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Organophosphorus (OP) nerve agents are extremely toxic 

compounds used as chemical warfare agents in armed conflicts and 

terrorist attacks1 and as pest control agents.2 The acute toxicity of 

these compounds is due to their irreversible inhibition of 

acetylcholinesterase (AChE; EC 3.1.1.7).3 Current therapy in cases 

of OP nerve agent poisoning includes an antimuscarinic drug (e.g. 

atropine), an anticonvulsant drug (e.g. diazepam), and an AChE 

reactivator from the quaternary pyridinium oxime family (2-PAM, 

trimedoxime, obidoxime, HI-6, Hlö-7).4 However, current therapy 

directed at the reactivation of inhibited AChE is limited to 

peripheral circulation because commonly used quaternary 

pyridinium oximes do not cross the blood-brain barrier due to their 

permanent positive charge.5 In order to achieve an efficient 

reactivation of central nervous system AChE, attempts have been 

made to develop efficient uncharged reactivators.6 Recently, a new 

series of AChE reactivators, including N-substituted 2-

hydroxyiminoacetamides, was reported.7 A few N-substituted 2-

hydroxyiminoacetamides have shown high reactivation potential 

toward sarin, cyclosarin and VX inhibited AChE.8 Because of the 

significant role of non-bonding interactions between the 

quaternary pyridinium ring of 2-PAM or HI-6 and the surrounding 

aromatic amino acids in the AChE active site in the overall 

stabilization of these compounds, it is reasonable to assume that 

the introduction of a phenyl ring into the structure of N-substituted 

2-hydroxyiminoacetamides would help their stabilization and 

possibly improve the geometry of the oxime group access to 

phosphylated serine. Thus, the aim of our work was to synthesize 

several structurally diverse aromatic N-substituted 2-

hydroxyiminoacetamides (2a-c, Figure 1). 
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Figure 1. Targeted aromatic N-substituted 2-

hydroxyiminoacetamides 

 

The synthesis of key compound 1, [N-(3-azido-1-phenyl-

propyl)-2-hydroxyiminoacetamide], from which the target 

molecules 2a-c could be prepared by the well-known copper 

catalyzed azide-alkyne cycloaddition,9 started from readily 

available cinnamyl alcohol (3) (Scheme 1). 

Scheme 1. Retrosynthetic pathway toward 1 
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In order to synthesize N-(3-azido-1-phenyl-propyl)-2-hydroxyiminoacetamide, a key compound 

for the preparation of acetylcholinesterase (AChE) reactivators of the N-substituted 2-

hydroxyiminoacetamide type, it was necessary to develop a method for forming an amide bond 

between an oxime ester and an amine. Using Candida antarctica lipase B (CAL-B) in a cascade 

enzyme-BOP catalyzed reaction, the efficient synthesis of the target hydroxyiminoacetamide was 

achieved. 
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1-Phenyl-allylamine (4) is prepared from alcohol 3 according 

to a procedure described in the literature10 and an azide group was 

then introduced via a three-step process. The final reaction was the 

formation of an amide bond between 3-azido-1-phenyl-

propylamine (5) and ethyl glyoxylate oxime, which was 

previously described for similar compounds.7 However, as in 

numerous other cases, amide bond formation turned out to 

represent a significant challenge.11 

The preparation of 1-phenyl-allylamine (4) from cinnamyl 

alcohol (3) includes an Overman reaction, which has been well-

described in the literature.12 The hydroxyl group was introduced to 

Boc protected 1-phenyl-allylamine (6) via hydroboration-

oxidation using 9-BBN as the hydroboration reagent (Scheme 2). 

 

Scheme 2. Synthesis of 3-azido-1-phenyl-propylamine (5). 

 

The hydroxyl group in 7 was replaced with an azide using 

diphenylphosphoryl azide (DPPA) as the azide source.13 The 

reaction was performed in dry toluene with 1,8-

diazabicycloundec-7-ene (DBU) as the base. The first step of the 

reaction, which was performed at room temperature, was the 

formation of the diphenylphosphate, which can easily be isolated, 

and the azide salt of DBU. By raising the temperature, nucleophilic 

substitution of the diphenylphosphate group with azide occurs. 

The resulting Boc-protected 3-azido-1-phenyl-propylamine (8) 

was difficult to purify from excess DPPA, so the crude residue was 

hydrolyzed with trifluoroacetic acid (TFA) in dichloromethane to 

afford pure 3-azido-1-phenyl-propylamine (5). 

The remaining step for the synthesis of 1 was assumed to follow 

the same path as the synthesis of structurally similar reported 

compounds RS41A and RS194B.7,14 The previously described 

condensation of ethyl glyoxylate with hydroxylamine provided 

ethyl glyoxylate oxime (9).15 The formation of an amide between 

ethyl glyoxylate oxime and an amine was reported in EtOH at 

50 °C. However, in our case, reaction at 50 °C, as well as in boiling 

EtOH, did not produce the desired product. Addition of Et3N as a 

base provided a somewhat poor conversion. The search for a 

solvent and base that would result in a satisfactory conversion of 

the reactants into the desired product was unsuccessful. 

Microwave-assisted reactions, which are known to be very fast 

and straightforward, also proved unsuccessful.16,17 MW irradiation 

of  5 and 9, with or without an additional base, for 30 minutes 

under solvent-free conditions did not demonstrate enhanced 

conversion compared to reactions in boiling EtOH. Longer 

reaction times did not increase the conversion, however new peaks 

appeared in the HPLC chromatogram indicating the formation of 

by-products. The results of several attempts to carry out this 

reaction are presented in Table 1. 

 

 

Table 1. Testing different conditions for the synthesis of 

compound 1. 

Solvent Base T [ºC] t [h] Conversion 

[%]a 

EtOH - reflux 24 0 

EtOH Et3N reflux 72 26 

1,4-dioxane Et3N 100 24 0 

1,4-dioxane DIPEA 80 24 0 

1,4-dioxane 1,2,4-

triazole/DBU 

80 24 0 

1,4-dioxane DMAP 80 24 0 

diglyme DIPEA 100 48 0 

diglyme DIPEA 110 48 8 

DMSO DIPEA 100 48 0 

THF KOt-Bu rt 2 0 

- - MW-110 0.5 17 

- DIPEA MW-95 0.5 18 
a Conversion of the product was determined using HPLC with UV 

detection at 220 nm 

 

Bearing in mind our previous experience with Candida 

antarctica lipase B (CAL-B),10 we decided to test this enzyme for 

our reaction. CAL-B is a very selective biocatalyst in enzymatic 

resolution of primary amines, as well as an excellent tool for amide 

bond formation.18 However, the test enzymatic reaction of amine 

5 and ester 9 using CAL-B did not proceed as desired. The target 

product was obtained, but in very low yield. We first assumed that 

these poor results were the consequence of the somewhat 

ambiguous placement of ester 9 in the active site of the enzyme 

due to its oxime group. In fact, oximes are used as nucleophiles in 

enzyme-catalyzed oximolysis for the preparation of oxime esters.19 

Although these activated oxime esters are known to react with 

amines to give amides,20 the success of amide formation depends 

on the structures of the amines and oxime esters.21 

Scheme 3. Synthesis of the MEM-protected oxime 10 

 

Therefore, to exclude the possibility of other side reactions, the 

oxime group was protected using a 2-methoxyethoxymethyl ether 

(MEM) protecting group (Scheme 3), starting from ethyl 

glyoxylate (12). Next, the reaction of the obtained ester 10 with 

amine 5 was examined. As was the case with unprotected oxime 

9, the desired product was obtained in low yield using the classic 

[EtOH, N,N-diisopropylethylamine (DIPEA), reflux for 48 h, 16% 

yield], as well as the enzymatic approach (Table 2). However, 

some solid was isolated which was insoluble in methyl tert-butyl 

ether (MTBE) and diisopropyl ether (DIPE), but was very soluble 

in dichloromethane. NMR and MS analysis of the solid showed 

that this substance (13, see Scheme 4) was actually the salt of 

amine 5 and hydrolyzed ester 10. 

 

 



Table 2. Attempts at preparing compound 1 using CAL-B. 

 

Ester Solvent T [ºC] t [h] Yield of  

1 or 11 [%] 

9 DIPE 40 48 0 

9 MTBE 30 24 9 

9 MTBE 40 24 2 

10 MTBE 40 72 31 

10 MTBEa 40 48 23 

10 DIPE 45 48 0b 
a Et3N was added to the reaction mixure.22 b Salt 13 (see Scheme 4) 

was isolated from the reaction mixture (96%). 

 

Considering the results listed in Table 2, it was clear that 

hydrolysis of ester 10 catalyzed by the enzyme was faster than the 

expected amide bond formation reaction. It is generally known that 

during enzyme-catalyzed aminolysis, even traces of water cause 

hydrolysis of the acyl donor, which is why such reactions must be 

performed in dry solvents.18,23 DIPE is a solvent which probably 

contains a sufficient amount of water to prevent amide formation. 

Hence, salt 13 was isolated in almost quantitative yield (96%), 

indicating that under these reaction conditions complete 

hydrolysis of the MEM-protected ester 10 occurred. Furthermore, 

ammoniolysis catalyzed by Novozym 435 (CAL-B immobilized 

on macroporous acrylic resin) has been reported to sometimes be 

accompanied by unexpected hydrolysis of the ester in spite of the 

rigorous exclusion of moisture.23 It is assumed that these results 

are the consequence of acrylic carrier adsorption of traces of water 

flushed out by ammonia. Since we also used Novozym 435, it is 

reasonable to assume that this problem is also present.  

The reaction yield of amide 11 could be enhanced by using a 

very large excess of ester that would ensure an ample amount of 

acyl donor for amide formation. However, ester 10 is not 

commercially available and has to be synthesized, so this approach 

was not suitable. Considering the above-mentioned facts and since 

we needed amide 1 in racemic form and higher yield if possible, 

we decided to try an alternative approach. 

A large number of coupling reagents for amide bond formation 

between amines and carboxylic acids have been developed, 

principally for their use in peptide synthesis.11 Benzotriazolyloxy-

tris(dimethylamino)hexafluorophosphate (BOP) was selected due 

to its ability to work in situ. Typically, the activating agent is added 

to a 1:1 mixture of the amine and the carboxylic acid.24 

Accordingly, the isolated salt 13 was converted into the desired 

amide 11 in a BOP-catalyzed reaction (Scheme 4) in satisfactory 

yield. 

 

Scheme 4. Formation of amide 11 from salt 13 

 

Considering this reaction proved its potential, we decided to 

investigate a one-pot cascade enzyme-BOP catalyzed reaction of 

ester 10 and amine 5 (Scheme 5).25 For reasons mentioned 

previously, DIPE was selected as the solvent. In this reaction, 

CAL-B first catalyzed the hydrolysis of ester 10 which produced 

salt 13, and then the resulting salt was converted into amide 11 

using the BOP/Et3N catalyzed reaction. The reaction yield was 

similar to that obtained when the salt was first isolated from the 

reaction mixture and then subjected to BOP coupling in DMF. The 

desired amide 1 was now easily obtained from amide 11 by 

removing the MEM protecting group under mild reaction 

conditions using ZnBr2.
26,27 

Herein, we have described the synthesis of 

hydroxyiminoacetamide 1, realized by cascade enzyme-BOP 

catalyzed reaction. After several unsuccessful attempts in forming 

an amide bond between ethyl glyoxylate oxime and 3-azido-1-

phenyl-propylamine, the problem was solved in three steps. The 

oxime group was protected using 2-methoxyethoxymethyl ether 

(MEM) protecting group. Obtained MEM-protected oxime ester 

was hydrolyzed using Candida antarctica lipase B (CAL-B) in 

organic solvent and then coupled with an amine using BOP 

coupling reagent in a one-pot cascade reaction. After removing the 

MEM protecting group under mild conditions, target 

hydroxyiminoacetamide 1 was gained. 

Scheme 5. Synthesis of hydroxyiminoacetamide 1 from ester 10 and amine 5. 
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