

Environmental ¹⁴C and ³H levels in Croatia

Ines Krajcar Bronić

Department of Experimental Physics Ruđer Bošković Institute, Zagreb, Croatia

<u>krajcar@irb.hr</u>

Laboratory for low-level radioactivities Ruđer Bošković Institute, Zagreb, Croatia

Since 1968 radiocarbon, since 1976 tritium

Dušan Srdoč Bogomil Obelić Nada Horvatinčić Ines Krajcar Bronić Jadranka Barešić Andreja Sironić Damir Borković Anita Sironić Ivanka Lovrenčić Mikelić Martina Rožmarić Matea Krmpotić

Laboratory for low-level radioactivities

- ¹⁴C dating of archaeological samples
- Geochronology (secondary carbonates in karst)
- Monitoring ³H in precipitation and ¹⁴C in the atmosphere and biosphere
- Various applications of isotope methods (³H, ¹⁴C, stable isotopes ²H, ¹⁸O, ¹³C)

- Radioactive isotopes ³H and ¹⁴C are constituents of H₂O and CO₂ molecules, respectively
- They take part in natural cycles of water and carbon, resp.,
- Their origin is both cosmogenic and anthropogenic
- Natural distributions of both isotopes have been disturbed by human activities in the 20th century
- maximal atmospheric activities observed in 1963-1964 (³H - x1000, ¹⁴C - 2x), continuous decrease since then

Activity concentration of ³H was measured by gas proportional counting technique until 2007 and since 2008 by liquid scintillation counting after electrolytic enrichment.

A gas proportional counting technique for ¹⁴C was replaced by liquid scintillation counting following either benzene synthesis or direct absorption of CO_2

Horvatinčić, N; Barešić, J; Krajcar Bronić, I; Obelić, B. Measurement of Low ¹⁴C Activities in Liquid Scintillation Counter in the Zagreb Radiocarbon Laboratory. Radiocarbon 46 (2004) 105-116

Krajcar Bronić, I; Horvatinčić, N; Barešić, J; Obelić, B. Measurement of ¹⁴C activity by liquid scintillation counting. Applied Radiation and Isotopes 67 (2009) 800-804

AMS-¹⁴**C** – graphite target preparation for AMS measurements, since 2008; "feeding laboratory"

Krajcar Bronić, I; Horvatinčić, N; Sironić, A; Obelić, B; Barešić, J; Felja, I. A new graphite preparation line for AMS ¹⁴C dating in the Zagreb Radiocarbon Laboratory. Nucl. Instrum. Methods B 268 (2010) 943-946

Sironić, A; Krajcar Bronić, I; Horvatinčić, N; Barešić, J; Obelić, B; Felja, I. Status report on the Zagreb radiocarbon laboratory - AMS and LSC results of VIRI intercomparison samples. Nucl. Instrum. Methods B 294 (2013) 185-188

RBI – Tritium laboratory - Electrolythic enrichment

20 cells, initial volume 500 ml, enrichment factor ≈28; 8 ml + 12 ml UG LLT

RBI – LSC Measurement

³H – direct measurement ³H – with el. enrichment

LSC-A ${}^{14}C$ – absorption of CO₂ LSC-B ${}^{14}C$ – benzene synthesis LSC-F ${}^{14}C$ – biogenic fraction

Long-term data on ³H activity concentration in monthly precipitation in Zagreb and Ljubljana (Slovenia) exist for the period since 1976 and 1981, respectively (Krajcar Bronić et al., Radiocarbon 40 (1998) 399; Vreča et al., Geologija 57 (2014) 217)

For shorter periods of time the data exist for several stations along the Adriatic coast and for the continental station Plitvice Lakes (Croatia). (Krajcar Bronić et al., Arhiv za higijenu rada i toksikologiju 57 (2006) 23, Vreča et al., J. Hydrology 330 (2006) 457)

Local contamination at site Zagreb – RBI \rightarrow sampling location changed to Zagreb – Grič

Krajcar Bronić et al., Radiocarbon 40 (1998) 399

The data recorded during last 2 decades, show almost constant mean annual ³H activity concentration of about 9 TU for the continental stations

Comparison of continental and maritime stations

Vreča et al., J. Hydrology 330 (2006) 457

Trieste 10.2 *

Basovizza

11.1 *

A ³H (TU)

Influence of Mediterranean air masses, d > 10 **‰**

higher d values in autumn-winter precipitation (mean monthly d-excess higher than 10 ‰ at all stations)

Comparison: continental, maritime and high-altitude stations

	Sampling site	2001 – 2003 mean A (TU)	correlation with Zagreb	Deuterium excess (‰)	Maritime air masses
continental	Zagreb	8.8		10.6	0 %
	Ljubljana	8.0	0.60	10.3	15 – 25 %
North and mid-adriatic (higher altitude stations)	Portorož	6.3	0.55	10.3	26 – 62 %
	Kozina	5.4	0.55	12.1	
	Malinska	5.6			
	Zadar	6.0	0.34	11.0	
	Zavižan	6.1	0.40	15.0	
South Adriatic	Komiža	3.9	0.31	13.1	84 – 87 %
	Dubrovnik	3.2	0.20	14.1	100 %

Zagreb: period (1985) - 1993 – 2016

Krajcar Bronić et al., Radiocarbon 1998, Krajcar Bronić et al., Nucl. Instrum. Meth. 2010

Plitvice Lakes - not continuous atmospheric CO₂ record tree rings used for reconstruction of the bomb peak

Nuclear Power Plant Krško (SLO) – since 2006 continuous data record - atmospheric CO₂ and biological samples

a¹⁴C in atmospheric CO₂ and tree rings anthropogenic disturbance of natural radioactivity

a¹⁴C decreasing rate (Schauinsland data)

decreasing trend of $-0.46 \pm 0.04 \text{ pMC/yr}$ (mean annual values) or -0.485 pMC/yr (monthly data) with seasonal variations superposed on the trend

Zagreb 2006 - 2017

Zagreb, 2006 - 2017

a¹⁴C decreasing rates, pMC/yr

period	Global data (Schaunsland)	Zagreb data	
1964 - 1969	5.3		
1970 - 1979	3.5		
1980 - 1989	1.0		
1984 - 1989		1.3	Not systematic data
1990 - 1999	0.6		
1993 - 2005		0.58	
2000 - 2003	0.5		
2005 - 2017		0.37 0.40	Monthly data mean annual

Seasonal variations Zagreb, 2006 - 2016

Monthly data, statistical analysis, Zagreb, 2006 - 2016

Krajcar Bronić et al. Radiocarbon application in environmental science and archaeology in Croatia. Nucl. Instrum. Methods A 619 (2010) 491–496. doi:10.1016/j.nima.2009.11.032

¹⁴C in an urban centre and the clean-air site (2) Zagreb (104.1 + 2.9) pMC Plitvice Lakes (105.7 + 1.5) pMC

Krajcar Bronić et al. Radiocarbon application in environmental science and archaeology in Croatia. Nucl. Instrum. Methods A 619 (2010) 491–496. doi:10.1016/j.nima.2009.11.032 The winter minima in atmospheric ¹⁴CO₂ activity are systematically lower than 100 pMC, probably due to the contribution of fossil fuel combustion in the city area.

Sampling locations

Systematic and continuous monitoring ¹⁴C activity in atmospheric CO₂ and biological samples (apples, vegetable, cereals, corn) in the vicinity of the Nuclear Power Plant Krško (NEK) in Slovenia has been performed since 2006.

Atmospheric CO₂

* Measured at the Jožef Stefan Institute, Ljubljana, Slovenia

¹⁴C activity in atmospheric CO_2 at locations **A** and **B** (maximal values), correlated with the highest ¹⁴C activity in monthly gaseous effluents released during the outage periods. Atmospheric ¹⁴C activity at the location **B** is always slightly higher than that at the location **A**.

The higher the ¹⁴C activity of gaseous effluent, the higher the atmospheric ¹⁴C activity.

¹⁴C in biological samples, spatial distribution

9/2007

7/2007

- good correlation between the released A¹⁴C and the mean a¹⁴C of the inner locations
- higher a¹⁴C in samples taken in summer than in the autumn samples, because during spring plants use CO₂ from the atmosphere immediately after the refuelling

Seasonal average values

NEK

Spring refuelling – before the vegetation period – significantly affects distribution of ¹⁴C activitis in plants in summer sampling, somewhat less in autumn sampling.

Autumn refuelling – after the vegetation period – does not influence plant ¹⁴C activity in the next year.

In years without a refuelling – a^{14} C in the outer circle of NEK similar to the a^{14} C at the control location Dobova, in the inner circle higher a^{14} C values

Comparison of the average plants a¹⁴C values in the inner circle (C, D, E, I, J, R), in the outer circle (F, G, H, K, L, M, N, O, P, Q) around NEK, at the control location Dobova, and the atmospheric a¹⁴C in Zagreb

	Average a ¹⁴ C (pMC) 2006 – 2016	
Inner circle	109.7 ± 4.1	
Outer circle	106.4 ± 1.9	
Control location - Dobova	103.6 ± 1.0	
Zagreb (atm. CO ₂)	102.3 ± 1.2	

Concluding remarks 1/2

- Environmental levels of ³H and ¹⁴C were presented
- Both isotopes are of cosmogenic origin
- Natural distributions of both isotopes have been disturbed by human activities in the 20th century continuous decrease since then with variable decrease rates
- Seasonal fluctuations superposed to the decreasing trends
- During last 10-20 years very slow decrease rates
- These "anthropogenically modified natural distributions" present now "new natural global" environmental levels
- Global environmental levels further modified by local effects

Concluding remarks 2/2

3 types of environmental sites

- 1. "clean-air" sites influenced by the global effects only
- Local effects that increase the "new natural" levels (sources of ³H and ¹⁴C - nuclear power plants, industry, medical facilities...)
- Local effects that lower the "new natural" levels (³H-free and ¹⁴C-free sources – fossil fuels in industrial and urban areas, sea-water...)

