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Abstract

Redescription mining is a field of knowledge discovery that aims at finding different descriptions of similar subsets of
instances in the data. These descriptions are represented as rules inferred from one or more disjoint sets of attributes,
called views. As such, they support knowledge discovery process and help domain experts in formulating new hypotheses
or constructing new knowledge bases and decision support systems. In contrast to previous approaches that typically
create one smaller set of redescriptions satisfying a pre-defined set of constraints, we introduce a framework that creates
large and heterogeneous redescription set from which user/expert can extract compact sets of differing properties,
according to its own preferences. Construction of large and heterogeneous redescription set relies on CLUS-RM algorithm
and a novel, conjunctive refinement procedure that facilitates generation of larger and more accurate redescription sets.
The work also introduces the variability of redescription accuracy when missing values are present in the data, which
significantly extends applicability of the method. Crucial part of the framework is the redescription set extraction based
on heuristic multi-objective optimization procedure, that allows user to define importance levels towards one or more
redescription quality criteria. We provide both theoretical and empirical comparison of the novel framework against
current state of the art redescription mining algorithms and show that it represents more efficient and versatile approach
for mining redescriptions from data.

Keywords: knowledge discovery, redescription mining, predictive clustering trees, redescription set construction,
scalarization, conjunctive refinement, redescription variability

Point-to-Point responses

Dear editor and reviewers,

we would like to thank you for providing valuable and con-
structive comments aimed at improving our manuscript ti-
tled “A framework for redescription set construction”. Be-
low, we provide point-to-point responses to each comment
specifying the work done to improve the quality of our
work.

Comments from reviewer 1:

• The authors of the paper addressed all my previous
concerns. Section 4.2 provides an interesting applica-
tion of the proposed redescription algorithm. How-
ever, I suggest to insert a table with the meaning of
the attributes of the queries associated with redescrip-
tions Rblue, Rgreen, and Rred. The names of the at-
tributes are "cryptic" and hence the mapping between
the queries and the descriptions of the redescriptions
is not easy to follow.

∗Corresponding author. Tel. +385 (1) 456 1080
Email addresses: matej.mihelcic@irb.hr (Matej Mihelčić ),

saso.dzeroski@ijs.si (Sašo Džeroski), nada.lavrac@ijs.si
(Nada Lavrač), tomislav.smuc@irb.hr (Tomislav Šmuc)

Dear reviewer, we have added the corresponding ta-
ble (Table 2 in Section 4.2) which contains descrip-
tions of attribute codes for attributes used in queries
of redescriptions Rblue, Rgreen, and Rred.

• Minor points. There are still some typos. Page 6,
Column 1. The systems is -> The system is, Page 6,
Column 2. for atribute -> for attribute.

Dear reviewer, we have corrected the discovered typos
and worked on eliminating typographical errors.

1. Introduction

In many scientific fields, there is a growing need to under-
stand measured or observed data, to find different regular-
ities or anomalies, groups of instances (patterns) for which
they occur and their descriptions in order to get an insight
into the underlying phenomena.

This is addressed by redescription mining (Ramakrish-
nan et al., 2004), a type of knowledge discovery that aims
to find different descriptions of similar sets of instances by
using one, or more disjoint sets of descriptive attributes,
called views. It is applicable in a variety of scientific fields
like biology, economy, pharmacy, ecology, social science
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and other, where it is important to understand connec-
tions between different descriptors and to find regularities
that are valid for different subsets of instances. Redescrip-
tions are tuples of logical formulas which are called queries.
Redescription Rex = (q1, q2) contains two queries:
q1 : (−1.8 ≤ t̃7 ≤ 4.4 ∧ 12.1 ≤ p̃6 ≤ 21.2)
q2 : Polarbear
The first query (q′1) describes a set of instances (geospatial
locations) by using a set of attributes related to tempera-
ture (t) and precipitation (p) in a given month as first view
(in the example average temperature in July and average
precipitation in June). The second query (q′2) describes
very similar set of locations by using a set of attributes
specifying animal species inhabiting these locations as a
second view (in this instance polar bear). Queries contain
only conjunction logical operator, though the approach
supports conjunction, negation and disjunction operators.

We first describe the fields of data mining and knowledge
discovery closely related to redescription mining. Next, we
describe recent research in redescription mining, relevant
to the approach we propose. We then outline our approach
positioned in the context of related work.

1.1. Fields related to redescription mining

Redescription mining is related to association rule min-
ing (Agrawal et al., 1996; Hipp et al., 2000; Zhang & He,
2010), two-view data association discovery (van Leeuwen
& Galbrun, 2015), clustering (Cox, 1957; Fisher, 1958;
Ward, 1963; Jain et al., 1999; Xu & Tian, 2015) and
it’s special form conceptual clustering (Michalski, 1980;
Fisher, 1987), subgroup discovery (Klösgen, 1996; Wrobel,
1997; Novak et al., 2009; Herrera et al., 2010), emerging
patterns (Dong & Li, 1999; Novak et al., 2009), contrast
set mining (Bay & Pazzani, 2001; Novak et al., 2009) and
exceptional model mining (Leman et al., 2008). Most im-
portant relations can be seen in Figure 1.

Association rule mining (Agrawal et al., 1996) is re-
lated to redescription mining in the aim to find queries
describing similar sets of instances which reveal associa-
tions between attributes used in these queries. The main
difference is that association rules produce one directional
associations while redescription mining produces bi direc-
tional associations. Two-view data association discovery
(van Leeuwen & Galbrun, 2015) aims at finding a small,
non - redundant set of associations that provide insight in
how two views are related. Produced associations are both
uni and bi directional as opposed to redescription mining
that only produces bi directional connections providing in-
teresting descriptions of instances.

The main goal of clustering is to find groups of simi-
lar instances with respect to a set of attributes. However,
it does not provide understandable and concise descrip-
tions of these groups which are often complex and hard to
find. This is resolved in conceptual clustering Michalski
(1980); Fisher (1987) that finds clusters and concepts that
describe them. Redescription mining shares this aim but

requires each discovered cluster to be described by at least
two concepts. Clustering is extended by multi-view (Bickel
& Scheffer, 2004; Wang et al., 2013) and multi-layer clus-
tering (Gamberger et al., 2014) to find groups of instances
that are strongly connected across multiple views.

Subgroup discovery (Klösgen, 1996; Wrobel, 1997) dif-
fers from redescription mining in its goals. It finds queries
describing groups of instances having unusual and inter-
esting statistical properties on their target variable which
are often unavailable in purely descriptive tasks. Excep-
tional model mining (Leman et al., 2008) extends subgroup
discovery to more complex target concepts searching for
subgroups such that a model trained on this subgroup is
exceptional based on some property.

Emerging Patterns (Dong & Li, 1999) aim at finding
itemsets that are statistically dependent on a specific tar-
get class while Contrast Set Mining (Bay & Pazzani, 2001)
identifies monotone conjunctive queries that best discrim-
inate between instances containing one target class from
all other instances.

1.2. Related work in redescription mining
The field of redescription mining was introduced by

Ramakrishnan et al. (2004), who present an algorithm
to mine redescriptions based on decision trees, called
CARTwheels. The algorithm works by building two deci-
sion trees (one for each view) that are joined in the leaves.
Redescriptions are found by examining the paths from the
root node of the first tree to the root node of the second.
The algorithm uses multi class classification to guide the
search between the two views. Other approaches to mine
redescriptions include the one proposed by Zaki & Ra-
makrishnan (2005), which uses a lattice of closed descrip-
tor sets to find redescriptions; the algorithm for mining
exact and approximate redescriptions by Parida & Ra-
makrishnan (2005) that uses relaxation lattice, and the
greedy and the MID algorithm based on frequent itemset
mining by Gallo et al. (2008). All these approaches work
only on Boolean data.

Galbrun & Miettinen (2012b) extend the greedy ap-
proach by Gallo et al. (2008) to work on numerical data.
Redescription mining was extended by Galbrun & Kim-
mig (2013) to a relational and by Galbrun & Miettinen
(2012a) to an interactive setting. Recently, two tree-based
algorithms have been proposed by Zinchenko (2014), which
explore the use of decision trees in a non-Boolean setting
and present different methods of layer-by-layer tree con-
struction, which make informed splits at each level of the
tree. Mihelčić et al. (2015a,b) proposed a redescription
mining algorithm based on multi-target predictive cluster-
ing trees (PCTs) (Blockeel & De Raedt, 1998; Kocev et al.,
2013). This algorithm typically creates a large number of
redescriptions by executing PCTs iteratively: it uses rules
created for one view of attributes in one iteration, as tar-
get attributes for generating rules for the other view of
attributes in the next iteration. A redescription set of a
given size is improved over the iterations by introducing
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Figure 1: Relation between redescription mining and other related tasks.

more suitable redescriptions which replace the ones that
are inferior according to predefined quality criteria.

In this work, we introduce a redescription mining frame-
work that allows creating multiple redescription sets of
user defined size, based on user defined importance lev-
els of one or more redescription quality criteria. The un-
derlying redescription mining algorithm uses multi-target
predictive clustering trees (Kocev et al., 2013) and allows
the main steps of rule creation and redescription construc-
tion explained in (Mihelčić et al., 2015b). This is in con-
trast to current state of the art approaches that return
all constructed redescriptions that satisfy accuracy and
support constraints (Ramakrishnan et al., 2004; Zaki &
Ramakrishnan, 2005; Parida & Ramakrishnan, 2005), a
smaller number of accurate and significant redescriptions
that satisfy support constraints (Galbrun & Miettinen,
2012b; Zinchenko, 2014; Gallo et al., 2008) or optimize
one redescription set of user defined size (Mihelčić et al.,
2015b). This algorithm supports a broader process which
involves the creation and effective utilization of a possibly
large redescription set.

From the expert systems perspective, the framework al-
lows creating large and heterogeneous knowledge basis for
use by the domain experts. It also allows fully automated
construction of specific subsets of obtained knowledge
based on predefined user-criteria. The system is modular
and allows using the redescription set construction proce-
dure as an independent querying system on the database
created by merging multiple redescription sets produced
by many different redescription mining approaches. Ob-
tained knowledge can be used, for example, as a basis or
complement in decision support systems.

The framework provides means to explore and compare
multiple redescription sets, without the need to expen-

sively experiment with tuning the parameters of the un-
derlying redescription mining algorithm. This is achieved
with (i) an efficient redescription mining algorithm with
a new conjunctive refinement procedure, that produces
large, heterogeneous and accurate redescription sets and
(ii) redescription set construction procedure that produces
one or more reduced redescription sets tailored to specific
user preferences in a multi-objective optimization manner.

After introducing the necessary notation in Section 2,
we present the framework for redescription set construc-
tion in Section 3. First, we shortly describe the CLUS-RM
algorithm, then we introduce the conjunctive refinement
procedure and explain the generalized redescription set
construction process. Next, we introduce the variability
index: which supports a refined treatment of redescrip-
tion accuracy in presence of missing values. We describe
the datasets and an application involving redescription sets
produced by the framework in Section 4 and perform theo-
retical and empirical evaluation of the framework’s perfor-
mance in Section 5. Empirical evaluation includes quality
analysis of representative sets and comparison to the set
containing all discovered redescriptions, evaluation of the
conjunctive refinement procedure, and quality comparison
of redescriptions produced by our framework to those pro-
duced by several state of the art redescription mining al-
gorithms, on three datasets with different properties. We
conclude the paper in Section 6.

2. Notation and definitions

The input dataset D = (V1, V2, E,W1,W2) is a quintuple
of the two attribute (variable) sets (V1, V2), an element
(instance) set E, and the two views corresponding to these
attribute sets. Views (W1 and W2) are |E| × |Vd| data
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matrices such that Wdi,j = ck if an element ei has a value
ck for attribute vj ∈ Vd.

A query q is a logical formula F that can contain the
conjunction, disjunction and negation logical operators.
These operators describe logical relations between differ-
ent attributes, from attribute sets V1 and V2, that con-
stitute a query. The set of all valid queries Q is called a
query language. The set of elements described by a query
q, denoted supp(q), is called its support. A redescrip-
tion R = (q1, q2) is defined as a pair of queries, where
q1 and q2 contain variables from V1 and V2 respectively.
The support of a redescription is the set of elements sup-
ported by both queries that constitute this redescription
supp(R) = supp(q1)∩ supp(q2). We use attr(R) to denote
the multi-set of all occurrences of attributes in the queries
of a redescription R. The corresponding set of attributes
is denoted attrs(R). The set containing all produced re-
descriptions is denoted R. User-defined constraints C are
typically limits on various redescription quality measures.

Given a dataset D, a query language Q over a set of
attributes V , and a set of constraints C, the task of re-
description mining (Galbrun, 2013) is to find all redescrip-
tions satisfying constraints in C.

2.1. Individual redescription quality measures

The accuracy of a redescription R = (q1, q2) is measured
with the Jaccard similarity coefficient (Jaccard index).

J(R) =
|supp(q1) ∩ supp(q2))|
|supp(q1) ∪ supp(q2)|

The problem with this measure is that redescriptions de-
scribing large subsets of instances often have a large inter-
section which results in high value of Jaccard index. As a
result, the obtained knowledge is quite general and often
not very useful to the domain expert. It is thus preferred
to have redescriptions that reveal more specific knowledge
about the studied problem and are harder to obtain by
random sampling from the underlying data distribution.

This is why we compute the statistical significance (p-
value) of each obtained redescription. We denote the
marginal probability of a query q1 and q2 with p1 =
supp(q1)
|E| and p2 = supp(q2)

|E| , respectively and the set of ele-
ments described by both as o = supp(q1) ∩ supp(q2). The
corresponding p-value (Galbrun, 2013) is defined as

pV (R) =

|E|∑
n=|o|

(
|E|
n

)
(p1 · p2)n · (1− p1 · p2)|E|−n

The p-value represents a probability that a subset of ele-
ments of observed size or larger is obtained by joining two
random queries with marginal probabilities equal to the
fractions of covered elements. It is a optimistic criterion,
since the assumption that all elements can be sampled with
equal probability need not hold for all datasets.

Since it is important to provide understandable and
short descriptions, it is interesting to measure the number
of attributes occurring in redescription queries attr(R).

Below, we provide an example of a redescription, to-
gether with its associated quality measures obtained on
the Bio dataset (Mitchell-Jones, 1999; Hijmans et al., 2005;
Galbrun, 2013):
Redescription R′ex = (q′1, q

′
2) with its queries defined as:

q′1 : (−1.8 ≤ t̃7 ≤ 4.4 ∧ 12.1 ≤ p̃6 ≤ 21.2) ∨
(−1.6 ≤ t̃6 ≤ 1.5 ∧ 21.6 ≤ p̃6 ≤ 30.1)
q′2 : Polarbear
describes 34 locations which are inhabited by the polar
bear. The q′1 query describes the average temperature (t̃)
and the average precipitation (p̃) conditions of these loca-
tions in June and July. The redescription has a Jaccard
index value of 0.895 and a p-value smaller than 2 · 10−16.
The multi-set attr(R′ex) = {t̃6, t̃7, p̃6, p̃6,Polarbear} and
its corresponding set attrs(R′ex) = {t̃6, t̃7, p̃6,Polarbear}.
The query size of R′ex, denoted |attr(R′ex)|, equals 5.

2.2. Redescription quality measures based on redescription
set properties

We use two redescription quality measures based on prop-
erties of redescriptions contained in a corresponding re-
description set.

The measure providing information about the redun-
dancy of elements contained in the redescription support
is called the average redescription element Jaccard index
and is defined as:

AEJ(Ri) =
1

|R| − 1
·
|R|∑
j=1

J(supp(Ri), supp(Rj)), i 6= j

Analogously, the measure providing information about
the redundancy of attributes contained in redescription
queries, called the average redescription attribute Jaccard
index, is defined as:

AAJ(Ri) =
1

|R| − 1
·
|R|∑
j=1

J(attrs(Ri), attrs(Rj)), i 6= j

We illustrate the average attribute Jaccard index on the
redescription example from the previous subsection. If we
assume that our redescription set contains only two re-
descriptions R = {Rex, R

′
ex} where Rex equals:

q1 : (−1.8 ≤ t̃7 ≤ 4.4 ∧ 12.1 ≤ p̃6 ≤ 21.2)
q2 : Polarbear
The corresponding average attribute Jaccard index of the
redescription Rex equals 3

4 = 0.75 showing a high level of
redundancy in the used attributes between redescription
Rex and the only other redescription available in the set
R′ex. On the other hand, in the redescription set R =
{R′ex, R′′ex}, where R′′ex contains queries:
q′′1 : (7.2 ≤ t+9 ≤ 17.2 ∧ 13.5 ≤ t+7 ≤ 22.7)
q′′2 : MountainHare
the average attribute Jaccard index of the redescription
R′ex equals 0

7 = 0 showing no redundancy in the used at-
tributes.
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3. Redescription mining framework

In this section, we present a redescription mining frame-
work. It first creates a large set of redescriptions and then
uses it to create one or more smaller sets that are pre-
sented to the user. This is done by taking into account
the relative user preferences regarding importance of dif-
ferent redescription quality criteria.

3.1. The CLUS-RM algorihtm

The framework generates redescriptions with the CLUS-
RM algorithm Mihelčić et al. (2015b), presented in Al-
gorithm 1. It uses multi-target Predictive Clustering
Trees (PCT) (Kocev et al., 2013) to construct conjunc-
tive queries which are used as building blocks of redescrip-
tions. Queries containing disjunctions and negations are
obtained by combining and transforming queries contain-
ing only conjunction operator.

Algorithm 1 The CLUS-RM algorithm

Require: First view data (W1), Second view data (W2),
Constraints C

Ensure: A set of redescriptions R
1: procedure CLUS-RM
2: [PW1init, PW2init]← createInitialPCTs(W1, W2)
3: [rW1, rW2]← extrRulesFromPCT(PW1init, PW2init)
4: while RunInd<maxIter do
5: [DW1, DW2]← constructTargets(rW1,rW2)
6: [PW1, PW2]← createPCTs(DW1, DW2)
7: extractRulesFromPCT(PW1, PW2, rW1, rW2)
8: R ← R∪ createRedescriptons(rW1 , rW2 , C)
9: return R

The algorithm is able to produce a large number of
highly accurate redescriptions from which many contain
only conjunction operator in the queries. This is in part
the consequence of using PCTs in multi-target setting,
which is known to outperform single class classification
or regression trees due to the property of inductive trans-
fer (Piccart, 2012). This distinguishes the CLUS-RM re-
description mining algorithm from other state of the art
solutions that in general create a smaller number of re-
descriptions with majority of redescription queries contain-
ing the disjunction operator.

3.1.1. Rule construction and redescription creation
The initial task in the algorithm is to create one PCT per
view of the original data, constructed for performing unsu-
pervised tasks, to obtain different subsets of instances ( re-
ferred to as initial clusters) and the corresponding queries
that describe them. To create initial clusters (line 2 in
Algorithm 1), the algorithm transforms an unsupervised
problem to a supervised problem by constructing an ar-
tificial instance for each original instance in the dataset.
These instances are obtained by shuffling attribute values

among original instances thus braking any existing cor-
relations between the attributes. Each artificial instance
is assigned a target label 0.0 while each original instance
is assigned a target label 1.0. One such dataset is cre-
ated for each view considered in the redescription mining
process. A PCT is constructed on each dataset, with the
goal of distinguishing between the original and the arti-
ficial instances, and transformed to a set of rules. This
transformation is achieved by traversing the tree, joining
all attributes used in splits into a rule and computing its
support. Each node in a tree forms one query contain-
ing the conjunction and possibly negation operators (line
3 and 7 in Algorithm 1).

After the initial queries are created, the algorithm con-
nects different views by assigning target labels to instances
based on their coverage by queries constructed from the
opposing view (line 5 in Algorithm 1). To construct queries
containing attributes from W2, each instance is assigned a
target label 1.0 if it is described by a query containing the
attributes from W1, otherwise it is assigned a value 0.0.
The process is iteratively repeated a predefined number of
steps (line 4 in Algorithm 1).

Redescriptions are created as a Cartesian product of a
set of queries formed on W1 and a set of queries formed
on W2 (line 8 in Algorithm 1). All redescriptions that
satisfy user defined constraints (C): the minimal Jaccard
index, the maximal p-value, the minimal and the maximal
support are added to the redescription set. The algorithm
can produce redescriptions containing conjunction, nega-
tion and disjunction operators.

The initialization, rule construction and various types
of redescription creation are thoroughly described in (Mi-
helčić et al., 2015b).

3.1.2. Conjunctive refinement
In this subsection, we present an algorithmic improvement
to the redescription mining process presented in Algorithm
1. The aim of this method is to improve the overall accu-
racy of redescriptions in the redescription set by combining
newly created redescriptions with redescriptions already
present in redescription set R.

Combining existing redescription queries with an at-
tribute by using conjunction operator has been used in
greedy based redescription mining algorithms (Gallo et al.,
2008; Galbrun & Miettinen, 2012b) to construct redescrip-
tions. The idea is to expand each redescription query in
turn by using a selected attribute and the selected logi-
cal operator. Such procedure, if used with the conjunc-
tion operator, leads to increase of Jaccard index but also
mostly reduces the support size of a redescription. Zaki
& Ramakrishnan (2005) combine closed descriptor sets by
using conjunction operator to construct a closed lattice of
descriptor sets which are used to construct redescriptions.
They conclude that combining descriptor set D1 and D2

describing element sets G1 and G2 respectively, such that
G1 ⊆ G2, can be done by constructing a descriptor set
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D1 ∪ D2. They conclude that the newly created descrip-
tor set, describes the same set of elements G1 as the set
D1. This procedure works only with attributes containing
Boolean values and does not use the notion of views.

Instead of extending redescription queries with at-
tributes connected using conjunction operator (which is
usually constrained by the number of expansions), the con-
junctive refinement procedure compares support of each
redescription R = (q1, q2) in the redescription set with
the selected redescription Rref = (q′1, q

′
2). It merges the

queries of these two redescriptions with the {∧} operator
to obtain a new redescription Rnew = (q1 ∧ q′1, q2 ∧ q′2) if
and only if supp(R) ⊆ supp(Rref ). We extend and prove
the property described in Zaki & Ramakrishnan (2005)
in a more general setting, combining redescriptions with
arbitrary type of attributes and a finite amount of differ-
ent views. We demonstrate how to use it efficiently with
numerical attributes and show that this procedure does
not decrease the accuracy of a redescription. In fact, if
∃e ∈ E, e ∈ supp(q1) ∨ ∃e′ ∈ E, e′ ∈ supp(q2) such that
e /∈ supp(q′1) ∨ e′ /∈ supp(q′2), than J(Rnew) > J(R).

If the attributes contain numerical values, we can
transform the redescription Rref , given an arbitrary re-
description R ∈ R such that supp(R) ⊆ supp(Rref ),
to redescription R′ref = (q′′1 , q

′′
2 ) such that R′ref has

tighter numerical bounds on all attributes contained
in the queries, supp(R) ⊆ supp(R′ref ) and that
J(supp(R), supp(R′ref )) ≥ J(supp(R), supp(Rref )). By
doing this, we increase the probability of finding the ele-
ment e or e′ as described above, which leads to improving
the accuracy of redescription Rnew. The construction pro-
cedure of such redescription is explained in Section S1.1
(Online Resource 1). The redescription R′ref is used as
a refinement redescription when numerical attributes are
present in the data.

We can now state and prove the following lemma:

Lemma 3.1. For every redescription R ∈ R, for every
redescription Rref = (q′1, q

′
2), where q′1 = qa1

∧ qa2
∧

. . . ∧ qan , ai ∈ attrs(Rref ), ∀i ∈ {1, . . . , n} and n ∈ N,
q′2 = qb1 ∧ qb2 ∧ . . . ∧ qbm , bj ∈ attrs(Rref ), ∀j ∈
{1, . . . ,m} and m ∈ N. If supp(R) ⊆ supp(Rref ) than
for a redescription Rnew = (q1 ∧ q′1, q2 ∧ q′2) it holds that
J(Rnew) ≥ J(R) and supp(Rnew) = supp(R).

The proof of Lemma 3.1 for redescription mining problems
containing two views can be seen in Section S1.1 (Online
Resource 1). General formulation with n arbitrary views
is proven by mathematical induction. It is easily seen from
the proof that if ∃e ∈ E, e ∈ supp(q1) ∨ ∃e′ ∈ E, e′ ∈
supp(q2) such that e /∈ supp(q′1) ∨ e′ /∈ supp(q′2) than
supp(q1 ∧ q′1) ∪ supp(q2 ∧ q′2) ⊂ supp(q1) ∪ supp(q2) thus
ultimately J(Rnew) > J(R).
The conjunctive refinement is demonstrated in Figure 2.

Line 8 from Algorithm 1 is replaced with the procedure
R ←createAndRefineRedescriptions(rw1, rw2,R, C) which
is presented in Algorithm 2.
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Figure 2: Demonstration of the effects of the conjunctive refine-
ment on a support of the improved redescription and correspond-
ing redescription queries. For the supports represented on the figure
it holds: supp(R) ⊂ supp(Rref ). As a consequence: supp(R) =
supp(Rnew), J(Rnew) > J(R).

Algorithm 2 The redescription set refinement procedure

Require: Rules created on W1 (rw1), Rules created on
W2 (rw2), Redescription set R, Constraints C

Ensure: A set of redescriptions R
1: procedure ConstructAndRefine
2: for Rnew ∈ rw1 × rw2 do
3: if Rnew.J ≥ C.minJref then
4: for R ∈ R do
5: R.Refine(Rnew)
6: Rnew.Refine(R)

7: if Rnew.J ≥ C.minJ then
8: R ← R∪Rnew

9: return R

The procedure described in Algorithm 2 and demonstrated
in Figure S1 applies conjunctive refinement by using re-
descriptions that satisfy the user defined constraints C and
redescriptions that satisfy looser constraints on the Jac-
card index (R.J ≥ C.minRefJ , C.minRefJ ≤ C.minJ).
These constraints determine the amount and variability of
redescriptions used to improve the redescription set.

The refiniment procedure, in combination with re-
description query minimization explained in Mihelčić et al.
(2015b), provides grounds for mining more accurate yet
compact redescriptions.

3.2. Generalized redescription set construction

The redescription set obtained by Algorithm 1 contains
redescriptions satisfying hard constraints described in the
previous subsections. It is often very large and hard to
explore. For this reason we extract one or more smaller
sets of redescriptions that satisfy additional preferential
properties on objective redescription evaluation measures,
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set up by the user, and present them for exploration. This
process is demonstrated in Figure 3.
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Figure 3: Flowchart representing the redescription set construction
process.

Producing summaries and compressed rule set represen-
tations is important in many fields of knowledge discov-
ery. In the field of frequent itemset mining such dense
representations include closed itemsets (Pasquier et al.,
1999) and free sets (Boulicaut & Bykowski, 2000). The
approaches using set pattern mining construct a set by en-
forcing constraints on different pattern properties, such as
support, overlap or coverage (Guns et al., 2011). Methods
developed in information theory consider sets that provide
the best compression of a larger set of patterns. These
techniques use properties like the Information Bottleneck
(Tishby et al., 1999) or the Minimum description length
(Grünwald, 2007). The work on statistical selection of
association rules developed by Bouker et al. (2012) has
developed techniques to eliminate irrelevant rules based
on dominance which is computed on several possibly con-
flicting criteria or measure. If some rule is not strictly
dominated by any other rule already in the set, the min-
imal similarity with some representative rule is used to
determine if it should be added to the set.

Redescriptions are highly overlapping with respect to
described instances and attributes used in the queries. It is
often very hard to find fully dominated redescriptions, and
the number of dominated redescriptions that can be safely
discarded is relatively small compared to a set of all cre-
ated redescriptions. Our approach, to create a set of user
defined (small) size, does not use a representative rule to
compute the similarity. Instead, it adds redescriptions to
the final redescription set by using the scalarization tech-
nique (Caramia & Dell’Olmo, 2008) developed in multi-
objective optimization to find a optimal solution when
faced with many conflicting criteria. If the corresponding
optimization function is minimized, given positive weights,
the solution is a strict pareto optimum, otherwise it is a
weak pareto optimum (Caramia & Dell’Olmo, 2008) of a

multi objective optimization problem. Similar aggregation
technique is used in multi attribute utility theory - MAUT
(Winterfeldt & Fischer, 1975) to rank the alternatives in
decision making problems.

Each redescription is evaluated with a set of criteria
known from the literature or defined by the user. The
final quality score is obtained by aggregating these crite-
ria with user-defined importance weights to produce a final
numerical score. Based on this score, the method selects
one non-dominated redescription, based on utilised quality
criteria, at each step of redescription set construction.

The procedure generalizes the current redescription set
construction approaches in two ways: 1) it allows defin-
ing importance weights to different redescription quality
criteria and adding new ones to enable constructing re-
description sets with different properties which provides
different insight into the data, 2) it allows creating mul-
tiple redescription sets by using different weight vectors,
support levels, Jaccard index thresholds or redescription
set sizes. Thus it in many cases eliminates the need to
make multiple runs of a redescription mining algorithm.

One extremely useful property of the procedure is that
it can be used by any existing redescription mining algo-
rithm, or a combination thereof. In general, larger number
of diverse, high quality redescriptions allows higher quality
reduced sets construction.

Are there any elements in the data that share many
common properties? Can we find a subset of elements that
allows multiple different redescriptions? Can we find very
diverse but accurate redescriptions? What is the effect of
reducing redescription query size to the overall accuracy
on the observed data? What are the effects of missing val-
ues to the redescription accuracy? What is our confidence
that this redescriptions will remain accurate if missing val-
ues are added to our set? This is only a subset of questions
that can be addressed by observing redescription sets pro-
duced by the proposed procedure. The goal is not to make
redescription mining subjective in the sense of interesting-
ness (Tuzhilin, 1995) or unexpectedness (Padmanabhan &
Tuzhilin, 1998), but to enable exploration of mined pat-
terns in a more versatile manner.

The input to the procedure is a set of redescriptions pro-
duced by Algorithm 1 and an importance weight matrix
defined by the user. The rows of the importance weight
matrix define the users’ importance for various redescrip-
tion quality criteria. The procedure creates one output
redescription set for each row in the importance weight
matrix (line 3 in Algorithm 3). The procedure works in
two parts: first it computes element and attribute occur-
rence in redescriptions from the original redescription set
(line 2 in Algorithm 3). This information is used to find
the redescription that satisfies the user defined criteria and
describes elements by using attributes that are found in a
small number of redescriptions from the redescription set.
When found (line 4 in Algorithm 3), it is placed in the
redescription set being constructed (line 5 in Algorithm
3). Next, the procedure iteratively adds non-dominated
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redescriptions (lines 7-9 in Algorithm 3) until the max-
imum allowed number of redescriptions is placed in the
newly constructed set (line 6 in Algorithm 3).

Algorithm 3 Generalized redescription set construction
Require: Redescription set R, Importance weight matrix
W, Size of reduced set n

Ensure: A set of reduced redescription sets Rred

1: procedure ReduceSet
2: [Eocur, Aocur]← computeCoocurence(R)
3: for wi ∈ W do
4: Rfirst ← findSpecificRed(R, Ecooc, Acooc, wi)
5: Rwi

← Rwi
∪Rfirst

6: while |Rwi
| < n do

7: Rbest ← findBest(R,Rwi
, wi)

8: Rwi ← Rwi ∪Rbest

9: Rred ← Rred ∪ {Rwi
}

10: return Rred

In the current implementation, we use 6 redescription
quality criteria, however more can be added. Five of these
criteria are general redescription quality criteria, the last
one is used when the underlying data contains missing val-
ues and will be described in the following section.

The procedure findSpecificRed uses the information
about the redescription Jaccard index, p-value, query size
and the occurrence of elements described by the redescrip-
tion and attributes found in redescriptions queries in re-
descriptions from the redescription set. The p-value qual-
ity score of a redescription R is computed as:

scorepval(R) =

{
log10(pV (R))

17 + 1 , pV (R) ≥ 10−17

0 , pV (R) < 10−17

The logarithm is applied to linearise the p-values and the
normalization 17 is used because 10−17 is the smallest pos-
sible p-value that we can compute.

The element occurrence score of a redescription is com-
puted as: scoreocurEl(R) =

∑
ek∈supp(R) Eocur[k]∑|E|

j=1 Eocur[j]
. The at-

tribute occurrence score is computed in the same way as:
scoreocurAt(R) =

∑
ak∈attrs(R) Aocur[k]∑|V1|+|V2|

j=1 Aocur[j]
. We also compute

the score measuring query size in redescriptions:

scoresize =

{ |attr(R)|
k , |attr(R)| < k

1 , k ≤ |attr(R)|
The user-defined constant k denotes redescription com-
plexity normalization factor. In this work we use k = 20,
because redescriptions containing more than 20 variables
in the queries are highly complex and hard to understand.

The first redescription is chosen by computing:
Rfirst = argminR (w0 · (1.0 − J(R)) + w1 ·
scorepval(R) +w2 · scoreocurEl(R) +w3 · scoreocurAt(R) +
w4 · scoresize(R)). Each following redescription is eval-
uated with a score function that computes redescrip-
tion similarity to each redescription contained in the

redescription set. The similarity is based on de-
scribed elements and attributes used in redescription
queries. This score thus allows controlling the level of
redundancy in the redescription set. For a redescrip-
tion Ri ∈ R\Rred we compute: scoreelemSim(Ri) =
maxj J(supp(Ri), supp(Rj)), j = 1, . . . , |Rred| and
scoreattrSim(R) = maxj J(attrs(Ri), attrs(Rj)), j =
1, . . . , |Rred|.

Several different approaches to reducing redundancy
among redescriptions have been used before, however no
exact measure was used to select redescriptions or to as-
sess the overall level of redundancy in the redescription set.
Zaki & Ramakrishnan (2005) developed an approach for
non-redundant redescription generation based on a lattice
of closed descriptor sets, Ramakrishnan et al. (2004) used
the parameter defining the number of times one class or de-
scriptor is allowed to participate in a redescription. This
is used to make a trade-off between exploration and re-
dundancy. Parida & Ramakrishnan (2005) computed non-
redundant representations of sets of redescriptions contain-
ing some selected descriptor (set of Boolean attributes).
Galbrun & Miettinen (2012b) defined a minimal contribu-
tion parameter each literal must satisfy to be incorporated
in a redescription query. This enforces control over redun-
dancy on the redescription level. Redundancy between
different redescriptions is tackled in the Siren tool Gal-
brun & Miettinen (2012c) as a post processing (filtering)
step. Mihelčić et al. (2015b) use weighting of attributes
occurring in redescription queries and element occurrence
in redescription supports based on work in subgroup dis-
covery (Gamberger & Lavrac, 2002; Lavrač et al., 2004).

We combine the redescription p-value score with its sup-
port to first add highly accurate, significant redescrip-
tions with smaller support, and then incrementally add
accurate redescriptions with larger support size. Can-
didate redescriptions are found by computing: Rbest =
argminR (w0 · (1.0− J(R)) +w1 · ( kn · scorepval(R) + (1−
k
n ) ·

supp(R)
|E| )+w2 ·scoreelemSim(R)+w3 ·scoreattrSim(R)+

w4·scoresize(R)), where k denotes the number of redescrip-
tions contained in the set under construction at this step.

3.3. Missing values

There are more possible ways of computing the redescrip-
tion Jaccard index when the data contains missing val-
ues. The approach that assumes that all elements from
redescription support containing missing values are dis-
tributed in a way to increase the redescription Jaccard
index is called optimistic (Jopt). Similarly, the approach
that assumes that all elements from redescription support
containing missing values are distributed in a way to de-
crease the redescription Jaccard index is called pessimistic
(Jpess). The rejective Jaccard index evaluates redescrip-
tions only by observing elements that do not contain miss-
ing values for attributes contained in redescription queries.
These measures are discussed in (Galbrun & Miettinen,
2012b). The Query non-missing Jaccard index (Jqnm), in-
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troduced in (Mihelčić et al., 2015b), is an approach that
gives a more conservative estimate than the optimistic Jac-
card index but more optimistic estimate than the pes-
simistic Jaccard index. The main evaluation criteria for
this index is that a query (containing only the conjunc-
tion operator) can not describe an element that contains
missing values for attributes in that query. This index is
by its value closer to the optimistic than the pessimistic
Jaccard index. However, as opposed to the optimistic ap-
proach, redescriptions evaluated by this index contain in
their support only elements that have defined values for all
attributes in redescription queries and that satisfy query
constraints. The index does not penalize the elements con-
taining missing values for attributes in both queries which
are penalized in the pessimistic Jaccard index.

In this paper we introduce a natural extension to the
presented measures: the redescription variability index.
This index measures the maximum possible variability in
redescription accuracy due to missing values. This allows
finding redescriptions that have only slight variation in ac-
curacy regardless the actual value of the missing values. It
also allows reducing very strict constraints imposed by the
pessimistic Jaccard index that might lead to the elimina-
tion of some useful redescriptions.

The redescription variability index is defined as:
variability(R) = Jopt(R)− Jpes(R).
Formal definitions of pessimistic and optimistic Jaccard
index can be seen in Section S1.2 (Online resource 1).

The scores used to find the first and the best redescription
in generalized redescription set construction (Section 3.2)
are extended to include the variability score.
Our framework optimizes query non-missing Jaccard but
reports all Jaccard index measures when mining redescrip-
tions on the data containing missing values. In princi-
ple with the generalized redescription set construction, we
can return reduced sets containing accurate redescriptions
found with respect to each Jaccard index. Also, with the
use of variability index, the framework allows finding re-
descriptions with accuracy affected to a very small degree
by the missing values which is not possible by other re-
description mining algorithms in the literature. The only
approach working with missing values ReReMi requires
preforming multiple runs of the algorithm to make any
comparisons between redescriptions mined by using differ-
ent version of Jaccard index.

4. Data description and applications

We describe three datasets used to evaluate CRM-GRS
and demonstrate its application on a Country dataset.

4.1. Data description

The evaluation and comparisons are performed on three
datasets with different characteristics: the Country
dataset (UNCTAD, 2014; WorldBank, 2014; Gamberger

et al., 2014), the Bio dataset (Mitchell-Jones, 1999; Hij-
mans et al., 2005; Galbrun, 2013) and the DBLP dataset
(DBLP, 2010; Galbrun, 2013). Detailed description of each
dataset can be seen in Section S2 (Online resource 1).

Table 1: Description of datasets used to perform experiments

Dataset W1 attributes W2 attributes
Country
|E| = 199
countries

Numerical (49)
World Bank
Year: 2012
Country info

Numerical (312)
UNCTAD
Year: 2012
Trade Info

Bio
|E| = 2575
geographical
locations

Numerical (48)
Climate condi-
tions

Boolean (194)
mammal species

DBLP
|E| = 6455
authors

Boolean (304)
author-
conference
bi-partite graph

Boolean (6455)
co-authorship
network

Descriptions of all attributes used in the datasets are pro-
vided in the document (Online Resource 2).

4.2. Application on the Country dataset

The aim of this study is to discover regularities and in-
teresting descriptions of world countries with respect to
their trading properties and general country information
(such as various demographic, banking and health related
descriptors). We will focus on redescriptions describing
four European countries: Germany, Czech Republic, Aus-
tria and Italy, discovered as a relevant cluster in a study
performed by Gamberger et al. (2014). This study in-
vestigated country and trade properties of EU countries
with potential implications to a free trade agreement with
China. This or similar use-case may be a potential topic of
investigation for economic experts but the results of such
analysis could also be of interest to the policymakers and
people involved in export or import business.

First step in the exploration process involves specifying
various constraints on produced redescriptions. Determin-
ing parameters such as minimal Jaccard index or minimal
support usually requires extensive experimentation. These
experiments can be performed with CRM-GRS with only
one run of redescription mining algorithm by using mini-
mal Jaccard index of 0.1, minimal support of 5 countries
(if smaller subsets are not desired) and p-value of 0.01. Pa-
rameters specifying reduced set construction can now be
tuned to explore different redescription set sizes, minimal
Jaccard thresholds or minimal and maximal support inter-
vals. Results of such meta analysis (presented in Section
S2.2.2 (Online resource 1)) show little influence of setting
minimal Jaccard threshold on this dataset, however right
choice of minimal support is important. Redescription sets
using minimal support threshold of 5 countries show su-
perior properties and may contain useful knowledge.
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We present three different redescriptions describing
specified countries and revealing their similarity to several
other countries (demonstrated in Figure 4).
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Figure 4: Similarities between different, mostly European, countries.

Redescriptions Rblue, Rgreen and Rred are defined as:
qb1 : 13.2 ≤ POP14 ≤ 15.2 ∧ 3.1 ≤MORT ≤ 5.0

∧ 0.0 ≤ POP_GROWTH ≤ 0.5

qb2 : 13.2 ≤ E/I_MiScManArt ≤ 15.2 ∧ 28.0 ≤
E_MedSTehInMan ≤ 40.0.
(Jqnm(Rblue) = Jopt(Rblue) = 1.0, Jpess(Rblue) = 0.88,
pV (Rblue) = 2.3 · 10−10, |supp(Rblue)| = 7)
qg1 : 16.2 ≤ POP64 ≤ 21.1 ∧ 2.9 ≤MORT ≤ 4.5

∧ 16.2 ≤ RUR_POP ≤ 50.1 ∧ 0.2 ≤W_REM ≤ 1.4

qg2 : 0.8 ≤ E/I_ElMachApp ≤ 1.8 ∧ 93.0 ≤
E_AlocProd ≤ 99.0 ∧ 1.1 ≤ E/I_SpecMach ≤ 4.3.
(Jqnm(Rgreen) = Jopt(Rgreen) = Jpess(Rgreen) = 1.0,
pV (Rgreen) = 1.9 · 10−11, |supp(Rblue)| = 9)
qr1 : 3.6 ≤ MORT ≤ 4.7 ∧ 22.9 ≤ CRED_COV ≤ 100.0

∧ 77.3 ≤ M2 ≤ 238.9

qr2 : 0.1 ≤ E/I_Cereals ≤ 1.7 ∧ 1.2 ≤ E/I_BevTob ≤
3.1 ∧ 0.7 ≤ E/I_SpecMach ≤ 4.3.
(Jqnm(Rred) = Jopt(Rred) = 1.0, Jpess(Rred) = 0.45,
pV (Rred) = 6.3 · 10−12, |supp(Rred)| = 10)

Presented redescriptions (attribute descriptions avail-
able in Table 2) confirm several findings reported in (Gam-
berger et al., 2014). Mainly, high export of medium - skill
and technology - intensive manufactures, export of bev-
erages and tobacco, low percentage of young population.
Additionally, these redescriptions reveal high percentage
of elderly population (age 65 and above), lower (compared
to world average of 47.4) but still present mortality rate of
children under 5 years of age (per 1000 living) and small to
medium percentage of rural population. The credit cov-
erage (percentage of adults registered for having unpaid
depths, repayment history etc.) varies between countries
but is no less than 20% adult population. The money and
quasi money (M2 - sum of currency outside banks etc.)
is between substantial 77.3% and very large 239% of to-

Table 2: Description of attributes from Rblue, Rgreen and Rred

Code Description
POP14 % of population aged [0,14]
POP64 % of population aged 65+
MORT Mortality under 5 years per 1000
POP_GROWTH % of population growth
RUR_POP % of population being rural
W_REM % of GDP spent on worker’s re-

mittances and compensation
CRED_COV % of adults listed by private

credit bureau
M2 % of GDP as (quasi) money
E, I, E/I export, import, export to import

ratio
MiScManArt Miscellaneous manufactured ar-

ticles
MedSTehInMan Medium - skill, technology - in-

tensive manufactures
ElMachApp Electrical machinery, apparatus

and appliances
AlocProd All allocated products
SpecMach Specialised machinery
Cereals Cereals and cereal preparations
BevTob Beverages and tobacco

tal country’s GDP. For additional examples see Section
S2.2.3, Figure S11 (Online resource 1).

Output of CRM-GRS can be further analysed with visu-
alization and exploration tools such as the Siren (Galbrun
& Miettinen, 2012c) (available at http://siren.gforge.
inria.fr/main/) or the InterSet (Mihelčić & Šmuc, 2016)
(available at http://zel.irb.hr/interset/). In par-
ticular, the InterSet tool allows exploration of different
groups of related redescriptions, discovery of interesting
associations, multi-criteria filtering and redescription anal-
ysis on the individual level.

5. Evaluation and comparison

In this section we present the results of different eval-
uations. First, we perform a theoretical comparison of
our approach with other state of the art solutions which
includes description of advantages and drawbacks of our
method. Next, we apply the generalized redescription set
construction procedure to these datasets starting from re-
descriptions created by the CLUS-RM algorithm. We eval-
uate the conjunctive refinement procedure and perform
a thorough comparison of our reduced sets with the re-
description sets obtained by several state of the art re-
description mining algorithms. The comparisons use mea-
sures on individual redescriptions (Section 2.1) as well as
measures on redescription sets (Section 2.2). We also use
the normalized query size defined in Section 3.2.

The execution time analysis, showing significant time re-
duction when using generalized redescription set construc-
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tion instead of multiple CLUS-RM runs, is described in
Section S2.4 (Online resource 1).

5.1. Theoretical algorithm comparison

We compare the average case time and space complexity
of the CRM-GRS with state of the art approaches and
present the strengths and weaknesses of our framework.

Table 3: Time and space complexity of redescription mining algo-
rithms and the generalized redescription set construction procedure

Algorithm Time comp. Space comp.
CRM-GRS O(z·(|V1|+|V2|)·

|E|2 + z2 · |E|)
(No refinement)
O(z·(|V1|+|V2|)·
|E|2 + z3 · |E|)
(refinement)

O(z)

CARTWh. O(z·(|V1|+|V2|)·
|E|2)

O(z)

Split trees O(z·(|V1|+|V2|)·
|E|2)

O(z)

Layered
trees

O(z·(|V1|+|V2|)·
|E|2)

O(z)

Greedy O(|V1| · |V2| · |E|) O(1)

MID O(|C| · |E| · 2l) O(1)

Closed
Dset

O(|C| · |E| · 2l) O(|C|)

Relaxation
Latt.

max(O(|B| · log
(|E|) + (|V1| +
|V2|) · |E|, O(L ·
log(|E|)+(|V1|+
|V2|) · |E|))

O(|B|)

GRSC O(|R| · |E|) O(|R|)

The term z = 2d − 1 in Table 3 denotes the number of
nodes in the tree and is constrained by the tree depth d.
C denotes the set of produced maximal closed frequent
itemsets, l denotes the length of the longest itemset, B a
set of produced biclusters, L =

∑
c∈B |c| and R denotes a

set of produced redescriptions.
We can see from Table 3 that the CRM-GRS has slightly

higher computational complexity than other tree - based
approaches (which is based on time complexity of algo-
rithm C4.5), caused by complexity of underlying redescrip-
tion mining algorithm CLUS-RM. Optimizations proposed
in (Mihelčić et al., 2015b) lower average time complexity
of basic algorithm to O(z · (|V1| + |V2|) · |E|2 and algo-
rithm with refinement to O(z · (|V1|+ |V2|) · |E|2+z2 · |E|).
Worst-case complexity with the use of refinement is O(z ·
(|V1| + |V2|) · |E|2 + z4 · |E|). It is the result of a very
optimistic estimate that produced redescriptions satisfy-
ing user constraints grow quadratically with the number
of nodes in the tree (this is only the case if no constraints

on redescriptions are enforced). In reality, it has at most
linear growth. Furthermore, term z2 · |E| is only domi-
nating if z > (|V1|+ |V2|) · |E|. Since redescription queries
become very hard to understand if they contain more than
10 attributes, even with 2 attributes in each of two views,
this term is dominated when |E| > 255 instances.

Greedy approaches (Gallo et al., 2008; Galbrun & Mi-
ettinen, 2012b) are less affected by the increase in number
of instances then the tree-based approaches, but are more
sensitive to the increase in number of attributes.

Complexity of approaches based on closed and frequent
itemset mining (Gallo et al., 2008; Zaki & Ramakrish-
nan, 2005) depends on the number of produced frequent or
closed itemsets which in worst case equals 2|V1|+|V2|. Sim-
ilarly, the complexity of approach proposed by Parida &
Ramakrishnan (2005) depends on the number of created
biclusters and their size.

One property of our generalized redescription set con-
struction procedure (GRSC) is that it can be used to re-
place multiple runs of expensive redescription mining algo-
rithms. Analysis from Table 3 and in S2.6 (Online resource
1) shows that it has substantially lower time complexity
than all state of the art approaches except the MID and
the Closed Dset. However, even for this approaches, it
might be beneficial to use GRSC instead of multiple runs
of these algorithms when |C| · 2l > |R|.

Since a trade-off between space and time complexity can
be made for each of the analysed algorithms, we write the
space complexity as a function of stored itemsets, rules,
redescriptions or clusters. To reduce execution time, these
structures can be stored in memory together with corre-
sponding instances which increases space complexity to
O(Cold · |E|) for all approaces.

One drawback of our method is increased memory con-
sumption (O(z2) in the worst case). Since we memorize
all distinct created redescriptions that satisfy user con-
straints, it is among more memory expensive approaches.
Although, the estimate O(z2) is greatly exaggerated, and
is in real applications at most O(z), it is currently the
only approach that memorizes and uses all created re-
descriptions to create diverse and accurate redescription
sets for the end users. If memory limit is reached, we use
the GRCS procedure (called in line 8 of Algorithm 1) to
create reduced redescription sets of predefined properties.
Only redescriptions from these sets are retained allowing
further execution of the framework.

Greedy and the MID approaches are very memory effi-
cient since they store only a small number of candidate re-
descriptions in memory. Other tree-based approaches store
two decision trees at each iteration, Closed Dset (Zaki &
Ramakrishnan, 2005) approach saves a closed lattice of de-
scriptor sets and the relaxation lattice approach (Parida
& Ramakrishnan, 2005) saves produced biclusters.

The main advantages of our approach are that it pro-
duces a large number of diverse, highly accurate redescrip-
tions which enables our multi-objective optimization pro-
cedure to generate multiple, high quality redescription sets
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of differing properties that are presented to the end user.

5.2. Experimental procedure
In this section we explain all parameter settings used
to perform evaluations and comparisons with various re-
description mining algorithms.

For all algorithms, we used the maximal p-value thresh-
old of 0.01 (the strictest significance threshold). The min-
imal Jaccard index was set to 0.2 for the DBLP dataset
based on results presented in Galbrun (2013), Table 6.1,
p. 46. The same is set to 0.6 for the Bio dataset based
on results in Galbrun (2013) Table 7, p. 301. The thresh-
old 0.5 for the Country dataset was experimentally de-
termined. Minimal support was set to 10 elements for
the DBLP, based on Galbrun (2013) p.48, and the same
is used for the Bio dataset. Country dataset is signifi-
cantly smaller thus we set this threshold to 5 elements.
Impact of changing minimal Jaccard index and minimal
support is data dependant. Increasing theses thresholds
causes a drop in diversity of produced redescriptions, re-
sulting in high redundancy and in some cases inadequate
number of produced redescriptions. However, it also in-
creases minimal and average redescription Jaccard index
and support size. Lowering these thresholds has the op-
posite effect, increasing diversity but potentially reducing
overall redescription accuracy or support size. Increas-
ing maximal p-value threshold allows more redescriptions
(although less significant) to be considered as candidates
for redescription set construction. The effects of changing
minimal Jaccard index and minimal support size on the
produced redescription set of size 50 by our framework on
Country, Bio and DBLP dataset can be seen in Section
S2.2.2 (Online resource 1).

We compared the CLUS-RM algorithm with the gen-
eralized redescription set construction procedure (CRM-
GRS), to the ReReMi, the Split trees and the Layered
trees algorithms implemented in the tool called Siren (Gal-
brun & Miettinen, 2012c). The specific parameter values
used for each redescription mining algorithm can be seen
in Section S2 (Online Resource 1).

5.3. Analysis of redescription sets produced with CRM-
GRS

We analyse a set containing all redescriptions produced
by CLUS-RM algorithm (referred to as a large set of re-
descriptions) and the corresponding sets of substantially
smaller size constructed from this set by generalized re-
description set construction procedure (referred to as re-
duced sets of redescriptions) on three different datasets.

For the purpose of this analysis, we create redescrip-
tions without using the refinement procedure and disal-
low multiple redescriptions describing the same set of in-
stances. To explore the influence of using different impor-
tance weights on properties of produced redescription sets,
we use the different weight combinations given in Table 4.
In the rows 1, 2 and 3 of matrix W , we incrementally in-
crease the importance weight for the Jaccard index and

Table 4: A matrix containing different combinations of importance
weights for the individual redescription quality criteria.

W =


J pV AJ EJ RQS RV
0.2 0.2 0.2 0.2 0.2 0.0
0.4 0.2 0.1 0.1 0.2 0.0
0.6 0.2 0.0 0.0 0.2 0.0
0.0 0.2 0.3 0.3 0.2 0.0



equally decrease the weight for the element and attribute
Jaccard index in order to explore the effects of finding
highly accurate redescriptions at the expense of diversity.
The last row explores the opposite setting that completely
disregards accuracy and concentrates on diversity.

By using importance weights in each row of matrices
W (Table 4) and Wmiss (Table 5), we create redescription
sets containing 25, 50, 75, 100, 125, 150, 175 and 200
redescriptions. We plot the change in element/attribute
coverage, average redescription Jaccard index, average p-
value, average element/attribute Jaccard index and aver-
age query size against the redescription set size. Infor-
mation about redescriptions in the large set is used as a
baseline and compared to the quality of reduced sets.

5.3.1. The analysis on the Bio dataset
We start the analysis by examining the properties of the
large redescription set presented in Figure 5. In Figure 6,
we compare the properties of redescriptions in the large
redescription set, against properties of redescriptions in
reduced sets based on different preference vectors. The
results are presented only for the Bio dataset, however
similar analysis for the DBLP and the Country dataset is
presented in Section S2.2.3 (Online Resource 1).

Figure 5 shows distributions of quality measures for
redescriptions in the large redescription set constructed
with CLUS-RM algorithm. Redescription Jaccard index
is mostly in [0.6, 0.7] interval, though a noticeable num-
ber is in [0.9, 1.0]. The p-value is at most 0.01 but mainly
smaller than 10−17. The maximum average element Jac-
card index equals 0.13 and the maximum average attribute
Jaccard index equals 0.14 which shows a fair level of di-
versity among produced redescriptions. Over 99% of re-
descriptions contain less than 15 attributes in both queries,
and more than 50% contains less than 10 attributes in both
queries which is good for understandability.

Plots in Figure 6 contain 5 graphs demonstrating a
specific property of the reduced redescription set and its
change with the increase of reduced redescription set size.
The Reduced k graph demonstrates properties of redescrip-
tions contained in redescription set created with the pref-
erence weights from the k-th row ofW . The graph labelled
Large set demonstrates properties of redescriptions from a
redescription set containing all produced redescriptions.

Increasing the importance weight for a redescription
Jaccard index has the desired effect on redescription accu-
racy in the reduced sets of various size. Large weight on
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Figure 5: Histograms showing distributions of different redescription quality measures for the large redescription set containing 7413 re-
descriptions. Redescriptions are created on the Bio dataset.

this criteria leads to sets with many highly accurate but
more redundant redescriptions (average element Jaccard
> 0.15) with larger support (average support > 10% of the
total number of elements in the dataset). Consequence of
larger support is increased overall element coverage. The
effect is in part the consequence of using the Bio dataset
that contains a number of accurate redescriptions with
high support (also discussed in (Galbrun, 2013)). This ef-
fect is not observed on the Country and the DBLP dataset
(Figures S4 and S5), where element and attribute cover-
age is increased only with increasing diversity weights in
the preference vector. The average redescription Jaccard
index decreases as the reduced set size increases which is
expected since the total number of redescriptions with the

highest possible accuracy is mostly smaller than 200.

Use of weights from the second row of the importance
matrixW largely reduces redundancy and moderately low-
ers redescription accuracy in produced redescription set
compared to weights that highly favour redescription accu-
racy. The equal weight combination provides accurate re-
descriptions (above large set average) that describe differ-
ent subsets of elements by using different attributes (both
below large set average). The average redescription sup-
port is lower as a result, around 5% of data elements. De-
spite this, the element coverage is between 88% and 100%
with the sharp increase to 98% for a set containing 50 re-
descriptions. The element coverage reaches 100% for sets
containing at least 175 redescriptions.
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Figure 6: Plots comparing element and attribute coverage, average redescription: Jaccard index, log(p-value), element/attribute Jaccard
index, normalized support and normalized query size for resulting reduced sets of different size and the original, large redescription set
containing all produced redescriptions. Reduced k, corresponds to the reduced set obtained with the importance weights from the k-th row
of the weight matrix W .
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Depending on the application, it might be interesting to
find different, highly accurate descriptions of the same or
very similar sets of elements (thus the weights from the
third row of W from Table 4 would be applied). Higher
redundancy provides different characteristics that define
the group. It sometimes also provides more specific infor-
mation about subsets of elements of a given group.

We found several highly accurate redescriptions describ-
ing very similar subsets of locations on the Bio dataset by
using weights from the third row of the matrix W . These
locations are characterized as a co-habitat of the Arctic
fox and one of several other animals with some specific cli-
mate conditions. We provide two redescriptions describing
a co-habitat of the Arctic fox and the Wood mouse.
q1 : −9.5 ≤ t−11 ≤ 0.9 ∧ 9.7 ≤ t+7 ≤ 13.4
q2 : Woodmouse ∧ ArcticFox ∧ ¬ MountainHare
This redescription describes 57 locations with Jaccard in-
dex 0.83. One very similar redescription describing 58 lo-
cations from which 57 are the same as above, with Jaccard
index 0.87 is:
q1 : −5.5 ≤ t̃2 ≤ 2.2 ∧ 6.4 ≤ t+9 ≤ 10.6
q2 : Woodmouse ∧ ArcticFox ∧ ¬ Norwaylemming

Even more interesting examples can be found on the
Country data where very similar sets of countries can be
described by using different trading and general country
properties. The example can be seen in Section S2.1.3,
Figure S11 (Online Resource 1).

5.3.2. Using the redescription variability index on the
Country dataset

We analyse the impact of missing values to redescription
creation and use newly defined redescription variability in-
dex (RW ), in the context of generalized set generation, on
the Country dataset with a weight matrix shown in Ta-
ble 5. The variability weight is gradually increased while
other weights are equally decreased to keep the sum equal
to 1.0 (which is convenient for interpretation).

Table 5: The weight matrix designed to explore the effects of chang-
ing redescription variability index on the resulting redescription set.
These weights are applied on data containing missing values. Oth-
erwise, the variability index weight (RV) should equal 0.

Wmiss =


J pV AJ EJ RQS RV
0.2 0.2 0.2 0.2 0.19 0.01
0.18 0.18 0.18 0.18 0.18 0.1
0.14 0.14 0.14 0.14 0.14 0.3
0.1 0.1 0.1 0.1 0.1 0.5
0.06 0.06 0.06 0.06 0.06 0.7



The change in variability index depending on a reduced
set size and comparison with the large set can be seen in
Figure 7.
As expected, increasing the importance weight for re-
description variability favours selecting more stable re-
descriptions to the changes in missing values.

Figure 7: Change in average variability index of redescriptions in
reduced redescription set for various set sizes and the set containing
all created redescriptions.

To demonstrate the effects of variability index to re-
description accuracy, we plot graphs comparing averages
of optimistic, query non-missing and pessimistic Jaccard
index for every row of the weight matrix for different re-
duced set sizes. The results for row 1 and row 4 can be
seen in Figures 8 and 9. Plots for reduced sets obtained
with importance weights from the 2., the 3. and the 5. row
of Wmiss are available in Figure S12 (Online resource 1).
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Figure 8: Optimistic, query non-missing and pessimistic Jaccard in-
dex for reduced sets of different sizes created with importance weight
from the first row of the weight matrix Wmiss.

Increasing the weight on the variability index has the de-
sired effect of reducing the difference between values of
different Jaccard index measures. However, the average
optimistic and query non-missing Jaccard index values in
the reduced sets drop as a result.
Redescription with Jqnm = Jpess = Jopt = 1.0:
q1 : 3.6 ≤MORT ≤ 4.1 ∧ 25.9 ≤ RUR_POP ≤ 38.4
∧ 58.8 ≤ LABOR_PARTICIP_RATE ≤ 61.1
q2 : 68.0 ≤ E23 ≤ 79.0 ∧ 0.7 ≤ E/I104 ≤ 4.4
∧ 0.9 ≤ E/I50 ≤ 1.5
is highly accurate and stable redescription constructed by
CRM-GRS with the importance weight from the fourth
row of a matrix Wmiss. It is statistically significant with
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Figure 9: Optimistic, query non-missing and pessimistic Jaccard in-
dex for reduced sets of different sizes created with importance weight
from the fourth row of the weight matrix Wmiss.

the p-value smaller than 10−17.
Redescriptions exist for which Jqnm = Jopt and Jpess <

Jopt. In such cases, the drop in accuracy from Jopt to Jpess
occurs because a number of elements exist in the dataset
for which membership in the support of neither redescrip-
tion query can be determined, due to missing values. Op-
timizing pessimistic Jaccard index is very strict and can
discard some potentially significant redescriptions such as:
q1 : 5.6 ≤ EMPL_BAD ≤ 18.2 ∧ 2.9 ≤MORT ≤ 4.5
∧ 2.0 ≤ AGR_EMP ≤ 10.5 ∧ −2.4 ≤ BAL ≤ 10.1
q2 : 1.1 ≤ E/I85 ≤ 3.1 ∧ 93.0 ≤ E97 ≤ 98.0. This
redescription has Jqnm = Jopt = 1.0 and Jpess = 0.48.
With the variability index of 0.52 it describes all elements
that can be evaluated by at least one redescription query
with the highest possible accuracy.

This example motivates optimizing query non-missing
Jaccard with positive weight on the variability index. It
is especially useful when small number of highly accurate
redescriptions can be found and when a large percentage
of missing values is present in the data.

5.4. Evaluating the conjunctive refinement procedure

The next step is to evaluate the conjunctive refinement
procedure and its effects on the overall redescription accu-
racy. We use the same experimental set-up as in Section
5.3 for both sets with the addition of the minimum refine-
ment Jaccard index parameter, which was set to 0.4 on the
Bio dataset and 0.1 on the Country and the DBLP dataset.
The algorithm requires the initial clusters to start the min-
ing process as explained in Section 3.1.1 and in (Mihelčić
et al., 2015b). To maintain the initial conditions, we cre-
ate one set of initial clusters and use them to create re-
descriptions with and without the conjunctive refinement
procedure. Since we use PCTs with the same initial ran-
dom generator seed in both experiments, the differences
between sets are the result of applying the conjunctive
refinement procedure. The effects of using conjunctive re-
finement are examined on sets containing all redescriptions

produced by CLUS-RM and on reduced sets created with
equal importance weights by the generalized redescription
set construction procedure (Row 1 in matrix W ).

The effects of using the refinement procedure on re-
description accuracy are demonstrated in comparative his-
togram (Figure 10) showing the distribution of redescrip-
tion Jaccard index in a set created by CLUS-RM with and
without the refinement procedure.

CLUS-RM produced 7413 redescriptions, satisfying con-
straints from Section 5.2, without the refinement proce-
dure and 10472 redescriptions with the refinement proce-
dure. The substantial increase in redescriptions satisfying
user-defined constraints, when the conjunctive refinement
procedure is used, is accompanied by significant improve-
ment in redescription accuracy.
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Figure 10: Distribution of a redescription Jaccard index in a large
set created on a Bio dataset with and without the conjunctive re-
finement procedure. The set obtained without using the conjunctive
refinement procedure contains 7413 redescriptions, and the set ob-
tained by using the conjunctive refinement procedure contains 10472
redescriptions.

We performed the one-sided independent 2-group Mann-
Whitney U test with the null hypothesis that there is
a probability of 0.5 that an arbitrary redescription (Rr)
from a set obtained by using conjunctive refinement has
the Jaccard index larger than the arbitrary redescription
(Rnr) from a set obtained without using the conjunctive
refinement procedure (P (J(Rr) > J(Rnr)) = 0.5). The
p-value of 2.2 · 10−16 lead us to reject the null hypothe-
sis with the level of significance 0.01 and conclude that
P (J(Rr) > J(Rnr)) > 0.5 must be true.

Another useful property of the conjunctive refinement
procedure is that it preserves the size of redescription sup-
port. The comparative distribution of redescription sup-
ports between the sets is shown in Figure 11.
Majority of 3059 redescriptions that entered the redescrip-
tion set because of the improvements made by the con-
junctive refinement have supports in the interval [10, 500]
elements. Because of that, the average support size in the
redescription set obtained by using the refinement pro-
cedure (217.98) is lower than that obtained without the
refinement procedure (263.63). The change in distribution
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Figure 11: Distribution of a redescription support size in a large set
created on a Bio dataset with and without the conjunctive refine-
ment procedure. The set obtained without using the conjunctive
refinement procedure contains 7413 redescriptions, and the set ob-
tained by using the conjunctive refinement procedure contains 10472
redescriptions.

is significant, as shown by the one-sided independent 2-
group Mann-Whitney U test. The test rejects the hypoth-
esis P (|supp(Rnr)| > |supp(Rr)|) = 0.5 with the level of
significance 0.01 (p-value equals 2.4 · 10−14), thus showing
that P (|supp(Rnr)| > |supp(Rr)|) > 0.5.

Using the conjunctive refinement procedure improves re-
description accuracy and adds many new redescriptions to
the redescription set. However, since the reduced sets are
presented to the user, it is important to see if higher qual-
ity reduced sets can be created from the large set by using
the conjunctive refinement procedure compared to the set
obtained without using the procedure.

We plot comparative distributions for all defined re-
description measures for reduced sets extracted from the
redescription set obtained with (CLRef ) and without
(CLNRef ) the conjunctive refinement procedure. The
comparison made on the sets containing 200 redescriptions
is presented in Figure 12. The boxplots representing distri-
butions of supports show that the redescription construc-
tion procedure extracts redescriptions of various support
sizes, which was intended to prevent focusing only on large
or small redescriptions based on redescription accuracy.

We compute the one-sided independent 2-group Mann-
Whitney U test on the reduced sets for the redescription
Jaccard index (J) and the normalized redescription query
size (RQS) since there seem to be a difference in distribu-
tions as observed from Figure 12. For other measures, we
compute the two-sided Mann-Whitney U test to assess if
there is any notable difference in values between the sets.

The null hypothesis that P (J(Rr) > J(Rnr)) = 0.5 is
rejected with the p-value smaller than 2.2 · 10−16 < 0.01,
thus the alternative hypothesis P (J(Rr) > J(Rnr)) > 0.5
holds. The difference in support between two sets is not
statistically significant (p-value equals 0.21, obtained with
the two-sided test). Distributions of redescription p-values
are identical because all redescriptions have equal p-value:
0.0. The difference in average attribute/element Jaccard
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Figure 12: Boxplots comparing distributions of redescription: Jac-
card index, support, log(p-value), element Jaccard index, attribute
Jaccard index and normalized query size in reduced sets containing
200 redescriptions. The reduced sets were obtained by the general-
ized redescription set construction procedure by using equal impor-
tance weight for each measure.

index is also not statistically significant (p-values 0.88 and
0.13 respectively obtained with the two-sided test). The p-
value for the null hypothesis P (RQS(Rnr) < RQS(Rr)) =
0.5 equals 5.25·10−6 < 0.01 thus the alternative hypothesis
P (RQS(Rnr) < RQS(Rr)) > 0.5 holds.

The refinement procedure enables constructing reduced
sets containing more accurate redescriptions with the av-
erage Jaccard index increasing from 0.72, for reduced set
obtained without using refinement procedure, to 0.82 for
reduced set obtained when refinement procedure is used.
This improvement sometimes increases redescription com-
plexity, albeit this is limited on average to having less than
1 additional attribute in redescription queries.

The set produced by using the conjunctive refinement
procedure has the element coverage of 0.9996 and the at-
tribute coverage of 0.7613 compared to the set where this
procedure was not used where the element coverage is 1.0
and the attribute coverage is 0.7243.

The conjunctive refinement procedure also significantly
increases redescription accuracy on the DBLP and the
Country dataset. Equivalent analysis for these datasets
is performed in Section S2.3 (Online Resource 1).
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5.5. Comparisons with other state of the art redescription
mining algorithms.

In this section, we present the comparative results of re-
description set quality produced by our framework (CRM-
GRS) compared to the state of the art algorithms: the
ReReMi Galbrun & Miettinen (2012b), the Split trees and
the Layered trees Zinchenko (2014). To perform the exper-
iments, we used the implementation of the ReReMi, the
Split trees and the Layered trees algorithm within the tool
Siren (Galbrun & Miettinen, 2012c).

The ReReMi algorithm was already compared in (Gal-
brun & Miettinen, 2012b) with the CartWheels algorithm
(Ramakrishnan et al., 2004) (on a smaller version of a
DBLP and the Bio dataset), with the association rule
mining approach obtained by the ECLAT frequent item-
set miner (Zaki, 2000) and the greedy approach developed
by Gallo et al. (2008). The approach from Zaki & Ra-
makrishnan (2005), which is also related, works only with
boolean attributes and have no built in mechanism to dif-
ferentiate different views. Redescription mining on the
DBLP dataset with the original implementation of the al-
gorithm1 returned 49 redescriptions, however they only de-
scribe authors by using co-authorship network. Since, our
goal is to describe authors by their co-authorship network
and provide the information about the conferences they
have published in, these redescriptions are not used in our
evaluation. To use the approach on the Bio dataset, we
first applied the Discretize filter in weka2 to obtain nom-
inal attributes. Then, we applied NominalToBinary filter
to obtain binary attributes that can be used in Charm-L.
As a result, the number of attributes on the Bio dataset
increased to 1679 making the process of constructing a
lattice of closed itemsets to demanding with respect to ex-
ecution time constraints. The Country dataset contains
missing values which are not supported by this approach.

Since there is an inherent difference in the number of
created redescriptions, depending on the type of logical
operators used to create them, between CLUS-RM and the
comparative algorithms, we split the algorithm comparison
in two parts. First, we compare redescription properties
created by using all logical operators and then redescrip-
tions created by using only the conjunction and the nega-
tion operator (Bio and DBLP dataset) or only by using
the conjunction operator (Country dataset).

After obtaining redescriptions with the algorithms im-
plemented in the tool Siren (Galbrun & Miettinen, 2012c),
with parameters specified in Section 5.2, we used the Fil-
ter redundant redescriptions option to remove duplicate
and redundant redescriptions. Since SplitTrees and Lay-
eredTrees algorithms always use all logical operators to
create redescriptions, we created a redescription set with
theses approaches and filtered out redescriptions contain-
ing the disjunction operator in at least one of its queries.

1http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/
Software/Software

2http://www.cs.waikato.ac.nz/ml/weka/

For each obtained redescription set from the ReReMi,
the Split trees and the Layered trees algorithm, we ex-
tracted a redescription set of the same size with the gen-
eralized redescription set procedure with equal weight im-
portance for each redescription criteria. These sets are
extracted from a large set created with the CLUS-RM al-
gorithm with the parameters specified in Section 5.2.

We plot pairwise comparison boxplots for each re-
description measure comparing the performance of our
framework with the three chosen approaches.

For each comparison we analyse the hypothesis about
the distributions by using the one-sided independent 2-
group Mann-Whitney U test (see summary in Table 6).

5.5.1. Comparison on the Bio dataset
First, we compare the algorithms on the Bio dataset. Fig-
ures 13, 14 and Table 6 show that the set produced by
CRM-GRS tend to contain more accurate redescriptions
on the Bio dataset when the conjunction and the negation
operators are allowed and when the conjunctive refinement
procedure is used compared to all other approaches.
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Figure 13: Boxplots comparing redescriptions produced with our
framework (CLNref, CLRef) and the ReReMi algorithm (ReReMi)
on the Bio dataset. Sets contain 66 redescriptions created by using all
defined logical operators and 46 redescriptions when only conjunction
and negation operators are used to construct redescription queries.
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Table 6: Table containing p-values obtained with the one-sided independent 2-group Mann-Whitney U test. We test the hypothesis to have
the probability 0.5 that the redescription chosen from the redescription set obtained by our framework has larger/smaller value compared
to the redescription chosen from the redescription set produced by the ReReMi, the Split trees (ST) or the Layered trees (LT), depending
on the redescription measure used, compared to the alternative in which a redescription chosen from a set produced by our framework has
the probability greater than 0.5 for this outcome. For the Jaccard index (J) and support we test if the probability is greater than 0.5 to
obtain larger values, for the average redescription redundacy based on elements/attributes contained in their support (AEJ)/ (AAJ) and
redescription query size (RQS), we test if the probability is larger to obtain smaller values in the set produced by our framework. Each table
cell contains two p-values in the format pV al1/pV al2. The first p-value relates to the set produced by the CLUS-RM without the conjunctive
refinement procedure and the second with the refinement procedure.

Dataset Operators Measure ReReMi ST LT

Bio

AllOp (DCN)

J 0.91/2 · 10−4 2.6 · 10−9/2.7 · 10−15 0.0035/1.9 · 10−7
Supp 1.0/1.0 1.0/1.0 0.9994/1.0
p-value 2 · 10−9/2 · 10−9 0.0217/0.0217 0.0408/0.0408
AEJ < 2 · 10−16/< 2 · 10−16 5.3 · 10−10/3.4 · 10−11 1.3 · 10−5/2.3 · 10−8
AAJ 2 · 10−7/2 · 10−7 1.2 · 10−13/< 2 · 10−16 0.1122/8.2 · 10−5
RQS 2 · 10−8/9 · 10−5 1.5 · 10−8/1.3 · 10−5 6.7 · 10−7/5 · 10−5

ConjNeg (CN)

J 0.0035/1.5 · 10−12
Supp 1.0/1.0
p-value 0.08/0.08
AEJ < 2 · 10−16/1.4 · 10−15 |R| < 10 |R| < 10
AAJ < 2 · 10−16/< 2 · 10−16
RQS 4.3 · 10−10/3.5 · 10−7

DBLP

AllOp (DCN)

J 1.0/1.0 1.0/0.9999
Supp 1.0/1.0 0.0033/0.0033
p-value 1.0/1.0 1.0/1.0
AEJ 1.0/1.0 0.904/0.980 |R| < 10
AAJ 1.0/1.0 0.9997/0.9998
RQS < 2 · 10−16/8.6 · 10−9 < 2 · 10−16/3.5 · 10−15

ConjNeg (CN)

J 0.0127/5.96 · 10−7
Supp 1.74 · 10−8/1.14 · 10−9
p-value 0.9779/0.9933
AEJ 1.0/1.0 |R| < 10 |R| < 10
AAJ 1.0/1.0
RQS 1.0/1.0

Country

AllOp (DCN)

Jpess 1.0/0.9979
Jqnm < 2 · 10−16/< 2 · 10−16
Supp 1.0/1.0
p-value 6.3 · 10−10/7.5 · 10−10 NA NA
AEJ < 2 · 10−16/< 2 · 10−16 NA NA
AAJ < 2 · 10−16/< 2 · 10−16
RQS < 2 · 10−16/< 2 · 10−16

Conj (CN)

Jpess 0.257/7 · 10−6
Jqnm 5.2 · 10−7/2.3 · 10−8
Supp 4.7 · 10−4/0.769
p-value 0.0503/0.0239 NA NA
AEJ 0.608/2.6 · 10−5 NA NA
AAJ 1.74 · 10−15/3.3 · 10−12
RQS 1.3 · 10−9/3.7 · 10−17
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Figure 14: Boxplots comparing 49 redescriptions by using all defined
logical operators, produced with our framework (CLNref, CLRef)
and the Split trees algorithm (STrees) on the Bio dataset (left).
The analogous comparison is made with the Layered trees algorithm
(LTrees) on 30 redescriptions (right).

The results are significant at the significance level of 0.01,
except for the case of ReReMi when all logical operators
were allowed and refinement procedure was not used in
the CLUS-RM algorithm. Redescriptions contained in
redescription sets produced by CRM-GRS tend to have
smaller p-values compared to redescriptions produced by
other tree - based algorithms (statistically significant with
the significance level of 0.05). Redescription sets created
by CRM-GRS tend to contain redescriptions with smaller
element/attribute Jaccard index (redundancy) and smaller
query size (the difference is statistically significant with
the significance level of 0.01 with the exception of a set
created by CRM-GRS, when conjunctive refinement pro-
cedure was not used in CLUS-RM, compared to the set
created by Layered trees algorithm).

Element and attribute coverage analysis for all ap-
proaches is provided in Section S2.5.1 (Online Resource
1). This analysis suggests that despite smaller average
redescription support, our framework has comparable per-
formance with respect to element and attribute coverage.

As already discussed in (Galbrun, 2013), the ReReMi al-
gorithm has a drift towards redescriptions with large sup-

ports on the Bio dataset. The consequence is a large el-
ement redundancy among produced redescriptions. The
Split trees and the Layered trees algorithms produce re-
descriptions in the whole support range, though majority
of produced redescriptions still have a very high support
resulting in large element redundancy. Our approach re-
turns redescriptions with various support size as can be
seen from Figures 13 and 14 though majority of produced
redescriptions are very close to the minimal allowed sup-
port. However, if needed, the minimal support can be
adjusted to produce sets containing redescriptions that de-
scribe larger sets of elements. It is also possible to produce
multiple sets, each being produced with different minimal
and maximal support bounds. Also, by adjusting the im-
portance weights to highly favour Jaccard index, the user
can produce reduced sets with similar properties as those
produced by the ReReMi, the Layered trees and the Split
trees. The distribution of support size in the large re-
description set produced with the basic variant of CLUS-
RM algorithm on the Bio dataset can be seen in Figure
5. The increase in accuracy obtainable by using different
weights to construct reduced sets can be seen in Figure 6.

Redescription sets produced with the Layered and the
Split trees algorithms do not create enough redescriptions
containing only conjuntion and negation operator in its
queries to make the distribution analysis. The Layered
trees algorithm produced only one redescription with Jac-
card index 0.62 and the Split trees algorithm created four
redescriptions with Jaccard index 0.97, 0.65, 0.7 and 0.78.
On the other hand, the CLUS-RM with the conjunctive
refinement procedure created over 14000 redescriptions
containing only conjunction and negation in the queries
with the Jaccard index greater than 0.6 from which 73
redescriptions have Jaccard index 1.0.

Our framework complements the existing approaches
which is visible from redescription examples found by our
approach that were not discovered by other algorithms.
Section S2.5.1 (Online Resource 1) contains one example
of very similar redescription, found by the ReReMi and
the CRM-GRS, and several redescriptions discovered by
CRM-GRS that were not found by other approaches.

5.5.2. Comparison on the DBLP dataset
The DBLP dataset is very sparse and all redescription min-
ing algorithms we tested only returned a very small num-
ber of highly accurate redescriptions. Half of the redescrip-
tion mining runs we performed with different algorithms
returned to small number of redescriptions to perform a
statistical analysis. On this dataset, we can compare qual-
ity measure distributions of redescriptions produced by our
framework only with the ReReMi algorithm (Figure 15),
and with the Split trees algorithm when all operators are
used to construct redescription queries. (Figure 16).
CRM-GRS tends to produce redescriptions with smaller
query size than the ReReMi and the Split trees algorithms
when all the operators are allowed. The redescriptions
contained in the reduced set produced by our framework
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Figure 15: Boxplots comparing redescriptions, produced with our
framework (CLNref, CLRef) and the ReReMi algorithm (ReReMi)
on the DBLP dataset. Sets contain 536 redescriptions created by
using all defined logical operators and 155 redescriptions when only
conjunction and negation operators are used to construct redescrip-
tion queries.

tend to have higher support than those produced by the
Split trees algorithm. The distribution analysis on sets
created by using only conjunction and negation logical op-
erators can be performed only against the ReReMi algo-
rithm due to small number of redescriptions produced by
the other approaches. In this case, CRM-GRS tends to
produce more accurate redescriptions (significant at the
significance level of 0.01 when the conjunctive refinement
is used and at the significance level of 0.05 when conjunc-
tive refinement is not used). In both cases, our framework
produces redescriptions that tend to have larger support
(significant with the level of 0.01). There is a more pro-
nounced difference between the Split trees algorithm and
CRM-GRS when all the operators are allowed. In this
case, the Split trees algorithm has higher median in distri-
bution of redescription accuracy.

The Layered trees approach produced 7 re-
descriptions using all operators, with accuracy
0.85, 0.81, 0.71, 0.73, 0.23, 0.23, 0.2 describing 10 to 48
authors. It produced 3 redescriptions using only conjunc-
tion and negation operators. The produced redescriptions
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Figure 16: Boxplots comparing redescriptions, produced with our
framework (CLNref, CLRef) and the Split trees algorithm (STrees)
on the DBLP dataset. The set contains 62 redescriptions created by
using all defined logical operators.

had the accuracy 0.23, 0.22, 0.2 and the support 45 to 48
authors. The Split trees algorithm produced only one
redescription with accuracy 0.33 and support 13 using
only conjunction and negation operators.

The most accurate redescriptions produced by each algo-
rithm and a short discussion can be seen in Section S2.5.2
(Online Resource 1).

5.5.3. Comparison on the Country dataset
Comparisons on the Country dataset are preformed only
with the ReReMi algorithm since it is the only algorithm,
besides CLUS-RM, that can work on datasets containing
missing values. Techniques for value imputation must be
used before other approaches can be applied. Using these
techniques introduces errors in the descriptions and vio-
lates a property of descriptions being valid for each ele-
ment in redescription support. Because of that, we chose
not to pursue this line of research.

Since our framework optimizes the query non-missing
Jaccard index and the ReReMi optimizes pessimistic Jac-
card index, we decided to make comparisons using both
measures (Figure 17 and Figure 18). We extract two sets
with CRM-GRS, for each we use different Jaccard index
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as one of the quality criteria. Redescriptions produced by
the ReReMi remain unchanged but we compute the query
non-missing Jaccard for each redescription which causes
redescription accuracy to rise. Optimizing pessimistic Jac-
card seems like the best option for comparisons since then
the query non-missing Jaccard index necessarily increases
and the redescription support is preserved.
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Figure 17: Boxplots comparing redescriptions, produced with our
framework (CLNref, CLRef) and the ReReMi algorithm (ReReMi)
on the Country dataset. Sets contain 120 redescriptions created by
using all defined logical operators and 36 redescriptions when only
conjunction and negation operators are used to construct redescrip-
tion queries. Redescription accuracy is evaluated by using query non
- missing Jaccard index.

Results from Table 6 show that CRM-GRS produces
redescription set that tends to contain more accurate
redescriptions when conjunction refinement procedure is
used. The result is significant at the significance level
0.01. However, it failed to produce such set using all op-
erators when pessimistic Jaccard index is used to evalu-
ate redescription accuracy (redescription set produced by
ReReMi has higher median in accuracy). Although, CRM-
GRS produced a few redescriptions with higher accuracy
than those produced by the ReReMi. When query non-
missing Jaccard index is used as accuracy evaluation cri-
teria, CRM-GRS tends to create more accurate redescrip-
tions than the ReReMi (statistically significant at the sig-
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Figure 18: Boxplots comparing redescriptions, produced with our
framework (CLNref, CLRef) and the ReReMi algorithm (ReReMi)
on the Country dataset. Sets contain 120 redescriptions created by
using all defined logical operators and 36 redescriptions when only
conjunction and negation operators are used to construct redescrip-
tion queries. Redescription accuracy is evaluated by using pessimistic
Jaccard index.

nificance level 0.01). When using only conjunction logical
operator, the ReReMi tends to produce redescriptions with
smaller support compared to CRM-GRS if conjunctive re-
finement procedure is not used.

Analysis of element and attribute coverage is provided
in Section S2.5.3 (Online Resource 1).

The ReReMi algorithm found 2 redescriptions with
Jpess = 1.0 while CRM-GRS created redescription set con-
taining 4 redescriptions with Jpess = 1.0 when only con-
junction operators are allowed and 5 redescriptions when
all operators are allowed.

The analysis of comparative redescription examples pro-
duced by CRM-GRS and the ReReMi algorithm can be
seen in Section S2.5.3 (Online Resource 1).

The ReReMi produced 14 redescriptions with Jqnm =
1.0 using only conjunction operators while redescription
sets constructed by CRM-GRS contain 34 out of 36 re-
descriptions with Jqnm = 1.0 without using conjunctive
refinement and 36 out of 36 redescriptions with Jqnm = 1.0
with the use of conjunctive refinement procedure. When
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all logical operators were used to create redescriptions,
the ReReMi creates large number of disjunction based re-
descriptions, many of which are quite complex.

The difference in support size of redescriptions produced
by CRM-GRS compared to those produced by the ReReMi
algorithm, visible in Figures 17 and 18 when all operators
are used is in part the consequence of CRM-GRS using
high weight on element diversity but is also connected to
different logic in using the disjunction operator. CRM-
GRS allows improving Jaccard index, by using disjunc-
tions, only for redescriptions satisfying a predefined accu-
racy threshold. Highly overlapping subsets of instances are
thus complemented with subsets that are highly overlap-
ping with one of the already existing subset of instances.
Because of this, our framework eliminates descriptions of
unrelated subsets of instances that occasionally occur in
ReReMi’s descriptions as a result of using disjunction op-
erator (discussed in (Galbrun, 2013)).

6. Conclusions

We have presented a redescription mining framework
CRM-GRS which integrates the generalized redescription
set construction procedure with the CLUS-RM algorithm
(Mihelčić et al., 2015a,b).

The main contribution of this work is the generalized
redescription set construction procedure that allows creat-
ing multiple redescription sets of reduced size with differ-
ent properties defined by the user. These properties are
influenced by the user through importance weights on dif-
ferent redescription criteria. Use of the scalarization tech-
nique developed in multi - objective optimization guaran-
tees that, at each step, one non-dominated redescription
is added to the redescription set under construction. The
generalized redescription set construction procedure has
lower worst time complexity than existing redescription
mining algorithms so it may be preferred choice over the
multiple runs of these algorithms. The procedure allows
creating sets of different size with different redescription
properties. These features generally lack in current re-
description mining approaches, where users are forced to
experiment with individual algorithm parameters in or-
der to obtain desirable set of redescriptions. Finally, the
procedure allows using ensembles of redescription mining
algorithms to create reduced sets with superior properties
compared to those produced by individual algorithms.

The second contribution is related to increasing overall
redescription accuracy. Here, we build upon our previous
work on CLUS-RM algorithm and provide new - conjunc-
tive refinement procedure, that significantly enlarges and
improves the accuracy of redescriptions in the baseline re-
description set by combining candidate redescriptions dur-
ing the generation process. This procedure can be easily
applied in the context of majority of other redescription
mining algorithms, thus we consider it as a generally useful
contribution to the field of redescription mining.

Finally, we motivate the use of query non-missing Jac-
card index, introduced in (Mihelčić et al., 2015b), when
data contains missing values. We show that using pes-
simistic Jaccard index eliminates some potentially useful,
high quality redescriptions obtainable by using query non-
missing Jaccard index. To further increase the possibilities
of redescription mining algorithms, we introduce the re-
description variability index that allows extracting stable
redescriptions in the context of missing data, by combining
the upper and lower bound on estimates of Jaccard index.

The evaluation of our framework with 3 different state of
the art algorithms on 3 different real-world datasets shows
that our framework significantly outperforms other ap-
proaches in redescription accuracy in majority of cases. In
particular in settings when only conjunction and negation
operators are used in redescriptions, which is the preferred
setting from the point of understandability. In general,
CRM-GRS produces more understandable redescriptions
(due to smaller query size and extensive use of conjunc-
tion operator), it is more flexible and in majority of com-
parisons more accurate approach to mine redescriptions
from datasets. Moreover, we demonstrated that it com-
plements existing approaches in the discovered redescrip-
tions and solves several problems of existing approaches
(mainly the problem of support drift and redescriptions
connecting unrelated parts of element space by using dis-
junctions). The framework is easily extendible with new
redescription criteria and allows combining results of dif-
ferent redescription mining algorithms to create reduced
sets with superior properties with respect to different re-
description quality criteria.
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