activity

of Tor1 in yeast results in a greater activity of the mitochondrial

respiratory chain, observed as an increased oxygen consumption, as well

as ROS level (Pan et al., 2011). The authors propose that the observed

increase in chronological lifespan may be a consequence of an adaptive

response of cells to the increased ROS level. However, based on our

results, it is possible that the increased lifespan in the Tor1-deficient strain

is a result of Snf1 activation leading to a response akin to glucose

starvation. Interestingly, our results suggest that simultaneous inactiva-

tion of both TORC1 and Snf1 pathways leads to severe growth defects

and cell death. This result suggests that cells cannot tolerate simultane-

ous repression of both glycolysis (consequence of TORC1 deactivation)

and autophagy (consequence of Snf1 deletion). Details of this cross talk

will be a subject of extensive research in the future.

Dynamic nature of the TORC1 complex, whose assembly is necessary

for signal transduction, could be responsible for the plasticity of

communication between proteostasis and metabolism (Sengupta et al.,

2010). In the context of protein folding sensing, we identify the Hsp82

chaperone as a TOR informant on the folding status, consistently with

multiple functions that this chaperone has been proposed to have in the

context of cellular metabolism (Dezwaan & Freeman, 2008). Simultane-

ous enrichment of cells with Hsp82 together with each studied

chaperone does not result in the response akin to glucose starvation,

suggesting that the decline in Hsp82 activity is required to inactivate

TORC1 and trigger the downstream phenotype. Inhibition of Hsp82 by

geldanamycin confirms such scenario: Upon chemical inactivation of

Hsp82 in the wild-type yeast, a response consistent with one in ChES is

observed. The differential gene expression reveals repression of glycolysis

and increase in the expression of the respiratory chain complexes,

supported by increased oxygen consumption. Importantly, such effect of

Hsp82 inhibition by geldanamycin is absent in the strain with constitutive

Tor1 kinase activity, demonstrating that the inactivation of TORC1 is

essential for relaying the information on Hsp82 deactivation. mTOR and

other regulatory components, such as raptor, are chaperone clients in

mammalian cells, as evidenced by their selective binding to Hsp90 when

not forming a complex (Qian et al., 2010). Such mechanism likely

enables yeast TORC1 to rapidly detect and respond to intracellular

folding environment, while also adjusting the cellular metabolic activity.

The tight linkage between protein quality and quantity control provides a

plausible mechanism coupling protein folding quality with metabolic

activity.

Many conditions that shift cells from states of nutrient utilization and

growth to states of cell maintenance extend lifespan across species

(Lakowski & Hekimi, 1998; Kaeberlein et al., 2006; Grandison et al.,

2009). In yeast, the most common way to invoke dietary restriction

involves reduced glucose or amino acid levels in the medium (Lin et al.,

2000; Fabrizio et al., 2004). In other words, improved proteostasis, TOR

deactivation (typical for amino acid starvation), and Snf1 activation

(typical for glucose starvation response) all could have been responsible

for the observed RLS extension in ChES. We show that the observed RLS

extension relies completely on enhanced respiratory activity of the ChES,

one of the metabolic consequences of improved proteostasis. In the

proposed mechanism (Fig. 6E), enhanced respiration is a downstream

consequence of TORC1 deactivation and Snf1 activation, evidenced by

the loss of the chaperone-mediated RLS extension in the absence of Snf1

and in the background of constitutively active Tor1 kinase. The

involvement of Snf1 in aging has already been described with its

deletion and overexpression shortening and extending the lifespan,

respectively (Ashrafi et al., 2000; Managbanag et al., 2008). Similarly, it

has been shown that the deletion of Snf1 in budding yeast abolishes the

proteasome-mediated lifespan extension (Yao et al., 2015).

The results presented here shift the focus away from the well-known

role of chaperones in protein homeostasis, while highlighting their

downstream effects on cellular metabolic and mitochondrial activity.

Specifically, a persistent theme in the studies of aging is the contribution

of energy intake and expenditure to longevity on one hand, and protein

homeostasis on the other. Our study suggests that these two pathways

are not only separately involved in aging, but that there is a cross talk

between them, promoted by the communication between Tor1 and

Snf1 kinases, resulting in the activation of the latter regardless of glucose

availability. We suggest that protein chaperones should be included

among the molecules that are able to modulate glucose sensing and

hence the energy status of the cell. Although the purpose of activating

an energy-saving response as a consequence of protein misfolding

alleviation remains elusive, the described mechanism may help direct the

search for caloric restriction mimetics and provide novel avenues for

future research of aging and age-related pathologies.

Experimental procedures

Strains and growth conditions

Wild-type Saccharomyces cerevisiae Y258 was used, derived from

S288C. WT Y258 and strains overexpressing Lhs1, Ssc1, Egd2, and

Tcp1 genes were purchased from Thermo Scientific (Dharmacon,

Lafayette, Colorado, USA). The overexpression of each chaperone was

confirmed using the RNASeq data as well as by flow cytometry (details

below). WT Y258 was grown on YPD medium with 2% (w/v) glucose

and chaperone overexpression mutants on –URA medium with 2% (w/v)

glucose, at 30 °C with shaking. Hsp82 (an Hsp90 chaperone, YPL240C)

overexpression was applied from the same plasmid in which the URA3

was replaced by a nourseothricin cassette. The strain with constitutively

active Tor1 kinase was selected on 9 mM caffeine YPD plates and

confirmed by sequencing of the Tor1 locus to have the I1954V mutation.

The sequence of Tor2 locus was confirmed to be unchanged. Deletion of

Snf1 was performed according to the previously described protocol,

using a hygromycin cassette for selection (Rothstein, 1983). Expression

from plasmids was induced by 2% galactose using the following

protocol: Overnight cultures were diluted 1009 and grown until mid-

exponential phase. Then, the cells were pelleted by a 5-min centrifuga-

tion at 4000 g and resuspended in YPD medium without glucose,

supplemented with 2% galactose. The empty vector control is always

treated in the same manner. All experiments were performed on

postdiauxic shift cells, harvested by 5-min centrifugation at 4000 g,

washed, and treated accordingly. In different experiments, the identity

of the control strain is defined in the Results section and in the

corresponding figure caption.

All other methods are described in Appendix S1 (Supporting

information).
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Fig. S1 Enrichment in four different chaperones from different cellular

compartments results in alleviation of protein stress.

Fig. S2 Examples of representative images of Hsp104-GFP tagged protein

aggregates.

Fig. S3 The schematic presentation of domain architecture of each studied

chaperone.

Fig. S4 Chaperone activity is critical for the induction of the glucose

starvation-like response.
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Fig. S5 TOR deactivation and consequent Snf1 activation are key events

leading to the glucose starvation-like response in ChES.

Fig. S6 Hsp82 activity reduction results in Tor1 deactivation.

Fig. S7 Replicative lifespan of ChES with overnight storage of plates at 4 °C.
Principle component analysis-based filtering of RNASeq replicates.

Table S1 The summary of the RNA Sequencing results with the data for each

strain organized in separate tabs.

Table S2 The list of genes with their transcript levels measured by qPCR in

this study and used primers.

Appendix S1 Experimental procedures.
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